1
|
Arakawa T, Niikura T, Kita Y, Akuta T. Sodium Dodecyl Sulfate Analogs as a Potential Molecular Biology Reagent. Curr Issues Mol Biol 2024; 46:621-633. [PMID: 38248342 PMCID: PMC10814491 DOI: 10.3390/cimb46010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
In this study, we review the properties of three anionic detergents, sodium dodecyl sulfate (SDS), Sarkosyl, and sodium lauroylglutamate (SLG), as they play a critical role in molecular biology research. SDS is widely used in electrophoresis and cell lysis for proteomics. Sarkosyl and, more frequently, SDS are used for the characterization of neuropathological protein fibrils and the solubilization of proteins. Many amyloid fibrils are resistant to SDS or Sarkosyl to different degrees and, thus, can be readily isolated from detergent-sensitive proteins. SLG is milder than the above two detergents and has been used in the solubilization and refolding of proteins isolated from inclusion bodies. Here, we show that both Sarkosyl and SLG have been used for protein refolding, that the effects of SLG on the native protein structure are weaker for SLG, and that SLG readily dissociates from the native proteins. We propose that SLG may be effective in cell lysis for functional proteomics due to no or weaker binding of SLG to the native proteins.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Labs, 13380 Pantera Rd., San Diego, CA 92130, USA;
| | - Takako Niikura
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan;
| | - Yoshiko Kita
- Alliance Protein Labs, 13380 Pantera Rd., San Diego, CA 92130, USA;
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna, Takahagi-shi 318-0004, Japan;
| |
Collapse
|
2
|
Klausser R, Kopp J, Prada Brichtova E, Gisperg F, Elshazly M, Spadiut O. State-of-the-art and novel approaches to mild solubilization of inclusion bodies. Front Bioeng Biotechnol 2023; 11:1249196. [PMID: 37545893 PMCID: PMC10399460 DOI: 10.3389/fbioe.2023.1249196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
Throughout the twenty-first century, the view on inclusion bodies (IBs) has shifted from undesired by-products towards a targeted production strategy for recombinant proteins. Inclusion bodies can easily be separated from the crude extract after cell lysis and contain the product in high purity. However, additional solubilization and refolding steps are required in the processing of IBs to recover the native protein. These unit operations remain a highly empirical field of research in which processes are developed on a case-by-case basis using elaborate screening strategies. It has been shown that a reduction in denaturant concentration during protein solubilization can increase the subsequent refolding yield due to the preservation of correctly folded protein structures. Therefore, many novel solubilization techniques have been developed in the pursuit of mild solubilization conditions that avoid total protein denaturation. In this respect, ionic liquids have been investigated as promising agents, being able to solubilize amyloid-like aggregates and stabilize correctly folded protein structures at the same time. This review briefly summarizes the state-of-the-art of mild solubilization of IBs and highlights some challenges that prevent these novel techniques from being yet adopted in industry. We suggest mechanistic models based on the thermodynamics of protein unfolding with the aid of molecular dynamics simulations as a possible approach to solve these challenges in the future.
Collapse
Affiliation(s)
- Robert Klausser
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Julian Kopp
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Eva Prada Brichtova
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Florian Gisperg
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Mohamed Elshazly
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Oliver Spadiut
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| |
Collapse
|