1
|
Hossain T, Secor JT, Eckmann DM. Hyperbaric oxygen rapidly produces intracellular bioenergetics dysfunction in human pulmonary cells. Chem Biol Interact 2024; 404:111266. [PMID: 39426659 DOI: 10.1016/j.cbi.2024.111266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/30/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Hyperoxic exposure lasting days alters mitochondrial bioenergetic and dynamic functions in pulmonary cells as indices of oxygen toxicity. The aim of this study was to examine effects of short duration hyperbaric and hyperoxic exposures to induce oxygen toxicity similarly. Cultured human lung microvascular endothelial cells, human pulmonary artery endothelial cells and A549 cells were exposed to hyperoxia (∼5 % CO2 equivalent, balance O2) under hyperbaric conditions (4.8 ATA) for 1 and 4 h. Measures of mitochondrial dynamics, inner membrane potential, mitochondrial respiration, the intracellular distribution of bioenergetic capacity and respiration complex protein levels were then quantified. Exposures resulted in altered mitochondrial motility, presence of inhomogeneities in respiration parameters, loss of inner membrane potential, and changes in intracellular partitioning of ATP-linked respiration. Changes in the levels of respiration complex protein levels were also found. The combination of hyperoxic exposure with hyperbaric conditions rapidly produced changes in mitochondrial dynamics and bioenergetics in pulmonary cells. These changes are consistent with the onset of pulmonary oxygen toxicity previously known to result from long duration exposure to hyperoxia alone. These findings suggest health caution is warranted in environmental settings in which both hyperoxic and hyperbaric conditions are present. The synergism of hyperoxia and hyperbaria for rapid induction of oxygen toxicity in cellular models has utility for the study of mechanistic determinants of oxygen toxicity, testing of putative therapeutics, and associated investigations of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Tanvir Hossain
- Department of Anesthesiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Jackson T Secor
- Department of Anesthesiology, The Ohio State University, Columbus, OH, 43210, USA
| | - David M Eckmann
- Department of Anesthesiology, The Ohio State University, Columbus, OH, 43210, USA; Center for Medical and Engineering Innovation, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Brenner RJ, Balan KA, Andersen MPL, Dugrenot E, Vrijdag XCE, Van Waart H, Tillmans F. A review of nutritional recommendations for scuba divers. J Int Soc Sports Nutr 2024; 21:2402386. [PMID: 39314069 PMCID: PMC11423531 DOI: 10.1080/15502783.2024.2402386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Scuba diving is an increasingly popular activity that involves the use of specialized equipment and compressed air to breathe underwater. Scuba divers are subject to the physiological consequences of being immersed in a high-pressure environment, including, but not limited to, increased work of breathing and kinetic energy expenditure, decreased fluid absorption, and alteration of metabolism. Individual response to these environmental stressors may result in a differential risk of decompression sickness, a condition thought to result from excess nitrogen bubbles forming in a diver's tissues. While the mechanisms of decompression sickness are still largely unknown, it has been postulated that this response may further be influenced by the diver's health status. Nutritional intake has direct relevancy to inflammation status and oxidative stress resistance, both of which have been associated with increased decompression stress. While nutritional recommendations have been determined for saturation divers, these recommendations are likely overly robust for recreational divers, considering that the differences in time spent under pressure and the maximum depth could result nonequivalent energetic demands. Specific recommendations for recreational divers remain largely undefined. METHODS This narrative review will summarize existing nutritional recommendations and their justification for recreational divers, as well as identify gaps in research regarding connections between nutritional intake and the health and safety of divers. RESULTS Following recommendations made by the Institute of Medicine and the Naval Medical Research Institute of Bethesda, recreational divers are advised to consume ~170-210 kJ·kg-1 (40-50 kcal·kg-1) body mass, depending on their workload underwater, in a day consisting of 3 hours' worth of diving above 46 msw. Recommendations for macronutrient distribution for divers are to derive 50% of joules from carbohydrates and less than 30% of joules from fat. Protein consumption is recommended to reach a minimum of 1 g of protein·kg-1 of body mass a day to mitigate loss of appetite while meeting energetic requirements. All divers should take special care to hydrate themselves with an absolute minimum of 500 ml of fluid per hour for any dive longer than 3 hours, with more recent studies finding 0.69 liters of water two hours prior to diving is most effective to minimize bubble loads. While there is evidence that specialized diets may have specific applications in commercial or military diving, they are not advisable for the general recreational diving population considering the often extreme nature of these diets, and the lack of research on their effectiveness on a recreational diving population. CONCLUSIONS Established recommendations do not account for changes in temperature, scuba equipment, depth, dive time, work of breathing, breathing gas mix, or individual variation in metabolism. Individual recommendations may be more accurate when accounting for basal metabolic rate and physical activity outside of diving. However, more research is needed to validate these estimates against variation in dive profile and diver demographics.
Collapse
Affiliation(s)
| | | | - Marie P. L. Andersen
- Divers Alert Network, Research, Durham, NC, USA
- The University of North Carolina at Chapel Hill, Gillings School of Public Health, Chapel Hill, NC, USA
| | - Emmanuel Dugrenot
- Divers Alert Network, Research, Durham, NC, USA
- University of Brest, ORPHY’s Laboratory, Brest, France
- The University of North Carolina at Chapel Hill, Department of Biomedical Engineering, Chapel Hill, NC, USA
| | - Xavier C. E. Vrijdag
- The University of Auckland, Department of Anaesthesiology, Auckland, New Zealand
| | - Hanna Van Waart
- The University of Auckland, Department of Anaesthesiology, Auckland, New Zealand
| | - Frauke Tillmans
- Divers Alert Network, Research, Durham, NC, USA
- The University of North Carolina at Chapel Hill, Department of Biomedical Engineering, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Balestra C, Leveque C, Mrakic-Sposta S, Coulon M, Tumbarello R, Vezzoli A, Bosco G, Imtiyaz Z, Thom SR. Inert Gas Mild Pressure Action on Healthy Humans: The "IPA" Study. Int J Mol Sci 2024; 25:12067. [PMID: 39596136 PMCID: PMC11593890 DOI: 10.3390/ijms252212067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The goal of this study was to evaluate inflammatory and oxidative stress responses in human subjects (9 females and 15 males) (age [29.6 ± 11.5 years old (mean ± SD)], height [172.0 ± 10.05 cm], and weight [67.8 ± 12.4 kg]) exposed to 1.45 ATA of helium (He) or nitrogen (N2) without concurrent hyperoxia. We hypothesized that elevated gas pressures would elicit an inflammatory response concurrent with oxidative stress. Consistent with ex vivo studies, both gasses elicited neutrophil activation, small elevations in microparticles (MPs) and increases in intra-MP interleukin (IL)-1β and inflammatory nitric oxide synthase, and an increase in urinary IL-6 concurrent with a marked reduction in plasma gelsolin. Mixed responses indictive of oxidative stress, with some biomarker elevations but little change in others and a decrease in some, were observed. Overall, these results demonstrate that exposure to typical diving gasses at a mildly elevated partial pressure will initiate inflammatory responses, which may play a significant role in decompression sickness (DCS). The complex pattern of oxidative stress responses may be indicative of competing systemic reactions and sampling different body fluids.
Collapse
Affiliation(s)
- Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium; (C.L.); (M.C.); (R.T.)
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1090 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Clément Leveque
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium; (C.L.); (M.C.); (R.T.)
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20142 Milano, Italy; (S.M.-S.); (A.V.)
| | - Mathias Coulon
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium; (C.L.); (M.C.); (R.T.)
| | - Romain Tumbarello
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium; (C.L.); (M.C.); (R.T.)
| | - Alessandra Vezzoli
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20142 Milano, Italy; (S.M.-S.); (A.V.)
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
| | - Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
| | - Zuha Imtiyaz
- Department of Emergency Medicine, School of Medicine, University of Maryland, Baltimore, MD 21250, USA; (Z.I.); (S.R.T.)
| | - Stephen R. Thom
- Department of Emergency Medicine, School of Medicine, University of Maryland, Baltimore, MD 21250, USA; (Z.I.); (S.R.T.)
| |
Collapse
|
4
|
McCann UG, Park T. Rhabdomyolysis in McArdle disease caused by scuba diving. BMJ Case Rep 2023; 16:e255192. [PMID: 37852664 PMCID: PMC10603480 DOI: 10.1136/bcr-2023-255192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
McArdle disease is a glycogen storage disease that results in rhabdomyolysis during intense exercise. A number of different triggers have been described. We evaluated a patient with McArdle disease who presented with rhabdomyolysis after recreational scuba diving. There was no concern for barotrauma or decompression sickness. His symptoms resolved with standard-of-care management for non-diving-related rhabdomyolysis. Features of his experience provoked questions about the diving-related factors contributing to his presentation. We present the case and explore possible mechanisms of diving-related injury in patients with McArdle disease, including the possible effects of hyperoxia, hyperbaria, hypothermia and strenuous activity.
Collapse
Affiliation(s)
- Ulysse George McCann
- Hospital Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Thomas Park
- Hospital Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
5
|
Vallée N, Dugrenot E, Desruelle AV, Richard S, Coupé S, Ramdani C, Guieu R, Risso JJ, Gaillard S, Guerrero F. Highlighting of the interactions of MYD88 and NFKB1 SNPs in rats resistant to decompression sickness: toward an autoimmune response. Front Physiol 2023; 14:1253856. [PMID: 37664439 PMCID: PMC10470123 DOI: 10.3389/fphys.2023.1253856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Decompression sickness (DCS) with neurological disorders includes an inappropriate inflammatory response which degenerates slowly, even after the disappearance of the bubbles. There is high inter-individual variability in terms of the occurrence of DCS that could have been mastered by the selection and then the breeding of DCS-resistant rats. We hypothesized the selection of single-nucleotide polymorphisms (SNPs) linked to autoimmunity operated upon a generation of a DCS-resistant strain of rats. We used the candidate gene approach and targeted SNPs linked to the signaling cascade that directly regulates inflammation of innate immunity transiting by the Toll-like receptors. Twenty candidate SNPs were investigated in 36 standard rats and 33 DCS-resistant rats. For the first time, we identify a diplotype (i.e., with matched haplotypes)-when coinherited-that strengthens protection against DCS, which is not strictly homozygous and suggests that a certain tolerance may be considered. We deduced an ideal haplotype of six variants from it (MyD88_50-T, _49-A, _97-C coupled to NFKB_85-T, _69-T, _45-T) linked to the resistant phenotype. Four among the six identified variants are located in pre- and/or post-transcriptional areas regulating MyD88 or NFKB1 expression. Because of missense mutations, the other two variants induce a structural change in the NFKB1 protein complex including one damage alteration according to the Missense3D algorithm. In addition to the MyD88/NFKB1 haplotype providing rats with a strong resistance to DCS, this also highlights the importance that the immune response, here linked to the genetic heritage, can have in the development of DCS and offer a new perspective for therapeutic strategies.
Collapse
Affiliation(s)
- Nicolas Vallée
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon, France
| | | | - Anne-Virginie Desruelle
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon, France
| | | | | | - Céline Ramdani
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon, France
| | - Régis Guieu
- Université d’Aix-Marseille, Marseille, France
| | - Jean-Jacques Risso
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon, France
| | | | | |
Collapse
|
6
|
Fan JF, Wang YK, Liu M, Liu GS, Min TJ, Chen RY, He Y. Effect of angiotensin II on irradiation exacerbated decompression sickness. Sci Rep 2023; 13:11659. [PMID: 37468556 DOI: 10.1038/s41598-023-38752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023] Open
Abstract
In some complicated situations, decompression sickness (DCS) combined with other injuries, such as irradiation, will seriously endanger life safety. However, it is still unclear whether irradiation will increase the incidence of DCS. This study was designed to investigate the damage effects of irradiation on decompression injury and the underlying mechanism. Sprague-Dawley rats were exposed to irradiation followed by hyperbaric decompressing and the mortality and decompression symptoms were observed. Lung tissue and bronchoalveolar lavage fluid were collected to detect the lung lesion, inflammation response, activity of the angiotensin system, oxidative stress, and relative signal pathway by multiple methods, including Q-PCR, western blot, and ELISA. As a result, pre-exposure to radiation significantly exacerbated disease outcomes and lung lesions of DCS. Mechanically, the up-regulation of angiotensin-converting enzyme expression and angiotensin II levels was responsible for the exacerbated DCS and lung lesions caused by predisposing irradiation exposure. Oxidative stress and PI3K/AKT signal pathway activation in pulmonary tissue were enhanced after irradiation plus decompression treatment. In conclusion, our results suggested that irradiation could exacerbate lung injury and the outcomes of DCS by activating the angiotensin system, which included eliciting oxidative stress and activation of the PI3K/AKT signal pathway.
Collapse
Affiliation(s)
- Jie-Fu Fan
- Naval Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yang-Kai Wang
- Naval Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Min Liu
- Naval Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Guang-Sheng Liu
- Naval Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Tian-Jiao Min
- Naval Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Rui-Yong Chen
- Naval Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, China.
| | - Ying He
- Naval Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, China.
| |
Collapse
|
7
|
Hossain T, Eckmann DM. Hyperoxic exposure alters intracellular bioenergetics distribution in human pulmonary cells. Life Sci 2023:121880. [PMID: 37356749 DOI: 10.1016/j.lfs.2023.121880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/24/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
AIMS Pulmonary oxygen toxicity is caused by exposure to a high fraction of inspired oxygen, which damages multiple cell types within the lung. The cellular basis for pulmonary oxygen toxicity includes mitochondrial dysfunction. The aim of this study was to identify the effects of hyperoxic exposure on mitochondrial bioenergetic and dynamic functions in pulmonary cells. MAIN METHODS Mitochondrial respiration, inner membrane potential, dynamics (including motility), and distribution of mitochondrial bioenergetic capacity in two intracellular regions were quantified using cultured human lung microvascular endothelial cells, human pulmonary artery endothelial cells and A549 cells. Hyperoxic (95 % O2) exposures lasted 24, 48 and 72 h, durations relevant to mechanical ventilation in intensive care settings. KEY FINDINGS Mitochondrial motility was altered following all hyperoxic exposures utilized in experiments. Inhomogeneities in inner membrane potential and respiration parameters were present in each cell type following hyperoxia. The partitioning of ATP-linked respiration was also hyperoxia-duration and cell type dependent. Hyperoxic exposure lasting 48 h or longer provoked the largest alterations in mitochondrial motility and the greatest decreases in ATP-linked respiration, with a suggestion of decreases in respiration complex protein levels. SIGNIFICANCE Hyperoxic exposures of different durations produce intracellular inhomogeneities in mitochondrial dynamics and bioenergetics in pulmonary cells. Oxygen therapy is utilized commonly in clinical care and can induce undesirable decrements in bioenergy function needed to maintain pulmonary cell function and viability. There may be adjunctive or prophylactic measures that can be employed during hyperoxic exposures to prevent the mitochondrial dysfunction that signals the presence of oxygen toxcity.
Collapse
Affiliation(s)
- Tanvir Hossain
- Department of Anesthesiology, The Ohio State University, Columbus, OH 43210, United States of America
| | - David M Eckmann
- Department of Anesthesiology, The Ohio State University, Columbus, OH 43210, United States of America; Center for Medical and Engineering Innovation, The Ohio State University, Columbus, OH 43210, United States of America.
| |
Collapse
|
8
|
Reiterer M, Eakin A, Johnson RS, Branco CM. Hyperoxia Reprogrammes Microvascular Endothelial Cell Response to Hypoxia in an Organ-Specific Manner. Cells 2022; 11:cells11162469. [PMID: 36010546 PMCID: PMC9406746 DOI: 10.3390/cells11162469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Organ function relies on microvascular networks to maintain homeostatic equilibrium, which varies widely in different organs and during different physiological challenges. The endothelium role in this critical process can only be evaluated in physiologically relevant contexts. Comparing the responses to oxygen flux in primary murine microvascular EC (MVEC) obtained from brain and lung tissue reveals that supra-physiological oxygen tensions can compromise MVEC viability. Brain MVEC lose mitochondrial activity and undergo significant alterations in electron transport chain (ETC) composition when cultured under standard, non-physiological atmospheric oxygen levels. While glycolytic capacity of both lung and brain MVEC are unchanged by environmental oxygen, the ability to trigger a metabolic shift when oxygen levels drop is greatly compromised following exposure to hyperoxia. This is particularly striking in MVEC from the brain. This work demonstrates that the unique metabolism and function of organ-specific MVEC (1) can be reprogrammed by external oxygen, (2) that this reprogramming can compromise MVEC survival and, importantly, (3) that ex vivo modelling of endothelial function is significantly affected by culture conditions. It further demonstrates that physiological, metabolic and functional studies performed in non-physiological environments do not represent cell function in situ, and this has serious implications in the interpretation of cell-based pre-clinical models.
Collapse
Affiliation(s)
- Moritz Reiterer
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Amanda Eakin
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK
| | - Randall S. Johnson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Cristina M. Branco
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK
- Correspondence:
| |
Collapse
|
9
|
Khodayari S, Khodayari H, Ebrahimi-Barough S, Khanmohammadi M, Islam MS, Vesovic M, Goodarzi A, Mahmoodzadeh H, Nayernia K, Aghdami N, Ai J. Stem Cell Therapy in Limb Ischemia: State-of-Art, Perspective, and Possible Impacts of Endometrial-Derived Stem Cells. Front Cell Dev Biol 2022; 10:834754. [PMID: 35676930 PMCID: PMC9168222 DOI: 10.3389/fcell.2022.834754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
As an evidence-based performance, the rising incidence of various ischemic disorders has been observed across many nations. As a result, there is a growing need for the development of more effective regenerative approaches that could serve as main therapeutic strategies for the treatment of these diseases. From a cellular perspective, promoted complex inflammatory mechanisms, after inhibition of organ blood flow, can lead to cell death in all tissue types. In this case, using the stem cell technology provides a safe and regenerative approach for ischemic tissue revascularization and functional cell formation. Limb ischemia (LI) is one of the most frequent ischemic disease types and has been shown to have a promising regenerative response through stem cell therapy based on several clinical trials. Bone marrow-derived mononuclear cells (BM-MNCs), peripheral blood CD34-positive mononuclear cells (CD34+ PB-MNCs), mesenchymal stem cells (MSCs), and endothelial stem/progenitor cells (ESPCs) are the main, well-examined stem cell types in these studies. Additionally, our investigations reveal that endometrial tissue can be considered a suitable candidate for isolating new safe, effective, and feasible multipotent stem cells for limb regeneration. In addition to other teams’ results, our in-depth studies on endometrial-derived stem cells (EnSCs) have shown that these cells have translational potential for limb ischemia treatment. The EnSCs are able to generate diverse types of cells which are essential for limb reconstruction, including endothelial cells, smooth muscle cells, muscle cells, and even peripheral nervous system populations. Hence, the main object of this review is to present stem cell technology and evaluate its method of regeneration in ischemic limb tissue.
Collapse
Affiliation(s)
- Saeed Khodayari
- Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Center for Personalized Medicine (P7MEDICINE), Düsseldorf, Germany
| | - Hamid Khodayari
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Center for Personalized Medicine (P7MEDICINE), Düsseldorf, Germany
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Khanmohammadi
- Skull Base Research Center, The Five Senses Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Md Shahidul Islam
- Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Miko Vesovic
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL, United States
| | - Arash Goodarzi
- Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
| | | | - Karim Nayernia
- International Center for Personalized Medicine (P7MEDICINE), Düsseldorf, Germany
| | - Nasser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Infectious Diseases and Tropical Medicines, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Jafar Ai, ; Nasser Aghdami,
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
- *Correspondence: Jafar Ai, ; Nasser Aghdami,
| |
Collapse
|
10
|
Desruelle AV, de Maistre S, Gaillard S, Richard S, Tardivel C, Martin JC, Blatteau JE, Boussuges A, Rives S, Risso JJ, Vallee N. Cecal Metabolomic Fingerprint of Unscathed Rats: Does It Reflect the Good Response to a Provocative Decompression? Front Physiol 2022; 13:882944. [PMID: 35655958 PMCID: PMC9152359 DOI: 10.3389/fphys.2022.882944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
On one side, decompression sickness (DCS) with neurological disorders lead to a reshuffle of the cecal metabolome of rats. On the other side, there is also a specific and different metabolomic signature in the cecum of a strain of DCS-resistant rats, that are not exposed to hyperbaric protocol. We decide to study a conventional strain of rats that resist to an accident-provoking hyperbaric exposure, and we hypothesize that the metabolomic signature put forward may correspond to a physiological response adapted to the stress induced by diving. The aim is to verify and characterize whether the cecal compounds of rats resistant to the provocative dive have a cecal metabolomic signature different from those who do not dive. 35 asymptomatic diver rats are selected to be compared to 21 rats non-exposed to the hyperbaric protocol. Because our aim is essentially to study the differences in the cecal metabolome associated with the hyperbaric exposure, about half of the rats are fed soy and the other half of maize in order to better rule out the effect of the diet itself. Lower levels of IL-1β and glutathione peroxidase (GPX) activity are registered in blood of diving rats. No blood cell mobilization is noted. Conventional and ChemRICH approaches help the metabolomic interpretation of the 185 chemical compounds analyzed in the cecal content. Statistical analysis show a panel of 102 compounds diet related. 19 are in common with the hyperbaric protocol effect. Expression of 25 compounds has changed in the cecal metabolome of rats resistant to the provocative dive suggesting an alteration of biliary acids metabolism, most likely through actions on gut microbiota. There seem to be also weak changes in allocations dedicated to various energy pathways, including hormonal reshuffle. Some of the metabolites may also have a role in regulating inflammation, while some may be consumed for the benefit of oxidative stress management.
Collapse
Affiliation(s)
- Anne-Virginie Desruelle
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Sébastien de Maistre
- Service de Médecine Hyperbare Expertise Plongée, Hôpital d'Instruction des Armées Sainte-Anne, Toulon Cedex, France
| | | | | | - Catherine Tardivel
- C2VN, INRAE, INSERM, BIOMET, Aix Marseille University, Faculté de Médecine La Timone, Marseille, France
| | - Jean-Charles Martin
- C2VN, INRAE, INSERM, BIOMET, Aix Marseille University, Faculté de Médecine La Timone, Marseille, France
| | - Jean-Eric Blatteau
- Service de Médecine Hyperbare Expertise Plongée, Hôpital d'Instruction des Armées Sainte-Anne, Toulon Cedex, France
| | - Alain Boussuges
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Sarah Rives
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Jean-Jacques Risso
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Nicolas Vallee
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
- *Correspondence: Nicolas Vallee,
| |
Collapse
|
11
|
Evidence of a hormonal reshuffle in the cecal metabolome fingerprint of a strain of rats resistant to decompression sickness. Sci Rep 2021; 11:8317. [PMID: 33859311 PMCID: PMC8050073 DOI: 10.1038/s41598-021-87952-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
On one side, decompression sickness (DCS) with neurological disorders lead to a reshuffle of the fecal metabolome from rat caecum. On the other side, there is high inter-individual variability in terms of occurrence of DCS. One could wonder whether the fecal metabolome could be linked to the DCS-susceptibility. We decided to study male and female rats selected for their resistance to decompression sickness, and we hypothesize a strong impregnation concerning the fecal metabolome. The aim is to verify whether the rats resistant to the accident have a fecal metabolomic signature different from the stem generations sensitive to DCS. 39 DCS-resistant animals (21 females and 18 males), aged 14 weeks, were compared to 18 age-matched standard Wistar rats (10 females and 8 males), i.e., the same as those we used for the founding stock. Conventional and ChemRICH approaches helped the metabolomic interpretation of the 226 chemical compounds analyzed in the cecal content. Statistical analysis shows a panel of 81 compounds whose expression had changed following the selection of rats based on their resistance to DCS. 63 compounds are sex related. 39 are in common. This study shows the spectral fingerprint of the fecal metabolome from the caecum of a strain of rats resistant to decompression sickness. This study also confirms a difference linked to sex in the metabolome of non-selected rats, which disappear with selective breeding. Results suggest hormonal and energetic reshuffle, including steroids sugars or antibiotic compounds, whether in the host or in the microbial community.
Collapse
|
12
|
Attenuating senescence and dead cells accumulation as heart failure therapy: Break the communication networks. Int J Cardiol 2021; 334:72-85. [PMID: 33794236 DOI: 10.1016/j.ijcard.2021.03.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 02/03/2023]
|
13
|
Berenji Ardestani S, Matchkov VV, Hansen K, Jespersen NR, Pedersen M, Eftedal I. Extensive Simulated Diving Aggravates Endothelial Dysfunction in Male Pro-atherosclerotic ApoE Knockout Rats. Front Physiol 2021; 11:611208. [PMID: 33424633 PMCID: PMC7786538 DOI: 10.3389/fphys.2020.611208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction The average age of the diving population is rising, and the risk of atherosclerosis and cardiovascular disease in divers are accordingly increasing. It is an open question whether this risk is altered by diving per se. In this study, we examined the effect of 7-weeks simulated diving on endothelial function and mitochondrial respiration in atherosclerosis-prone rats. Methods Twenty-four male ApoE knockout (KO) rats (9-weeks-old) were fed a Western diet for 8 weeks before 12 rats were exposed to simulated heliox dry-diving in a pressure chamber (600 kPa for 60 min, decompression of 50 kPa/min). The rats were dived twice-weekly for 7 weeks, resulting in a total of 14 dives. The remaining 12 non-diving rats served as controls. Endothelial function of the pulmonary and mesenteric arteries was examined in vitro using an isometric myograph. Mitochondrial respiration in cardiac muscle tissues was measured using high-resolution respirometry. Results and Conclusion Both ApoE KO diving and non-diving rats showed changes in endothelial function at the end of the intervention, but the extent of these changes was larger in the diving group. Altered nitric oxide signaling was primarily involved in these changes. Mitochondrial respiration was unaltered. In this pro-atherosclerotic rat model of cardiovascular changes, extensive diving appeared to aggravate endothelial dysfunction rather than promote adaptation to oxidative stress.
Collapse
Affiliation(s)
- Simin Berenji Ardestani
- MEMBRANES, Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Vladimir V Matchkov
- MEMBRANES, Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Kasper Hansen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Forensic Medicine, Aarhus University, Aarhus, Denmark.,Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Michael Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| |
Collapse
|
14
|
Increasing Oxygen Partial Pressures Induce a Distinct Transcriptional Response in Human PBMC: A Pilot Study on the "Normobaric Oxygen Paradox". Int J Mol Sci 2021; 22:ijms22010458. [PMID: 33466421 PMCID: PMC7796168 DOI: 10.3390/ijms22010458] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023] Open
Abstract
The term “normobaric oxygen paradox” (NOP), describes the response to the return to normoxia after a hyperoxic event, sensed by tissues as oxygen shortage, and resulting in up-regulation of the Hypoxia-inducible factor 1α (HIF-1α) transcription factor activity. The molecular characteristics of this response have not been yet fully characterized. Herein, we report the activation time trend of oxygen-sensitive transcription factors in human peripheral blood mononuclear cells (PBMCs) obtained from healthy subjects after one hour of exposure to mild (MH), high (HH) and very high (VHH) hyperoxia, corresponding to 30%, 100%, 140% O2, respectively. Our observations confirm that MH is perceived as a hypoxic stress, characterized by the activation of HIF-1α and Nuclear factor (erythroid-derived 2)-like 2 (NRF2), but not Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB). Conversely, HH is associated to a progressive loss of NOP response and to an increase in oxidative stress leading to NRF2 and NF-kB activation, accompanied by the synthesis of glutathione (GSH). After VHH, HIF-1α activation is totally absent and oxidative stress response, accompanied by NF-κB activation, is prevalent. Intracellular GSH and Matrix metallopeptidase 9 (MMP-9) plasma levels parallel the transcription factors activation pattern and remain elevated throughout the observation time. In conclusion, our study confirms that, in vivo, the return to normoxia after MH is sensed as a hypoxic trigger characterized by HIF-1α activation. On the contrary, HH and VHH induce a shift toward an oxidative stress response, characterized by NRF2 and NF-κB activation in the first 24 h post exposure.
Collapse
|
15
|
Jin H, Zhu Y, Wang XD, Luo EF, Li YP, Wang BL, Chen YF. BDNF corrects NLRP3 inflammasome-induced pyroptosis and glucose metabolism reprogramming through KLF2/HK1 pathway in vascular endothelial cells. Cell Signal 2020; 78:109843. [PMID: 33253911 DOI: 10.1016/j.cellsig.2020.109843] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
NLRP3 inflammasome-mediated vascular EC pyroptosis is a key event in the pathogenesis of atherosclerosis. Dysregulation of glucose metabolism is involved in EC dysfunction. Although BDNF plays a protective role in vascular endothelium physiological activity, the mechanisms underlying this activity are not yet clear. In this study, we investigated the role of BDNF in NLRP3 inflammasome-mediated EC pyroptosis and its associated reprogramming of glucose metabolism. HUVECs were treated with human rBDNF under ox-LDL stimulation. rBDNF alleviated ox-LDL-induced NLRP3 inflammasome formation and HUVEC pyroptosis, as evaluated by NLRP3, caspase1-p10, interleukin-18, and interleukin-1β protein levels, co-localization of NLRP3 and apoptosis-associated speck-like protein, and lactate dehydrogenase release. These effects were prevented by tropomyosin receptor kinase B inhibition and KLF2 silencing. The hyper-activation of glycolysis induced by ox-LDL-induced was mitigated by rBDNF via KLF2 as assessed by glucose uptake, lactate production, and extracellular acidification rate. In addition, the BDNF/KLF2 pathway preserved the mitochondrial membrane potential, intracellular reactive oxygen species generation, electron transport chain processing, oxygen consumption rate, and adenosine triphosphate production. Furthermore, KLF2 interacted with HK1 and HK1 overexpression evoked NLRP3 inflammasome formation. At the clinical level, plasma BDNF and lactate levels were measured in 274 patients who underwent computed tomography and coronary angiography for CAD diagnosis. Patients with CAD had lower BDNF and increased lactate levels than those without CAD. In 94 patients with CAD, circulating BDNF levels were inversely associated with lactate levels. In the receiver operating characteristic analysis of CAD, the areas under the curves for 1/BDNF, lactate, and 1/BDNF+lactate were 0.707, 0.702, and 0.753 respectively. These results indicate that BDNF and lactate are linked in atherosclerotic patients, and BDNF inhibits ox-LDL induced NLRP3 inflammasome formation and pyroptosis in HUVECs via KLF2/HK1-mediated glucose metabolism modulation and mitochondrial homeostasis preservation.
Collapse
Affiliation(s)
- Hong Jin
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210000, PR China.
| | - Yi Zhu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210000, PR China
| | - Xiao-Dong Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, PR China
| | - Er-Fei Luo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210000, PR China
| | - Yi-Ping Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210000, PR China
| | - Bi-Lei Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210000, PR China
| | - Yi-Fei Chen
- Department of Cardiology, Xishan Hospital, Wuxi 214000, PR China
| |
Collapse
|
16
|
Ranganathan A, Owiredu S, Jang DH, Eckmann DM. Prophylaxis of mitochondrial dysfunction caused by cellular decompression from hyperbaric exposure. Mitochondrion 2020; 52:8-19. [PMID: 32045716 DOI: 10.1016/j.mito.2020.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction occurring in response to cellular perturbations can include altered mitochondrial motility and bioenergetic function having intracellular heterogeneity. Exogenous mitochondrial directed therapy may correct these dysfunctions. Using in vitro approaches, we find that cell perturbations induced by rapid decompression from hyperbaric conditions with specific gas exposures has differential effects on mitochondrial motility, inner membrane potential, cellular respiration, reactive oxygen species production, impaired maintenance of cell shape and altered intracellular distribution of bioenergetic capacity in perinuclear and cell peripheral domains. Addition of a first-generation cell-permeable succinate prodrug to support mitochondrial function has positive overall effects in blunting the resultant bioenergy responses. Our results with this model of perturbed cell function induced by rapid decompression indicate that alterations in bioenergetic state are partitioned within the cell, as directly assessed by a combination of mitochondrial respiration and dynamics measurements. Reductions in the observed level of dysfunction produced can be achieved with application of the cell-permeable succinate prodrug.
Collapse
Affiliation(s)
- Abhay Ranganathan
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Shawn Owiredu
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - David H Jang
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - David M Eckmann
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
17
|
Wang Q, Guerrero F, Lambrechts K, Mazur A, Buzzacott P, Belhomme M, Theron M. Simulated air dives induce superoxide, nitric oxide, peroxynitrite, and Ca 2+ alterations in endothelial cells. J Physiol Biochem 2019; 76:61-72. [PMID: 31802431 DOI: 10.1007/s13105-019-00715-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/08/2019] [Indexed: 01/27/2023]
Abstract
Human diving is known to induce endothelial dysfunction. The aim of this study was to decipher the mechanism of ROS production during diving through the measure of mitochondrial calcium concentration, peroxynitrite, NO°, and superoxide towards better understanding of dive-induced endothelial dysfunction. Air diving simulation using bovine arterial endothelial cells (compression rate 101 kPa/min to 808 kPa, time at depth 45 min) was performed in a system allowing real-time fluorescent measurement. During compression, the cells showed increased mitochondrial superoxide, peroxynitrite, and mitochondrial calcium, and decreased NO° concentration. MnTBAP (peroxynitrite scavenger) suppressed superoxide, recovered NO° production and promoted stronger calcium influx. Superoxide and peroxynitrite were inhibited by L-NIO (eNOS inhibitor), but were further increased by spermine-NONOate (NO° donor). L-NIO induced stronger calcium influx than spermine-NONOate or simple diving. The superoxide and peroxynitrite were also inhibited by ruthenium red (blocker of mitochondrial Ca2+ uniporter), but were increased by CGP (an inhibitor of mitochondrial Na+-Ca2+ exchange). Reactive oxygen and nitrogen species changes are associated, together with calcium mitochondrial storage, with endothelial cell dysfunction during simulated diving. Peroxynitrite is involved in NO° loss, possibly through the attenuation of eNOS and by increasing superoxide which combines with NO° and forms more peroxynitrite. In the field of diving physiology, this study is the first to unveil a part of the cellular mechanisms of ROS production during diving and confirms that diving-induced loss of NO° is linked to superoxide and peroxynitrite.
Collapse
Affiliation(s)
- Qiong Wang
- Laboratory ORPHY, European University of Bretagne, University of Brest, 6 Avenue Le Gorgeu, 29238, Brest, France
| | - François Guerrero
- Laboratory ORPHY, European University of Bretagne, University of Brest, 6 Avenue Le Gorgeu, 29238, Brest, France
| | - Kate Lambrechts
- Laboratory ORPHY, European University of Bretagne, University of Brest, 6 Avenue Le Gorgeu, 29238, Brest, France
| | - Aleksandra Mazur
- Laboratory ORPHY, European University of Bretagne, University of Brest, 6 Avenue Le Gorgeu, 29238, Brest, France
| | - Peter Buzzacott
- Laboratory ORPHY, European University of Bretagne, University of Brest, 6 Avenue Le Gorgeu, 29238, Brest, France
| | - Marc Belhomme
- Laboratory ORPHY, European University of Bretagne, University of Brest, 6 Avenue Le Gorgeu, 29238, Brest, France
| | - Michaël Theron
- Laboratory ORPHY, European University of Bretagne, University of Brest, 6 Avenue Le Gorgeu, 29238, Brest, France.
| |
Collapse
|
18
|
Desruelle AV, Louge P, Richard S, Blatteau JE, Gaillard S, De Maistre S, David H, Risso JJ, Vallée N. Demonstration by Infra-Red Imaging of a Temperature Control Defect in a Decompression Sickness Model Testing Minocycline. Front Physiol 2019; 10:933. [PMID: 31396102 PMCID: PMC6668502 DOI: 10.3389/fphys.2019.00933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
The prevention, prognosis and resolution of decompression sickness (DCS) are not satisfactory. The etiology of DCS has highlighted thrombotic and inflammatory phenomena that could cause severe neurological disorders or even death. Given the immunomodulatory effects described for minocycline, an antibiotic in widespread use, we have decided to explore its effects in an experimental model for decompression sickness. 40 control mice (Ctrl) and 40 mice treated orally with 90 mg/kg of minocycline (MINO) were subjected to a protocol in a hyperbaric chamber, compressed with air. The purpose was to mimic a scuba dive to a depth of 90 msw and its pathogenic decompression phase. Clinical examinations and blood counts were conducted after the return to the surface. For the first time they were completed by a simple infrared (IR) imaging technique in order to assess feasibility and its clinical advantage in differentiating the sick mice (DCS) from the healthy mice (NoDCS). In this tudy, exposure to the hyperbaric protocol provoked a reduction in the number of circulating leukocytes. DCS in mice, manifesting itself by paralysis or convulsion for example, is also associated with a fall in platelets count. Cold areas ( < 25°C) were detected by IR in the hind paws and tail with significant differences (p < 0.05) between DCS and NoDCS. Severe hypothermia was also shown in the DCS mice. The ROC analysis of the thermograms has made it possible to determine that an average tail temperature below 27.5°C allows us to consider the animals to be suffering from DCS (OR = 8; AUC = 0.754, p = 0.0018). Minocycline modulates blood analysis and it seems to limit the mobilization of monocytes and granulocytes after the provocative dive. While a higher proportion of mice treated with minocycline experienced DCS symptoms, there is no significant difference. The infrared imaging has made it possible to show severe hypothermia. It suggests an modification of thermregulation in DCS animals. Surveillance by infrared camera is fast and it can aid the prognosis in the case of decompression sickness in mice.
Collapse
Affiliation(s)
- Anne-Virginie Desruelle
- Unité Environnements Extrêmes, Département Environnement Opérationnel, Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Toulon, France
| | - Pierre Louge
- Service de Médecine Hyperbare et Expertise Plongée, Hôpital d'Instruction des Armées, Toulon, France
| | | | - Jean-Eric Blatteau
- Unité Environnements Extrêmes, Département Environnement Opérationnel, Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Toulon, France.,Service de Médecine Hyperbare et Expertise Plongée, Hôpital d'Instruction des Armées, Toulon, France
| | | | - Sébastien De Maistre
- Service de Médecine Hyperbare et Expertise Plongée, Hôpital d'Instruction des Armées, Toulon, France
| | - Hélène David
- Apricot Inhalotherapeutics, Saint-Laurent-de-l'Île-d'Orléans, QC, Canada
| | - Jean-Jacques Risso
- Unité Environnements Extrêmes, Département Environnement Opérationnel, Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Toulon, France
| | - Nicolas Vallée
- Unité Environnements Extrêmes, Département Environnement Opérationnel, Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Toulon, France
| |
Collapse
|
19
|
Wingelaar TT, Brinkman P, van Ooij PJAM, Hoencamp R, Maitland-van der Zee AH, Hollmann MW, van Hulst RA. Markers of Pulmonary Oxygen Toxicity in Hyperbaric Oxygen Therapy Using Exhaled Breath Analysis. Front Physiol 2019; 10:475. [PMID: 31068838 PMCID: PMC6491850 DOI: 10.3389/fphys.2019.00475] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Introduction Although hyperbaric oxygen therapy (HBOT) has beneficial effects, some patients experience fatigue and pulmonary complaints after several sessions. The current limits of hyperbaric oxygen exposure to prevent pulmonary oxygen toxicity (POT) are based on pulmonary function tests (PFT), but the limitations of PFT are recognized worldwide. However, no newer modalities to detect POT have been established. Exhaled breath analysis in divers have shown volatile organic compounds (VOCs) of inflammation and methyl alkanes. This study hypothesized that similar VOCs might be detected after HBOT. Methods Ten healthy volunteers of the Royal Netherlands Navy underwent six HBOT sessions (95 min at 253 kPa, including three 5-min “air breaks”), i.e., on five consecutive days followed by another session after 2 days of rest. At 30 min before the dive, and at 30 min, 2 and 4 h post-dive, exhaled breath was collected and followed by PFT. Exhaled breath samples were analyzed using gas chromatography-mass spectrometry (GC-MS). After univariate tests and correlation of retention times, ion fragments could be identified using a reference database. Using these fragments VOCs could be reconstructed, which were clustered using principal component analysis. These clusters were tested longitudinally with ANOVA. Results After GC-MS analysis, eleven relevant VOCs were identified which could be clustered into two principal components (PC). PC1 consisted of VOCs associated with inflammation and showed no significant change over time. The intensities of PC2, consisting of methyl alkanes, showed a significant decrease (p = 0.001) after the first HBOT session to 50.8%, remained decreased during the subsequent days (mean 82%), and decreased even further after 2 days of rest to 58% (compared to baseline). PFT remained virtually unchanged. Discussion Although similar VOCs were found when compared to diving, the decrease of methyl alkanes (PC2) is in contrast to the increase seen in divers. It is unknown why emission of methyl alkanes (which could originate from the phosphatidylcholine membrane in the alveoli) are reduced after HBOT. This suggests that HBOT might not be as damaging to the pulmonary tract as previously assumed. Future research on POT should focus on the identified VOCs (inflammation and methyl alkanes).
Collapse
Affiliation(s)
- T T Wingelaar
- Diving Medical Centre, Royal Netherlands Navy, Den Helder, Netherlands.,Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - P Brinkman
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - P J A M van Ooij
- Diving Medical Centre, Royal Netherlands Navy, Den Helder, Netherlands.,Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - R Hoencamp
- Department of Surgery, Alrijne Hospital Leiderdorp, Leiderdorp, Netherlands.,Defense Healthcare Organisation, Ministry of Defence, Utrecht, Netherlands.,Leiden University Medical Center, Leiden, Netherlands
| | | | - M W Hollmann
- Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - R A van Hulst
- Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Zou D, Li J, Fan Q, Zheng X, Deng J, Wang S. Reactive oxygen and nitrogen species induce cell apoptosis via a mitochondria‐dependent pathway in hyperoxia lung injury. J Cell Biochem 2018; 120:4837-4850. [PMID: 30592322 DOI: 10.1002/jcb.27382] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/03/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Dongmei Zou
- Department of Pediatrics, Shenzhen Children's Hospital, Shenzhen, China
| | - Jing Li
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shenzhen, China
| | - Qianqian Fan
- Neonatal Intensive Care Unit, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Xuemei Zheng
- Neonatal Intensive Care Unit, Women and Children Health Institute Futian, Shenzhen, China
| | - Jian Deng
- Neonatal Intensive Care Unit, Women and Children Health Institute Futian, Shenzhen, China
| | - Shaohua Wang
- Neonatal Intensive Care Unit, Women and Children Health Institute Futian, Shenzhen, China
| |
Collapse
|
21
|
Jang DH, Owiredu S, Ranganathan A, Eckmann DM. Acute decompression following simulated dive conditions alters mitochondrial respiration and motility. Am J Physiol Cell Physiol 2018; 315:C699-C705. [PMID: 30110561 DOI: 10.1152/ajpcell.00243.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
While barotrauma, decompression sickness, and drowning-related injuries are common morbidities associated with diving and decompression from depth, it remains unclear what impact rapid decompression has on mitochondrial function. In vitro diving simulation was performed with human dermal fibroblast cells subjected to control, air, nitrogen, and oxygen dive conditions. With the exception of the gas mixture, all other related variables, including absolute pressure exposure, dive and decompression rates, and temperature, were held constant. High-resolution respirometry was used to examine key respiratory states. Mitochondrial dynamic function, including net movement, number, and rates of fusion/fission events, was obtained from fluorescence microscopy imaging. Effects of the dive conditions on cell cytoskeleton were assessed by imaging both actin and microtubules. Maximum respiration was lower in fibroblasts in the air group than in the control and nitrogen groups. The oxygen group had overall lower respiration when compared with all other groups. All groups demonstrated lower mitochondrial motility when compared with the control group. Rates of fusion and fission events were the same between all groups. There were visible differences in cell morphology consistent with the actin staining; however, there were no appreciable changes to the microtubules. This is the first study to directly assess mitochondrial respiration and dynamics in a cell model of decompression. Both hyperbaric oxygen and air dive conditions produce deleterious effects on overall mitochondrial health in fibroblasts.
Collapse
Affiliation(s)
- David H Jang
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Shawn Owiredu
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Abhay Ranganathan
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - David M Eckmann
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Walsh C, Stride E, Cheema U, Ovenden N. A combined three-dimensional in vitro-in silico approach to modelling bubble dynamics in decompression sickness. J R Soc Interface 2018; 14:rsif.2017.0653. [PMID: 29263127 PMCID: PMC5746571 DOI: 10.1098/rsif.2017.0653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/29/2017] [Indexed: 11/12/2022] Open
Abstract
The growth of bubbles within the body is widely believed to be the cause of decompression sickness (DCS). Dive computer algorithms that aim to prevent DCS by mathematically modelling bubble dynamics and tissue gas kinetics are challenging to validate. This is due to lack of understanding regarding the mechanism(s) leading from bubble formation to DCS. In this work, a biomimetic in vitro tissue phantom and a three-dimensional computational model, comprising a hyperelastic strain-energy density function to model tissue elasticity, were combined to investigate key areas of bubble dynamics. A sensitivity analysis indicated that the diffusion coefficient was the most influential material parameter. Comparison of computational and experimental data revealed the bubble surface's diffusion coefficient to be 30 times smaller than that in the bulk tissue and dependent on the bubble's surface area. The initial size, size distribution and proximity of bubbles within the tissue phantom were also shown to influence their subsequent dynamics highlighting the importance of modelling bubble nucleation and bubble-bubble interactions in order to develop more accurate dive algorithms.
Collapse
Affiliation(s)
- C Walsh
- Centre for Advanced Biomedical Imaging (CABI), University College of London, Paul O'Gorman Building, 72 Huntley Street, London, UK .,Centre for Tissue and Cell Research, University College of London, Royal National Orthopeadic Hospital, London, UK.,Department of Mathematics, University College of London, Gower Street, London, UK
| | - E Stride
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | - U Cheema
- Centre for Tissue and Cell Research, University College of London, Royal National Orthopeadic Hospital, London, UK
| | - N Ovenden
- Department of Mathematics, University College of London, Gower Street, London, UK
| |
Collapse
|
23
|
Variability in circulating gas emboli after a same scuba diving exposure. Eur J Appl Physiol 2018; 118:1255-1264. [DOI: 10.1007/s00421-018-3854-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
|
24
|
Mazur A, Guernec A, Lautridou J, Dupas J, Dugrenot E, Belhomme M, Theron M, Guerrero F. Angiotensin Converting Enzyme Inhibitor Has a Protective Effect on Decompression Sickness in Rats. Front Physiol 2018; 9:64. [PMID: 29545754 PMCID: PMC5838564 DOI: 10.3389/fphys.2018.00064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/18/2018] [Indexed: 01/31/2023] Open
Abstract
Introduction: Commercial divers, high altitude pilots, and astronauts are exposed to some inherent risk of decompression sickness (DCS), though the mechanisms that trigger are still unclear. It has been previously showed that diving may induce increased levels of serum angiotensin converting enzyme. The renin angiotensin aldosterone system (RAAS) is one of the most important regulators of blood pressure and fluid volume. The purpose of the present study was to control the influence of angiotensin II on the appearance of DCS. Methods: Sprague Dawley rats have been pre-treated with inhibitor of angiotensin II receptor type 1 (losartan; 10 mg/kg), angiotensin-converting enzyme (ACE) inhibitor (enalapril; 10 mg/kg), and calcium-entry blocker (nifedipine; 20 mg/kg). The experimental groups were treated for 4 weeks before exposure to hyperbaric pressure while controls were not treated. Seventy-five rats were subjected to a simulated dive at 1000 kPa absolute pressure for 45 min before starting decompression. Clinical assessment took place over a period of 60 min after surfacing. Blood samples were collected for measurements of TBARS, interleukin 6 (IL-6), angiotensin II (ANG II) and ACE. Results: The diving protocol induced 60% DCS in non-treated animals. This ratio was significantly decreased after treatment with enalapril, but not other vasoactive drugs. Enalapril did not change ANG II or ACE concentration, while losartant decreased post dive level of ACE but not ANG II. None of the treatment modified the effect of diving on TBARS and IL-6 values. Conclusion: Results suggests that the rennin angiotensin system is involved in a process of triggering DCS but this has to be further investigated. However, a vasorelaxation mediated process, which potentially could increase the load of inert gas during hyperbaric exposure, and antioxidant properties were excluded by our results.
Collapse
Affiliation(s)
- Aleksandra Mazur
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Anthony Guernec
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Jacky Lautridou
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Julie Dupas
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Emmanuel Dugrenot
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Marc Belhomme
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Michael Theron
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - François Guerrero
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| |
Collapse
|
25
|
LAUTRIDOU JACKY, BUZZACOTT PETER, BELHOMME MARC, DUGRENOT EMMANUEL, LAFÈRE PIERRE, BALESTRA COSTANTINO, GUERRERO FRANÇOIS. Evidence of Heritable Determinants of Decompression Sickness in Rats. Med Sci Sports Exerc 2017; 49:2433-2438. [DOI: 10.1249/mss.0000000000001385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Simmons EE, Bergeron ER, Florian JP. The impact of repetitive long-duration water immersion on vascular function. PLoS One 2017; 12:e0181673. [PMID: 28750006 PMCID: PMC5531465 DOI: 10.1371/journal.pone.0181673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 07/04/2017] [Indexed: 01/11/2023] Open
Abstract
While physiological responses to water immersion (WI) are well-studied, the vascular responses after WI are less understood. Fifteen male subjects performed six-hour resting thermoneutral water immersions (WI) at 1.35 atmospheres absolute for four consecutive days, with follow-up on the fifth day. Measurements included peripheral endothelial function and augmentation index (PAT, peripheral arterial tonometry), beat-to-beat blood pressure (BP, photoplethysmography), heart rate (HR), and plasma volume (PV) calculated from changes in hemoglobin and hematocrit. The reactive hyperemia index (RHI), a marker of peripheral endothelial function, increased with repeated immersions (p = 0.008). By WI2 and WI3, RHI increased 12% and 16%, respectively, compared to WI1 values, but no significant differences were detected between WI4 and WI1 for either measure. Absolute augmentation index (AI) increased by an average of 33% (p<0.001) and AI normalized for HR (AI@75) by 11% (p = 0.12) following each WI. PV decreased significantly by 13.2% following WI and remained 6.8% lower at follow-up compared to pre-WI. Systolic blood pressure significantly decreased by an average of 2.5% following each WI (p = 0.012). Compared to pre-WI HR, average post-WI HR decreased 4.3% lower (p<0.001), but increased overall by 8.2% over the course of repeated WI (p<0.001). Total peripheral resistance increased by an average of 13.1% following WI (p = 0.003). Thus, peripheral endothelial function increases after two days of WI, and PAT-derived measures of arterial stiffness increase transiently post-WI. Additionally, BP and PAT-derived endothelial function diverge from their usual associations with arterial stiffness (i.e. augmentation index) in the context of WI.
Collapse
Affiliation(s)
- Erin E. Simmons
- Navy Experimental Diving Unit, Panama City, Florida, United States of America
| | | | - John P. Florian
- Navy Experimental Diving Unit, Panama City, Florida, United States of America
- * E-mail:
| |
Collapse
|
27
|
Walsh C, Ovenden N, Stride E, Cheema U. Quantification of cell-bubble interactions in a 3D engineered tissue phantom. Sci Rep 2017; 7:6331. [PMID: 28740100 PMCID: PMC5524813 DOI: 10.1038/s41598-017-06678-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/14/2017] [Indexed: 12/23/2022] Open
Abstract
Understanding cell-bubble interactions is crucial for preventing bubble related pathologies and harnessing their potential therapeutic benefits. Bubbles can occur in the body as a result of therapeutic intravenous administration, surgery, infections or decompression. Subsequent interactions with living cells, may result in pathological responses such as decompression sickness (DCS). This work investigates the interactions that occur between bubbles formed during decompression and cells in a 3D engineered tissue phantom. Increasing the tissue phantoms' cellular density resulted in decreased dissolved O2 (DO) concentrations (p = 0.0003) measured using real-time O2 monitoring. Direct microscopic observation of these phantoms, revealed a significant (p = 0.0024) corresponding reduction in bubble nucleation. No significant difference in growth rate or maximum size of the bubbles was measured (p = 0.99 and 0.23). These results show that bubble nucleation is dominated by DO concentration (affected by cellular metabolism), rather than potential nucleation sites provided by cell-surfaces. Consequent bubble growth depends not only on DO concentration but also on competition for dissolved gas. Cell death was found to significantly increase (p = 0.0116) following a bubble-forming decompression. By comparison to 2D experiments; the more biomimetic 3D geometry and extracellular matrix in this work, provide data more applicable for understanding and developing models of in vivo bubble dynamics.
Collapse
Affiliation(s)
- C Walsh
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), UCL Physics Building Gower Street, London, WC1E 6BT, UK.
- UCL Institute of Orthopaedics and Musculoskeletal Science, London, UK.
- Department of Mathematics, University College London, London, UK.
| | - N Ovenden
- Department of Mathematics, University College London, London, UK
| | - E Stride
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | - U Cheema
- UCL Institute of Orthopaedics and Musculoskeletal Science, London, UK
| |
Collapse
|
28
|
Venous gas emboli are involved in post-dive macro, but not microvascular dysfunction. Eur J Appl Physiol 2017; 117:335-344. [DOI: 10.1007/s00421-017-3537-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
|
29
|
Santos VC, Sierra APR, Oliveira R, Caçula KG, Momesso CM, Sato FT, Silva MBB, Oliveira HH, Passos MEP, de Souza DR, Gondim OS, Benetti M, Levada-Pires AC, Ghorayeb N, Kiss MAPDM, Gorjão R, Pithon-Curi TC, Cury-Boaventura MF. Marathon Race Affects Neutrophil Surface Molecules: Role of Inflammatory Mediators. PLoS One 2016; 11:e0166687. [PMID: 27911915 PMCID: PMC5135050 DOI: 10.1371/journal.pone.0166687] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023] Open
Abstract
The fatigue induced by marathon races was observed in terms of inflammatory and immunological outcomes. Neutrophil survival and activation are essential for inflammation resolution and contributes directly to the pathogenesis of many infectious and inflammatory conditions. The aim of this study was to investigate the effect of marathon races on surface molecules related to neutrophil adhesion and extrinsic apoptosis pathway and its association with inflammatory markers. We evaluated 23 trained male runners at the São Paulo International Marathon 2013. The following components were measured: hematological and inflammatory mediators, muscle damage markers, and neutrophil function. The marathon race induced an increased leukocyte and neutrophil counts; creatine kinase (CK), lactate dehydrogenase (LDH), CK-MB, interleukin (IL)-6, IL-10, and IL-8 levels. C-reactive protein (CRP), IL-12, and tumor necrosis factor (TNF)-α plasma concentrations were significantly higher 24 h and 72 h after the marathon race. Hemoglobin and hematocrit levels decreased 72 h after the marathon race. We also observed an increased intercellular adhesion molecule-1 (ICAM-1) expression and decreasedTNF receptor-1 (TNFR1) expression immediately after and 24 h after the marathon race. We observed an increased DNA fragmentation and L-selectin and Fas receptor expressions in the recovery period, indicating a possible slow rolling phase and delayed neutrophil activation and apoptosis. Marathon racing affects neutrophils adhesion and survival in the course of inflammation, supporting the “open-window” post-exercise hypothesis.
Collapse
Affiliation(s)
- Vinicius Coneglian Santos
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
- Institute of Physical Activity and Sports Sciences, University of Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Ana Paula Renno Sierra
- School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, Brazil
- Sports Cardiology Department, Dante Pazzanese Institute of Cardiology, São Paulo, São Paulo, Brazil
- Medicine Department, Nove de Julho University, São Paulo, São Paulo, Brazil
- * E-mail: (MFCB); (APRS)
| | - Rodrigo Oliveira
- Institute of Physical Activity and Sports Sciences, University of Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Kim Guimarães Caçula
- Institute of Physical Activity and Sports Sciences, University of Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - César Miguel Momesso
- Institute of Physical Activity and Sports Sciences, University of Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Fabio Takeo Sato
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Maysa Braga Barros Silva
- Institute of Physical Activity and Sports Sciences, University of Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Heloisa Helena Oliveira
- Institute of Physical Activity and Sports Sciences, University of Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | | | - Diego Ribeiro de Souza
- Institute of Physical Activity and Sports Sciences, University of Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Olivia Santos Gondim
- Institute of Physical Activity and Sports Sciences, University of Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Marino Benetti
- School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Nabil Ghorayeb
- Sports Cardiology Department, Dante Pazzanese Institute of Cardiology, São Paulo, São Paulo, Brazil
| | | | - Renata Gorjão
- Institute of Physical Activity and Sports Sciences, University of Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Tânia Cristina Pithon-Curi
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
- Institute of Physical Activity and Sports Sciences, University of Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Maria Fernanda Cury-Boaventura
- Institute of Physical Activity and Sports Sciences, University of Cruzeiro do Sul, São Paulo, São Paulo, Brazil
- * E-mail: (MFCB); (APRS)
| |
Collapse
|
30
|
Lautridou J, Pichereau V, Artigaud S, Buzzacott P, Wang Q, Bernay B, Driad S, Mazur A, Lambrechts K, Théron M, Guerrero F. Effect of simulated air dive and decompression sickness on the plasma proteome of rats. Proteomics Clin Appl 2016; 10:614-20. [DOI: 10.1002/prca.201600017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/01/2016] [Accepted: 04/06/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Jacky Lautridou
- Laboratoire ORPHY EA 4324; Université de Bretagne Occidentale; Brest France
| | - Vianney Pichereau
- LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer; Université de Bretagne Occidentale; Brest France
| | - Sébastien Artigaud
- LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer; Université de Bretagne Occidentale; Brest France
| | - Peter Buzzacott
- Laboratoire ORPHY EA 4324; Université de Bretagne Occidentale; Brest France
| | - Qiong Wang
- Laboratoire ORPHY EA 4324; Université de Bretagne Occidentale; Brest France
| | - Benoit Bernay
- Proteogen SFR ICORE 4206; Université de Caen; Caen France
| | - Sabrina Driad
- Laboratoire ORPHY EA 4324; Université de Bretagne Occidentale; Brest France
| | - Aleksandra Mazur
- Laboratoire ORPHY EA 4324; Université de Bretagne Occidentale; Brest France
| | - Kate Lambrechts
- Laboratoire ORPHY EA 4324; Université de Bretagne Occidentale; Brest France
| | - Michael Théron
- Laboratoire ORPHY EA 4324; Université de Bretagne Occidentale; Brest France
| | - François Guerrero
- Laboratoire ORPHY EA 4324; Université de Bretagne Occidentale; Brest France
| |
Collapse
|
31
|
Mazur A, Lambrechts K, Wang Q, Belhomme M, Theron M, Buzzacott P, Guerrero F. Influence of decompression sickness on vasocontraction of isolated rat vessels. J Appl Physiol (1985) 2016; 120:784-91. [PMID: 26769950 DOI: 10.1152/japplphysiol.00139.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 01/12/2016] [Indexed: 01/03/2023] Open
Abstract
Studies conducted in divers indicate that endothelium function is impaired following a dive even without decompression sickness (DCS). Our previous experiment conducted on rat isolated vessels showed no differences in endothelium-dependent vasodilation after a simulated dive even in the presence of DCS, while contractile response to phenylephrine was progressively impaired with increased decompression stress. This study aimed to further investigate the effect of DCS on vascular smooth muscle. Thirty-two male Sprague-Dawley rats were submitted to the same hyperbaric protocol and classified according to the severity of DCS: no-DCS (without clinical symptoms), mild-DCS, or severe-DCS (dead within 1 h). A control group remained at atmospheric pressure. Isometric tension was measured in rings of abdominal aorta and mesenteric arteries. Single dose contraction was assessed with KCl solution. Dose-response curves were obtained with phenylephrine and endothelin-1. Phenylephrine-induced contraction was observed in the presence of antioxidant tempol. Additionally, plasma concentrations of angiotensin II, angiotensin-converting enzyme, and thiobarbituric acid reactive substances (TBARS) were assessed. Response to phenylephrine was impaired only among mild-DCS in both vessels. Dose-response curves to endothelin-1 were impaired after mild-DCS in mesenteric and severe-DCS in aorta. KCl-induced contraction was affected after hyperbaric exposure regardless of DCS status in aorta only. These results confirm postdive vascular dysfunction is dependent on the type of vessel. It further evidenced that vascular dysfunction is triggered by DCS rather than by diving itself and suggest the influence of circulating factor/s. Diving-induced impairment of the L-type voltage-dependent Ca(2+) channels and/or influence of renin-angiotensin system is proposed.
Collapse
Affiliation(s)
- Aleksandra Mazur
- EA4324-ORPHY Laboratory, Université de Bretagne Occidentale, Brest, France
| | - Kate Lambrechts
- EA4324-ORPHY Laboratory, Université de Bretagne Occidentale, Brest, France
| | - Qiong Wang
- EA4324-ORPHY Laboratory, Université de Bretagne Occidentale, Brest, France
| | - Marc Belhomme
- EA4324-ORPHY Laboratory, Université de Bretagne Occidentale, Brest, France
| | - Michael Theron
- EA4324-ORPHY Laboratory, Université de Bretagne Occidentale, Brest, France
| | - Peter Buzzacott
- EA4324-ORPHY Laboratory, Université de Bretagne Occidentale, Brest, France
| | - François Guerrero
- EA4324-ORPHY Laboratory, Université de Bretagne Occidentale, Brest, France
| |
Collapse
|
32
|
Buzzacott P, Theron M, Mazur A, Wang Q, Lambrechts K, Eftedal I, Ardestani SB, Guerrero F. Age, weight and decompression sickness in rats. Arch Physiol Biochem 2016; 122:67-9. [PMID: 26766166 DOI: 10.3109/13813455.2016.1140787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The aim of this study was to determine if, after controlling for weight, age is associated with decompression sickness (DCS) in rats. METHODS Following compression-decompression, male rats aged 11 weeks were observed for DCS. After two weeks recovery, surviving rats were re-dived using the same compression-decompression profile. RESULTS In this experiment, there was a clear difference between DCS outcome at ages 11 or 13 weeks in matched rats (p = 0.002). DISCUSSION Even with weight included in the model, age was significantly associated with DCS (p = 0.01), yet after removal of weight the association was much stronger (p = 0.002). CONCLUSION We believe that age is likely to be found associated with the probability of DCS in a larger dataset with a wider range of parameters, after accounting for the effect of weight.
Collapse
Affiliation(s)
- Peter Buzzacott
- a Laboratoire Optimisation des Régulations Physiologiques (ORPhy) , UFR Sciences et Techniques, Université de Bretagne Occidentale , Brest Cedex , France
- b The School of Sports Science, Exercise and Health, The University of Western Australia , Crawley , WA , Australia , and
| | - Michael Theron
- a Laboratoire Optimisation des Régulations Physiologiques (ORPhy) , UFR Sciences et Techniques, Université de Bretagne Occidentale , Brest Cedex , France
| | - Aleksandra Mazur
- a Laboratoire Optimisation des Régulations Physiologiques (ORPhy) , UFR Sciences et Techniques, Université de Bretagne Occidentale , Brest Cedex , France
| | - Qiong Wang
- a Laboratoire Optimisation des Régulations Physiologiques (ORPhy) , UFR Sciences et Techniques, Université de Bretagne Occidentale , Brest Cedex , France
| | - Kate Lambrechts
- a Laboratoire Optimisation des Régulations Physiologiques (ORPhy) , UFR Sciences et Techniques, Université de Bretagne Occidentale , Brest Cedex , France
| | - Ingrid Eftedal
- c Department of Circulation and Medical Imaging , Norwegian University of Science and Technology , Trondheim , Norway
| | - Simin Berenji Ardestani
- c Department of Circulation and Medical Imaging , Norwegian University of Science and Technology , Trondheim , Norway
| | - François Guerrero
- a Laboratoire Optimisation des Régulations Physiologiques (ORPhy) , UFR Sciences et Techniques, Université de Bretagne Occidentale , Brest Cedex , France
| |
Collapse
|
33
|
Balestra C, Cimino F, Theunissen S, Snoeck T, Provyn S, Canali R, Bonina A, Virgili F. A red orange extract modulates the vascular response to a recreational dive: a pilot study on the effect of anthocyanins on the physiological consequences of scuba diving. Nat Prod Res 2015; 30:2101-6. [PMID: 26548425 DOI: 10.1080/14786419.2015.1107062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nutritional antioxidants have been proposed as an expedient strategy to counter the potentially deleterious effects of scuba diving on endothelial function, flow-mediated dilation (FMD) and heart function. Sixteen volunteers performing a single standard dive (20 min at 33 m) according to US Navy diving procedures were randomly assigned to two groups: one was administered with two doses of 200 mg of an anthocyanins (AC)-rich extract from red oranges, 12 and 4 h before diving. Anthocyanins supplementation significantly modulated the effects of diving on haematocrit, body water distribution and FMD. AC administration significantly reduces the potentially harmful endothelial effects of a recreational single dive. The lack of any significant effect on the most common markers of plasma antioxidant capacity suggests that the mechanism underlying this protective activity is independent of the putative antioxidant effect of AC and possibly involves cellular signalling modulation of the response to high oxygen.
Collapse
Affiliation(s)
- C Balestra
- a Environmental and Occupational (Integrative) Physiology Laboratory , Haute Ecole Paul Henri Spaak , Brussels , Belgium
| | - F Cimino
- b Department Farmaco-Biologico, School of Pharmacy , University of Messina , Messina , Italy
| | - S Theunissen
- a Environmental and Occupational (Integrative) Physiology Laboratory , Haute Ecole Paul Henri Spaak , Brussels , Belgium
| | - T Snoeck
- c Department of Experimental Anatomy , Vrije Universiteit Brussel , Brussels , Belgium
| | - S Provyn
- c Department of Experimental Anatomy , Vrije Universiteit Brussel , Brussels , Belgium
| | - R Canali
- d Council for Agricultural Research and Economics - Food and Nutrition Research Centre (C.R.A. - NUT) , Rome , Italy
| | | | - F Virgili
- d Council for Agricultural Research and Economics - Food and Nutrition Research Centre (C.R.A. - NUT) , Rome , Italy
| |
Collapse
|
34
|
Wang Q, Mazur A, Guerrero F, Lambrechts K, Buzzacott P, Belhomme M, Theron M. Antioxidants, endothelial dysfunction, and DCS: in vitro and in vivo study. J Appl Physiol (1985) 2015; 119:1355-62. [PMID: 26472863 DOI: 10.1152/japplphysiol.00167.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 10/08/2015] [Indexed: 11/22/2022] Open
Abstract
Reactive oxygen species (ROS) production is a well-known effect in individuals after an undersea dive. This study aimed to delineate the links between ROS, endothelial dysfunction, and decompression sickness (DCS) through the use of antioxidants in vitro and in vivo. The effect of N-acetylcysteine (NAC) on superoxide and peroxynitrite, nitric oxide (NO) generation, and cell viability during in vitro diving simulation were analyzed. Also analyzed was the effect of vitamin C and NAC on plasma glutathione thiol and thiobarbituric acid reactive substances (TBARS), plasma angiotensin-converting enzyme (ACE) activity, and angiotensin-II and DCS morbidity during in vivo diving simulation. During an in vitro diving simulation, vascular endothelial cells showed overproduction of superoxide and peroxynitrite, obvious attenuation of NO generation, and promotion of cell death, all of which were reversed by NAC treatment. After in vivo diving simulation, plasma ACE activity and angiotensin-II level were not affected. The plasma level of glutathione thiol was downregulated after the dive, which was attenuated partially by NAC treatment. Plasma TBARS level was upregulated; however, either NAC or vitamin C treatment failed to prevent DCS morbidity. During in vitro simulation, endothelial superoxide and peroxynitrite-mediated oxidative stress were involved in the attenuation of NO availability and cell death. This study is the first attempt to link oxidative stress and DCS occurrence, and the link could not be confirmed in vivo. Even in the presence of antioxidants, ROS and bubbles generated during diving and/or decompression might lead to embolic or biochemical stress and DCS. Diving-induced oxidative stress might not be the only trigger of DCS morbidity.
Collapse
Affiliation(s)
- Qiong Wang
- Laboratory ORPHY, Department of UFR Sciences and Technologies, European University of Bretagne, University of Brest, Brest, France
| | - Aleksandra Mazur
- Laboratory ORPHY, Department of UFR Sciences and Technologies, European University of Bretagne, University of Brest, Brest, France
| | - François Guerrero
- Laboratory ORPHY, Department of UFR Sciences and Technologies, European University of Bretagne, University of Brest, Brest, France
| | - Kate Lambrechts
- Laboratory ORPHY, Department of UFR Sciences and Technologies, European University of Bretagne, University of Brest, Brest, France
| | - Peter Buzzacott
- Laboratory ORPHY, Department of UFR Sciences and Technologies, European University of Bretagne, University of Brest, Brest, France
| | - Marc Belhomme
- Laboratory ORPHY, Department of UFR Sciences and Technologies, European University of Bretagne, University of Brest, Brest, France
| | - Michaël Theron
- Laboratory ORPHY, Department of UFR Sciences and Technologies, European University of Bretagne, University of Brest, Brest, France
| |
Collapse
|