1
|
Faucher SP, Matthews S, Nickzad A, Vounba P, Shetty D, Bédard É, Prévost M, Déziel E, Paranjape K. Toxoflavin secreted by Pseudomonas alcaliphila inhibits the growth of Legionella pneumophila and Vermamoeba vermiformis. WATER RESEARCH 2022; 216:118328. [PMID: 35364354 DOI: 10.1016/j.watres.2022.118328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Legionella pneumophila is a natural inhabitant of water systems. From there, it can be transmitted to humans by aerosolization resulting in severe pneumonia. Most large outbreaks are caused by cooling towers colonized with L. pneumophila. The resident microbiota of the cooling tower is a key determinant for the colonization and growth of L. pneumophila. In our preceding study, the genus Pseudomonas correlated negatively with the presence of L. pneumophila in cooling towers, but it was not clear which species was responsible. Therefore, we identified the Pseudomonas species inhabiting 14 cooling towers using a Pseudomonas-specific 16S rRNA amplicon sequencing strategy. We found that cooling towers that are free of L. pneumophila contained a high relative abundance of members from the Pseudomonas alcaliphila/oleovorans phylogenetic cluster. P. alcaliphila JCM 10630 inhibited the growth of L. pneumophila on agar plates. Analysis of the P. alcaliphila genome revealed the presence of a gene cluster predicted to produce toxoflavin. L. pneumophila growth was inhibited by pure toxoflavin and by extracts from P. alcaliphila culture found to contain toxoflavin by liquid chromatography coupled with mass spectrometry. In addition, toxoflavin inhibits the growth of Vermameoba vermiformis, a host cell of L. pneumophila. Our study indicates that P. alcaliphila may be important to restrict growth of L. pneumophila in water systems through the production of toxoflavin. A sufficiently high concentration of toxoflavin is likely not achieved in the bulk water but might have a local inhibitory effect such as near or in biofilms.
Collapse
Affiliation(s)
- Sebastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Sara Matthews
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Arvin Nickzad
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Passoret Vounba
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Deeksha Shetty
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Émilie Bédard
- Department of Civil Engineering, Polytechnique Montréal, Montréal, Québec, Canada
| | - Michele Prévost
- Department of Civil Engineering, Polytechnique Montréal, Montréal, Québec, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Kiran Paranjape
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Dose B, Thongkongkaew T, Zopf D, Kim HJ, Bratovanov EV, García‐Altares M, Scherlach K, Kumpfmüller J, Ross C, Hermenau R, Niehs S, Silge A, Hniopek J, Schmitt M, Popp J, Hertweck C. Multimodal Molecular Imaging and Identification of Bacterial Toxins Causing Mushroom Soft Rot and Cavity Disease. Chembiochem 2021; 22:2901-2907. [PMID: 34232540 PMCID: PMC8518961 DOI: 10.1002/cbic.202100330] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 12/29/2022]
Abstract
Soft rot disease of edible mushrooms leads to rapid degeneration of fungal tissue and thus severely affects farming productivity worldwide. The bacterial mushroom pathogen Burkholderia gladioli pv. agaricicola has been identified as the cause. Yet, little is known about the molecular basis of the infection, the spatial distribution and the biological role of antifungal agents and toxins involved in this infectious disease. We combine genome mining, metabolic profiling, MALDI-Imaging and UV Raman spectroscopy, to detect, identify and visualize a complex of chemical mediators and toxins produced by the pathogen during the infection process, including toxoflavin, caryoynencin, and sinapigladioside. Furthermore, targeted gene knockouts and in vitro assays link antifungal agents to prevalent symptoms of soft rot, mushroom browning, and impaired mycelium growth. Comparisons of related pathogenic, mutualistic and environmental Burkholderia spp. indicate that the arsenal of antifungal agents may have paved the way for ancestral bacteria to colonize niches where frequent, antagonistic interactions with fungi occur. Our findings not only demonstrate the power of label-free, in vivo detection of polyyne virulence factors by Raman imaging, but may also inspire new approaches to disease control.
Collapse
Affiliation(s)
- Benjamin Dose
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Tawatchai Thongkongkaew
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - David Zopf
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology (IPHT) JenaMember of the Leibniz Research Alliance – Leibniz Health TechnologiesAlbert-Einstein-Straße 907745JenaGermany
| | - Hak Joong Kim
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Evgeni V. Bratovanov
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - María García‐Altares
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Kirstin Scherlach
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Jana Kumpfmüller
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Claudia Ross
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Ron Hermenau
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Sarah Niehs
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Anja Silge
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
| | - Julian Hniopek
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology (IPHT) JenaMember of the Leibniz Research Alliance – Leibniz Health TechnologiesAlbert-Einstein-Straße 907745JenaGermany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
| | - Jürgen Popp
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology (IPHT) JenaMember of the Leibniz Research Alliance – Leibniz Health TechnologiesAlbert-Einstein-Straße 907745JenaGermany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
3
|
Bach E, Passaglia LMP, Jiao J, Gross H. Burkholderia in the genomic era: from taxonomy to the discovery of new antimicrobial secondary metabolites. Crit Rev Microbiol 2021; 48:121-160. [PMID: 34346791 DOI: 10.1080/1040841x.2021.1946009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Species of Burkholderia are highly versatile being found not only abundantly in soil, but also as plants and animals' commensals or pathogens. Their complex multireplicon genomes harbour an impressive number of polyketide synthase (PKS) and nonribosomal peptide-synthetase (NRPS) genes coding for the production of antimicrobial secondary metabolites (SMs), which have been successfully deciphered by genome-guided tools. Moreover, genome metrics supported the split of this genus into Burkholderia sensu stricto (s.s.) and five new other genera. Here, we show that the successful antimicrobial SMs producers belong to Burkholderia s.s. Additionally, we reviewed the occurrence, bioactivities, modes of action, structural, and biosynthetic information of thirty-eight Burkholderia antimicrobial SMs shedding light on their diversity, complexity, and uniqueness as well as the importance of genome-guided strategies to facilitate their discovery. Several Burkholderia NRPS and PKS display unusual features, which are reflected in their structural diversity, important bioactivities, and varied modes of action. Up to now, it is possible to observe a general tendency of Burkholderia SMs being more active against fungi. Although the modes of action and biosynthetic gene clusters of many SMs remain unknown, we highlight the potential of Burkholderia SMs as alternatives to fight against new diseases and antibiotic resistance.
Collapse
Affiliation(s)
- Evelise Bach
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Junjing Jiao
- Department for Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Harald Gross
- Department for Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Toxoflavin Produced by Burkholderia gladioli from Lycoris aurea Is a New Broad-Spectrum Fungicide. Appl Environ Microbiol 2019; 85:AEM.00106-19. [PMID: 30824447 DOI: 10.1128/aem.00106-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/16/2019] [Indexed: 01/10/2023] Open
Abstract
Fungal infections not only cause extensive agricultural damage but also result in serious diseases in the immunodeficient populations of human beings. Moreover, the increasing emergence of drug resistance has led to a decrease in the efficacy of current antifungals. Thus, screening of new antifungal agents is imperative in the fight against antifungal drug resistance. In this study, we show that an endophytic bacterium, Burkholderia gladioli HDXY-02, isolated from the medicinal plant Lycoris aurea, showed broad-spectrum antifungal activity against plant and human fungal pathogens. An antifungal ability assay indicated that the bioactive component was produced from strain HDXY-02 having an extracellular secreted component with a molecular weight lower than 1,000 Da. In addition, we found that this new antifungal could be produced effectively by liquid fermentation of HDXY-02. Furthermore, the purified component contributing to the antifungal activity was identified to be toxoflavin, a yellow compound possessing a pyrimido[5,4-e][1,2,4]triazine ring. In vitro bioactivity studies demonstrated that purified toxoflavin from B. gladioli HDXY-02 cultures had a significant antifungal activity against the human fungal pathogen Aspergillus fumigatus, resulting in abolished germination of conidia. More importantly, the growth inhibition by toxoflavin was observed in both wild-type and drug-resistant mutants (cyp51A and non-cyp51A) of A. fumigatus Finally, an optimized protocol for the large-scale production of toxoflavin (1,533 mg/liter) has been developed. Taken together, our findings provide a promising biosynthetic resource for producing a new antifungal reagent, toxoflavin, from isolates of the endophytic bacterium B. gladioli IMPORTANCE Human fungal infections are a growing problem associated with increased morbidity and mortality. Moreover, a growing number of antifungal-resistant fungal isolates have been reported over the past decade. Thus, the need for novel antifungal agents is imperative. In this study, we show that an endophytic bacterium, Burkholderia gladioli, isolated from the medicinal plant Lycoris aurea, is able to abundantly secrete a compound, toxoflavin, which has a strong fungicidal activity not only against plant fungal pathogens but also against human fungal pathogens Aspergillus fumigatus and Candida albicans, Cryptococcus neoformans, and the model filamentous fungus Aspergillus nidulans More importantly, toxoflavin also displays an efficacious inhibitory effect against azole antifungal-resistant mutants of A. fumigatus Consequently, our findings provide a promising approach to abundantly produce toxoflavin, which has novel broad-spectrum antifungal activity, especially against those currently problematic drug-resistant isolates.
Collapse
|
5
|
Su C, Yan Y, Guo X, Luo J, Liu C, Zhang Z, Xiang WS, Huang SX. Characterization of the N-methyltransferases involved in the biosynthesis of toxoflavin, fervenulin and reumycin from Streptomyces hiroshimensis ATCC53615. Org Biomol Chem 2019; 17:477-481. [PMID: 30565634 DOI: 10.1039/c8ob02847h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Toxoflavin (1), fervenulin (2), and reumycin (3), known to be produced by plant pathogen Burkholderia glumae BGR1, are structurally related 7-azapteridine antibiotics. Previous biosynthetic studies revealed that N-methyltransferase ToxA from B. glumae BGR1 catalyzed the sequential methylation at N6 and N1 in pyrimido[5,4-e]-as-triazine-5,7(6H,8H)-dione (4) to generate 1. However, the N8 methylation of 4 in the biosynthesis of fervenulin remains unclear. To explore the N-methyltransferases required for the biosynthesis of 1 and 2, we identified and characterized the fervenulin and toxoflavin biosynthetic gene clusters in S. hiroshimensis ATCC53615. On the basis of the structures of intermediates accumulated from the four N-methyltransferase gene inactivation mutants and systematic enzymatic methylation reactions, the tailoring steps for the methylation order in the biosynthesis of 1 and 2 were proposed. The N-methylation order and routes for the biosynthesis of fervenulin and toxoflavin in S. hiroshimensis are more complex and represent an obvious departure from those in B. glumae BGR1.
Collapse
Affiliation(s)
- Can Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
El-Kalyoubi SA. Synthesis and anticancer evaluation of some novel pyrimido[5,4-e][1,2,4]triazines and pyrazolo[3,4-d]pyrimidine using DMF-DMA as methylating and cyclizing agent. Chem Cent J 2018; 12:64. [PMID: 29796716 PMCID: PMC5966350 DOI: 10.1186/s13065-018-0424-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/30/2018] [Indexed: 01/22/2023] Open
Abstract
Background Described a series of main target compounds pyrimido[5,4-e][1,2,4]triazines is obtained via condensation of 6-hydrazinyluracil with different aromatic aldehydes to give the hydrazones followed by nitrosation with HNO2 then intramolecular cyclization. On the other hand, pyrazolopyrimidines can be obtained by the reaction of hydrazones with dimethylformamide-dimethylacetal (DMF-DMA), DMF-DMA in the presence of DMF or by refluxing the hydrazinyluracil with DMF-DMA in the presence of DMF directly. The newly synthesized compounds are evaluated in vitro for their anticancer activity against human lung carcinoma (A549). Results A newly substituted compounds of benzaldehyde-pyrimidin-4-yl)hydrazones (5a–f), pyrimido[5,4-e][1,2,4]triazines 6a–e, arylethylidenehydrazinylpyrimidine 7a,b and pyrazolopyrimidines 9,11 are screened for cytotoxic activity against human lung carcinoma (A549) cell line. They exhibited a good yield. Compound 6b shows the highest effect with IC50 value 3.6 μM, followed by compounds 9, 5a, 8, 5e, 6e, 5b, 5f, 7a, 5c, 6c, 7b, 6a, 11, 5d and 6d. Conclusion A simple and efficient route is used for the synthesis of pyrimido[5,4-e][1,2,4]triazines and pyrazolopyrimidines. The synthesized compounds are screened for antitumor activity. ![]()
Collapse
Affiliation(s)
- Samar A El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11651, Egypt. .,Department of Medical Chemistry, Faculty of Applied Medical Sciences (Female Section), Jazan University, Jazan, 45142, Saudi Arabia.
| |
Collapse
|
7
|
Kyani A, Tamura S, Yang S, Shergalis A, Samanta S, Kuang Y, Ljungman M, Neamati N. Discovery and Mechanistic Elucidation of a Class of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma. ChemMedChem 2018; 13:164-177. [PMID: 29235250 DOI: 10.1002/cmdc.201700629] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/10/2017] [Indexed: 12/14/2022]
Abstract
Protein disulfide isomerase (PDI) is overexpressed in glioblastoma, the most aggressive form of brain cancer, and folds nascent proteins responsible for the progression and spread of the disease. Herein we describe a novel nanomolar PDI inhibitor, pyrimidotriazinedione 35G8, that is toxic in a panel of human glioblastoma cell lines. We performed a medium-throughput 20 000-compound screen of a diverse subset of 1 000 000 compounds to identify cytotoxic small molecules. Cytotoxic compounds were screened for PDI inhibition, and, from the screen, 35G8 emerged as the most cytotoxic inhibitor of PDI. Bromouridine labeling and sequencing (Bru-seq) of nascent RNA revealed that 35G8 induces nuclear factor-like 2 (Nrf2) antioxidant response, endoplasmic reticulum (ER) stress response, and autophagy. Specifically, 35G8 upregulated heme oxygenase 1 and solute carrier family 7 member 11 (SLC7A11) transcription and protein expression and repressed PDI target genes such as thioredoxin-interacting protein 1 (TXNIP) and early growth response 1 (EGR1). Interestingly, 35G8-induced cell death did not proceed via apoptosis or necrosis, but by a mixture of autophagy and ferroptosis. Cumulatively, our data demonstrate a mechanism for a novel PDI inhibitor as a chemical probe to validate PDI as a target for brain cancer.
Collapse
Affiliation(s)
- Anahita Kyani
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Shuzo Tamura
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Suhui Yang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Andrea Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Soma Samanta
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Yuting Kuang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Mats Ljungman
- Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| |
Collapse
|
8
|
Choi JE, Nguyen CM, Lee B, Park JH, Oh JY, Choi JS, Kim JC, Song JK. Isolation and characterization of a novel metagenomic enzyme capable of degrading bacterial phytotoxin toxoflavin. PLoS One 2018; 13:e0183893. [PMID: 29293506 PMCID: PMC5749703 DOI: 10.1371/journal.pone.0183893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 08/14/2017] [Indexed: 11/19/2022] Open
Abstract
Toxoflavin, a 7-azapteridine phytotoxin produced by the bacterial pathogens such as Burkholderia glumae and Burkholderia gladioli, has been known as one of the key virulence factors in crop diseases. Because the toxoflavin had an antibacterial activity, a metagenomic E. coli clone capable of growing well in the presence of toxoflavin (30 μg/ml) was isolated and the first metagenome-derived toxoflavin-degrading enzyme, TxeA of 140 amino acid residues, was identified from the positive E. coli clone. The conserved amino acids for metal-binding and extradiol dioxygenase activity, Glu-12, His-8 and Glu-130, were revealed by the sequence analysis of TxeA. The optimum conditions for toxoflavin degradation were evaluated with the TxeA purified in E. coli. Toxoflavin was totally degraded at an initial toxoflavin concentration of 100 μg/ml and at pH 5.0 in the presence of Mn2+, dithiothreitol and oxygen. The final degradation products of toxoflavin and methyltoxoflavin were fully identified by MS and NMR as triazines. Therefore, we suggested that the new metagenomic enzyme, TxeA, provided the clue to applying the new metagenomic enzyme to resistance development of crop plants to toxoflavin-mediated disease as well as to biocatalysis for Baeyer-Villiger type oxidation.
Collapse
Affiliation(s)
- Ji-Eun Choi
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Cuong Mai Nguyen
- Research Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
- Department of Phytochemistry, Vietnam Institute of Industrial Chemistry, HoanKiem, Hanoi, Vietnam
| | - Boyoung Lee
- Research Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Ji Hyun Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Joon Young Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Jung Sup Choi
- Research Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Jae Kwang Song
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
9
|
Izmest’ev AN, Gazieva GA, Sigay NV, Serkov SA, Karnoukhova VA, Kachala VV, Shashkov AS, Zanin IE, Kravchenko AN, Makhova NN. An effective one-pot access to polynuclear dispiroheterocyclic structures comprising pyrrolidinyloxindole and imidazothiazolotriazine moieties via a 1,3-dipolar cycloaddition strategy. Beilstein J Org Chem 2016; 12:2240-2249. [PMID: 28144290 PMCID: PMC5238633 DOI: 10.3762/bjoc.12.216] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/06/2016] [Indexed: 11/25/2022] Open
Abstract
An effective and highly regio- and diastereoselective one-pot method for the synthesis of new polynuclear dispiroheterocyclic systems with five stereogenic centers (dispiro[imidazo[4,5-e]thiazolo[3,2-b]-1,2,4-triazine-6,3'-pyrrolidine-2',3''-indoles]) comprising pyrrolidinyloxindole and imidazo[4,5-e]thiazolo[3,2-b]-1,2,4-triazine moieties has been developed. The method relies on a 1,3-dipolar cycloaddition of azomethine ylides generated in situ from isatin derivatives and sarcosine to 6-benzylideneimidazo[4,5-e]thiazolo[3,2-b]-1,2,4-triazine-2,7-diones.
Collapse
Affiliation(s)
- Alexei N Izmest’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp., 47, Moscow 119991, Russian Federation
| | - Galina A Gazieva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp., 47, Moscow 119991, Russian Federation
| | - Natalya V Sigay
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp., 47, Moscow 119991, Russian Federation
| | - Sergei A Serkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp., 47, Moscow 119991, Russian Federation
| | - Valentina A Karnoukhova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, Moscow 119991, Russian Federation
| | - Vadim V Kachala
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp., 47, Moscow 119991, Russian Federation
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp., 47, Moscow 119991, Russian Federation
| | - Igor E Zanin
- Voronezh State University, Universitetskaya Pl., 1, Voronezh 394000, Russian Federation
| | - Angelina N Kravchenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp., 47, Moscow 119991, Russian Federation
| | - Nina N Makhova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp., 47, Moscow 119991, Russian Federation
| |
Collapse
|
10
|
Leoni A, Locatelli A, Morigi R, Rambaldi M. 2-Indolinone a versatile scaffold for treatment of cancer: a patent review (2008-2014). Expert Opin Ther Pat 2015; 26:149-73. [PMID: 26561198 DOI: 10.1517/13543776.2016.1118059] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION 2-Indolinone is a well-known aromatic heterocyclic organic compound. A lot of work has been done on this bicyclic structure by academic and company researchers to synthesize compounds directed to a plethora of molecular targets in order to discover new drug leads. This review presents up-to-date information in the field of cancer therapy research based on this small building block. AREAS COVERED The present review gives an account of the recent patent literature (2008-2014) describing the discovery of 2-indolinone derivatives with selected therapeutic activities. In this period, a large amount of patents were published on this topic. We have limited the analysis to 37 patents on 2-indolinone derivatives having potential clinical application as chemotherapeutic agents. In this review, the therapeutic applications of 2-indolinone derivatives for the treatment of cancer reported in international patents have been discussed. EXPERT OPINION 2-Indolinone is the scaffold of the compounds considered from a medicinal chemistry perspective. Many of them have been developed and marketed for therapeutic use. In cancer chemotherapy, progress has been made in designing selective 2-indolinone derivatives. Some of them show preclinical efficacy. However, 2-indolinone has not exhausted all of its potential in the development of new compounds for clinical applications and remains a great tool for future research.
Collapse
Affiliation(s)
- Alberto Leoni
- a Dipartimento di Farmacia e Biotecnologie , Università degli Studi di Bologna , Bologna , Italy
| | - Alessandra Locatelli
- a Dipartimento di Farmacia e Biotecnologie , Università degli Studi di Bologna , Bologna , Italy
| | - Rita Morigi
- a Dipartimento di Farmacia e Biotecnologie , Università degli Studi di Bologna , Bologna , Italy
| | - Mirella Rambaldi
- a Dipartimento di Farmacia e Biotecnologie , Università degli Studi di Bologna , Bologna , Italy
| |
Collapse
|
11
|
Philmus B, Shaffer BT, Kidarsa TA, Yan Q, Raaijmakers JM, Begley TP, Loper JE. Investigations into the Biosynthesis, Regulation, and Self-Resistance of Toxoflavin in Pseudomonas protegens Pf-5. Chembiochem 2015; 16:1782-90. [PMID: 26077901 DOI: 10.1002/cbic.201500247] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 11/10/2022]
Abstract
Pseudomonas spp. are prolific producers of natural products from many structural classes. Here we show that the soil bacterium Pseudomonas protegens Pf-5 is capable of producing trace levels of the triazine natural product toxoflavin (1) under microaerobic conditions. We evaluated toxoflavin production by derivatives of Pf-5 with deletions in specific biosynthesis genes, which led us to propose a revised biosynthetic pathway for toxoflavin that shares the first two steps with riboflavin biosynthesis. We also report that toxM, which is not present in the well-characterized cluster of Burkholderia glumae, encodes a monooxygenase that degrades toxoflavin. The toxoflavin degradation product of ToxM is identical to that of TflA, the toxoflavin lyase from Paenibacillus polymyxa. Toxoflavin production by P. protegens causes inhibition of several plant-pathogenic bacteria, and introduction of toxM into the toxoflavin-sensitive strain Pseudomonas syringae DC3000 results in resistance to toxoflavin.
Collapse
Affiliation(s)
- Benjamin Philmus
- College of Pharmacy, Oregon State University, 203 Pharmacy Building, Corvallis, OR 97331 (USA).
| | - Brenda T Shaffer
- Agricultural Research Service, US Department of Agriculture, 3420 N.W. Orchard Avenue, Corvallis, OR 97330 (USA)
| | - Teresa A Kidarsa
- Agricultural Research Service, US Department of Agriculture, 3420 N.W. Orchard Avenue, Corvallis, OR 97330 (USA)
| | - Qing Yan
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331 (USA)
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen (The Netherlands).,Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden (The Netherlands)
| | - Tadhg P Begley
- Department of Chemistry, Texas A&M University, College Station, TX 77843 (USA)
| | - Joyce E Loper
- Agricultural Research Service, US Department of Agriculture, 3420 N.W. Orchard Avenue, Corvallis, OR 97330 (USA). .,Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331 (USA).
| |
Collapse
|
12
|
Mao Y, Tian W, Huang Z, An J. Convenient Synthesis of Toxoflavin that Targets β-Catenin/Tcf4 Signaling Activities. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.1111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yongjun Mao
- Department of Pharmacology; State University of New York, Upstate Medical University; Syracuse New York 13210
- Upstate Cancer Research Institute; State University of New York, Upstate Medical University; Syracuse New York 13210
| | - Wang Tian
- Department of Pharmacology; State University of New York, Upstate Medical University; Syracuse New York 13210
- Upstate Cancer Research Institute; State University of New York, Upstate Medical University; Syracuse New York 13210
| | - Ziwei Huang
- Department of Pharmacology; State University of New York, Upstate Medical University; Syracuse New York 13210
- Upstate Cancer Research Institute; State University of New York, Upstate Medical University; Syracuse New York 13210
| | - Jing An
- Department of Pharmacology; State University of New York, Upstate Medical University; Syracuse New York 13210
- Upstate Cancer Research Institute; State University of New York, Upstate Medical University; Syracuse New York 13210
| |
Collapse
|
13
|
Zeller J, Turbiak AJ, Powelson IA, Lee S, Sun D, Showalter HDH, Fearon ER. Investigation of 3-aryl-pyrimido[5,4-e][1,2,4]triazine-5,7-diones as small molecule antagonists of β-catenin/TCF transcription. Bioorg Med Chem Lett 2013; 23:5814-20. [PMID: 24060489 DOI: 10.1016/j.bmcl.2013.08.111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 08/26/2013] [Accepted: 08/29/2013] [Indexed: 12/20/2022]
Abstract
Nearly all colorectal cancers (CRCs) and varied subsets of other cancers have somatic mutations leading to β-catenin stabilization and increased β-catenin/TCF transcriptional activity. Inhibition of stabilized β-catenin in CRC cell lines arrests their growth and highlights the potential of this mechanism for novel cancer therapeutics. We have pursued efforts to develop small molecules that inhibit β-catenin/TCF transcriptional activity. We used xanthothricin, a known β-catenin/TCF antagonist of microbial origin, as a lead compound to synthesize related analogues with drug-like features such as low molecular weight and good metabolic stability. We studied a panel of six candidate Wnt/β-catenin/Tcf-regulated genes and found that two of them (Axin2, Lgr5) were reproducibly activated (9-10 fold) in rat intestinal epithelial cells (IEC-6) following β-catenin stabilization by Wnt-3a ligand treatment. Two previously reported β-catenin/TCF antagonists (calphostin C, xanthothricin) and XAV939 (tankyrase antagonist) inhibited Wnt-activated genes in a dose-dependent fashion. We found that four of our compounds also potently inhibited Wnt-mediated activation in the panel of target genes. We investigated the mechanism of action for one of these (8c) and demonstrated these novel small molecules inhibit β-catenin transcriptional activity by degrading β-catenin via a proteasome-dependent, but GSK3β-, APC-, AXIN2- and βTrCP-independent, pathway. The data indicate the compounds act at the level of β-catenin to inhibit Wnt/β-catenin/TCF function and highlight a robust strategy for assessing the activity of β-catenin/TCF antagonists.
Collapse
Affiliation(s)
- Jörg Zeller
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Todorovic N, Giacomelli A, Hassell JA, Frampton CS, Capretta A. Microwave-assisted synthesis of 3-aryl-pyrimido[5,4-e][1,2,4]triazine-5,7(1H,6H)-dione libraries: derivatives of toxoflavin. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.09.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Eppinger M, Worsham PL, Nikolich MP, Riley DR, Sebastian Y, Mou S, Achtman M, Lindler LE, Ravel J. Genome sequence of the deep-rooted Yersinia pestis strain Angola reveals new insights into the evolution and pangenome of the plague bacterium. J Bacteriol 2010; 192:1685-99. [PMID: 20061468 PMCID: PMC2832528 DOI: 10.1128/jb.01518-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 12/25/2009] [Indexed: 11/20/2022] Open
Abstract
To gain insights into the origin and genome evolution of the plague bacterium Yersinia pestis, we have sequenced the deep-rooted strain Angola, a virulent Pestoides isolate. Its ancient nature makes this atypical isolate of particular importance in understanding the evolution of plague pathogenicity. Its chromosome features a unique genetic make-up intermediate between modern Y. pestis isolates and its evolutionary ancestor, Y. pseudotuberculosis. Our genotypic and phenotypic analyses led us to conclude that Angola belongs to one of the most ancient Y. pestis lineages thus far sequenced. The mobilome carries the first reported chimeric plasmid combining the two species-specific virulence plasmids. Genomic findings were validated in virulence assays demonstrating that its pathogenic potential is distinct from modern Y. pestis isolates. Human infection with this particular isolate would not be diagnosed by the standard clinical tests, as Angola lacks the plasmid-borne capsule, and a possible emergence of this genotype raises major public health concerns. To assess the genomic plasticity in Y. pestis, we investigated the global gene reservoir and estimated the pangenome at 4,844 unique protein-coding genes. As shown by the genomic analysis of this evolutionary key isolate, we found that the genomic plasticity within Y. pestis clearly was not as limited as previously thought, which is strengthened by the detection of the largest number of isolate-specific single-nucleotide polymorphisms (SNPs) currently reported in the species. This study identified numerous novel genetic signatures, some of which seem to be intimately associated with plague virulence. These markers are valuable in the development of a robust typing system critical for forensic, diagnostic, and epidemiological studies.
Collapse
Affiliation(s)
- Mark Eppinger
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - Patricia L. Worsham
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - Mikeljon P. Nikolich
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - David R. Riley
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - Yinong Sebastian
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - Sherry Mou
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - Mark Achtman
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - Luther E. Lindler
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - Jacques Ravel
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| |
Collapse
|
16
|
Novel antibacterial compounds specifically targeting the essential WalR response regulator. J Antibiot (Tokyo) 2010; 63:127-34. [PMID: 20111065 DOI: 10.1038/ja.2010.4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The WalK/WalR (YycG/YycF) two-component system, which is essential for cell viability, is highly conserved and specific to low-GC percentage of Gram-positive bacteria, making it an attractive target for novel antimicrobial compounds. Recent work has shown that WalK/WalR exerts an effect as a master regulatory system in controlling and coordinating cell wall metabolism with cell division in Bacillus subtilis and Staphylococcus aureus. In this paper, we develop a high-throughput screening system for WalR inhibitors and identify two novel inhibitors targeting the WalR response regulator (RR): walrycin A (4-methoxy-1-naphthol) and walrycin B (1,6-dimethyl-3-[4-(trifluoromethyl)phenyl]pyrimido[5,4-e][1,2,4]triazine-5,7-dione). Addition of these compounds simultaneously affects the expression of WalR regulon genes, leading to phenotypes consistent with those of cells starved for the WalK/WalR system and having a bactericidal effect. B. subtilis cells form extremely long aseptate filaments and S. aureus cells form large aggregates under these conditions. These results show that walrycins A and B are the first antibacterial agents targeting WalR in B. subtilis and S. aureus.
Collapse
|
17
|
A novel synthesis of N(1)-(substituted)-pyrimido[5,4-e]-1,2,4-triazine-5,7(1H,6H)-diones. Tetrahedron Lett 2009; 50:1996-1997. [PMID: 21643441 DOI: 10.1016/j.tetlet.2009.02.084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A new synthesis of N(1)-(substituted)-pyrimido[5,4-e]-1,2,4-triazine-5,7(1H,6H)-diones, which are analogues of the natural product toxoflavin, is reported. Condensation of preformed alkyl or aryl hydrazones with 6-chloro-3-methyl-5-nitrouracil efficiently provides pyrimidotriazinediones in a three-step process that broadens the scope of R(1) substituents.
Collapse
|
18
|
Islam R, Ashida N, Nagamatsu T. Synthesis and regioselective N- and O-alkylation of 3-alkyl-5-phenyl-3H-[1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones and 2-phenyl-9-propyl-9H-purin-6(1H)-one with evaluation of antiviral and antitumor activities. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Kozhevnikov DN, Rusinov VL, Chupakhin ON. 1,2,4-TriazineN-oxides and their annelated derivatives. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc1998v067n08abeh000437] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Eppinger M, Rosovitz MJ, Fricke WF, Rasko DA, Kokorina G, Fayolle C, Lindler LE, Carniel E, Ravel J. The complete genome sequence of Yersinia pseudotuberculosis IP31758, the causative agent of Far East scarlet-like fever. PLoS Genet 2007; 3:e142. [PMID: 17784789 PMCID: PMC1959361 DOI: 10.1371/journal.pgen.0030142] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 07/10/2007] [Indexed: 12/25/2022] Open
Abstract
The first reported Far East scarlet-like fever (FESLF) epidemic swept the Pacific coastal region of Russia in the late 1950s. Symptoms of the severe infection included erythematous skin rash and desquamation, exanthema, hyperhemic tongue, and a toxic shock syndrome. The term FESLF was coined for the infection because it shares clinical presentations with scarlet fever caused by group A streptococci. The causative agent was later identified as Yersinia pseudotuberculosis, although the range of morbidities was vastly different from classical pseudotuberculosis symptoms. To understand the origin and emergence of the peculiar clinical features of FESLF, we have sequenced the genome of the FESLF-causing strain Y. pseudotuberculosis IP31758 and compared it with that of another Y. pseudotuberculosis strain, IP32953, which causes classical gastrointestinal symptoms. The unique gene pool of Y pseudotuberculosis IP31758 accounts for more than 260 strain-specific genes and introduces individual physiological capabilities and virulence determinants, with a significant proportion horizontally acquired that likely originated from Enterobacteriaceae and other soil-dwelling bacteria that persist in the same ecological niche. The mobile genome pool includes two novel plasmids phylogenetically unrelated to all currently reported Yersinia plasmids. An icm/dot type IVB secretion system, shared only with the intracellular persisting pathogens of the order Legionellales, was found on the larger plasmid and could contribute to scarlatinoid fever symptoms in patients due to the introduction of immunomodulatory and immunosuppressive capabilities. We determined the common and unique traits resulting from genome evolution and speciation within the genus Yersinia and drew a more accurate species border between Y. pseudotuberculosis and Y. pestis. In contrast to the lack of genetic diversity observed in the evolutionary young descending Y. pestis lineage, the population genetics of Y. pseudotuberculosis is more heterogenous. Both Y. pseudotuberculosis strains IP31758 and the previously sequenced Y. pseudotuberculosis strain IP32953 have evolved by the acquisition of specific plasmids and by the horizontal acquisition and incorporation of different genetic information into the chromosome, which all together or independently seems to potentially impact the phenotypic adaptation of these two strains.
Collapse
Affiliation(s)
- Mark Eppinger
- J. Craig Venter Institute/The Institute for Genomic Research, Microbial Genomics, Rockville, Maryland, United States of America
| | - M. J Rosovitz
- J. Craig Venter Institute/The Institute for Genomic Research, Microbial Genomics, Rockville, Maryland, United States of America
| | - Wolfgang Florian Fricke
- J. Craig Venter Institute/The Institute for Genomic Research, Microbial Genomics, Rockville, Maryland, United States of America
| | - David A Rasko
- J. Craig Venter Institute/The Institute for Genomic Research, Microbial Genomics, Rockville, Maryland, United States of America
| | | | | | - Luther E Lindler
- Department of Defense, Global Emerging Infections Surveillance and Response System, Silver Spring, Maryland, United States of America
| | | | - Jacques Ravel
- J. Craig Venter Institute/The Institute for Genomic Research, Microbial Genomics, Rockville, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, Bocs S, Boursaux-Eude C, Chandler M, Charles JF, Dassa E, Derose R, Derzelle S, Freyssinet G, Gaudriault S, Médigue C, Lanois A, Powell K, Siguier P, Vincent R, Wingate V, Zouine M, Glaser P, Boemare N, Danchin A, Kunst F. The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 2003; 21:1307-13. [PMID: 14528314 DOI: 10.1038/nbt886] [Citation(s) in RCA: 415] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Accepted: 08/18/2003] [Indexed: 11/09/2022]
Abstract
Photorhabdus luminescens is a symbiont of nematodes and a broad-spectrum insect pathogen. The complete genome sequence of strain TT01 is 5,688,987 base pairs (bp) long and contains 4,839 predicted protein-coding genes. Strikingly, it encodes a large number of adhesins, toxins, hemolysins, proteases and lipases, and contains a wide array of antibiotic synthesizing genes. These proteins are likely to play a role in the elimination of competitors, host colonization, invasion and bioconversion of the insect cadaver, making P. luminescens a promising model for the study of symbiosis and host-pathogen interactions. Comparison with the genomes of related bacteria reveals the acquisition of virulence factors by extensive horizontal transfer and provides clues about the evolution of an insect pathogen. Moreover, newly identified insecticidal proteins may be effective alternatives for the control of insect pests.
Collapse
Affiliation(s)
- Eric Duchaud
- Laboratoire de Génomique des Microorganismes Pathogènes, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
1,2,4-Triazine N-oxides. ADVANCES IN HETEROCYCLIC CHEMISTRY 2002. [DOI: 10.1016/s0065-2725(02)82029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
23
|
Abstract
1. It has been suggested that the toxic effect of toxoflavin (TXF) produced by Pseudomonas cocovenenas is mainly due to the impairment of electron transfer of the mitochondrial respiratory chain. However, the cardiovascular effect of TXF is unknown. In the present study, the effect of TXF on the isometric contraction of rat isolated tail artery strips and the underlying mechanisms were investigated. 2. The basal force of the tissues was not affected by the toxin. However, the application of TXF before or during KCl (60 mM) stimulation potentiated KCl-induced vasocontraction, specifically the tonic phase of the contraction. 3. When the vessel strips were precontracted with phenylephrine (Phe), TXF further enhanced the tonic contraction of the tissue. Pretreatment of tissues with TXF also potentiated subsequent vasocontraction induced by Phe. The vasocontractor effects of TXF and Phe, however, were not additive. 4. The vascular effect of TXF was not mediated by oxygen-derived free radicals since catalase and SOD did not affect TXF-enhanced vasocontraction. In contrast, the vasocontractor effect of TXF was dependent on extracellular Ca2+ and abolished by nifedipine (a Ca2+ antagonist). TXF also had no effect on caffeine- or U46619-induced vasocontraction. 5. It is suggested that TXF may potentially contract blood vessels via its effect on Ca2+ channels. This effect of TXF depends on the contractile status of the vascular tissues.
Collapse
Affiliation(s)
- Z Wang
- Département de physiologie, Université de Montréal, Quebec, Canada
| | | | | |
Collapse
|