1
|
Effect of Prior Exercise on Postprandial Lipemia: An Updated Meta-Analysis and Systematic Review. Int J Sport Nutr Exerc Metab 2022; 32:501-518. [PMID: 36028221 DOI: 10.1123/ijsnem.2022-0043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022]
Abstract
The purpose of this systematic review was to synthesize the results from current literature examining the effects of prior exercise on the postprandial triglyceride (TG) response to evaluate current literature and provide future direction. A quantitative review was performed using meta-analytic methods to quantify individual effect sizes. A moderator analysis was performed to investigate potential variables that could influence the effect of prior exercise on postprandial TG response. Two hundred and seventy-nine effects were retrieved from 165 studies for the total TG response and 142 effects from 87 studies for the incremental area under the curve TG response. There was a moderate effect of exercise on the total TG response (Cohen's d = -0.47; p < .0001). Moderator analysis revealed exercise energy expenditure significantly moderated the effect of prior exercise on the total TG response (p < .0001). Exercise modality (e.g., cardiovascular, resistance, combination of both cardiovascular and resistance, or standing), cardiovascular exercise type (e.g., continuous, interval, concurrent, or combined), and timing of exercise prior to meal administration significantly affected the total TG response (p < .001). Additionally, exercise had a moderate effect on the incremental area under the curve TG response (Cohen's d = -0.40; p < .0001). The current analysis reveals a more homogeneous data set than previously reported. The attenuation of postprandial TG appears largely dependent on exercise energy expenditure (∼2 MJ) and the timing of exercise. The effect of prior exercise on the postprandial TG response appears to be transient; therefore, exercise should be frequent to elicit an adaptation.
Collapse
|
2
|
Khalafi M, Mojtahedi S, Ostovar A, Rosenkranz SK, Korivi M. High-intensity interval exercise versus moderate-intensity continuous exercise on postprandial glucose and insulin responses: A systematic review and meta-analysis. Obes Rev 2022; 23:e13459. [PMID: 35535401 DOI: 10.1111/obr.13459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022]
Abstract
We performed a meta-analysis to investigate the effects of high-intensity interval exercise (HIIE) as compared to moderate-intensity exercise (MIE) and a control condition (CON) on postprandial glucose (PPG) and insulin (PPI) responses. PubMed, Web of Science, and Scopus were comprehensively searched to identify relevant studies until October 2021. Separate analyses were conducted for HIIE versus MIE and HIIE versus CON. A total of 30 studies comprising 36 intervention arms and involving 467 participants (350 adults) were included in the meta-analysis. HIIE reduced PPG and PPI when compared with CON. Based on subgroup analyses, reductions in PPG and PPI were significant for both children and adult participants, as well as for healthy participants and participants with metabolic disorders, with larger effects in those with metabolic disorders. There were no significant differences between HIIE and MIE for PPG or PPI. However, when comparing studies matched for total work performed, HIIE was more effective for decreasing PPG as compared with MIE. HIIE is effective for reducing PPG and PPI in both children and adult participants, particularly in those with metabolic disorders. In addition, HIIE has superior effects for reducing PPG as compared with MIE, when equivalent work was performed at both intensity levels.
Collapse
Affiliation(s)
- Mousa Khalafi
- Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran
| | - Shima Mojtahedi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Alireza Ostovar
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Guilan, Iran
| | - Sara K Rosenkranz
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, Kansas, USA
| | - Mallikarjuna Korivi
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
3
|
Chen TC, Huang MJ, Lima LCR, Chou TY, Wang HH, Tu JH, Lin SC, Nosaka K. Changes in Insulin Sensitivity and Lipid Profile Markers Following Initial and Secondary Bouts of Multiple Eccentric Exercises. Front Physiol 2022; 13:917317. [PMID: 35733998 PMCID: PMC9207458 DOI: 10.3389/fphys.2022.917317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
An acute bout of eccentric exercise affects insulin sensitivity and lipid profile, but how the magnitude of muscle damage affects them is not clear. We compared changes in blood insulin sensitivity and lipid markers after the first (EC1) and second (EC2) eccentric exercise bouts. Fifteen sedentary young men performed arm, leg and trunk muscle eccentric exercises, and repeated them 2 weeks later. Fasting blood samples were taken before, 2 h and 1–5 days after each exercise bout to analyze plasma creatine kinase (CK) activity, serum glucose (GLU), insulin, homeostasis model assessment (HOMA), triacylglycerols (TG), total (TC) and low- (LDLC) and high-density lipoprotein cholesterol (HDLC) concentrations as well as TC/HDLC ratio. Changes in these measures were compared between bouts and relationships to peak plasma CK activity were analyzed. Plasma CK activity increased (p < 0.05) after EC1 (peak: 101,668 ± 58,955 IU/L) but not after EC2. The magnitude of changes in GLU (peak after EC1: 26 ± 10% vs. EC2: 7 ± 6%), insulin (46 ± 27% vs. 15 ± 8%), HOMA (86 ± 48% vs. 24 ± 15%), TC (−20 ± 5% vs. −6 ± 4%), TG (−32 ± 11% vs. −6 ± 3%), LDHC (−47 ± 15% vs. −12 ± 9%), HDLC (35 ± 26% vs. 7 ± 4%), and TC/HDLC ratio (−139 ± 13% vs. −11 ± 7%) were significantly greater after EC1 than EC2. Peak plasma CK activity was significantly (p < 0.05) correlated with the peak changes in blood insulin sensitivity and lipid markers for the combined data of EC1 and EC2. These results suggest that the greater the magnitude of muscle damage, the greater the magnitude of changes in the insulin sensitivity to a negative direction and lipid markers to a positive direction.
Collapse
Affiliation(s)
- Trevor C. Chen
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, Taiwan
- *Correspondence: Trevor C. Chen,
| | - Min-Jyue Huang
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Cowan, WA, Australia
| | - Leonardo C. R. Lima
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Tai-Ying Chou
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, Taiwan
- Department of Athletic Performance, National Taiwan Normal University, Taipei City, Taiwan
| | - Hung-Hao Wang
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, Taiwan
| | - Jui-Hung Tu
- Department of Physical Education, National Pingtung University, Pingtung City, Taiwan
| | - Shi-Che Lin
- Department of Physical Education, National Pingtung University, Pingtung City, Taiwan
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Cowan, WA, Australia
| |
Collapse
|
4
|
Petridou A, Mougios V. Exercise to lower postprandial lipemia: why, when, what and how. Int J Sports Med 2022; 43:1013-1022. [PMID: 35345016 DOI: 10.1055/a-1810-5118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We review recent findings on the ability of exercise to lower postprandial lipemia (PPL). Specifically, we answer why exercise is important in lowering PPL, when it is most effective to exercise to achieve this, what the preferred exercise is and how exercise reduces PPL. Most findings confirm the power of exercise to lower PPL, which is an independent risk factor for cardiovascular disease. Exercise is most effective when performed on the day preceding a high- or moderate-fat meal. This effect lasts up to approximately two days; therefore, one should exercise frequently to maintain this benefit. However, the time of exercise relative to a meal is not that important in real-life conditions, since one consumes several meals during the day; thus, an exercise bout will inevitably exert its lowering effect on PPL in one or more of the subsequent meals. Although moderate-intensity continuous exercise, high-intensity intermittent exercise (HIIE), resistance exercise and accumulation of short bouts of exercise throughout the day are all effective in lowering PPL, submaximal, high-volume interval exercise seems to be superior, provided it is tolerable. Finally, exercise reduces PPL by both lowering the rate of appearance and increasing the clearance of triacylglycerol-rich lipoproteins from the circulation.
Collapse
Affiliation(s)
- Anatoli Petridou
- School of Physical Education and Sport Science at Thessaloniki, Laboratory of Evaluation of Human Biological Performance, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vassilis Mougios
- School of Physical Education and Sport Science at Thessaloniki, Laboratory of Evaluation of Human Biological Performance, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
Farrow M, Maher JL, Oaten JR, Kreutzfeldt S, Thompson D, Bilzon JLJ. Prior arm crank exercise has no effect on postprandial lipaemia in non-disabled adults. Appl Physiol Nutr Metab 2022; 47:681-689. [PMID: 35290755 DOI: 10.1139/apnm-2021-0748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A single bout of cycling or running performed in the evening can reduce postprandial lipaemia (PPL) the following morning, although this is currently unknown for upper-body exercise. The aim of this study was to determine if a bout of arm crank exercise (high-intensity interval [HIIE] or moderate-intensity continuous [MICE]), can attenuate PPL in non-injured individuals. Eleven healthy and recreationally active participants (eight males, three females; age: 27 ± 7 yr; body mass index: 23.5 ± 2.5 kg · m-2) volunteered to participate in three trials: HIIE (10 x 60 s at 80% peak power output), MICE (50% peak power output of isocaloric duration), and a no-exercise control condition. Each exercise bout was performed at 18:00, and participants consumed a standardized evening meal at 20:00. Following an overnight fast, a 5-h mixed-macronutrient tolerance test was performed at 08:00. There were no significant differences in triglyceride incremental area under the curve between HIIE (192 ± 94 mmol. L-1 per 300 min), MICE (184 ± 111 mmol. L-1 per 300 min), and the no-exercise condition (175 ± 90 mmol. L-1 per 300 min) (P=0.46). There were no significant differences in incremental area under the curve for glucose (P=0.91) or insulin (P=0.59) between conditions. Upper-body MICE and HIIE performed in the evening do not influence PPL the following morning, in normotriglyceridemic individuals. Clinical Trials Registration: NCT04277091 Novelty: • Arm crank exercise has no effect on PPL when performed the evening prior to a mixed-macronutrient meal test • Upper-body sprint interval exercise should be investigated as a potential solution to reduce PPL.
Collapse
Affiliation(s)
- Matthew Farrow
- University of Bath, 1555, Department for Health, Bath, United Kingdom of Great Britain and Northern Ireland, BA2 7AY;
| | - Jennifer L Maher
- University of Bath, 1555, Department for Health, Bath, United Kingdom of Great Britain and Northern Ireland;
| | - Jack Robert Oaten
- University of Bath, 1555, Department for Health, Bath, United Kingdom of Great Britain and Northern Ireland;
| | - Saskia Kreutzfeldt
- University of Bath, 1555, Department for Health, Bath, United Kingdom of Great Britain and Northern Ireland;
| | - Dylan Thompson
- University of Bath, 1555, Department for Health, Bath, United Kingdom of Great Britain and Northern Ireland;
| | - James Lee John Bilzon
- University of Bath, 1555, Department for Heath, Bath, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
6
|
Chen TC, Huang TH, Tseng WC, Tseng KW, Hsieh CC, Chen MY, Chou TY, Huang YC, Chen HL, Nosaka K. Changes in plasma C1q, apelin and adropin concentrations in older adults after descending and ascending stair walking intervention. Sci Rep 2021; 11:17644. [PMID: 34480035 PMCID: PMC8417101 DOI: 10.1038/s41598-021-96631-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/06/2021] [Indexed: 11/17/2022] Open
Abstract
This study compared changes in plasma complement component 1q (C1q), apelin and adropin concentrations in older obese women after descending (DSW) and ascending stair walking (ASW) training (n = 15/group) performed twice a week for 12 weeks, with gradual increases in exercise time from 5 to 60 min. Fasting blood samples were collected 3 days before the first and 4 days after the last training session. The improvements in the maximal voluntary isometric contraction (MVIC) strength of the knee extensors, functional physical fitness [e.g., 30-s chair stand (CS) performance], resting systolic blood pressure (SBP), insulin sensitivity [e.g., oral glucose tolerance test (OGTT)] and blood lipid profiles [e.g., total cholesterol (TC)] were greater (p < 0.05) in the DSW than ASW group. Plasma C1q decreased (− 51 ± 30%), and apelin (23 ± 15%) and adropin (127 ± 106%) increased (p ≤ .0.05) only after DSW. Significant (p ≤ 0.01) partial correlations were found between the pre- to post-DSW changes in C1q, apelin or adropin and changes in outcome measures [e.g., C1q and MVIC (r = − 0.837), apelin and SBP (r = − 0.854), and andropin and OGTT (r = − 0.729)]. These results showed that greater decreases in plasma C1q and greater increases in apelin and adropin concentrations were associated with greater improvements in outcome measures after DSW than after ASW.
Collapse
Affiliation(s)
- Trevor C Chen
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, P.O. Box 97-71, Wenshan Wansheng, Taipei City, 11699, Taiwan.
| | - Tsang-Hai Huang
- Institute of Physical Education, Health and Recreation, National Cheng-Kung University, Tainan City, Taiwan
| | - Wei-Chin Tseng
- Department of Exercise and Health Sciences, University of Taipei, Taipei City, Taiwan
| | - Kuo-Wei Tseng
- Department of Exercise and Health Sciences, University of Taipei, Taipei City, Taiwan
| | - Chung-Chan Hsieh
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, P.O. Box 97-71, Wenshan Wansheng, Taipei City, 11699, Taiwan
| | - Mei-Yen Chen
- Graduate Institute of Sport, Leisure and Hospitality Management, National Taiwan Normal University, Taipei City, Taiwan
| | - Tai-Ying Chou
- Department of Athletic Performance, National Taiwan Normal University, Taipei City, Taiwan
| | - Yuh-Chuan Huang
- Physical Education Office, Ming Chuan University, Taipei City, Taiwan
| | - Hsin-Lian Chen
- Department of Physical Education, Health and Recreation, National Chiayi University, Chaiyi County, Taiwan
| | - Kazunori Nosaka
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
7
|
FARROW MATTHEWT, MAHER JENNIFERL, NIGHTINGALE TOME, THOMPSON DYLAN, BILZON JAMESLJ. A Single Bout of Upper-Body Exercise Has No Effect on Postprandial Metabolism in Persons with Chronic Paraplegia. Med Sci Sports Exerc 2021; 53:1041-1049. [PMID: 33560775 PMCID: PMC8048731 DOI: 10.1249/mss.0000000000002561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE The acute effects of a single bout of upper-body exercise on postprandial metabolism in persons with spinal cord injury are currently not well understood. The primary aim of this study was to evaluate the effects of a single bout of upper-body high-intensity interval exercise (HIIE) and moderate-intensity continuous exercise (MICE) in comparison with a no-exercise control (REST) condition on postprandial metabolic responses in persons with chronic paraplegia. METHODS Ten participants (eight males, two females; age, 49 ± 10 yr; time since injury, 22 ± 13 yr) with chronic paraplegia took part in a randomized crossover study, consisting of three trials: HIIE (8 × 60 s at 70% peak power output [PPEAK]), MICE (25 min at 45% PPEAK), and REST, at least 3 d apart. Exercise was performed in the fasted state, and participants consumed a mixed-macronutrient liquid meal 1-h postexercise. Venous blood and expired gas samples were collected at regular intervals for 6-h postmeal consumption. RESULTS There were no significant differences in postprandial incremental area under the curve for triglycerides (P = 0.59) or glucose (P = 0.56) between conditions. Insulin incremental area under the curve tended to be lower after MICE (135 ± 85 nmol·L-1 per 360 min) compared with REST (162 ± 93 nmol·L-1 per 360 min), but this did not reach statistical significance (P = 0.06, d = 0.30). Participants reported a greater fondness (P = 0.04) and preference for HIIE over MICE. CONCLUSIONS After an overnight fast, a single bout of upper-body exercise before eating has no effect on postprandial metabolism in persons with chronic paraplegia, irrespective of exercise intensity. This suggests that alternative exercise strategies may be required to stimulate postprandial substrate oxidation for this population.
Collapse
Affiliation(s)
- MATTHEW T. FARROW
- Department for Health, Centre for Clinical Rehabilitation and Exercise Medicine (CREM), University of Bath, Bath, UNITED KINGDOM
- Department for Health, Centre for Nutrition and Exercise Metabolism (CNEM), University of Bath, Bath, UNITED KINGDOM
- Centre for the Analysis of Motion, Entertainment Research and Applications (CAMERA), University of Bath, Bath, UNITED KINGDOM
| | - JENNIFER L. MAHER
- Department for Health, Centre for Clinical Rehabilitation and Exercise Medicine (CREM), University of Bath, Bath, UNITED KINGDOM
- Department for Health, Centre for Nutrition and Exercise Metabolism (CNEM), University of Bath, Bath, UNITED KINGDOM
| | - TOM E. NIGHTINGALE
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, UNITED KINGDOM
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, CANADA
| | - DYLAN THOMPSON
- Department for Health, Centre for Clinical Rehabilitation and Exercise Medicine (CREM), University of Bath, Bath, UNITED KINGDOM
- Department for Health, Centre for Nutrition and Exercise Metabolism (CNEM), University of Bath, Bath, UNITED KINGDOM
| | - JAMES L. J. BILZON
- Department for Health, Centre for Clinical Rehabilitation and Exercise Medicine (CREM), University of Bath, Bath, UNITED KINGDOM
- Department for Health, Centre for Nutrition and Exercise Metabolism (CNEM), University of Bath, Bath, UNITED KINGDOM
- Centre for the Analysis of Motion, Entertainment Research and Applications (CAMERA), University of Bath, Bath, UNITED KINGDOM
| |
Collapse
|
8
|
Muscle Damage and Performance after Single and Multiple Simulated Matches in University Elite Female Soccer Players. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084134. [PMID: 33919800 PMCID: PMC8070760 DOI: 10.3390/ijerph18084134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 02/07/2023]
Abstract
The present study aimed to compare changes in muscle damage and performance parameters after playing single versus multiple soccer matches to examine fixture congestion effects on performance. Twelve elite female university soccer players performed single, three and six consecutive 90-min bouts of the Loughborough Intermittent Shuttle Test (LIST) with ≥12-weeks between conditions in a pseudo-randomized order. Heart rate, blood lactate, rating of perceived exertion and covering distance in each LIST were examined. Changes in several types of muscle damage (e.g., maximal voluntary isometric torque of the knee extensors: MVC-KE) and performance measures (e.g., Yo-Yo Intermittent Recovery Test level 1: YYIR1) were taken before each LIST, 1 h, and 1–5 d after the last LIST. The total distance covered during the LIST was shorter (p < 0.05) in the 2nd–3rd, or 2nd–6th LISTs when compared with the 1st LIST. Changes (p < 0.05) in all measures were observed after the LIST, and the greatest changes were observed after the six than after the three LISTs followed by one LIST (e.g., largest changes in MVC-KE: −26 > −20 > −14%; YYIR1: −31 > −26 > −11%). Many of the variables did not recover to the baseline for 5 d after six LISTs. These suggest that fixture congestion induces greater muscle damage and performance decline than a single match.
Collapse
|
9
|
Hsieh SS, Chueh TY, Huang CJ, Kao SC, Hillman CH, Chang YK, Hung TM. Systematic review of the acute and chronic effects of high-intensity interval training on executive function across the lifespan. J Sports Sci 2021; 39:10-22. [PMID: 32780634 DOI: 10.1080/02640414.2020.1803630] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Research regarding the effects of high-intensity interval training (HIIT) on executive function has grown exponentially in recent years. However, there has been no comprehensive review of the current state of literature. Therefore, the aim of this systematic review is to summarize previous research regarding the acute and chronic effects of HIIT on executive function across the lifespan and highlight future research directions. The results indicated that acute bouts of HIIT has a positive effect on inhibition in children/adolescents and adults, and further that chronic HIIT benefits inhibition and working memory in children. More research employing chronic interventions, focusing on middle-aged and older adults, and examining the effects on the working memory and cognitive flexibility domains of executive function are needed. Future research should also focus on a) the use of stronger research designs, b) the effects of HIIT dosage/modality, c) consideration of individual differences, d) possible underlying mechanisms, and e) examining the feasibility of translating HIIT to real-word settings.
Collapse
Affiliation(s)
- Shu-Shih Hsieh
- Department of Psychology, Northeastern University , Boston, MA, USA
| | - Ting-Yu Chueh
- Department of Physical Education, National Taiwan Normal University , Taipei, Taiwan
| | - Chung-Ju Huang
- Graduate Institute of Sport Pedagogy, University of Taipei , Taipei, Taiwan
| | - Shih-Chun Kao
- Department of Health and Kinesiology, Purdue University , West Lafayette, IN, USA
| | - Charles H Hillman
- Department of Psychology, Northeastern University , Boston, MA, USA
- Department of Physical Therapy, Movement, and Rehabilitation Science, Northeastern University , Boston, MA, USA
| | - Yu-Kai Chang
- Department of Physical Education, National Taiwan Normal University , Taipei, Taiwan
- Institute for Research Excellence and Learning Science, National Taiwan Normal University , Taipei, Taiwan
| | - Tsung-Min Hung
- Department of Physical Education, National Taiwan Normal University , Taipei, Taiwan
- Institute for Research Excellence and Learning Science, National Taiwan Normal University , Taipei, Taiwan
| |
Collapse
|
10
|
Munten S, Ménard L, Gagnon J, Dorman SC, Mezouari A, Gagnon DD. High-intensity interval exercise in the cold regulates acute and postprandial metabolism. J Appl Physiol (1985) 2020; 130:408-420. [PMID: 33270513 DOI: 10.1152/japplphysiol.00384.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
High-intensity interval exercise (HIIE) has been shown to be more effective than moderate-intensity exercise for increasing acute lipid oxidation and lowering blood lipids during exercise and postprandially. Exercise in cold environments is also known to enhance lipid oxidation; however, the immediate and long-term effects of HIIE exercise in cold are unknown. The purpose of this study was to examine the effects cold stress during HIIE on acute exercise metabolism and postprandial metabolism. Eleven recreationally active individuals (age: 23 ± 3 yr, weight: 80 ± 9.7 kg, V̇O2peak: 39.2 ± 5.73 mL·kg-1·min-1) performed evening HIIE sessions (10 × 60 s cycling, 90% V̇O2peak interspersed with 90 s active recovery, 30% V̇O2peak) in thermoneutral (HIIE-TN, control; 21°C) and cold environment (HIIE-CO; 0°C), following a balanced crossover design. The following morning, participants consumed a high-fat meal. Indirect calorimetry was used to assess substrate oxidation, and venous blood samples were obtained to assess changes in noncellular metabolites. During acute exercise, lipid oxidation was higher in HIIE-CO (P = 0.002) without differences in V̇O2 and energy expenditure (P ≥ 0.162) between conditions. Postprandial V̇O2, lipid and CHO oxidation, plasma insulin, and triglyceride concentrations were not different between conditions (P > 0.05). Postprandial blood LDL-C levels were higher in HIIE-CO 2 h after the meal (P = 0.003). Postprandial glucose area under curve was 49% higher in HIIE-CO versus HIIE-TN (P = 0.034). Under matched energy expenditure conditions, HIIE demonstrated higher lipid oxidation rates during exercise in the cold; but only marginally influenced postprandial lipid metabolism the following morning. In conclusion, HIIE in the cold seemed to be less favorable for postprandial lipid and glycemic responses.NEW & NOTEWORTHY This is the first known study to investigate the effects of cold ambient temperatures on acute metabolism during high-intensity interval exercise, as well as postprandial metabolism the next day. We observed that high-intensity interval exercise in a cold environment does change acute metabolism compared to a thermoneutral environment; however, the addition of a cold stimulus was less favorable for postprandial metabolic responses the following day.
Collapse
Affiliation(s)
- Stephanie Munten
- Laboratory of Environmental Exercise Physiology, School of Kinesiology and Health Sciences, Laurentian University, Sudbury, Canada.,Centre for Research in Occupational Safety and Health, Laurentian University, Sudbury, Canada
| | - Lucie Ménard
- Laboratory of Environmental Exercise Physiology, School of Kinesiology and Health Sciences, Laurentian University, Sudbury, Canada.,Centre for Research in Occupational Safety and Health, Laurentian University, Sudbury, Canada.,Northern Ontario School of Medicine, Laurentian University, Sudbury, Canada
| | - Jeffrey Gagnon
- Department of Biology, Laurentian University, Sudbury, Canada
| | - Sandra C Dorman
- Laboratory of Environmental Exercise Physiology, School of Kinesiology and Health Sciences, Laurentian University, Sudbury, Canada.,Centre for Research in Occupational Safety and Health, Laurentian University, Sudbury, Canada.,Northern Ontario School of Medicine, Laurentian University, Sudbury, Canada
| | - Ania Mezouari
- Department of Biology, Laurentian University, Sudbury, Canada
| | - Dominique D Gagnon
- Laboratory of Environmental Exercise Physiology, School of Kinesiology and Health Sciences, Laurentian University, Sudbury, Canada.,Centre for Research in Occupational Safety and Health, Laurentian University, Sudbury, Canada
| |
Collapse
|
11
|
Cheng CF, Hsu WC, Kuo YH, Chen TW, Kuo YC. Acute effect of inspiratory resistive loading on sprint interval exercise performance in team-sport athletes. Respir Physiol Neurobiol 2020; 282:103531. [PMID: 32827709 DOI: 10.1016/j.resp.2020.103531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/24/2020] [Accepted: 08/16/2020] [Indexed: 11/28/2022]
Abstract
This study examined acute effects of inspiratory resistive loading (IRL) during rest intervals on sprint interval exercise (SIE) performance. In a randomized crossover design, nine collegiate basketball players performed IRL (15 cmH2O) or passive recovery (CON) at 5-min rest intervals during and immediately after 6 sets of a 30-s SIE test. Performance, muscular oxygenation of vastus lateralis, blood lactate and pH were measured at each condition. Blood lactate at 5-min (-20.5 %) and 20-min (-21.3 %) after SIE were significantly lower in IRL than in CON. The pH at 5-min after SIE was significantly higher in IRL than in CON (+0.8 %, p < 0.05). However, the total work in IRL was significantly lower than in CON (-2.7 %, p < 0.05). Average changes in total hemoglobin at rest intervals in IRL were significantly lower than in CON (-34.5 %, p < 0.05). The IRL could attenuate exercise-induced metabolic acidosis; however, the decreased blood flow at rest intervals might increase the physical challenge in SIE.
Collapse
Affiliation(s)
- Ching-Feng Cheng
- Department of Athletic Performance, National Taiwan Normal University, Taipei, Taiwan; Sports Performance Lab, National Taiwan Normal University, Taipei, Taiwan.
| | - Wei-Chieh Hsu
- Sports Performance Lab, National Taiwan Normal University, Taipei, Taiwan; Graduate Institute of Sports Training, University of Taipei, Taipei, Taiwan
| | - Yu-Hsuan Kuo
- Sports Performance Lab, National Taiwan Normal University, Taipei, Taiwan; Department of Physical Education, Chinese Culture University, Taipei, Taiwan
| | - Tzu-Wei Chen
- Physical Education Office, National Chengchi University, Taipei, Taiwan
| | - Yu-Chi Kuo
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| |
Collapse
|
12
|
Pearson RC, Olenick AA, Green ES, Jenkins NT. Acute exercise effects on postprandial fat oxidation: meta-analysis and systematic review. Appl Physiol Nutr Metab 2020; 45:1081-1091. [PMID: 32208104 DOI: 10.1139/apnm-2019-0917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this systematic review was to synthesize and evaluate current literature examining the effects of exercise on postprandial fat oxidation, as well as to provide future direction. A quantitative review was performed using meta-analytic methods. A moderator analysis was performed to investigate potential variables that could influence the effect of exercise on postprandial fat oxidation. Fifty-six effects from 26 studies were retrieved. There was a moderate effect of exercise on postprandial fat oxidation (Cohen's d = 0.58 (95% CI, 0.39 to 0.78)). Moderator analysis revealed that sex, age, weight status, training status, exercise type, exercise intensity, timing of exercise, and composition of the meal challenge significantly affected the impact of prior exercise on postprandial fat oxidation. The moderator analysis also indicated that most previous studies have investigated the impact of prior moderate-intensity endurance exercise on postprandial fat oxidation in young, healthy, lean men. Suggested priorities for future research in this area include (i) an examination of sex differences in and/or female-specific aspects of postprandial metabolism; (ii) a comprehensive evaluation of exercise modalities, intensities, and durations; and (iii) a wider variety of test meal compositions, especially those with higher fat content. Novelty A systematic review of the impact of exercise on postprandial fat oxidation was performed using meta-analytic methods. Analysis revealed a moderate effect of exercise on postprandial fat oxidation. The presented data support a need for future studies to investigate sex differences and to include comprehensive evaluations of exercise modalities, intensities, and duration.
Collapse
Affiliation(s)
- Regis C Pearson
- Integrative Cardiovascular Physiology Laboratory, Department of Kinesiology, University of Georgia, Athens, GA 30602, USA.,Integrative Cardiovascular Physiology Laboratory, Department of Kinesiology, University of Georgia, Athens, GA 30602, USA
| | - Alyssa A Olenick
- Integrative Cardiovascular Physiology Laboratory, Department of Kinesiology, University of Georgia, Athens, GA 30602, USA.,Integrative Cardiovascular Physiology Laboratory, Department of Kinesiology, University of Georgia, Athens, GA 30602, USA
| | - Edward S Green
- Integrative Cardiovascular Physiology Laboratory, Department of Kinesiology, University of Georgia, Athens, GA 30602, USA.,Integrative Cardiovascular Physiology Laboratory, Department of Kinesiology, University of Georgia, Athens, GA 30602, USA
| | - Nathan T Jenkins
- Integrative Cardiovascular Physiology Laboratory, Department of Kinesiology, University of Georgia, Athens, GA 30602, USA.,Integrative Cardiovascular Physiology Laboratory, Department of Kinesiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
13
|
Paul DJ, Bangsbo J, Cherif A, Nassis GP. The Effects of a Single Versus Three Consecutive Sessions of Football Training on Postprandial Lipemia: a Randomized, Controlled Trial in Healthy, Recreationally Active Males. SPORTS MEDICINE - OPEN 2019; 5:38. [PMID: 31440862 PMCID: PMC6706479 DOI: 10.1186/s40798-019-0212-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/12/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Exercise frequency is important for maintaining health; however, its effects on postprandial responses remain largely unknown. Better understanding this during popular sports activities such as football may influence exercise habits. Therefore, the aim of the present study was to examine the effects of playing one single versus three consecutive days of 60-min small-sided football matches on postprandial lipemia. METHODS Fifteen males performed either one (1FOOT; n = 7) or three 60-min football (3FOOT; n = 8) sessions across an 8-day trial period. On day 1, a blood sample was collected at fasted (0 min) and 0.75, 2, 4, 6 h after a high-fat meal. Participants were then randomly allocated to the 1FOOT (day 7) or 3FOOT (days 5, 6, 7) condition. On day 8, they repeated the high-fat meal and blood sampling for 6 h following the meal. Postprandial total and incremental area under the curve (AUC, iAUC, respectively) were calculated. RESULTS The postprandial triglyceride iAUC was 41% lower from pre- to post-measures for the 1FOOT (p < 0.05; ES = 1.02) and 15.7% lower for the 3FOOT (ns; ES = 0.41). Total triglyceride AUC was lower (26%) post-football matches in the 3FOOT group only (p < 0.01; ES = 1.23). In 3FOOT, insulin concentration was lower for post- compared to pre-measures at 0.75 and 2 h, respectively (p < 0.001). CONCLUSION One single 60-min small-sided football match lowered postprandial TG incremental area under the curve while performing three consecutive days of football matches did not result in a greater attenuation. TRIAL REGISTRATION ISRCTN17934193 , registered 06 April 2019.
Collapse
Affiliation(s)
- Darren J. Paul
- Aspetar – Qatar Orthopaedic and Sports Medicine Hospital, Scientific Support and Research, PO BOX 29222, Doha, Qatar
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, Copenhagen Centre for Team Sport and Health, University of Copenhagen, Copenhagen, Denmark
| | - Anissa Cherif
- Anti Doping Laboratory of Qatar (ADLQ, Research Department), Doha, Qatar
| | - George P. Nassis
- Department of Sports Science, City Unity College, 10562 Athens, Greece
- School of Physical Education and Sports Training, Shanghai University of Sport, Yangpu District, Shanghai, China
| |
Collapse
|
14
|
Brown M, McClean CM, Davison GW, Brown JCW, Murphy MH. Preceding exercise and postprandial hypertriglyceridemia: effects on lymphocyte cell DNA damage and vascular inflammation. Lipids Health Dis 2019; 18:125. [PMID: 31138221 PMCID: PMC6540450 DOI: 10.1186/s12944-019-1071-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022] Open
Abstract
Background Exercise has proved effective in attenuating the unfavourable response normally associated with postprandial hypertriglyceridemia (PHTG) and accompanying oxidative stress. Yet, the acute effects of prior exercise and PHTG on DNA damage remains unknown. The purpose of this study was to examine if walking alters PHTG-induced oxidative damage and the interrelated inflammatory mechanisms. Methods Twelve apparently healthy, recreationally active, male participants (22.4 ± 4.1 years; 179.2 ± 6 cm; 84.2 ± 14.7 kg; 51.3 ± 8.6 ml·kg− 1·min− 1) completed a randomised, crossover study consisting of two trials: (1) a high-fat meal alone (resting control) or (2) a high-fat meal immediately following 1 h of moderate exercise (65% maximal heart rate). Venous blood samples were collected at baseline, immediately post-exercise or rest, as well as at 2, 4 and 6 h post-meal. Biomarkers of oxidative damage (DNA single-strand breaks, lipid peroxidation and free radical metabolism) and inflammation were determined using conventional biochemistry techniques. Results DNA damage, lipid peroxidation, free radical metabolism and triglycerides increased postprandially (main effect for time, p < 0.05), regardless of completing 1 h of preceding moderate intensity exercise. Plasma antioxidants (α-tocopherol and γ-tocopherol) also mobilised in response to the high-fat meal (main effect for time, p < 0.05), but no changes were detected for retinol-binding protein-4. Conclusion The ingestion of a high fat meal induces postprandial oxidative stress, inflammation and a rise in DNA damage that remains unaltered by one hour of preceding exercise.
Collapse
Affiliation(s)
- Malcolm Brown
- Sport & Exercise Sciences Research Institute, Ulster University, Jordanstown, County Antrim, Northern Ireland, BT37 0QB. .,School of Nursing & Midwifery, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL.
| | - Conor M McClean
- Sport & Exercise Sciences Research Institute, Ulster University, Jordanstown, County Antrim, Northern Ireland, BT37 0QB
| | - Gareth W Davison
- Sport & Exercise Sciences Research Institute, Ulster University, Jordanstown, County Antrim, Northern Ireland, BT37 0QB
| | - John C W Brown
- Sport & Exercise Sciences Research Institute, Ulster University, Jordanstown, County Antrim, Northern Ireland, BT37 0QB
| | - Marie H Murphy
- Sport & Exercise Sciences Research Institute, Ulster University, Jordanstown, County Antrim, Northern Ireland, BT37 0QB
| |
Collapse
|