1
|
Nejatian Hoseinpour A, Bassami M, Ahmadizad S, Donath L, Setayesh S, Mirzaei M, Mohammad Rahimi GR. The influence of resistance training on inflammatory markers, body composition and functional capacity in healthy older adults: A systematic review and meta-analysis. Arch Gerontol Geriatr 2025; 130:105731. [PMID: 39740358 DOI: 10.1016/j.archger.2024.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Older adults experience chronic inflammation, which is associated with health conditions such as sarcopenia, and resulting in reduced functional capacity. Resistance training (RT) is a beneficial intervention for improving health in the elderly. OBJECTIVE This study aimed to investigate the effect of RT on inflammatory biomarkers, body composition, and functional capacity in healthy adults aged 60 years and over. Additionally, this study conducted a meta-regression to investigate the moderating effect of exercise variables on inflammatory markers. METHOD Medline, PubMed, Web of Science, Cochrane Library, Embase, and Google Scholar were searched systematically until December 2023. Randomized controlled trials (RCTs) assessing the impact of RT on C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), body weight, BMI, fat percentage, fat mass, lean mass, leg extension strength and six-minute walk test (6-MWT) were included. Effect size was estimated by using the mean difference (MD) with 95 % confidence interval (CI). RESULTS Nineteen RTCs involving 728 participants were included. The results revealed that CRP levels significantly decreased following RT programs (MD:0.74, p= 0.008), while TNF-α (MD: 0.1, p= 0.95) and IL-6 (MD:0.27, p= 0.12) did not show significant changes. Additionally, RT enhanced leg extension strength and 6-MWT performance. CONCLUSION RT effectively reduces CRP concentrations and enhances functional capacity in healthy older adults. However, it does not have a significant impact on TNF-α and IL-6 levels. Future researches are needed to make a clear conclusion and understand the mechanisms underlying the effects of RT in healthy older adults. REGISTRATION The original protocol was registered (CRD42023487573) in PROSPERO database.
Collapse
Affiliation(s)
- Ali Nejatian Hoseinpour
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Allameh Tabataba'I University, Tehran, Iran
| | - Minoo Bassami
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Allameh Tabataba'I University, Tehran, Iran; Research institutes of Sport Science and health, Allameh Tabataba'i University, Tehran, Iran
| | - Sajad Ahmadizad
- Department of Biological Sciences in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Lars Donath
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| | - Shayan Setayesh
- Department of Exercise Physiology, Sanabad Golbahar Institute of Higher Education, Golbahar, Iran
| | - Meraj Mirzaei
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Allameh Tabataba'I University, Tehran, Iran
| | | |
Collapse
|
2
|
Métivier L, Vivien D, Goy R, Agin V, Bui E, Benbrika S. Plasminogen Activator Inhibitor-1 in the Pathophysiology of Late Life Depression. Int J Geriatr Psychiatry 2024; 39:e70015. [PMID: 39578639 DOI: 10.1002/gps.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024]
Abstract
INTRODUCTION Late life depression (LLD) is characterized by specific clinical features including a high frequency of vascular form and frequent antidepressant treatment resistance. The expression and functions of the serine protease inhibitor, Plasminogen Activator Inhibitor-1 (PAI-1) is known to be altered by aging, vascular damage, insulin levels associated with a sedentary lifestyle, chronic stress leading to hypercortisolemia, and inflammatory changes linked to stress responses. These phenomena would be implicated in LLD like vascular depression. This article thus aims to review the existing literature regarding the association between LLD and plasmatic levels of PAI-1, a marker of hypofibrinolysis. We hypothesize that increased age would be associated with changes in PAI-1 plasma level and function which influence LLD pathogenesis and its treatment. RESULTS Although a large number of studies on PAI-1 changes in the elderly exist, studies about its implications in LLD are sparse. Despite heterogeneous findings regarding the direction of variation in plasmatic PAI-1 levels among elderly participants with LLD, all studies demonstrated an association between PAI-1 levels and current or remitted depressive symptoms. Moreover, disruptions in the concentrations of other biological markers influencing PAI-1 expression, such as cytokines or adipokines, were also observed, notably an increase in the levels of interleukins 6 and 8. DISCUSSION LLD genesis appears to be influenced by PAI-1 regulatory loops which are implicated in senescence or cell death. The resistance to antidepressant treatment appears to be linked to distinct biological profiles involving inflammatory and fibrinolytic factors. Taken together these data suggest that PAI-1 pathway may be a promising target of treatment development efforts for LLD, and depression in general.
Collapse
Affiliation(s)
- L Métivier
- INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, UNICAEN, Caen, France
- Fédération Hospitalo-Universitaire (FHU A2M2P), GIP Cyceron, Normandie Univ, UNICAEN, Caen, France
| | - D Vivien
- INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, UNICAEN, Caen, France
- Fédération Hospitalo-Universitaire (FHU A2M2P), GIP Cyceron, Normandie Univ, UNICAEN, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - R Goy
- INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, UNICAEN, Caen, France
- Fédération Hospitalo-Universitaire (FHU A2M2P), GIP Cyceron, Normandie Univ, UNICAEN, Caen, France
| | - V Agin
- INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, UNICAEN, Caen, France
- Fédération Hospitalo-Universitaire (FHU A2M2P), GIP Cyceron, Normandie Univ, UNICAEN, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - E Bui
- INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, UNICAEN, Caen, France
- Fédération Hospitalo-Universitaire (FHU A2M2P), GIP Cyceron, Normandie Univ, UNICAEN, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
- CHU de CAEN Normandie, Service de Psychiatrie, Centre Esquirol, Caen, France
| | - S Benbrika
- INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, UNICAEN, Caen, France
- Fédération Hospitalo-Universitaire (FHU A2M2P), GIP Cyceron, Normandie Univ, UNICAEN, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
- CHU de CAEN Normandie, Service de Psychiatrie, Centre Esquirol, Caen, France
| |
Collapse
|
3
|
Rader EP, McKinstry KA, Baker BA. Transcriptional and morphological responses following distinct muscle contraction protocols for Snell dwarf (Pit1 dw/dw) mice. Physiol Rep 2024; 12:e70027. [PMID: 39227324 PMCID: PMC11371489 DOI: 10.14814/phy2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
The Snell dwarf mouse (Pit1dw/dw), an animal model of congenital combined pituitary hormone deficiency, displays skeletal muscle weakness. While enhanced responsivity to repeated exposures of muscle contractions have been documented for Snell dwarf mice, the response following single exposure to distinct contraction protocols remained uncharacterized. The purpose of this study was to investigate the muscle recovery of Snell dwarf and control littermate mice following a single exposure to two separate protocols-an intermittent slow velocity (30°/s) contraction protocol or a continuous rapid velocity (500°/s) contraction protocol. Following both protocols for control mice, torque values were 30% and 80% of pre-protocol values at 5 min and 3 days, respectively. At 10 days, performance returned to baseline for the 30°/s protocol and were depressed for the 500°/s protocol. For Snell dwarf mice following both protocols, torques were depressed to 5% of pre-protocol values at 5 min and returned to baseline by 3 days. Recovery following the 30°/s protocol for control mice and both protocols for Snell dwarf mice coincided with increased transcriptional output, upregulation of cytokine-mediated signaling genes, and a distribution shift to smaller muscle fibers with reduced area per nucleus. These features represent efficacious remodeling ubiquitous across distinct contraction paradigms in the context of the Pit1 mutation.
Collapse
Affiliation(s)
- Erik P. Rader
- Centers for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| | - Kimberly A. McKinstry
- Centers for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| | - Brent A. Baker
- Centers for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| |
Collapse
|
4
|
Hernández-Lepe MA, Ortiz-Ortiz M, Hernández-Ontiveros DA, Mejía-Rangel MJ. Inflammatory Profile of Older Adults in Response to Physical Activity and Diet Supplementation: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4111. [PMID: 36901121 PMCID: PMC10001956 DOI: 10.3390/ijerph20054111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Chronic, low-grade inflammation in the elderly, usually known as inflammaging, accelerates the development of age-related diseases, including cancer, obesity, sarcopenia, and cardio-metabolic diseases. Two of the most studied interventions against inflammation are diet supplementation and the regular practice of exercise. The search for this systematic review was performed in Scopus, EBSCO, and PubMed databases within the last 10 years. Only randomized controlled trials that evaluated the effect of supplementation and exercise against inflammatory markers in older adults were included. After applying eligibility criteria and risk-of-bias assessment, 11 studies were included in the systematic review. In total, 638 participants were analyzed and the main supplements evaluated were amino acid or protein supplementation from different sources. In the counterpart, the exercise applied in the evaluations included strengthening exercises or aerobic training. The interventions had a range of duration between 4 and 24 weeks, and the effects on inflammation markers in most of the studies showed a decrease in pro-inflammatory cytokines and non- or slightly significant change in anti-inflammatory cytokines. However, these results suggest that exercise and supplement interventions can contribute to diminishing the inflammation process in the elderly. We can also conclude that further well-designed randomized controlled trials are needed to confirm the possible synergistic effects of exercise and food supplementation against inflammation in the elderly due to the limited studies that currently exist. This systematic review was registered in PROSPERO, ID CRD42023387184.
Collapse
Affiliation(s)
| | - Melinna Ortiz-Ortiz
- Sports School, Autonomous University of Baja California, Tijuana 22390, Baja California, Mexico
| | | | - Minerva Janini Mejía-Rangel
- Medical and Psychology School, Autonomous University of Baja California, Tijuana 22390, Baja California, Mexico
| |
Collapse
|
5
|
A Review of Rehabilitation Benefits of Exercise Training Combined with Nutrition Supplement for Improving Protein Synthesis and Skeletal Muscle Strength in Patients with Cerebral Stroke. Nutrients 2022; 14:nu14234995. [PMID: 36501025 PMCID: PMC9740942 DOI: 10.3390/nu14234995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Cerebral vascular accident (CVA) is one of the main causes of chronic disability, and it affects the function of daily life, so it is increasingly important to actively rehabilitate patients' physical functions. The research confirmed that the nutrition supplement strategy is helpful to improve the effect of sports rehabilitation adaptation and sports performance. The patients with chronic strokes (whose strokes occur for more than 6 months) have special nutritional needs while actively carrying out rehabilitation exercises, but there are still few studies to discuss at present. Therefore, this paper will take exercise rehabilitation to promote muscle strength and improve muscle protein synthesis as the main axis and, through integrating existing scientific evidence, discuss the special needs of chronic stroke patients in rehabilitation exercise intervention and nutrition supplement one by one. At the same time, we further evaluated the physiological mechanism of nutrition intervention to promote training adaptation and compared the effects of various nutrition supplement strategies on stroke rehabilitation. Literature review pointed out that immediately supplementing protein nutrition (such as whey protein or soybean protein) after resistance exercise or endurance exercise can promote the efficiency of muscle protein synthesis and produce additive benefits, thereby improving the quality of muscle tissue. Recent animal research results show that probiotics can prevent the risk factors of neural function degradation and promote the benefits of sports rehabilitation. At the same time, natural polyphenols (such as catechin or resveratrol) or vitamins can also reduce the oxidative stress injury caused by animal stroke and promote the proliferation of neural tissue. In view of the fact that animal research results still make up the majority of issues related to the role of nutrition supplements in promoting nerve repair and protection, and the true benefits still need to be confirmed by subsequent human studies. This paper suggests that the future research direction should be the supplement of natural antioxidants, probiotics, compound nutritional supplements, and integrated human clinical research.
Collapse
|
6
|
Rader EP, Baker BA. Elevated muscle mass accompanied by transcriptional and nuclear alterations several months following cessation of resistance-type training in rats. Physiol Rep 2022; 10:e15476. [PMID: 36259109 PMCID: PMC9579736 DOI: 10.14814/phy2.15476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023] Open
Abstract
Rodent studies investigating long-term effects following termination of hypertrophy-inducing loading have predominantly involved exposures such as synergist ablation and weighted wheel running or ladder climbing. This research yielded a spectrum of results regarding the extent of detraining in terms of muscle mass and myonuclei number. The studies were also limited in their lack of sensitive performance measures and indirect relatedness to resistance training. Our research group developed and validated a relevant rat model of resistance-type training that induces increased muscle mass and performance. The aim of the present study was to determine to what extent these features persist 3 months following the termination of this training. While performance returned to baseline, muscle mass remained elevated by 17% and a shift in distribution to larger muscle fibers persisted. A 16% greater total RNA and heightened mRNA levels of ribosomal protein S6 kinases implicated preserved transcriptional output and ribosomal content. Remodeling of muscle fiber nuclei was consistent with these findings - increased nuclear number and a distribution shift to a more circular nuclear shape. These findings indicate that muscle mass detrains at a slower rate than performance and implicates multiple forms of myonuclear remodeling in muscle memory.
Collapse
Affiliation(s)
- Erik P. Rader
- Centers for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| | - Brent A. Baker
- Centers for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| |
Collapse
|
7
|
Muñoz-Vergara D, Grabowska W, Yeh GY, Khalsa SB, Schreiber KL, Huang CA, Zavacki AM, Wayne PM. A systematic review of in vivo stretching regimens on inflammation and its relevance to translational yoga research. PLoS One 2022; 17:e0269300. [PMID: 35648793 PMCID: PMC9159623 DOI: 10.1371/journal.pone.0269300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 05/18/2022] [Indexed: 12/09/2022] Open
Abstract
OBJECTIVE To conduct a systematic review evaluating the impact of stretching on inflammation and its resolution using in vivo rodent models. Findings are evaluated for their potential to inform the design of clinical yoga studies to assess the impact of yogic stretching on inflammation and health. METHODS Studies were identified using four databases. Eligible publications included English original peer-reviewed articles between 1900-May 2020. Studies included those investigating the effect of different stretching techniques administered to a whole rodent model and evaluating at least one inflammatory outcome. Studies stretching the musculoskeletal and integumentary systems were considered. Two reviewers removed duplicates, screened abstracts, conducted full-text reviews, and assessed methodological quality. RESULTS Of 766 studies identified, 25 were included for synthesis. Seven (28%) studies had a high risk of bias in 3 out of 10 criteria. Experimental stretching protocols resulted in a continuum of inflammatory responses with therapeutic and injurious effects, which varied with a combination of three stretching parameters--duration, frequency, and intensity. Relative to injurious stretching, therapeutic stretching featured longer-term stretching protocols. Evidence of pro- and mixed-inflammatory effects of stretching was found in 16 muscle studies. Evidence of pro-, anti-, and mixed-inflammatory effects was found in nine longer-term stretching studies of the integumentary system. CONCLUSION Despite the overall high quality of these summarized studies, evaluation of stretching protocols paralleling yogic stretching is limited. Both injurious and therapeutic stretching induce aspects of inflammatory responses that varied among the different stretching protocols. Inflammatory markers, such as cytokines, are potential outcomes to consider in clinical yoga studies. Future translational research evaluating therapeutic benefits should consider in vitro studies, active vs. passive stretching, shorter-term vs. longer-term interventions, systemic vs. local effects of stretching, animal models resembling human anatomy, control and estimation of non-specific stresses, development of in vivo self-stretching paradigms targeting myofascial tissues, and in vivo models accounting for gross musculoskeletal posture.
Collapse
Affiliation(s)
- Dennis Muñoz-Vergara
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
- Osher Center for Integrative Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Weronika Grabowska
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Gloria Y. Yeh
- Osher Center for Integrative Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
- Division of General Medicine and Primary Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Sat Bir Khalsa
- Osher Center for Integrative Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Kristin L. Schreiber
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Christene A. Huang
- The Department of Surgery, School of Medicine, University of Colorado, Denver, CO, United States of America
| | - Ann Marie Zavacki
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Peter M. Wayne
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
- Osher Center for Integrative Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
8
|
Naimo MA, Varanoske AN, Hughes JM, Pasiakos SM. Skeletal Muscle Quality: A Biomarker for Assessing Physical Performance Capabilities in Young Populations. Front Physiol 2021; 12:706699. [PMID: 34421645 PMCID: PMC8376973 DOI: 10.3389/fphys.2021.706699] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/09/2021] [Indexed: 12/28/2022] Open
Abstract
Muscle quality (MQ), defined as the amount of strength and/or power per unit of muscle mass, is a novel index of functional capacity that is increasingly relied upon as a critical biomarker of muscle health in low functioning aging and pathophysiological adult populations. Understanding the phenotypical attributes of MQ and how to use it as an assessment tool to explore the efficacy of resistance exercise training interventions that prioritize functional enhancement over increases in muscle size may have implications for populations beyond compromised adults, including healthy young adults who routinely perform physically demanding tasks for competitive or occupational purposes. However, MQ has received far less attention in healthy young populations than it has in compromised adults. Researchers and practitioners continue to rely upon static measures of lean mass or isolated measures of strength and power, rather than using MQ, to assess integrated functional responses to resistance exercise training and physical stress. Therefore, this review will critically examine MQ and the evidence base to establish this metric as a practical and important biomarker for functional capacity and performance in healthy, young populations. Interventions that enhance MQ, such as high-intensity stretch shortening contraction resistance exercise training, will be highlighted. Finally, we will explore the potential to leverage MQ as a practical assessment tool to evaluate function and enhance performance in young populations in non-traditional research settings.
Collapse
Affiliation(s)
- Marshall A Naimo
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Alyssa N Varanoske
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Julie M Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Stefan M Pasiakos
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| |
Collapse
|
9
|
Rader EP, Baker BA. Age-dependent stress response DNA demethylation and gene upregulation accompany nuclear and skeletal muscle remodeling following acute resistance-type exercise in rats. Facets (Ott) 2020; 5:455-473. [PMID: 32775614 PMCID: PMC7413608 DOI: 10.1139/facets-2019-0060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Efficacy of high-intensity resistance exercise becomes progressively compromised with aging. Previously, to investigate this, we developed a rodent model of high-intensity training consisting of stretch-shortening contractions (SSCs) and determined that following one month of training, young rats exhibit a robust stress response and 20% performance increase, whereas old rats display a muted stress response and 30% performance decrease. Whether these age-specific responses occur early in training and constitute primary factors in adaptation/maladaptation was not addressed. The aim of the present study was to characterize performance, remodeling, and stress response transcriptional profile 6–120 h following acute SSC exposure. For young rats, the stress response pathway was highly regulated (≥20 differentially expressed genes at each time point) and was accompanied by robust DNA demethylation, tissue remodeling, and isometric torque recovery. For old rats, a muted transcriptional profile (13 and 2 differentially expressed genes at 6 and 120 h, respectively) coincided with deficiencies in demethylation, muscle remodeling, and torque recovery. These findings occurred in the context of heightened chronic levels of stress response gene expression with aging. This demonstrates that age-related constitutive elevations in stress response gene expression was accompanied by diminished SSC-induced responsiveness in epigenomic regulation and tissue remodeling.
Collapse
Affiliation(s)
- Erik P Rader
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Brent A Baker
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| |
Collapse
|
10
|
Sumi K, Ashida K, Nakazato K. Repeated stretch-shortening contraction of the triceps surae attenuates muscle atrophy and liver dysfunction in a rat model of inflammation. Exp Physiol 2020; 105:1111-1123. [PMID: 32394614 DOI: 10.1113/ep088622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is stretch-shortening contraction effective to attenuate skeletal muscle atrophy and hepatic dysfunction in a rat model of peptidoglycan-polysaccharide (PG-PS)-induced inflammation (PG-PS rat)? What are the main findings and their importance? Stretch-shortening contraction attenuates skeletal muscle atrophy in the trained leg and increases circulating interleukin-10 in PG-PS rats. Stretch-shortening contraction also ameliorates liver dysfunction in PG-PS rats, possibly via increased blood interleukin-10. These findings are important because they suggest that stretch-shortening contraction is effective to maintain liver function in addition to exercised skeletal muscle mass. ABSTRACT Stretch-shortening contraction (SSC) is an effective modality to improve skeletal muscle mass. However, the beneficial effects of SSC in the presence of chronic inflammation remain unclear. Here, we imposed five SSC sessions unilaterally on the triceps surae in young female Lewis rats. Rats were injected with vehicle or peptidoglycan-polysaccharide (PG-PS) to induce long-lasting inflammation. The PG-PS reduced gastrocnemius muscle mass in both legs, but that of the SSC-trained leg was significantly greater than that of the contralateral leg. Circulating pro-inflammatory cytokines, such as IL-1β, were significantly increased by PG-PS injection, even if carrying out SSC. The circulating anti-inflammatory cytokine IL-10 increased with SSC in both healthy and inflammatory conditions. Stretch-shortening contraction also prevented increases in serum aspartate aminotransferase activity and plasma free phenylalanine concentration induced by PG-PS, in comparison to the control resistance exercise consisting of isometric contractions. Moreover, aspartate aminotransferase and phenylalanine concentrations demonstrated a significant and negative correlation with IL-10/IL-1β values (r = -0.61, P = 0.017, and r = -0.66, P = 0.008, respectively). These results suggest that SSC training is effective to reduce both muscle atrophy and the hepatic dysfunction induced by PG-PS, mediated, at least in part, through an increase in circulating IL-10.
Collapse
Affiliation(s)
- Koichiro Sumi
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Hachiouji, Tokyo, Japan
| | - Kinya Ashida
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Hachiouji, Tokyo, Japan
| | - Koichi Nakazato
- Department of Exercise Physiology, Nippon Sports Science University, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
11
|
Naimo MA, Rader EP, Ensey J, Kashon ML, Baker BA. Reduced frequency of resistance-type exercise training promotes adaptation of the aged skeletal muscle microenvironment. J Appl Physiol (1985) 2019; 126:1074-1087. [PMID: 30676867 DOI: 10.1152/japplphysiol.00582.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The purpose of this study was to characterize the growth and remodeling molecular signaling response in aged skeletal muscle following 1 mo of "resistance-type exercise" training. Male Fischer 344 × Brown Norway hybrid rats aged 3 (young) and 30 mo (old) underwent stretch-shortening contraction (SSC) loading 2 or 3 days/wk; muscles were removed 72 h posttraining. Young rats SSC loaded 3 (Y3x) or 2 days/wk (Y2x) adapted via increased work performance. Old rats SSC loaded 3 days/wk (O3x) maladapted via decreased negative work; however, old rats SSC loaded 2 days/wk (O2x) adapted through improved negative and positive work. Y3x, Y2x, and O2x, but not O3x, displayed hypertrophy via larger fiber area and myonuclear domains. Y3x, Y2x, and O2x differentially expressed 19, 30, and 8 phosphatidylinositol 3-kinase-Akt genes, respectively, whereas O3x only expressed 2. Bioinformatics analysis revealed that rats in the adapting groups presented growth and remodeling processes (i.e., increased protein synthesis), whereas O3x demonstrated inflammatory signaling. In conclusion, reducing SSC-loading frequency in aged rodents positively influences the molecular signaling microenvironment, promoting muscle adaptation. NEW & NOTEWORTHY Decreasing resistance-type exercise training frequency in old rodents led to adaptation through enhancements in performance, fiber areas, and myonuclear domains. Modifying frequency influenced the molecular environment through improvements in phosphatidylinositol 3-kinase-Akt pathway-specific expression and bioinformatics indicating increased protein synthesis. Reducing training frequency may be appropriate in older individuals who respond unfavorably to higher frequencies (i.e., maladaptation); overall, modifying the parameters of the exercise prescription can affect the cellular environment, ultimately leading to adaptive or maladaptive outcomes.
Collapse
Affiliation(s)
- Marshall A Naimo
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown, West Virginia.,Division of Exercise Physiology, School of Medicine, West Virginia University , Morgantown, West Virginia
| | - Erik P Rader
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown, West Virginia
| | - James Ensey
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown, West Virginia
| | - Michael L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown, West Virginia
| | - Brent A Baker
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown, West Virginia
| |
Collapse
|
12
|
Rader EP, Naimo MA, Ensey J, Baker BA. VCAM-1 upregulation accompanies muscle remodeling following resistance-type exercise in Snell dwarf (Pit1 dw/dw ) mice. Aging Cell 2018; 17:e12816. [PMID: 29992743 PMCID: PMC6156491 DOI: 10.1111/acel.12816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/08/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Snell dwarf mice (Pit1dw/dw ) exhibit deficiencies in growth hormone, prolactin, and thyroid stimulating hormone. Besides being an experimental model of hypopituitarism, these mice are long-lived (>40% lifespan extension) and utilized as a model of slowed/delayed aging. Whether this longevity is accompanied by a compromised quality of life in terms of muscular performance has not yet been characterized. In this study, we investigated nontrained and trained muscles 1 month following a general validated resistance-type exercise protocol in 3-month-old Snell dwarf mice and control littermates. Nontrained Snell dwarf gastrocnemius muscles exhibited a 1.3-fold greater muscle mass to body weight ratio than control values although muscle quality, maximum isometric torque normalized to muscle mass, and fatigue recovery were compromised. For control mice, training increased isometric torque (17%) without altering muscle mass. For Snell dwarf mice, isometric torque was unaltered by training despite decreased muscle mass that rendered muscle mass to body weight ratio comparable to control values. Muscle quality and fatigue recovery improved twofold and threefold, respectively, for Snell dwarf mice. This accompanied a fourfold increase in levels of vascular cell adhesion molecule-1 (VCAM-1), a mediator of progenitor cell recruitment, and muscle remodeling in the form of increased number of central nuclei, additional muscle fibers per unit area, and altered fiber type distribution. These results reveal a trade-off between muscle quality and longevity in the context of anterior pituitary hormone deficiency and that resistance-type training can diminish this trade-off by improving muscle quality concomitant with VCAM-1 upregulation and muscle remodeling.
Collapse
Affiliation(s)
- Erik P. Rader
- Centers for Disease Control and Prevention; National Institute for Occupational Safety and Health; Morgantown West Virginia
| | - Marshall A. Naimo
- Centers for Disease Control and Prevention; National Institute for Occupational Safety and Health; Morgantown West Virginia
- Division of Exercise Physiology; West Virginia School of Medicine; Morgantown West Virginia
| | - James Ensey
- Centers for Disease Control and Prevention; National Institute for Occupational Safety and Health; Morgantown West Virginia
| | - Brent A. Baker
- Centers for Disease Control and Prevention; National Institute for Occupational Safety and Health; Morgantown West Virginia
| |
Collapse
|
13
|
Rader EP, Naimo MA, Ensey J, Baker BA. High-intensity stretch-shortening contraction training modifies responsivity of skeletal muscle in old male rats. Exp Gerontol 2018; 104:118-126. [PMID: 29438735 DOI: 10.1016/j.exger.2018.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/25/2018] [Accepted: 02/08/2018] [Indexed: 12/22/2022]
Abstract
Utilization of high-intensity resistance training to counter age-related sarcopenia is currently debated because of the potential for maladaptation when training design is inappropriate. Training design is problematic because the influence of various loading variables (e.g. contraction mode, repetition number, and training frequency) is still not well characterized at old age. To address this in a precisely controlled manner, we developed a rodent model of high-intensity training consisting of maximally-activated stretch-shortening contractions (SSCs), contractions typical during resistance training. With this model, we determined that at old age, high-repetition SSC training (80 SSCs: 8 sets of 10 repetitions) performed frequently (i.e. 3 days per week) for 4.5 weeks induced strength deficits with no muscle mass gain while decreasing frequency to 2 days per week promoted increases in muscle mass and muscle quality (i.e. performance normalized to muscle mass). This finding confirmed the popular notion that decreasing training frequency has a robust effect with age. Meanwhile, the influence of other loading variables remains contentious. The aim of the present study was to assess muscle adaptation following modulation of contraction mode and repetition number during high-intensity SSC training. Muscles of young (3 month old) and old (30 month old) male rats were exposed to 4.5 weeks of low-repetition static training of 4 (i.e. 4 sets of one repetition) isometric (ISO) contractions 3 days per week or a more moderate-repetition dynamic training of 40 SSCs (i.e. 4 sets of 10 repetitions) 3 days per week. For young rats, performance and muscle mass increased regardless of training protocol. For old rats, no muscle mass adaptation was observed for 4 ISO training while 40 SSC training induced muscle mass gain without improvement in muscle quality, an outcome distinct from modulating training frequency. Muscle mass gain for old rats was accompanied by decreased protein levels of tumor necrosis factor alpha, a mediator of age-related chronic inflammatory signaling, to young levels. These findings suggest that while dynamic high-intensity training with a moderate number of repetitions has a limited capacity for altering muscle quality, such training is a viable strategy for countering age-related inflammatory signaling and modifying muscle mass.
Collapse
Affiliation(s)
- Erik P Rader
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States.
| | - Marshall A Naimo
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States; West Virginia University School of Medicine, Division of Exercise Physiology, Morgantown, WV 26506, United States
| | - James Ensey
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States
| | - Brent A Baker
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States
| |
Collapse
|
14
|
Alway SE. Inflammation and Oxidative Stress Limit Adaptation to Stretch-Shortening Contractions in Aging. Exerc Sport Sci Rev 2018; 45:194. [PMID: 28704215 DOI: 10.1249/jes.0000000000000126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Stephen E Alway
- Department of Human Performance & Applied Exercise Science, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV
| |
Collapse
|
15
|
Baker BA. Efficacy of Age-Specific High-Intensity Stretch-Shortening Contractions in Reversing Dynapenia, Sarcopenia, and Loss of Skeletal Muscle Quality. J Funct Morphol Kinesiol 2018; 3:36. [PMID: 31149646 PMCID: PMC6537613 DOI: 10.3390/jfmk3020036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the aging process, skeletal muscle performance and physiology undergoes alterations leading to decrements in functional capacity, health-span, and independence. Background: The utility and implementation of age-specific exercise is a paramount research agenda focusing on ameliorating the loss of both skeletal muscle performance and physiology; yet, to date, no consensus exists as to the most appropriate mechanical loading protocol design or overall exercise prescription that best meets this need. Thus, the purpose of this review is to highlight the most optimal type of exercise presently available and provide the most current, evidence-based findings for its efficacy. The hypothesis that high-intensity, stretch-shortening contractions (SSCs)-a form of "resistance-type exercise" training-present as the preferred exercise mode for serving as an intervention-based modality to attenuate dynapenia, sarcopenia, and decreased muscle quality with aging, even restoring the overall youthful phenotype, will be demonstrated. Conclusions: Appreciating the fundamental evidence supporting the use of high-intensity SSCs in positively impacting aging skeletal muscle's responsivity and their use as a specific and sensitive countermeasure is crucial. Moreover, from an applied perspective, SSCs may improve skeletal muscle quality and rejuvenate health-span and, ultimately, lead to augmented functional capacity, independence, and quality of life concomitant with decreased morbidity.
Collapse
Affiliation(s)
- Brent A Baker
- Health Effects Laboratory Division, Toxicology and Molecular Biology Branch, Systems Mechanophysiology and Aging Research Team, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| |
Collapse
|