1
|
Ikemizu A, Hatta D, Fujimoto K, Honda M, Watanabe K, Ohyama K, Kuroda N, Tanaka T, Shirotani K, Iwata N. Identification and Characterization of Synaptic Vesicle Membrane Protein VAT-1 Homolog as a New Catechin-Binding Protein. Biol Pharm Bull 2024; 47:509-517. [PMID: 38403661 DOI: 10.1248/bpb.b23-00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
(-)-Epigallocatechin-3-gallate (EGCg), a major constituent of green tea extract, is well-known to exhibit many beneficial actions for human health by interacting with numerous proteins. In this study we identified synaptic vesicle membrane protein VAT-1 homolog (VAT1) as a novel EGCg-binding protein in human neuroglioma cell extracts using a magnetic pull-down assay and LC-tandem mass spectrometry. We prepared recombinant human VAT1 and analyzed its direct binding to EGCg and its alkylated derivatives using surface plasmon resonance. For EGCg and the derivative NUP-15, we measured an association constant of 0.02-0.85 ×103 M-1s-1 and a dissociation constant of nearly 8 × 10-4 s-1. The affinity Km(affinity) of their binding to VAT1 was in the 10-20 µM range and comparable with that of other EGCg-binding proteins reported previously. Based on the common structure of the compounds, VAT1 appeared to recognize a catechol or pyrogallol moiety around the B-, C- and G-rings of EGCg. Next, we examined whether VAT1 mediates the effects of EGCg and NUP-15 on expression of neprilysin (NEP). Treatments of mock cells with these compounds upregulated NEP, as observed previously, whereas no effect was observed in the VAT1-overexpressing cells, indicating that VAT1 prevented the effects of EGCg or NUP-15 by binding to and inactivating them in the cells overexpressing VAT1. Further investigation is required to determine the biological significance of the VAT1-EGCg interaction.
Collapse
Affiliation(s)
- Ayaka Ikemizu
- Department of Genome-based Drug Discovery, Graduate School of Biomedical Sciences, Nagasaki University
| | - Daisuke Hatta
- Department of Genome-based Drug Discovery, Graduate School of Biomedical Sciences, Nagasaki University
| | - Kohei Fujimoto
- Department of Genome-based Drug Discovery, Graduate School of Biomedical Sciences, Nagasaki University
| | - Mikako Honda
- Faculty of Pharmaceutical Sciences, Nagasaki University
| | - Kaori Watanabe
- Department of Genome-based Drug Discovery, Graduate School of Biomedical Sciences, Nagasaki University
| | - Kaname Ohyama
- Department of Hospital Pharmacy, Nagasaki University Hospital
| | - Naotaka Kuroda
- Department of Analytical Chemistry for Pharmaceuticals, Graduate School of Biomedical Sciences, Nagasaki University
| | - Takashi Tanaka
- Department of Natural Product Chemistry, Graduate School of Biomedical Sciences, Nagasaki University
| | - Keiro Shirotani
- Department of Genome-based Drug Discovery, Graduate School of Biomedical Sciences, Nagasaki University
- Faculty of Pharmaceutical Sciences, Nagasaki University
- Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University
| | - Nobuhisa Iwata
- Department of Genome-based Drug Discovery, Graduate School of Biomedical Sciences, Nagasaki University
- Faculty of Pharmaceutical Sciences, Nagasaki University
- Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
2
|
Hayes G, Pinto J, Sparks SN, Wang C, Suri S, Bulte DP. Vascular smooth muscle cell dysfunction in neurodegeneration. Front Neurosci 2022; 16:1010164. [PMID: 36440263 PMCID: PMC9684644 DOI: 10.3389/fnins.2022.1010164] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the key moderators of cerebrovascular dynamics in response to the brain's oxygen and nutrient demands. Crucially, VSMCs may provide a sensitive biomarker for neurodegenerative pathologies where vasculature is compromised. An increasing body of research suggests that VSMCs have remarkable plasticity and their pathophysiology may play a key role in the complex process of neurodegeneration. Furthermore, extrinsic risk factors, including environmental conditions and traumatic events can impact vascular function through changes in VSMC morphology. VSMC dysfunction can be characterised at the molecular level both preclinically, and clinically ex vivo. However the identification of VSMC dysfunction in living individuals is important to understand changes in vascular function at the onset and progression of neurological disorders such as dementia, Alzheimer's disease, and Parkinson's disease. A promising technique to identify changes in the state of cerebral smooth muscle is cerebrovascular reactivity (CVR) which reflects the intrinsic dynamic response of blood vessels in the brain to vasoactive stimuli in order to modulate regional cerebral blood flow (CBF). In this work, we review the role of VSMCs in the most common neurodegenerative disorders and identify physiological systems that may contribute to VSMC dysfunction. The evidence collected here identifies VSMC dysfunction as a strong candidate for novel therapeutics to combat the development and progression of neurodegeneration, and highlights the need for more research on the role of VSMCs and cerebrovascular dynamics in healthy and diseased states.
Collapse
Affiliation(s)
- Genevieve Hayes
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Joana Pinto
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Sierra N. Sparks
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Congxiyu Wang
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Sana Suri
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Daniel P. Bulte
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Wei C, Li S, Zhu Y, Chen W, Li C, Xu R. Network pharmacology identify intersection genes of quercetin and Alzheimer’s disease as potential therapeutic targets. Front Aging Neurosci 2022; 14:902092. [PMID: 36081896 PMCID: PMC9447902 DOI: 10.3389/fnagi.2022.902092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Background Currently, there are no efficient therapies for Alzheimer’s disease (AD) among the elderly, although it is the most common etiology of dementia among the elderly. Quercetin, which has a variety of therapeutic properties, may pave the way for novel approaches to AD treatment. In the AD patients’ frontal cortex, current study aims to identify the potential mechanisms of quercetin’s pharmacological targets. Materials and methods The pharmacological targets of quercetin have been studied from DrugBank and SwissTarget. In order to distinguish AD-associated genes targeted by quercetin (Q-ADGs), we utilized an integrated intersection of gene expressions of the frontal cortex in combination with transcriptome analysis. To detect cortex-related Q-ADGs and immune-related Q-ADGs, a drug screening database and the immune infiltration analysis was utilized. The Q-ADGs were then linked with the AD severity scores (MMSE scores) to find severity-associated Q-ADGs. In addition, the miRNA-seq datasets were examined to identify severity-associated Q-ADG-miRNAs. Twelve genes, more frequently related to AD by previous studies among all the genes identified in the present study, were subjected to the verification of qRT-PCR in AD cell model. Results In the frontal lobe of AD, 207 Q-ADGs were discovered and found that axonogenesis, glial differentiation, and other biological processes had been enriched. There were 155 immune-related Q-ADGs (e.g., COX2, NOS2, HMGB1) and 65 cortex-related Q-ADGs (e.g., FOXO1, CXCL16, NOTCH3). Sixteen Q-ADGs (e.g., STAT3, RORA, BCL6) and 28 miRNAs (e.g., miR-142-5p, miR-17-5p) were found to be related to MMSE scores. In the qRT-PCR results, six out of twelve genes were significantly regulated by quercetin. DYRK1A, FOXO1, NOS2, NGF, NQO1, and RORA genes were novel target of quercetin in AD. DYRK1A, NOS2, and NQO1 genes targeted by quercetin have benefits in the treatment of AD. However, FOXO1, NGF, and RORA genes targeted by quercetin might have a negative impact on AD. Conclusion The role of quercetin in AD appears to be multifaceted, and it can affect patients’ frontal cortex in a variety of pathways, such as axonogenesis, immune infiltration, and glial cell differentiation. DYRK1A, NOS2, and NQO1 might be potential novel effective drug targets for quercetin in AD.
Collapse
Affiliation(s)
- Caihui Wei
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
| | - Shu Li
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
| | - Yu Zhu
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
| | - Wenzhi Chen
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
| | - Cheng Li
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
- Department of Neurology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People’s Hospital, Nanchang, China
- *Correspondence: Renshi Xu,
| |
Collapse
|
4
|
Deboever E, Fistrovich A, Hulme C, Dunckley T. The Omnipresence of DYRK1A in Human Diseases. Int J Mol Sci 2022; 23:ijms23169355. [PMID: 36012629 PMCID: PMC9408930 DOI: 10.3390/ijms23169355] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 01/13/2023] Open
Abstract
The increasing population will challenge healthcare, particularly because the worldwide population has never been older. Therapeutic solutions to age-related disease will be increasingly critical. Kinases are key regulators of human health and represent promising therapeutic targets for novel drug candidates. The dual-specificity tyrosine-regulated kinase (DYRKs) family is of particular interest and, among them, DYRK1A has been implicated ubiquitously in varied human diseases. Herein, we focus on the characteristics of DYRK1A, its regulation and functional role in different human diseases, which leads us to an overview of future research on this protein of promising therapeutic potential.
Collapse
Affiliation(s)
- Estelle Deboever
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Correspondence: (E.D.); (T.D.)
| | - Alessandra Fistrovich
- Department of Chemistry and Biochemistry, College of Science, The University of Arizona, Tucson, AZ 85721, USA
- Division of Drug Discovery and Development, Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| | - Christopher Hulme
- Department of Chemistry and Biochemistry, College of Science, The University of Arizona, Tucson, AZ 85721, USA
- Division of Drug Discovery and Development, Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| | - Travis Dunckley
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Correspondence: (E.D.); (T.D.)
| |
Collapse
|
5
|
Puttagunta SM, Islam R, Kundu S, Jha SB, Rivera AP, Flores Monar GV, Islam H, Sange I. Tiny Toes to Tau Tangles: Down's Syndrome and Its Association With Alzheimer's Disease. Cureus 2022; 14:e22125. [PMID: 35308670 PMCID: PMC8918256 DOI: 10.7759/cureus.22125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 12/18/2022] Open
Abstract
Down’s syndrome (DS) is a common genetic condition caused by the trisomy of chromosome 21, which leads to the development of many multisystemic complications, early-onset Alzheimer’s disease (AD) being one of its most common complications. In this article, we have performed an intensive literature review that established a strong relationship between AD and DS. These two conditions are clubbed pathologically, clinically, and diagnostically to understand the association between AD and DS. This article focuses on understanding the impact of AD on a DS patient on both clinical and pathological levels and exploring some advanced treatment modalities. It has also emphasized the importance of early screening and diagnosis for AD in this group of patients to prevent AD development. Regular monitoring, early diagnosis, and a proper treatment plan can slow the AD occurrence in DS patients.
Collapse
|
6
|
Atas-Ozcan H, Brault V, Duchon A, Herault Y. Dyrk1a from Gene Function in Development and Physiology to Dosage Correction across Life Span in Down Syndrome. Genes (Basel) 2021; 12:1833. [PMID: 34828439 PMCID: PMC8624927 DOI: 10.3390/genes12111833] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Down syndrome is the main cause of intellectual disabilities with a large set of comorbidities from developmental origins but also that appeared across life span. Investigation of the genetic overdosage found in Down syndrome, due to the trisomy of human chromosome 21, has pointed to one main driver gene, the Dual-specificity tyrosine-regulated kinase 1A (Dyrk1a). Dyrk1a is a murine homolog of the drosophila minibrain gene. It has been found to be involved in many biological processes during development and in adulthood. Further analysis showed its haploinsufficiency in mental retardation disease 7 and its involvement in Alzheimer's disease. DYRK1A plays a role in major developmental steps of brain development, controlling the proliferation of neural progenitors, the migration of neurons, their dendritogenesis and the function of the synapse. Several strategies targeting the overdosage of DYRK1A in DS with specific kinase inhibitors have showed promising evidence that DS cognitive conditions can be alleviated. Nevertheless, providing conditions for proper temporal treatment and to tackle the neurodevelopmental and the neurodegenerative aspects of DS across life span is still an open question.
Collapse
Affiliation(s)
- Helin Atas-Ozcan
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Arnaud Duchon
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
- Université de Strasbourg, CNRS, INSERM, Celphedia, Phenomin-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| |
Collapse
|
7
|
Lindberg MF, Meijer L. Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases (DYRKs) and cdc2-Like Kinases (CLKs) in Human Disease, an Overview. Int J Mol Sci 2021; 22:6047. [PMID: 34205123 PMCID: PMC8199962 DOI: 10.3390/ijms22116047] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/09/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRK1A, 1B, 2-4) and cdc2-like kinases (CLK1-4) belong to the CMGC group of serine/threonine kinases. These protein kinases are involved in multiple cellular functions, including intracellular signaling, mRNA splicing, chromatin transcription, DNA damage repair, cell survival, cell cycle control, differentiation, homocysteine/methionine/folate regulation, body temperature regulation, endocytosis, neuronal development, synaptic plasticity, etc. Abnormal expression and/or activity of some of these kinases, DYRK1A in particular, is seen in many human nervous system diseases, such as cognitive deficits associated with Down syndrome, Alzheimer's disease and related diseases, tauopathies, dementia, Pick's disease, Parkinson's disease and other neurodegenerative diseases, Phelan-McDermid syndrome, autism, and CDKL5 deficiency disorder. DYRKs and CLKs are also involved in diabetes, abnormal folate/methionine metabolism, osteoarthritis, several solid cancers (glioblastoma, breast, and pancreatic cancers) and leukemias (acute lymphoblastic leukemia, acute megakaryoblastic leukemia), viral infections (influenza, HIV-1, HCMV, HCV, CMV, HPV), as well as infections caused by unicellular parasites (Leishmania, Trypanosoma, Plasmodium). This variety of pathological implications calls for (1) a better understanding of the regulations and substrates of DYRKs and CLKs and (2) the development of potent and selective inhibitors of these kinases and their evaluation as therapeutic drugs. This article briefly reviews the current knowledge about DYRK/CLK kinases and their implications in human disease.
Collapse
Affiliation(s)
| | - Laurent Meijer
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France;
| |
Collapse
|
8
|
Rondal JA. From the lab to the people: major challenges in the biological treatment of Down syndrome. AIMS Neurosci 2021; 8:284-294. [PMID: 33709029 PMCID: PMC7940110 DOI: 10.3934/neuroscience.2021015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/07/2021] [Indexed: 12/20/2022] Open
Abstract
Down syndrome (DS) refers to a genetic condition due to the triplication of human chromosome 21. It is the most frequent autosomal trisomy. In recent years, experimental work has been conducted with the aim of removing or silencing the extra chromosome 21 (C21) in cells and normalizing genetic expression. This paper examines the feasibility of the move from laboratory studies to biologically treating “bone and flesh” people with DS. A chromosome or a gene therapy for humans is fraught with practical and ethical difficulties. To prevent DS completely, genome editing would have to be performed early on embryos in the womb. New in vitro findings point toward the possibility of epigenetic silencing the extra C21 in later embryonic or fetal life, or even postnatally for some aspects of neurogenesis. These possibilities are far beyond what is possible or allowed today. Another approach is through epigenetic regulation of the overexpression of particular genes in C21. Research with mouse modeling of DS is yielding promising results. Human applications have barely begun and are questioned on ethical grounds.
Collapse
|
9
|
Roy-Vallejo E, Galván-Román JM, Moldenhauer F, Real de Asúa D. Adults with Down syndrome challenge another paradigm: When aging no longer entails arterial hypertension. J Clin Hypertens (Greenwich) 2020; 22:1127-1133. [PMID: 32644285 DOI: 10.1111/jch.13930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/09/2020] [Accepted: 05/17/2020] [Indexed: 12/12/2022]
Abstract
The paradigmatic relationship between aging and atherosclerotic cardiovascular events does not apply to all patient populations. Though trisomy 21 (T21) and its phenotypic expression, Down syndrome (DS), are conditions that involve premature aging, the cardiovascular system of adults with DS appears to be particularly spared from this early senescence. Despite a higher prevalence of some classic cardiovascular risk factors in adults with DS than in the general population, such as dyslipidemia, obesity, or sedentarism, these individuals do not develop hypertension or suffer major cardiovascular events as they age. The protective factors that prevent the development of hypertension in T21 are not well established. Genes like RCAN1 and DYRK1A, both on chromosome 21 and over-expressed in adults with DS, appear to play a major role in cardiovascular prevention. Their regulation of the renin-angiotensin-aldosterone system (RAAS) and neprilysin synthesis could underlie the constitutive protection against arterial hypertension in adults with DS and explain the absence of increased arterial stiffness in this population. A better understanding of these molecular pathways could have enormous implications for the clinical management of adults with DS and might foster the development of novel therapeutic targets in cardiovascular prevention for the general population.
Collapse
Affiliation(s)
- Emilia Roy-Vallejo
- Adult Down Syndrome Unit, Department of Internal Medicine, Hospital Universitario de La Princesa, Madrid, Spain
| | - José María Galván-Román
- Adult Down Syndrome Unit, Department of Internal Medicine, Hospital Universitario de La Princesa, Madrid, Spain
| | - Fernando Moldenhauer
- Adult Down Syndrome Unit, Department of Internal Medicine, Hospital Universitario de La Princesa, Madrid, Spain
| | - Diego Real de Asúa
- Adult Down Syndrome Unit, Department of Internal Medicine, Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
10
|
Abstract
Experimental work regarding corrective actions on chromosomes and genes, and control of gene products is yielding promising results. It opens the way to advances in dealing with the etiological aspects of Down syndrome and may lead to important changes in the life of individuals affected with this condition. A small number of molecules are being investigated in pharmacological research that may have positive effects on intellectual functioning. Studies of the pathological consequences of the amyloid cascade and the TAU pathology in the etiology of Alzheimer disease (AD), which is more frequent and occuring earlier in life in persons with Down syndrome (DS), are presented. The search for biological markers of AD and ways for constrasting its early manifestations are also discussed.
Collapse
Affiliation(s)
- Jean A. Rondal
- University of Liège, Cognitive Sciences, Building 32, Sart Tilman, Liège 4000, Belgium
| |
Collapse
|
11
|
Roy-Vallejo E, Alonso E, Galván-Román J, Ibañez P, Moldenhauer F, Suárez Fernández C, Real de Asúa D. Hemodynamic profile of Spanish adults with Down syndrome. Rev Clin Esp 2020. [DOI: 10.1016/j.rceng.2019.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Roy-Vallejo E, Alonso E, Galván-Román JM, Ibañez P, Moldenhauer F, Suárez Fernández C, Real de Asúa D. Haemodynamic profile of Spanish adults with Down syndrome. Rev Clin Esp 2019; 220:275-281. [PMID: 31761414 DOI: 10.1016/j.rce.2019.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Although the reasons are unknown, the prevalence of arterial hypertension and atherosclerotic cardiovascular events in the adult population with Down syndrome (SD) is anecdotal. To better understand this finding, we evaluated the haemodynamic characteristics of a cohort of adults with SD. METHODS We conducted a cross-sectional study of adults with SD recruited consecutively from the outpatient clinics of an internal medicine department between June and November 2018. We collected demographic, clinical and laboratory variables and employed a thoracic bioimpedance device (HOTMAN® System) for the haemodynamic measures. Outpatient blood pressure monitoring (OBPM) was conducted on a subgroup of participants. RESULTS Twenty-six participants (mean age, 45±11years) participated in the study (50% men). The sample's mean blood pressure (BP) was 109/69±11/9mmHg, with a mean heart rate of 60±12bpm. None of the participants had hypertension. The predominant haemodynamic profile consisted of normal dynamism (65%), normal BP (96%), hypochronotropism (46%), normal inotropism (50%) and hypervolaemia (54%), with normal peripheral vascular resistance values (58%). Twelve participants underwent OBPM (46%). The mean 24-h systolic BP, diastolic BP, mean BP and mean heart rate were 105±11mmHg, 67±11mmHg, 80±11mmHg and 61±6bpm, respectively. CONCLUSIONS The most common haemodynamic profile observed in adults with SD consisted of hypochronotropism and hypervolaemia, with normal values for peripheral vascular resistance and optimal mean BP values. There were no participants with hypertension in our sample.
Collapse
Affiliation(s)
- E Roy-Vallejo
- Unidad de Atención a Adultos con síndrome de Down, Servicio de Medicina Interna, Hospital Universitario de La Princesa, Madrid, España.
| | - E Alonso
- Unidad de Atención a Adultos con síndrome de Down, Servicio de Medicina Interna, Hospital Universitario de La Princesa, Madrid, España
| | - J M Galván-Román
- Unidad de Atención a Adultos con síndrome de Down, Servicio de Medicina Interna, Hospital Universitario de La Princesa, Madrid, España
| | - P Ibañez
- Unidad de Atención a Adultos con síndrome de Down, Servicio de Medicina Interna, Hospital Universitario de La Princesa, Madrid, España
| | - F Moldenhauer
- Unidad de Atención a Adultos con síndrome de Down, Servicio de Medicina Interna, Hospital Universitario de La Princesa, Madrid, España
| | - C Suárez Fernández
- Unidad de Atención a Adultos con síndrome de Down, Servicio de Medicina Interna, Hospital Universitario de La Princesa, Madrid, España
| | - D Real de Asúa
- Unidad de Atención a Adultos con síndrome de Down, Servicio de Medicina Interna, Hospital Universitario de La Princesa, Madrid, España
| |
Collapse
|
13
|
Arbones ML, Thomazeau A, Nakano-Kobayashi A, Hagiwara M, Delabar JM. DYRK1A and cognition: A lifelong relationship. Pharmacol Ther 2019; 194:199-221. [PMID: 30268771 DOI: 10.1016/j.pharmthera.2018.09.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dosage of the serine threonine kinase DYRK1A is critical in the central nervous system (CNS) during development and aging. This review analyzes the functions of this kinase by considering its interacting partners and pathways. The role of DYRK1A in controlling the differentiation of prenatal newly formed neurons is presented separately from its role at the pre- and post-synaptic levels in the adult CNS; its effects on synaptic plasticity are also discussed. Because this kinase is positioned at the crossroads of many important processes, genetic dosage errors in this protein produce devastating effects arising from DYRK1A deficiency, such as in MRD7, an autism spectrum disorder, or from DYRK1A excess, such as in Down syndrome. Effects of these errors have been shown in various animal models including Drosophila, zebrafish, and mice. Dysregulation of DYRK1A levels also occurs in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Finally, this review describes inhibitors that have been assessed in vivo. Accurate targeting of DYRK1A levels in the brain, with either inhibitors or activators, is a future research challenge.
Collapse
Affiliation(s)
- Maria L Arbones
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain.
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Akiko Nakano-Kobayashi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jean M Delabar
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| |
Collapse
|
14
|
Nguyen TL, Duchon A, Manousopoulou A, Loaëc N, Villiers B, Pani G, Karatas M, Mechling AE, Harsan LA, Limanton E, Bazureau JP, Carreaux F, Garbis SD, Meijer L, Herault Y. Correction of cognitive deficits in mouse models of Down syndrome by a pharmacological inhibitor of DYRK1A. Dis Model Mech 2018; 11:dmm035634. [PMID: 30115750 PMCID: PMC6176987 DOI: 10.1242/dmm.035634] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Growing evidence supports the implication of DYRK1A in the development of cognitive deficits seen in Down syndrome (DS) and Alzheimer's disease (AD). We here demonstrate that pharmacological inhibition of brain DYRK1A is able to correct recognition memory deficits in three DS mouse models with increasing genetic complexity [Tg(Dyrk1a), Ts65Dn, Dp1Yey], all expressing an extra copy of Dyrk1a Overexpressed DYRK1A accumulates in the cytoplasm and at the synapse. Treatment of the three DS models with the pharmacological DYRK1A inhibitor leucettine L41 leads to normalization of DYRK1A activity and corrects the novel object cognitive impairment observed in these models. Brain functional magnetic resonance imaging reveals that this cognitive improvement is paralleled by functional connectivity remodelling of core brain areas involved in learning/memory processes. The impact of Dyrk1a trisomy and L41 treatment on brain phosphoproteins was investigated by a quantitative phosphoproteomics method, revealing the implication of synaptic (synapsin 1) and cytoskeletal components involved in synaptic response and axonal organization. These results encourage the development of DYRK1A inhibitors as drug candidates to treat cognitive deficits associated with DS and AD.
Collapse
Affiliation(s)
- Thu Lan Nguyen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France
- Université de Strasbourg, 67400 Illkirch, France
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Arnaud Duchon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France
- Université de Strasbourg, 67400 Illkirch, France
| | - Antigoni Manousopoulou
- Faculty of Medicine/Cancer Sciences & Clinical and Experimental Medicine, University of Southampton, Center for Proteomic Research, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Nadège Loaëc
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Benoît Villiers
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Guillaume Pani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France
- Université de Strasbourg, 67400 Illkirch, France
| | - Meltem Karatas
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), UMR 7357, and University Hospital Strasbourg, Department of Biophysics and Nuclear Medicine, University of Strasbourg, 67400 Illkirch, France
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Breisacher Strasse 60a, 79106 Freiburg, Germany
| | - Anna E Mechling
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Breisacher Strasse 60a, 79106 Freiburg, Germany
| | - Laura-Adela Harsan
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), UMR 7357, and University Hospital Strasbourg, Department of Biophysics and Nuclear Medicine, University of Strasbourg, 67400 Illkirch, France
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Breisacher Strasse 60a, 79106 Freiburg, Germany
| | - Emmanuelle Limanton
- Université de Rennes 1, ISCR (Institut des sciences chimiques de Rennes)-UMR, 6226, 35000 Rennes, France
| | - Jean-Pierre Bazureau
- Université de Rennes 1, ISCR (Institut des sciences chimiques de Rennes)-UMR, 6226, 35000 Rennes, France
| | - François Carreaux
- Université de Rennes 1, ISCR (Institut des sciences chimiques de Rennes)-UMR, 6226, 35000 Rennes, France
| | - Spiros D Garbis
- Faculty of Medicine/Cancer Sciences & Clinical and Experimental Medicine, University of Southampton, Center for Proteomic Research, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Laurent Meijer
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France
- Université de Strasbourg, 67400 Illkirch, France
| |
Collapse
|
15
|
Head E, Helman AM, Powell D, Schmitt FA. Down syndrome, beta-amyloid and neuroimaging. Free Radic Biol Med 2018; 114:102-109. [PMID: 28935420 PMCID: PMC5748259 DOI: 10.1016/j.freeradbiomed.2017.09.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022]
Abstract
This review focuses on the role of Aβ in AD pathogenesis in Down syndrome and current approaches for imaging Aβ in vivo. We will describe how Aβ deposits with age, the posttranslational modifications that can occur, and detection in biofluids. Three unique case studies describing partial trisomy 21 cases without APP triplication, and the occurrences of low level mosaic trisomy 21 in an early onset AD patient are presented. Brain imaging for Aβ includes those by positron emission tomography and ligands (Pittsburgh Compound B, Florbetapir, and FDDNP) that bind Aβ have been published and are summarized here. In combination, we have learned a great deal about Aβ in DS in terms of characterizing age of onset of this pathology and it is exciting to note that there is a clinical trial in DS targeting Aβ that may lead to clinical benefits.
Collapse
Affiliation(s)
- Elizabeth Head
- University of Kentucky, Sanders-Brown Center on Aging, 800 South Limestone Street, Lexington, KY 40536, United States; University of Kentucky, Department of Pharmacology & Nutritional Sciences, Lexington, KY 40536, United States.
| | - Alex M Helman
- University of Kentucky, Sanders-Brown Center on Aging, 800 South Limestone Street, Lexington, KY 40536, United States; University of Kentucky, Department of Pharmacology & Nutritional Sciences, Lexington, KY 40536, United States; University of Kentucky, Magnetic Resonance Imaging and Spectroscopy Center, Lexington, KY 40536, United States; University of Kentucky, Department of Neurology, Lexington, KY 40536, United States
| | - David Powell
- University of Kentucky, Magnetic Resonance Imaging and Spectroscopy Center, Lexington, KY 40536, United States
| | - Frederick A Schmitt
- University of Kentucky, Sanders-Brown Center on Aging, 800 South Limestone Street, Lexington, KY 40536, United States; University of Kentucky, Department of Neurology, Lexington, KY 40536, United States
| |
Collapse
|
16
|
Qi XM, Ma JF. The role of amyloid beta clearance in cerebral amyloid angiopathy: more potential therapeutic targets. Transl Neurodegener 2017; 6:22. [PMID: 28824801 PMCID: PMC5559841 DOI: 10.1186/s40035-017-0091-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/01/2017] [Indexed: 01/09/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the deposition of amyloid β-protein (Aβ) in the leptomeningeal and cortical blood vessels, which is an age-dependent risk factor for intracerebral hemorrhage (ICH), ischemic stroke and contributes to cerebrovascular dysfunction leading to cognitive impairment. However clinical prevention and treatment of the disease is very difficult because of its occult onset and severity of the symptoms. In recent years, many anti-amyloid β immunotherapies have not demonstrated clinical efficacy in subjects with Alzheimer’s disease (AD), and the failure may be due to the deposition of Aβ in the cerebrovascular export pathway resulting in further damage to blood vessels and aggravating CAA. So decreased clearance of Aβ in blood vessels plays a crucial role in the development of CAA and AD, and identification of the molecular pathways involved will provide new targets for treatment. In this review, we mainly describe the mechanisms of Aβ clearance through vessels, especially in terms of some proteins and receptors involved in this process.
Collapse
Affiliation(s)
- Xue-Mei Qi
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Jian-Fang Ma
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|