1
|
Zeng X, Zeng Y, Yee JC, Yang H. Biochemical and molecular responses to long-term salinity challenges in northern quahogs Mercenaria mercenaria. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109888. [PMID: 39250983 DOI: 10.1016/j.fsi.2024.109888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Salinity is a key environmental factor for aquatic organisms for survival, development, distribution, and physiological performance. Salinity fluctuation occurs often in estuary and coastal zones due to weather, tide, and freshwater inflow and thus heavily affects coastal marine aquaculture. The northern quahog Mercenaria mercenaria is an important aquaculture species along the Atlantic coast in the US, but information on the effects of salinity stress on physiological, immunological, and molecular responses is still scarce. The goal of this study was to investigate cellular and molecular responses through challenges of long-term hypo- and hyper-salinities in northern quahogs. The objectives were to: 1) measure the survival of market-sized quahogs under a three-month salinity challenge at 15 (hyposalinity), 25 (control), and 35 ppt (hypersalinity); 2) determine cellular changes of hemocytes through analysis of immune functions; 3) determine changes of the total free amino acid concentration in gills, and 4) evaluate the molecular responses in gills using RNAseq technology with qPCR verification. After a three-month salinity challenge, no mortality was observed, and increases in body weight were identified with a significantly higher increase in the hypersalinity group. Northern quahogs equilibrated their hemolymph osmolality with the ambient seawater and were verified to be osmoconformers. Significant differences were observed in total hemocyte concentration, lysosomal presence, ROS production, and phagocytic rate, but no differences were found in cell viability. The total free amino acid concentration within gills was positively correlated to water salinity, indicating amino acids were critical organic osmolytes. The transcriptome of gills using RNAseq revealed differential expression genes (DEG) encoding amino acid transporters (SLC6A3, SLC6A6, SLC6A13, SLC25A38), ion channel proteins (T38B1, GluCl, ATP2C1), and water channel protein (AQP8) in hyposalinity or/and hypersalinity groups, indicating these genes play critical roles in intracellular isosmotic regulation. Overall, the findings in this study provided new insights into osmoregulation in northern quahogs.
Collapse
Affiliation(s)
- Xianyuan Zeng
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32653, USA
| | - Yangqing Zeng
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32653, USA
| | - Jayme C Yee
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32653, USA
| | - Huiping Yang
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32653, USA.
| |
Collapse
|
2
|
Cao T, Zhang W, Wang Q, Wang C, Ma W, Zhang C, Ge M, Tian M, Yu J, Jiao A, Wang L, Liu M, Wang P, Guo Z, Zhou Y, Chen S, Yin W, Yi J, Guo H, Han H, Zhang B, Wu K, Fan D, Wang X, Nie Y, Lu Y, Zhao X. Cancer SLC6A6-mediated taurine uptake transactivates immune checkpoint genes and induces exhaustion in CD8 + T cells. Cell 2024; 187:2288-2304.e27. [PMID: 38565142 DOI: 10.1016/j.cell.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/12/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Taurine is used to bolster immunity, but its effects on antitumor immunity are unclear. Here, we report that cancer-related taurine consumption causes T cell exhaustion and tumor progression. The taurine transporter SLC6A6 is correlated with aggressiveness and poor outcomes in multiple cancers. SLC6A6-mediated taurine uptake promotes the malignant behaviors of tumor cells but also increases the survival and effector function of CD8+ T cells. Tumor cells outcompete CD8+ T cells for taurine by overexpressing SLC6A6, which induces T cell death and malfunction, thereby fueling tumor progression. Mechanistically, taurine deficiency in CD8+ T cells increases ER stress, promoting ATF4 transcription in a PERK-JAK1-STAT3 signaling-dependent manner. Increased ATF4 transactivates multiple immune checkpoint genes and induces T cell exhaustion. In gastric cancer, we identify a chemotherapy-induced SP1-SLC6A6 regulatory axis. Our findings suggest that tumoral-SLC6A6-mediated taurine deficiency promotes immune evasion and that taurine supplementation reinvigorates exhausted CD8+ T cells and increases the efficacy of cancer therapies.
Collapse
Affiliation(s)
- Tianyu Cao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wenyao Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qi Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China; College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Chen Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China; College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Wanqi Ma
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Minghui Ge
- Simcere Diagnostics Co., Ltd., Nanjing, Jiangsu 210042, China
| | - Miaomiao Tian
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jia Yu
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Liang Wang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Manjiao Liu
- Simcere Diagnostics Co., Ltd., Nanjing, Jiangsu 210042, China
| | - Pei Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhiyu Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yun Zhou
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Shuyi Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wen Yin
- Department of Blood Transfusion, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing Yi
- Department of Blood Transfusion, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hao Guo
- Simcere Diagnostics Co., Ltd., Nanjing, Jiangsu 210042, China
| | - Hua Han
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xin Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China.
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Yuanyuan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Xiaodi Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
3
|
Ito T, Murakami S. Taurine deficiency associated with dilated cardiomyopathy and aging. J Pharmacol Sci 2024; 154:175-181. [PMID: 38395518 DOI: 10.1016/j.jphs.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 02/25/2024] Open
Abstract
Taurine (2-aminoethanesulfonic acid) is a free amino acid found ubiquitously and abundantly in mammalian tissues. Taurine content in the heart is approximately 20 mM, which is approximately 100 times higher than plasma concentration. The high intracellular concentration of taurine is maintained by the taurine transporter (TauT; Slc6a6). Taurine plays various roles, including the regulation of intracellular ion dynamics, calcium handling, and acting as an antioxidant in the heart. Some species, such as cats and foxes, have low taurine biosynthetic capacity, and dietary taurine deficiency can lead to disorders such as dilated cardiomyopathy and blindness. In humans, the relationship between dietary taurine deficiency and cardiomyopathy is not yet clear, but a genetic mutation related to the taurine transporter has been reported to be associated with dilated cardiomyopathy. On the other hand, many studies have shown an association between dietary taurine intake and age-related diseases. Notably, it has recently been reported that taurine declines with age and is associated with lifespan in worms and mice, as well as healthspan in mice and monkeys. In this review, we summarize the role of dietary and genetic taurine deficiency in the development of cardiomyopathy and aging.
Collapse
Affiliation(s)
- Takashi Ito
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjojima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan.
| | - Shigeru Murakami
- Department of Nursing Science, Fukui Prefectural University, 4-1-1 Matsuokakenjojima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan
| |
Collapse
|
4
|
Jomura R, Akanuma SI, Tachikawa M, Hosoya KI. SLC6A and SLC16A family of transporters: Contribution to transport of creatine and creatine precursors in creatine biosynthesis and distribution. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183840. [PMID: 34921896 DOI: 10.1016/j.bbamem.2021.183840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
Creatine (Cr) is needed to maintain high energy levels in cells. Since Cr plays reportedly a critical role in neurodevelopment and the immune system, Cr dynamics should be strictly regulated to control these physiological events. This review focuses on the role of transporters that recognize Cr and/or Cr precursors. Our previous studies revealed physiological roles of SLC6A and SLC16A family transporters in Cr dynamics. Creatine transporter (CRT/SLC6A8) contributes to the influx transport of Cr in Cr distribution. γ-Aminobutyric acid transporter 2 (GAT2/SLC6A13) mediates incorporation of guanidinoacetate (GAA), a Cr precursor, in the process of Cr biosynthesis. Monocarboxylate transporter 12 (MCT12/SLC16A12) functions as an efflux transporter for Cr and GAA, and contributes to the process of Cr biosynthesis. Accordingly, the SLC6A and SLC16A family of transporters play important roles in the process of Cr biosynthesis and distribution via permeation of Cr and Cr precursors across the plasma membrane.
Collapse
Affiliation(s)
- Ryuta Jomura
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Masanori Tachikawa
- Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan.
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
5
|
Involvement of TauT/SLC6A6 in Taurine Transport at the Blood-Testis Barrier. Metabolites 2022; 12:metabo12010066. [PMID: 35050188 PMCID: PMC8782047 DOI: 10.3390/metabo12010066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/30/2022] Open
Abstract
Taurine transport was investigated at the blood–testis barrier (BTB) formed by Sertoli cells. An integration plot analysis of mice showed the apparent influx permeability clearance of [3H]taurine (27.7 μL/(min·g testis)), which was much higher than that of a non-permeable paracellular marker, suggesting blood-to-testis transport of taurine, which may involve a facilitative taurine transport system at the BTB. A mouse Sertoli cell line, TM4 cells, showed temperature- and concentration-dependent [3H]taurine uptake with a Km of 13.5 μM, suggesting that the influx transport of taurine at the BTB involves a carrier-mediated process. [3H]Taurine uptake by TM4 cells was significantly reduced by the substrates of taurine transporter (TauT/SLC6A6), such as β-alanine, hypotaurine, γ-aminobutyric acid (GABA), and guanidinoacetic acid (GAA), with no significant effect shown by L-alanine, probenecid, and L-leucine. In addition, the concentration-dependent inhibition of [3H]taurine uptake revealed an IC50 of 378 μM for GABA. Protein expression of TauT in the testis, seminiferous tubules, and TM4 cells was confirmed by Western blot analysis and immunohistochemistry by means of anti-TauT antibodies, and knockdown of TauT showed significantly decreased [3H]taurine uptake by TM4 cells. These results suggest the involvement of TauT in the transport of taurine at the BTB.
Collapse
|
6
|
Vassalli QA, Colantuono C, Nittoli V, Ferraioli A, Fasano G, Berruto F, Chiusano ML, Kelsh RN, Sordino P, Locascio A. Onecut Regulates Core Components of the Molecular Machinery for Neurotransmission in Photoreceptor Differentiation. Front Cell Dev Biol 2021; 9:602450. [PMID: 33816460 PMCID: PMC8012850 DOI: 10.3389/fcell.2021.602450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Photoreceptor cells (PRC) are neurons highly specialized for sensing light stimuli and have considerably diversified during evolution. The genetic mechanisms that underlie photoreceptor differentiation and accompanied the progressive increase in complexity and diversification of this sensory cell type are a matter of great interest in the field. A role of the homeodomain transcription factor Onecut (Oc) in photoreceptor cell formation is proposed throughout multicellular organisms. However, knowledge of the identity of the Oc downstream-acting factors that mediate specific tasks in the differentiation of the PRC remains limited. Here, we used transgenic perturbation of the Ciona robusta Oc protein to show its requirement for ciliary PRC differentiation. Then, transcriptome profiling between the trans-activation and trans-repression Oc phenotypes identified differentially expressed genes that are enriched in exocytosis, calcium homeostasis, and neurotransmission. Finally, comparison of RNA-Seq datasets in Ciona and mouse identifies a set of Oc downstream genes conserved between tunicates and vertebrates. The transcription factor Oc emerges as a key regulator of neurotransmission in retinal cell types.
Collapse
Affiliation(s)
- Quirino Attilio Vassalli
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Chiara Colantuono
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Valeria Nittoli
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Anna Ferraioli
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Giulia Fasano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Federica Berruto
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maria Luisa Chiusano
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Naples, Italy
- Department of Agriculture, Università degli Studi di Napoli Federico II, Portici, Italy
| | - Robert Neil Kelsh
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, London, United Kingdom
| | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
7
|
Jomura R, Tanno Y, Akanuma SI, Kubo Y, Tachikawa M, Hosoya KI. Monocarboxylate transporter 12 as a guanidinoacetate efflux transporter in renal proximal tubular epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183434. [PMID: 32781157 DOI: 10.1016/j.bbamem.2020.183434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Guanidinoacetate (GAA), which is a precursor of creatine, is mainly biosynthesized in the renal proximal tubular epithelial cells (RPTECs). Plasma concentration of GAA has been reported to be reduced in patients with monocarboxylate transporter 12 (MCT12) mutation (p.Q215X). However, the mechanism underlying GAA release from the RPTECs remains unclear. Therefore, to elucidate the role of MCT12 in renal GAA release, MCT12-mediated GAA transport was evaluated using the human and rat MCT12-expressing Xenopus laevis oocytes and primary-cultured rat RPTECs. [14C]GAA uptake by the human and rat MCT12-expressing oocytes was significantly higher than that by the water-injected oocytes. Rat MCT12-mediated uptake of [14C]GAA by the oocytes was found to be sodium ion (Na+)-independent and exhibited saturable kinetics with a Michaelis-Menten constant of 3.38 mM. Transport activities of rat MCT12 tend to increase along with increasing of extracellular pH. In addition, the efflux transport of [14C]GAA from the human and rat MCT12-expressing oocytes was significantly higher than that from the water-injected oocytes. These results suggest that both the influx and efflux transport of GAA is mediated by MCT12. In the primary-cultured rat RPTECs, [14C]GAA efflux transport was significantly reduced by the transfection of MCT12-specific siRNAs, suggesting that MCT12 participates in GAA efflux transport in rat RPTECs. Therefore, it suggests that MCT12 is involved in GAA release from RPTECs to the circulating blood, since MCT12 is known to be localized on the basal membrane of RPTECs.
Collapse
Affiliation(s)
- Ryuta Jomura
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yu Tanno
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yoshiyuki Kubo
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Masanori Tachikawa
- Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan.
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
8
|
Kubo Y, Yamada M, Konakawa S, Akanuma SI, Hosoya KI. Uptake Study in Lysosome-Enriched Fraction: Critical Involvement of Lysosomal Trapping in Quinacrine Uptake but Not Fluorescence-Labeled Verapamil Transport at Blood-Retinal Barrier. Pharmaceutics 2020; 12:E747. [PMID: 32784408 PMCID: PMC7464812 DOI: 10.3390/pharmaceutics12080747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 01/11/2023] Open
Abstract
Lysosomal trapping at the blood-retinal barrier (BRB) was investigated through quinacrine and fluorescence-labeled verapamil (EFV) uptake. Quinacrine uptake by conditionally immortalized rat retinal capillary endothelial (TR-iBRB2) cells suggested saturable and non-saturable transport processes in the inner BRB. The reduction of quinacrine uptake by bafilomycin A1 suggested quinacrine distribution to the acidic intracellular compartments of the inner BRB, and this notion was also supported in confocal microscopy. In the study using the lysosome-enriched fraction of TR-iBRB2 cells, quinacrine uptake was inhibited by bafilomycin A1, suggesting the lysosomal trapping of quinacrine in the inner BRB. Pyrilamine, clonidine, and nicotine had no effect on quinacrine uptake, suggesting the minor role of lysosomal trapping in their transport across the inner BRB. Bafilomycin A1 had no effect on EFV uptake, and lysosomal trapping driven by the acidic interior pH was suggested as a minor mechanism for EFV transport in the inner BRB. The minor contribution of lysosomal trapping was supported by the difference in inhibitory profiles between EFV and quinacrine uptakes. Similar findings were observed in the outer BRB study with the fraction of conditionally immortalized rat retinal pigment epithelial (RPE-J) cells. These results suggest the usefulness of lysosome-enriched fractions in studying lysosomal trapping at the BRB.
Collapse
Affiliation(s)
- Yoshiyuki Kubo
- Correspondence: (Y.K.); (K.-i.H.); Tel.: +81-76-434-7505 (Y.K. & K.-i.H.)
| | | | | | | | - Ken-ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (M.Y.); (S.K.); (S.-i.A.)
| |
Collapse
|
9
|
Police A, Shankar VK, Murthy SN. Role of Taurine Transporter in the Retinal Uptake of Vigabatrin. AAPS PharmSciTech 2020; 21:196. [PMID: 32666325 DOI: 10.1208/s12249-020-01736-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/20/2020] [Indexed: 12/18/2022] Open
Abstract
Vigabatrin (VGB) is a first-line drug used for treatment of infantile spasms. On therapeutic dose, VGB accumulates in the retina causing permanent peripheral visual field constriction. The mechanism involved in retinal accumulation of VGB is ambiguous. In the present study, mechanism of VGB transport into retina was evaluated. VGB uptake into retina was studied in vitro using human adult retinal pigment epithelial (ARPE-19) cells as a model for outer blood retinal barrier. The VGB cell uptake studies demonstrated saturation kinetics with Km value of 13.1 mM and uptake was significantly increased at pH 7.4 and hyperosmolar conditions indicating involvement of carrier-mediated Na+-Cl--dependent transporter. In the presence of taurine transporter (TauT) substrates (taurine and GABA) and inhibitor guanidinoethyl sulfonate (GES), the uptake of VGB decreased significantly demonstrating contribution of TauT. The VGB retinal levels in rats were decreased by 1.5- and 1.3-folds on chronic administration of GES and taurine, respectively. In conclusion, this study demonstrated the TauT involvement in VGB uptake and accumulation in retina.
Collapse
|
10
|
Baliou S, Kyriakopoulos AM, Goulielmaki M, Panayiotidis MI, Spandidos DA, Zoumpourlis V. Significance of taurine transporter (TauT) in homeostasis and its layers of regulation (Review). Mol Med Rep 2020; 22:2163-2173. [PMID: 32705197 PMCID: PMC7411481 DOI: 10.3892/mmr.2020.11321] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/09/2020] [Indexed: 11/05/2022] Open
Abstract
Taurine (2‑aminoethanesulfonic acid) contributes to homeostasis, mainly through its antioxidant and osmoregulatory properties. Taurine's influx and efflux are mainly mediated through the ubiquitous expression of the sodium/chloride‑dependent taurine transporter, located on the plasma membrane. The significance of the taurine transporter has been shown in various organ malfunctions in taurine‑transporter‑null mice. The taurine transporter differentially responds to various cellular stimuli including ionic environment, electrochemical charge, and pH changes. The renal system has been used as a model to evaluate the factors that significantly determine the regulation of taurine transporter regulation.
Collapse
Affiliation(s)
- Stella Baliou
- National Hellenic Research Foundation, 11635 Athens, Greece
| | | | | | - Michalis I Panayiotidis
- Department of Electron Microscopy and Molecular Pathology, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | | |
Collapse
|
11
|
Fan Y, Lai J, Yuan Y, Wang L, Wang Q, Yuan F. Taurine Protects Retinal Cells and Improves Synaptic Connections in Early Diabetic Rats. Curr Eye Res 2020; 45:52-63. [PMID: 31404506 DOI: 10.1080/02713683.2019.1653927] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
Abstract
Purpose: Taurine has long been thought to be involved in retinal protection from retinal degenerative diseases, but the underlying molecular mechanisms remain unclear. Retinal neurodegeneration is an early event in the pathogenesis of diabetic retinopathy (DR) that precedes and participates in the microcirculatory abnormalities that occur in DR. Our objective was to investigate the role and mechanisms of taurine in early diabetic retinas.Methods: Eight-week-old STZ-induced diabetic rats and control animals were randomly assigned to receive taurine or vehicle by intraperitoneal injection or by intragastric administration. The retinal function and retinal cell counts were evaluated using an electroretinography (ERG) and immunofluorescence microscopy. Plasma amino acids were measured by ion-exchange chromatography (IEC). The expression levels of retinal taurine transporter (Tau-T), mitochondria-dependent apoptosis-associated genes and reactive gliosis markers were studied by western blotting and immunofluorescence. Pre- and post-synaptic markers (PSD95 and mGluR6) in outer plexiform layer (OPL), and the bipolar cell marker protein kinase C alpha (PKCα) were localized by immunofluorescence. Levels of PSD95 and mGluR6 were determined by quantitative western blot.Results: Taurine significantly prevented the reduction of photopic b-wave amplitude and retinal cone cells and ganglion cells loss and maintained the Bcl-2/Bax ratio balance in diabetic rats. Taurine also prevented the upregulation of glial fibrillary acidic protein (GFAP) and reduced retinal reactive gliosis. Taurine reduced plasma glutamate and tyrosine levels, which were elevated in diabetic rats. Moreover, mGluR6 levels reduction detected by western blot and immunofluorescence in diabetic retinas was inhibited and the displacement of mGluR6 in OPL into the inner nuclear layer (INL) detected by immunofluorescence was reduced by Taurine treatment.Conclusion: Taurine may protect retinal cells from diabetic attacks by activating Tau-T, reducing retinal reactive gliosis, improving retinal synaptic connections and decreasing retinal cell apoptosis. Thus, taurine treatment may be a novel approach for early DR.
Collapse
Affiliation(s)
- Yichao Fan
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jie Lai
- Department of Ophthalmology, First Affiliated Hospital of Nanchang University Nanchang, Jiangxi, China
| | - Yuanzhi Yuan
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Liyang Wang
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Qingping Wang
- Department of Ophthalmology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Fei Yuan
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
12
|
The Effect of Drug Pre-treatment on Taurine Transport at the Inner Blood-Retinal Barrier Under Variable Conditions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:959-975. [DOI: 10.1007/978-981-13-8023-5_80] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
He F, Ma N, Midorikawa K, Hiraku Y, Oikawa S, Zhang Z, Huang G, Takeuchi K, Murata M. Taurine exhibits an apoptosis-inducing effect on human nasopharyngeal carcinoma cells through PTEN/Akt pathways in vitro. Amino Acids 2018; 50:1749-1758. [PMID: 30225664 DOI: 10.1007/s00726-018-2651-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a distinctive type of head and neck malignancy with a high incidence in southern China. Previous studies have confirmed that taurine shows an anti-cancer effect on a variety of human tumors by inhibiting cell proliferation and inducing apoptosis. However, the underlying molecular mechanism of its anti-cancer effect on NPC is not well understood. To clarify these anti-cancer mechanisms, we performed cell viability and colony formation assays. Apoptotic cells were quantified by flow cytometry. The expression levels of apoptosis-related proteins were evaluated by Western blot. The results showed that taurine markedly inhibited cell proliferation in NPC cells, but only slightly in an immortalized normal nasopharyngeal cell line. Taurine suppressed colony formation and induced apoptosis of NPC cell lines in a dose-dependent manner. Furthermore, taurine increased the active form of caspase-9/3 in a dose-dependent manner. Taurine down-regulated the anti-apoptotic protein Bcl-xL and up-regulated the pro-apoptotic protein Bax and GRP78, a major endoplasmic reticulum (ER) chaperone. These results suggest the involvement of mitochondrial and ER stress signaling in apoptosis. In addition, taurine increased the levels of PTEN (phosphatase and tensin homolog deleted on chromosome 10) and p53, and reduced phosphorylated Akt (protein kinase B). In conclusion, taurine may inhibit cell proliferation and induce apoptosis in NPC through PTEN activation with concomitant Akt inactivation.
Collapse
Affiliation(s)
- Feng He
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Otolaryngology Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Kaoru Midorikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Guangwu Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Kazuhiko Takeuchi
- Department of Otolaryngology Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu, Japan.
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Japan.
| |
Collapse
|
14
|
Kubo Y, Akanuma SI, Hosoya KI. Recent advances in drug and nutrient transport across the blood-retinal barrier. Expert Opin Drug Metab Toxicol 2018; 14:513-531. [PMID: 29719158 DOI: 10.1080/17425255.2018.1472764] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The blood-retinal barrier (BRB) is the barrier separating the blood and neural retina, and transport systems for low-weight molecules at the BRB are expected to be useful for developing drugs for the treatment of ocular neural disorders and maintaining a healthy retina. Areas covered: This review discusses blood-to-retina and retina-to-blood transport of drugs and nutrients at the BRB. In particular, P-gp (ABCB1/MDR1) has low impact on the transport of cationic drugs at the BRB, suggesting a significant role of novel organic cation transporters in influx and efflux transport of lipophilic cationic drugs between blood and the retina. The transport of pravastatin at the BRB involves transporters including organic anion transporting polypeptide 1a4 (Oatp1a4). Recent studies have shown the involvement of solute carrier transporters in the blood-to-retina transport of nutrients including riboflavin, L-ornithine, β-alanine, and L-histidine, implying that dipeptide transport at the BRB is minimal. Expert opinion: Novel organic cation transport systems and the elimination-dominant transport of pravastatin at the BRB are expected to be useful in systemic drug delivery to the neural retina without CNS side effects. The mechanism of nutrient transport at the BRB is expected to provide a new strategy for delivery of nutrient-mimetic drugs.
Collapse
Affiliation(s)
- Yoshiyuki Kubo
- a Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama , Japan
| | - Shin-Ichi Akanuma
- a Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama , Japan
| | - Ken-Ichi Hosoya
- a Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama , Japan
| |
Collapse
|
15
|
Yang J, Pan C, Zhang J, Sui X, Zhu Y, Wen C, Zhang L. Exploring the Potential of Biocompatible Osmoprotectants as Highly Efficient Cryoprotectants. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42516-42524. [PMID: 29161015 DOI: 10.1021/acsami.7b12189] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cryoprotectants (CPAs) are critical to successful cryopreservation because they can protect cells from cryoinjuries. Because of the limitations of current CPAs, especially the toxicity, the search for new effective CPAs is attracting increasing attention. In this work, we reported that natural biocompatible osmoprotectants, which could protect cells from osmotic injury in various biological systems, might also be ideal candidates for CPAs. Three representative biocompatible osmoprotectants (proline, glycine, and taurine) were tested and compared. It was found that, aside from presenting a different ability to prevent osmotic injury, these biocompatible osmoprotectants also possessed a different ability to inhibit ice formation and thus mitigate intra-/extracellular ice injury. Because of the strongest ability to prevent the two types of injuries, we found that proline performed the best in cryopreserving five different types of cells. Moreover, the natural osmoprotectants are intrinsically biocompatible with the cells, superior to the current state-of-the-art CPA, dimethyl sulfoxide (DMSO), which is a toxic organic solvent. This work opens a new window of opportunity for DMSO-free cryopreservation, and sheds light on the applications of osmoprotectants in cryoprotection, which may revolutionize the current cryopreservation technologies.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, P. R. China
| | - Chao Pan
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, P. R. China
| | - Jiamin Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, P. R. China
| | - Xiaojie Sui
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, P. R. China
| | - Yingnan Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, P. R. China
| | - Chiyu Wen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, P. R. China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, P. R. China
| |
Collapse
|
16
|
Valembois S, Krall J, Frølund B, Steffansen B. Imidazole-4-acetic acid, a new lead structure for interaction with the taurine transporter in outer blood-retinal barrier cells. Eur J Pharm Sci 2017; 103:77-84. [DOI: 10.1016/j.ejps.2017.02.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 10/20/2022]
|
17
|
Kubo Y, Akanuma SI, Hosoya KI. Influx Transport of Cationic Drug at the Blood–Retinal Barrier: Impact on the Retinal Delivery of Neuroprotectants. Biol Pharm Bull 2017; 40:1139-1145. [DOI: 10.1248/bpb.b17-00090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoshiyuki Kubo
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Shin-ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Ken-ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|