1
|
Visco V, Forte M, Giallauria F, D'Ambrosio L, Piccoli M, Schiattarella GG, Mancusi C, Salerno N, Cesaro A, Perrone MA, Izzo C, Loffredo FS, Bellino M, Bertero E, De Luca N, Pilichou K, Calabrò P, Manno G, De Falco E, Carrizzo A, Valenti V, Castelletti S, Spadafora L, Tourkmani N, D'Andrea A, Pacileo M, Bernardi M, Maloberti A, Simeone B, Sarto G, Frati G, Perrino C, Pedrinelli R, Filardi PP, Vecchione C, Sciarretta S, Ciccarelli M. Epigenetic mechanisms underlying the beneficial effects of cardiac rehabilitation. An overview from the working groups of "cellular and molecular biology of the heart" and "cardiac rehabilitation and cardiovascular prevention" of the Italian Society of Cardiology (SIC). Int J Cardiol 2025; 429:133166. [PMID: 40088953 DOI: 10.1016/j.ijcard.2025.133166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
The benefits of cardiac rehabilitation (CR) have been demonstrated in patients after myocardial infarction (MI), and in patients with chronic heart failure (HF). The core components of the CR program include improvement in exercise tolerance and optimization of coronary risk factors (i.e., lipid and lipoprotein profiles, body weight, blood glucose levels, blood pressure levels, and smoking cessation). Indeed, CR has been shown to improve exercise capacity, control of cardiovascular risk factors, quality of life, hospital readmission, and mortality rates. Nonetheless, pre- and clinical CR and exercise training models are an enormous source of potential beneficial mechanisms that can be exploited for cardiac disease therapy. Consequently, in this review, we aim to explore the unique benefits of CR in HF and coronary artery disease, focusing on the epigenetic mechanisms involved and their translational relevance. These mechanisms may represent novel therapeutic targets to promote functional recovery after cardiac injury, and non-coding RNAs could be predictive biomarkers for CR success in patients.
Collapse
Affiliation(s)
- Valeria Visco
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy
| | | | - Francesco Giallauria
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Luca D'Ambrosio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Mara Piccoli
- Cardiology Department, CTO Andrea Alesini Hospital, Rome, Italy
| | - Gabriele G Schiattarella
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité -Universitätsmedizin Berlin, Berlin, Germany; Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Costantino Mancusi
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Nadia Salerno
- Division of Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Arturo Cesaro
- Department of Translational Medical Sciences, Division of Cardiology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Marco Alfonso Perrone
- Division of Cardiology and CardioLab, Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; Clinical Pathways and Epidemiology Unit, Bambino Gesù Children's Hospital IRCCS, 00165 Rome, Italy
| | - Carmine Izzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy
| | - Francesco S Loffredo
- Department of Translational Medical Sciences, Division of Cardiology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Michele Bellino
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy
| | - Edoardo Bertero
- Department of Internal Medicine, University of Genova, Genoa, Italy; Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino - Italian IRCCS Cardiology Network, Genoa, Italy
| | - Nicola De Luca
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Kalliopi Pilichou
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova 35128, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, Division of Cardiology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Girolamo Manno
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Valentina Valenti
- Department of Cardiology, Santa Maria Goretti Hospital, Latina, Italy
| | - Silvia Castelletti
- Cardiology Department, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy
| | | | - Nidal Tourkmani
- Cardiology and Cardiac Rehabilitation Unit, Mons. Giosuè Calaciura Clinic, Catania, Italy; ABL, Guangzhou, China
| | - Antonello D'Andrea
- Unit of Cardiology and Intensive Coronary Care, "Umberto I" Hospital, 84014 Nocera Inferiore, Italy
| | - Mario Pacileo
- Unit of Cardiology and Intensive Coronary Care, "Umberto I" Hospital, 84014 Nocera Inferiore, Italy
| | - Marco Bernardi
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Alessandro Maloberti
- Cardiology IV, "A.De Gasperis" Department, Ospedale Niguarda Ca' Granda, Milan, Italy; School of Medicine and Surgery, Milano-Bicocca University, Milan, Italy
| | | | | | - Giacomo Frati
- IRCCS Neuromed, Pozzilli, Italy; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Cinzia Perrino
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Roberto Pedrinelli
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine-Cardiology Division, University of Pisa, Italy
| | | | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Pozzilli, Italy; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy.
| |
Collapse
|
2
|
Sinke L, Beekman M, Raz Y, Gehrmann T, Moustakas I, Boulinguiez A, Lakenberg N, Suchiman E, Bogaards FA, Bizzarri D, van den Akker EB, Waldenberger M, Butler‐Browne G, Trollet C, de Groot CPGM, Heijmans BT, Slagboom PE. Tissue-specific methylomic responses to a lifestyle intervention in older adults associate with metabolic and physiological health improvements. Aging Cell 2025; 24:e14431. [PMID: 39618079 PMCID: PMC11984676 DOI: 10.1111/acel.14431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Accepted: 11/14/2024] [Indexed: 04/12/2025] Open
Abstract
Across the lifespan, diet and physical activity profiles substantially influence immunometabolic health. DNA methylation, as a tissue-specific marker sensitive to behavioral change, may mediate these effects through modulation of transcription factor binding and subsequent gene expression. Despite this, few human studies have profiled DNA methylation and gene expression simultaneously in multiple tissues or examined how molecular levels react and interact in response to lifestyle changes. The Growing Old Together (GOTO) study is a 13-week lifestyle intervention in older adults, which imparted health benefits to participants. Here, we characterize the DNA methylation response to this intervention at over 750 thousand CpGs in muscle, adipose, and blood. Differentially methylated sites are enriched for active chromatin states, located close to relevant transcription factor binding sites, and associated with changing expression of insulin sensitivity genes and health parameters. In addition, measures of biological age are consistently reduced, with decreases in grimAge associated with observed health improvements. Taken together, our results identify responsive molecular markers and demonstrate their potential to measure progression and finetune treatment of age-related risks and diseases.
Collapse
Affiliation(s)
- Lucy Sinke
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - Yotam Raz
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - Thies Gehrmann
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied MicrobiologyUniversity of AntwerpAntwerpBelgium
| | - Ioannis Moustakas
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
- Sequencing Analysis Support Core, Department of Biomedical Data SciencesLeiden University Medical CenterLeidenThe Netherlands
| | - Alexis Boulinguiez
- Myology Center for Research, U974Sorbonne Université, INSERM, AIM, GH Pitié Salpêtrière Bat BabinskiParisFrance
| | - Nico Lakenberg
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - Eka Suchiman
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - Fatih A. Bogaards
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
- Division of Human NutritionWageningen University and ResearchWageningenThe Netherlands
| | - Daniele Bizzarri
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
- Delft Bioinformatics Lab, Pattern Recognition and BioinformaticsDelftThe Netherlands
| | - Erik B. van den Akker
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
- Delft Bioinformatics Lab, Pattern Recognition and BioinformaticsDelftThe Netherlands
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Institute of EpidemiologyHelmholtz Munich, German Research Center for Environmental HealthNeuherbergGermany
- German Center for Cardiovascular Research (DZHK)Partner Site Munich Heart AllianceMunichGermany
| | - Gillian Butler‐Browne
- Myology Center for Research, U974Sorbonne Université, INSERM, AIM, GH Pitié Salpêtrière Bat BabinskiParisFrance
| | - Capucine Trollet
- Myology Center for Research, U974Sorbonne Université, INSERM, AIM, GH Pitié Salpêtrière Bat BabinskiParisFrance
| | - C. P. G. M. de Groot
- Division of Human NutritionWageningen University and ResearchWageningenThe Netherlands
| | - Bastiaan T. Heijmans
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - P. Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| |
Collapse
|
3
|
Liao Z, Chen B, Yang T, Zhang W, Mei Z. Lactylation modification in cardio-cerebral diseases: A state-of-the-art review. Ageing Res Rev 2025; 104:102631. [PMID: 39647583 DOI: 10.1016/j.arr.2024.102631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Cardio-cerebral diseases (CCDs), encompassing conditions such as coronary heart disease, myocardial infarction, stroke, Alzheimer's disease, et al., represent a significant threat to human health and well-being. These diseases are often characterized by metabolic abnormalities and remodeling in the process of pathology. Glycolysis and hypoxia-induced lactate accumulation play critical roles in cellular energy dynamics and metabolic imbalances in CCDs. Lactylation, a post-translational modification driven by excessive lactate accumulation, occurs in both histone and non-histone proteins. It has been implicated in regulating protein function across various pathological processes in CCDs, including inflammation, angiogenesis, lipid metabolism dysregulation, and fibrosis. Targeting key proteins involved in lactylation, as well as the enzymes regulating this modification, holds promise as a therapeutic strategy to modulate disease progression by addressing these pathological mechanisms. This review provides a holistic picture of the types of lactylation and the associated modifying enzymes, highlights the roles of lactylation in different pathological processes, and synthesizes the latest clinical evidence and preclinical studies in a comprehensive view. We aim to emphasize the potential of lactylation as an innovative therapeutic target for preventing and treating CCD-related conditions.
Collapse
Affiliation(s)
- Zi Liao
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Bei Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
4
|
Yang X, Zhang Y, Wang X, Chen S, Zheng Y, Hou X, Wang S, Zheng X, Li Q, Sun Y, Wu J. Exercise-mediated epigenetic modifications in cardiovascular diseases. Epigenomics 2025; 17:179-191. [PMID: 39929231 PMCID: PMC11812364 DOI: 10.1080/17501911.2024.2447811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
Cardiovascular diseases (CVDs) represent a prominent contributor to global morbidity and mortality rates, with projections indicating a rise in this burden due to population aging. While extensive research has underscored the efficacy of exercise in mitigating the risk of CVDs, the precise mechanisms, particularly within the realm of epigenetics, remain nascent. This article delves into cutting-edge research concerning exercise-induced epigenetic alterations and their impact on CVDs. Initially, we examine the cardiac implications stemming from exercise-induced epigenetic influences across varying intensities. Subsequently, our focus shifts toward delineating the mechanisms governing exercise-induced DNA methylation, lactylation modifications, and N6-methyladenosine (m6A) RNA modifications, alongside addressing associated challenges and outlining prospective research directions. These findings suggest that exercise-mediated epigenetic modifications offer promising therapeutic potential for the prevention and comorbidity management of CVDs. However, the heterogeneity and tissue specificity of these effects necessitate more targeted research to unlock their full therapeutic potential.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China
- Cardiac Rehabilitation Center, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanqi Zhang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China
- Cardiac Rehabilitation Center, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xingyi Wang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China
- Cardiac Rehabilitation Center, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shiliang Chen
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China
- Cardiac Rehabilitation Center, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yang Zheng
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China
- Cardiac Rehabilitation Center, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinyu Hou
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China
- Cardiac Rehabilitation Center, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shiyu Wang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China
- Cardiac Rehabilitation Center, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xianghui Zheng
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China
- Cardiac Rehabilitation Center, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qifeng Li
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China
- Cardiac Rehabilitation Center, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yong Sun
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China
| | - Jian Wu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China
- Cardiac Rehabilitation Center, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Sun Y, Peng Z, Liang H. Role of physical activity in cardiovascular disease prevention: impact of epigenetic modifications. Front Cardiovasc Med 2025; 12:1511222. [PMID: 39901899 PMCID: PMC11788406 DOI: 10.3389/fcvm.2025.1511222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/07/2025] [Indexed: 02/05/2025] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide, imposing a major burden on morbidity, quality of life, and societal costs, making prevention of CVD a top public health priority. Extensive research has pointed out that lack of adequate physical activity in life is one of the key risk factors for heart disease. Indeed, moderate exercise is not only beneficial to the heart in healthy populations, but also exerts a protective effect in pathological states. However, the molecular mechanisms underlying the cardioprotective effects of exercise are still not fully understood. An increasing body of research indicates that variations in the epigenetic system-such as DNA methylation, histone modifications, and production of non-coding RNA-are essential for maintaining heart health and preventing heart disease. Exercise is a potent epigenetic modulator that induces direct and long-lasting genetic changes and activates biological signals associated with cardiovascular health. These changes can be influenced by external stimuli such as physical activity and may even be passed on to offspring, thus providing a mechanism for generating genetic effects through behavioral interventions. Therefore, understanding this relationship can help identify potential biomarkers and therapeutic targets associated with CVD. This study aims to provide an overview of the beneficial effects of exercise on heart health. This information may help guide future research efforts and improve our understanding of epigenetics as a therapeutic, prognostic, and diagnostic biomarker for CVD.
Collapse
Affiliation(s)
- Yi Sun
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Zuoying Peng
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Hua Liang
- School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Etayo-Urtasun P, Sáez de Asteasu ML, Izquierdo M. Effects of Exercise on DNA Methylation: A Systematic Review of Randomized Controlled Trials. Sports Med 2024; 54:2059-2069. [PMID: 38839665 PMCID: PMC11329527 DOI: 10.1007/s40279-024-02033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Regular exercise reduces chronic disease risk and extends a healthy lifespan, but the underlying molecular mechanisms remain unclear. DNA methylation is implicated in this process, potentially altering gene expression without changing DNA sequence. However, previous findings appear partly contradictory. OBJECTIVE This review aimed to elucidate exercise effects on DNA methylation patterns. METHODS PubMed, Scopus and Web of Science databases were searched following PRISMA 2020 guidelines. All articles published up to November 2023 were considered for inclusion and assessed for eligibility using the PICOS (Population, Intervention, Comparison, Outcomes and Study) framework. Randomized controlled trials that assessed the impact of exercise interventions on DNA methylation in previously inactive adults were included. We evaluated the methodological quality of trials using the PEDro scale. RESULTS A total of 852 results were identified, of which 12 articles met the inclusion criteria. A total of 827 subjects were included in the studies. Intervention lengths varied from 6 weeks to 12 months. Most trials indicated that exercise interventions can significantly alter the DNA methylation of specific genes and global DNA methylation patterns. CONCLUSIONS The heterogeneity of results may arise from differences in participant demographics, intervention factors, measurement techniques, and the genomic contexts examined. Future research should analyze the influences of activity type, intensity, and duration, as well as the physical fitness outcomes on DNA methylation. Characterizing such dose-response relationships and identifying genes responsive to exercise are crucial for understanding the molecular mechanisms of exercise, unlocking its full potential for disease prevention and treatment.
Collapse
Affiliation(s)
| | - Mikel L Sáez de Asteasu
- Navarrabiomed, Pamplona, Spain
- Department of Health Sciences, Hospital Universitario de Navarra (HUN)-Universidad Pública de Navarra (UPNA), IdiSNA, Av. De Barañain s/n, 31008, Pamplona, Navarra, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Mikel Izquierdo
- Navarrabiomed, Pamplona, Spain.
- Department of Health Sciences, Hospital Universitario de Navarra (HUN)-Universidad Pública de Navarra (UPNA), IdiSNA, Av. De Barañain s/n, 31008, Pamplona, Navarra, Spain.
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Ramachandran R, Manan A, Kim J, Choi S. NLRP3 inflammasome: a key player in the pathogenesis of life-style disorders. Exp Mol Med 2024; 56:1488-1500. [PMID: 38945951 PMCID: PMC11297159 DOI: 10.1038/s12276-024-01261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 07/02/2024] Open
Abstract
Proinflammatory cytokines and chemokines play a crucial role in regulating the inflammatory response, which is essential for the proper functioning of our immune system. When infections or threats to the body's defense mechanisms are detected, the innate immune system takes the lead. However, an excessive inflammatory response can lead to the production of high concentrations of cytotoxic molecules, resulting in tissue damage. Inflammasomes are significant contributors to innate immunity, and one of the most extensively studied inflammasome complexes is NOD-like receptor 3 (NLRP3). NLRP3 has a wide range of recognition mechanisms that streamline immune activation and eliminate pathogens. These cytosolic multiprotein complexes are composed of effector, adaptor, and sensor proteins, which are crucial for identifying intracellular bacterial breakdown products and initiating an innate immune cascade. To understand the diverse behavior of NLRP3 activation and its significance in the development of lifestyle-related diseases, one must delve into the study of the immune response and apoptosis mediated by the release of proinflammatory cytokines. In this review, we briefly explore the immune response in the context of lifestyle associated disorders such as obesity, hyperlipidemia, diabetes, chronic respiratory disease, oral disease, and cardiovascular disease.
Collapse
Affiliation(s)
- Rajath Ramachandran
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.
| | - Abdul Manan
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Jei Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon, 16502, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon, 16502, Korea.
| |
Collapse
|
8
|
Butts B, Hope C, Herring C, Mueller K, Gary RA. The Effects of Exercise on Telomere Length in Persons With Heart Failure. J Cardiovasc Nurs 2024; 39:E86-E92. [PMID: 37801568 PMCID: PMC10997734 DOI: 10.1097/jcn.0000000000001044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
BACKGROUND Telomere length is reduced in persons with heart failure (HF). Inflammation is a putative mechanism contributing to telomere shortening. Although physical activity is known to increase telomere length, its effects in HF are unknown. OBJECTIVE The aim of this study was to examine the effects of exercise on telomere length and its relationship with interleukin (IL)-1β in persons with HF. METHODS This secondary analysis of a 3-month home-based aerobic exercise intervention measured total telomere length and IL-1β levels in persons with HF (69% with reduced ejection fraction). RESULTS Total telomere length increased and plasma IL-1β levels decreased in the exercise group from baseline to 3 months. Total telomere length was negatively associated with IL-1β at baseline ( r = -0.441 P = .001). CONCLUSIONS The association between telomere length and IL-1β suggests a relationship between inflammation and cellular aging. Moderate-intensity exercise may help maintain cellular functions. Further research is needed to examine the effects on outcomes in persons with HF.
Collapse
|
9
|
Ding P, Song Y, Yang Y, Zeng C. NLRP3 inflammasome and pyroptosis in cardiovascular diseases and exercise intervention. Front Pharmacol 2024; 15:1368835. [PMID: 38681198 PMCID: PMC11045953 DOI: 10.3389/fphar.2024.1368835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
NOD-like receptor protein 3 (NLRP3) inflammasome is an intracellular sensing protein complex that possesses NACHT, leucine-rich repeat, and pyrin domain, playing a crucial role in innate immunity. Activation of the NLRP3 inflammasome leads to the production of pro-inflammatory cellular contents, such as interleukin (IL)-1β and IL-18, and induction of inflammatory cell death known as pyroptosis, thereby amplifying or sustaining inflammation. While a balanced inflammatory response is beneficial for resolving damage and promoting tissue healing, excessive activation of the NLRP3 inflammasome and pyroptosis can have harmful effects. The involvement of the NLRP3 inflammasome has been observed in various cardiovascular diseases (CVD). Indeed, the NLRP3 inflammasome and its associated pyroptosis are closely linked to key cardiovascular risk factors including hyperlipidemia, diabetes, hypertension, obesity, and hyperhomocysteinemia. Exercise compared with medicine is a highly effective measure for both preventing and treating CVD. Interestingly, emerging evidence suggests that exercise improves CVD and inhibits the activity of NLRP3 inflammasome and pyroptosis. In this review, the activation mechanisms of the NLRP3 inflammasome and its pathogenic role in CVD are critically discussed. Importantly, the purpose is to emphasize the crucial role of exercise in managing CVD by suppressing NLRP3 inflammasome activity and proposes it as the foundation for developing novel treatment strategies.
Collapse
Affiliation(s)
- Ping Ding
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuanming Song
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yang Yang
- Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, China
| | - Cheng Zeng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
10
|
Luo X, Shi Y, Ma Y, Liu Y, Jing P, Cao X, Wang J, Hu Z, Cai H. Exploring the mechanism of ShenGui capsule in treating heart failure based on network pharmacology and molecular docking: A review. Medicine (Baltimore) 2024; 103:e37512. [PMID: 38579077 PMCID: PMC10994518 DOI: 10.1097/md.0000000000037512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/13/2023] [Indexed: 04/07/2024] Open
Abstract
ShenGui capsule (SGC), as a herbal compound, has significant effects on the treatment of heart failure (HF), but its mechanism of action is unclear. In this study, we aimed to explore the potential pharmacological targets and mechanisms of SGC in the treatment of HF using network pharmacology and molecular docking approaches. Potential active ingredients of SGC were obtained from the traditional Chinese medicine systems pharmacology database and analysis platform database and screened by pharmacokinetic parameters. Target genes of HF were identified by comparing the toxicogenomics database, GeneCards, and DisGeNET databases. Protein interaction networks and gene-disorder-target networks were constructed using Cytoscape for visual analysis. Gene ontology and Kyoto Encyclopedia of Genes and Genomes were also performed to identify protein functional annotations and potential target signaling pathways through the DAVID database. CB-DOCK was used for molecular docking to explore the role of IL-1β with SGC compounds. Sixteen active ingredients in SGC were screened from the traditional Chinese medicine systems pharmacology database and analysis platform, of which 36 target genes intersected with HF target genes. Protein-protein interactions suggested that each target gene was closely related, and interleukin-1β (IL-1β) was identified as Hub gene. The network pharmacology analysis suggested that these active ingredients were well correlated with HF. Kyoto Encyclopedia of Genes and Genomes enrichment analysis suggested that target genes were highly enriched in pathways such as inflammation. Molecular docking results showed that IL-1β binds tightly to SGC active components. This experiment provides an important research basis for the mechanism of action of SGC in the treatment of HF. In this study, the active compounds of SGC were found to bind IL-1β for the treatment of heart failure.
Collapse
Affiliation(s)
- Xiang Luo
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunke Shi
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiming Ma
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yixi Liu
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pan Jing
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingyu Cao
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jincheng Wang
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhao Hu
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongyan Cai
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
11
|
Hastings MH, Castro C, Freeman R, Abdul Kadir A, Lerchenmüller C, Li H, Rhee J, Roh JD, Roh K, Singh AP, Wu C, Xia P, Zhou Q, Xiao J, Rosenzweig A. Intrinsic and Extrinsic Contributors to the Cardiac Benefits of Exercise. JACC Basic Transl Sci 2024; 9:535-552. [PMID: 38680954 PMCID: PMC11055208 DOI: 10.1016/j.jacbts.2023.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 05/01/2024]
Abstract
Among its many cardiovascular benefits, exercise training improves heart function and protects the heart against age-related decline, pathological stress, and injury. Here, we focus on cardiac benefits with an emphasis on more recent updates to our understanding. While the cardiomyocyte continues to play a central role as both a target and effector of exercise's benefits, there is a growing recognition of the important roles of other, noncardiomyocyte lineages and pathways, including some that lie outside the heart itself. We review what is known about mediators of exercise's benefits-both those intrinsic to the heart (at the level of cardiomyocytes, fibroblasts, or vascular cells) and those that are systemic (including metabolism, inflammation, the microbiome, and aging)-highlighting what is known about the molecular mechanisms responsible.
Collapse
Affiliation(s)
- Margaret H. Hastings
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Claire Castro
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca Freeman
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Azrul Abdul Kadir
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carolin Lerchenmüller
- Department of Cardiology, University Hospital Heidelberg, German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Haobo Li
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James Rhee
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason D. Roh
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kangsan Roh
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anand P. Singh
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Chao Wu
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Peng Xia
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qiulian Zhou
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Anthony Rosenzweig
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Wu H, Hu Y, Jiang C, Chen C. Global scientific trends in research of epigenetic response to exercise: A bibliometric analysis. Heliyon 2024; 10:e25644. [PMID: 38370173 PMCID: PMC10869857 DOI: 10.1016/j.heliyon.2024.e25644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
The purpose of this work is to comprehensively understand the adaptive response of multiple epigenetic modifications on gene expression changes driven by exercise. Here, we retrieved literatures from publications in the PubMed and Web of Science Core Collection databases up to and including October 15, 2023. After screening with the exclusion criteria, 1910 publications were selected in total, comprising 1399 articles and 511 reviews. Specifically, a total of 512, 224, and 772 publications is involved in DNA methylation, histone modification, and noncoding RNAs, respectively. The correlations between publication number, authors, institutions, countries, references, and the characteristics of hotspots were explored by CiteSpace. Here, the USA (621 publications) ranked the world's most-influential countries, the University of California System (68 publications) was the most productive, and Tiago Fernandes (14 publications) had the most-published publications. A comprehensive keyword analysis revealed that cardiovascular disease, cancer, skeletal muscle development, and metabolic syndrome, and are the research hotspots. The detailed impact of exercise was further discussed in different aspects of these three categories of epigenetic modifications. Detailed analysis of epigenetic modifications in response to exercise, including DNA methylation, histone modification, and changes in noncoding RNAs, will offer valuable information to help researchers understand hotspots and emerging trends.
Collapse
Affiliation(s)
- Huijuan Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Yue Hu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Cai Jiang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Cong Chen
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, 350122 Fuzhou, Fujian, China
- Fujian Key Laboratory of Cognitive Rehabilitation, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, China
| |
Collapse
|
13
|
Malandish A, Gulati M. The impacts of exercise interventions on inflammaging markers in overweight/obesity patients with heart failure: A systematic review and meta-analysis of randomized controlled trials. IJC HEART & VASCULATURE 2023; 47:101234. [PMID: 37416483 PMCID: PMC10320319 DOI: 10.1016/j.ijcha.2023.101234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/22/2023] [Accepted: 06/18/2023] [Indexed: 07/08/2023]
Abstract
Objectives The purpose of this meta-analysis was to investigate the association of aerobic, resistance and concurrent exercises vs. control group on inflammaging markers [tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-1-beta, IL-8, and high sensitivity C-reactive protein (hs-CRP)] in overweight or obesity patients with heart failure (HF). Methods The databases of Scopus, PubMed, Web of Science and Google Scholar were searched until August 31, 2022 for exercise interventions vs. control group on circulating inflammaging markers in patients with HF. Only randomized controlled trial (RCT) articles were included. Standardized mean difference (SMD) and 95% confidence intervals (95%CIs) were calculated (registration code = CRD42022347164). Results Forty-six full-text articles (57 intervention arms and 3693 participants) were included. A significant reduction was occurred in inflammaging markers of IL-6 [SMD-0.205(95% CI:-0.332 to -0.078),p = 0.002] and hs-CRP [SMD -0.379 (95% CI:-0.556 to -0.202), p = 0.001] with exercise training in patients with HF. Analysis of subgroup by age, body mass index (BMI), type, intensity, duration of exercise and mean left ventricular ejection fraction (LVEF) revealed that there was a significant reduction in TNF-α for middle-aged (p = 0.031), concurrent training (p = 0.033), high intensity (p = 0.005), and heart failure with reduced ejection fraction (HFrEF) (p = 0.007) compared to the control group. There was a significant reduction in IL-6 for middle-aged (p = 0.006), overweight (p = 0.001), aerobic exercise (p = 0.001), both high and moderate intensities (p = 0.037 and p = 0.034), short-term follow-up (p = 0.001), and heart failure with preserved ejection fraction (HFpEF) (p = 0.001) compared to the control group. There was a significant reduction in hs-CRP for middle-aged (p = 0.004), elderly-aged (p = 0.001), overweight (p = 0.001), aerobic exercise (p = 0.001), concurrent training (p = 0.031), both high and moderate intensities (p = 0.017 and p = 0.001), short-term (p = 0.011), long-term (p = 0.049), and very long-term (p = 0.016) follow-ups, HFrEF (p = 0.003) and heart failure with mildly reduced ejection fraction (HFmrEF) (p = 0.048) compared to the control group. Conclusions The results confirmed that aerobic exercise and concurrent training interventions were effective to improve inflammaging markers of TNF-α, IL-6, and hs-CRP. These exercise-related anti-inflammaging responses were observed across ages (middle-aged and elderly-aged), exercise intensities, duration of follow-ups, and mean LVEFs (HFrEF, HFmrEF and HFpEF) in overweight patients with HF.
Collapse
Affiliation(s)
- Abbas Malandish
- Department of Exercise Physiology, Faculty of Sport Sciences, Urmia University, No. 19, Shams Tabrizi St., Velayat Ave., Keikhali Zone, Yamchi, East Azerbaijan, Urmia, Iran
| | - Martha Gulati
- Barbra Streisand Women’s Heart Center, Smidt Heart Institute, Cedars Sinai Medical Center, 127 S. San Vicente Blvd, Suite A3600, Los Angeles, CA 90048, USA
| |
Collapse
|
14
|
Peh ZH, Dihoum A, Hutton D, Arthur JSC, Rena G, Khan F, Lang CC, Mordi IR. Inflammation as a therapeutic target in heart failure with preserved ejection fraction. Front Cardiovasc Med 2023; 10:1125687. [PMID: 37456816 PMCID: PMC10339321 DOI: 10.3389/fcvm.2023.1125687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for around half of all cases of heart failure and may become the dominant type of heart failure in the near future. Unlike HF with reduced ejection fraction there are few evidence-based treatment strategies available. There is a significant unmet need for new strategies to improve clinical outcomes in HFpEF patients. Inflammation is widely thought to play a key role in HFpEF pathophysiology and may represent a viable treatment target. In this review focusing predominantly on clinical studies, we will summarise the role of inflammation in HFpEF and discuss potential therapeutic strategies targeting inflammation.
Collapse
Affiliation(s)
- Zhen Hui Peh
- School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
| | - Adel Dihoum
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Dana Hutton
- School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
| | - J. Simon C. Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Graham Rena
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Faisel Khan
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Chim C. Lang
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Ify R. Mordi
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
15
|
Malandish A, Karimi A, Naderi M, Ghadamyari N, Gulati M. Impacts of Exercise Interventions on Inflammatory Markers and Vascular Adhesion Molecules in Patients With Heart Failure: A Meta-analysis of RCTs. CJC Open 2023; 5:429-453. [PMID: 37397615 PMCID: PMC10314121 DOI: 10.1016/j.cjco.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Background The aim of this meta-analysis was to investigate the effects of concurrent, aerobic, and resistance exercise on markers of inflammation and vascular adhesion molecules (high-sensitivity C-reactive protein [hs-CRP], interleukin [IL]-6, tumour necrosis factor-alpha [TNF-α], soluble intercellular adhesion molecule-1 [sICAM-1], soluble vascular cell adhesion molecule-1 [sVCAM-1], fibrinogen, IL-1-β, IL-10, IL-18, and E-selectin) in patients with heart failure (HF). Methods The PubMed, Scopus, Web of Science, and Google Scholar databases were searched for dates up to August 31, 2022. Randomized controlled trial studies for exercise interventions on circulating inflammatory and vascular adhesion markers in patients with HF were included. Standardized mean difference (SMD) and 95% confidence interval (CI) were calculated. Results A total of 45 articles were included. Exercise training significantly reduced hs-CRP (SMD -0.441 [95% CI: -0.642 to -0.240], P = 0.001), IL-6 (SMD -0.158 (95% CI: -0.303 to -0.013], P = 0.032), and sICAM-1 (SMD -0.282 [95% CI: -0.477 to -0.086], P = 0.005) markers. Analysis of subgroups revealed that a significant reduction occurred in hs-CRP level for the following subgroups: middle-aged, elderly, overweight status, aerobic exercise, concurrent training, both high and moderate intensity, and short-term, long-term, and very long-term follow-up, compared to a control group (P < 0.05). A significant reduction occurred in IL-6 and sICAM-1 levels for those in the following subgroups, compared to a control group (P < 0.05): middle-aged, aerobic exercise, moderate-intensity exercise, and short-term follow-up. A reduction in TNF-α level occurred for middle-aged patients, compared to a control-group (P < 0.05). Conclusions These exercise-related changes (improved inflammation and vascular adhesion markers) as clinical benefits in general, and for exercise-based cardiac rehabilitation in a more-specific format, improve clinical evolution and survival in patients with HF of different etiologies (registration number = CRD42021271423).
Collapse
Affiliation(s)
- Abbas Malandish
- Department of Exercise Physiology, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Asma Karimi
- Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Mahdi Naderi
- Department of Exercise Physiology, Faculty of Sport Sciences, Kharazmi University, Tehran, Iran
| | - Niloufar Ghadamyari
- Department of Exercise Physiology, Faculty of Sport Health Sciences, Ankara University, Ankara, Turkey
| | - Martha Gulati
- Barbra Streisand Women’s Heart Center, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
16
|
Wang Y, Chen L, Zhang M, Li X, Yang X, Huang T, Ban Y, Li Y, Li Q, Zheng Y, Sun Y, Wu J, Yu B. Exercise-induced endothelial Mecp2 lactylation suppresses atherosclerosis via the Ereg/MAPK signalling pathway. Atherosclerosis 2023; 375:45-58. [PMID: 37245426 DOI: 10.1016/j.atherosclerosis.2023.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS Lactylation, a recently identified post-translational modification (PTM), plays a central role in the regulation of multiple physiological and pathological processes. Exercise is known to provide protection against cardiovascular disease. However, whether exercise-generated lactate changes lactylation and is involved in the exercise-induced attenuation of atherosclerotic cardiovascular disease (ASCVD) remains unclear. The purpose of this study was to investigate the effects and mechanisms of exercise-induced lactylation on ASCVD. METHODS AND RESULTS Using the high-fat diet-induced apolipoprotein-deficient mouse model of ASCVD, we found that exercise training promoted Mecp2 lysine lactylation (Mecp2k271la); it also decreased the expression of vascular cell adhesion molecule 1 (Vcam-1), intercellular adhesion molecule 1 (Icam-1), monocyte chemoattractant protein 1 (Mcp-1), interleukin (IL)-1β, IL-6, and increased the level of endothelial nitric oxide synthase (Enos) in the aortic tissue of mice. To explore the underlying mechanisms, mouse aortic endothelial cells (MAECs) were subjected to RNA-sequencing and CHIP-qPCR, which confirmed that Mecp2k271la repressed the expression of epiregulin (Ereg) by binding to its chromatin, demonstrating Ereg as a key downstream molecule for Mecp2k271la. Furthermore, Ereg altered the mitogen-activated protein kinase (MAPK) signalling pathway through regulating the phosphorylation level of epidermal growth factor receptor, thereby affecting the expression of Vcam-1, Icam-1, Mcp-1, IL-1β, IL-6, and Enos in ECs, which in turn promoted the regression of atherosclerosis. In addition, increasing the level of Mecp2k271la by exogenous lactate administration in vivo also inhibits the expression of Ereg and the MAPK activity in ECs, resulting in repressed atherosclerotic progression. CONCLUSIONS In summary, this study provides a mechanistic link between exercise and lactylation modification, offering new insight into the anti-atherosclerotic effects of exercise-induced PTM.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Liangqi Chen
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Meiju Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Xin Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Xueyan Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Tuo Huang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Yunting Ban
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Yunqi Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Qifeng Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Yang Zheng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.
| | - Yong Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.
| | - Jian Wu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China; Cardiac Rehabilitation Center, Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China; Cardiac Rehabilitation Center, Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Wang Y, Li Y, Zhang W, Yuan Z, Lv S, Zhang J. NLRP3 Inflammasome: a Novel Insight into Heart Failure. J Cardiovasc Transl Res 2023; 16:166-176. [PMID: 35697978 DOI: 10.1007/s12265-022-10286-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Among numerous cardiovascular diseases, heart failure is a final and fatal stage, and its morbidity, mortality, and rehospitalization rate remain high, which reduces the exercise tolerance of patients and brings great medical burden and economic pressure to the society. Inflammation takes on a major influence in the occurrence, development, and prognosis of heart failure (HF). The NLRP3 inflammasome is a key node in a chronic inflammatory response, which can accelerate the production of pro-inflammatory cytokines IL-1β and IL-18, leading to the inflammatory response. Therefore, whether it is possible to suppress the downstream factors of NLRP3 inflammasome and its signaling path is expected to provide a new intervention mediator for the therapy of heart failure. This article synopsizes the research progress of NLRP3 inflammasome in heart failure, to provide a reference for clinical treatment. CLINICAL RELEVANCE: This study explored the downstream factors of NLRP3 inflammasome and its signal pathway. Targeted drug therapy for NLRP3 inflammasome is expected to provide a new intervention target for the treatment of heart failure.
Collapse
Affiliation(s)
- Yunjiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yanyang Li
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wanqin Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Zhuo Yuan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shichao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
18
|
Gevaert AB, Wood N, Boen JRA, Davos CH, Hansen D, Hanssen H, Krenning G, Moholdt T, Osto E, Paneni F, Pedretti RFE, Plösch T, Simonenko M, Bowen TS. Epigenetics in the primary and secondary prevention of cardiovascular disease: influence of exercise and nutrition. Eur J Prev Cardiol 2022; 29:2183-2199. [PMID: 35989414 DOI: 10.1093/eurjpc/zwac179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 01/11/2023]
Abstract
Increasing evidence links changes in epigenetic systems, such as DNA methylation, histone modification, and non-coding RNA expression, to the occurrence of cardiovascular disease (CVD). These epigenetic modifications can change genetic function under influence of exogenous stimuli and can be transferred to next generations, providing a potential mechanism for inheritance of behavioural intervention effects. The benefits of exercise and nutritional interventions in the primary and secondary prevention of CVD are well established, but the mechanisms are not completely understood. In this review, we describe the acute and chronic epigenetic effects of physical activity and dietary changes. We propose exercise and nutrition as potential triggers of epigenetic signals, promoting the reshaping of transcriptional programmes with effects on CVD phenotypes. Finally, we highlight recent developments in epigenetic therapeutics with implications for primary and secondary CVD prevention.
Collapse
Affiliation(s)
- Andreas B Gevaert
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.228, Universiteitsplein 1, Antwerp 2610, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Nathanael Wood
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jente R A Boen
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.228, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Constantinos H Davos
- Cardiovascular Research Laboratory, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Dominique Hansen
- Department of Cardiology, Heart Center Hasselt, Jessa Hospital, Hasselt, Belgium.,BIOMED-REVAL-Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Henner Hanssen
- Department of Sport, Exercise and Health, Sports and Exercise Medicine, Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Trine Moholdt
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian Institute of Science and Technology (NTNU), Trondheim, Norway.,Department of Women's Health, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Elena Osto
- Institute of Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland.,University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Laboratory of Translational Nutrition Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Francesco Paneni
- University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Roberto F E Pedretti
- Cardiovascular Department, IRCCS MultiMedica, Care and Research Institute, Milan, Italy
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Maria Simonenko
- Physiology Research and Blood Circulation Department, Cardiopulmonary Exercise Test SRL, Federal State Budgetary Institution, 'V.A. Almazov National Medical Research Centre' of the Ministry of Health of the Russian Federation, Saint-Petersburg, Russian Federation
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
19
|
Toldo S, Mezzaroma E, Buckley LF, Potere N, Di Nisio M, Biondi-Zoccai G, Van Tassell BW, Abbate A. Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacol Ther 2022; 236:108053. [PMID: 34906598 PMCID: PMC9187780 DOI: 10.1016/j.pharmthera.2021.108053] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023]
Abstract
The NACHT, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is an intracellular sensing protein complex that plays a major role in innate immunity. Following tissue injury, activation of the NLRP3 inflammasome results in cytokine production, primarily interleukin(IL)-1β and IL-18, and, eventually, inflammatory cell death - pyroptosis. While a balanced inflammatory response favors damage resolution and tissue healing, excessive NLRP3 activation causes detrimental effects. A key involvement of the NLRP3 inflammasome has been reported across a wide range of cardiovascular diseases (CVDs). Several pharmacological agents selectively targeting the NLRP3 inflammasome system have been developed and tested in animals and early phase human studies with overall promising results. While the NLRP3 inhibitors are in clinical development, multiple randomized trials have demonstrated the safety and efficacy of IL-1 blockade in atherothrombosis, heart failure and recurrent pericarditis. Furthermore, the non-selective NLRP3 inhibitor colchicine has been recently shown to significantly reduce cardiovascular events in patients with chronic coronary disease. In this review, we will outline the mechanisms driving NLRP3 assembly and activation, and discuss the pathogenetic role of the NLRP3 inflammasome in CVDs, providing an overview of the current and future therapeutic approaches targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Stefano Toldo
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Eleonora Mezzaroma
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmacotherapy and Outcome Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Leo F Buckley
- Department of Pharmacy, Brigham and Women's Hospital, Boston, MA, USA
| | - Nicola Potere
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marcello Di Nisio
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Mediterranea Cardiocentro, Napoli, Italy
| | - Benjamin W Van Tassell
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmacotherapy and Outcome Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Antonio Abbate
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
20
|
Rump K, Holtkamp C, Bergmann L, Nowak H, Unterberg M, Orlowski J, Thon P, Bazzi Z, Bazzi M, Adamzik M, Koos B, Rahmel T. Midazolam impacts acetyl-And butyrylcholinesterase genes: An epigenetic explanation for postoperative delirium? PLoS One 2022; 17:e0271119. [PMID: 35802656 PMCID: PMC9269431 DOI: 10.1371/journal.pone.0271119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Midazolam is a widely used short-acting benzodiazepine. However, midazolam is also criticized for its deliriogenic potential. Since delirium is associated with a malfunction of the neurotransmitter acetylcholine, midazolam appears to interfere with its proper metabolism, which can be triggered by epigenetic modifications. Consequently, we tested the hypothesis that midazolam indeed changes the expression and activity of cholinergic genes by acetylcholinesterase assay and qPCR. Furthermore, we investigated the occurrence of changes in the epigenetic landscape by methylation specific PCR, ChiP-Assay and histone ELISA. In an in-vitro model containing SH-SY5Y neuroblastoma cells, U343 glioblastoma cells, and human peripheral blood mononuclear cells, we found that midazolam altered the activity of acetylcholinesterase /buturylcholinesterase (AChE / BChE). Interestingly, the increased expression of the buturylcholinesterase evoked by midazolam was accompanied by a reduced methylation of the BCHE gene and the di-methylation of histone 3 lysine 4 and came along with an increased expression of the lysine specific demethylase KDM1A. Last, inflammatory cytokines were not induced by midazolam. In conclusion, we found a promising mechanistic link between midazolam treatment and delirium, due to a significant disruption in cholinesterase homeostasis. In addition, midazolam seems to provoke profound changes in the epigenetic landscape. Therefore, our results can contribute to a better understanding of the hitherto poorly understood interactions and risk factors of midazolam on delirium.
Collapse
Affiliation(s)
- Katharina Rump
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
- * E-mail:
| | - Caroline Holtkamp
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Lars Bergmann
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Hartmuth Nowak
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Unterberg
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Jennifer Orlowski
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Patrick Thon
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Zainab Bazzi
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Maha Bazzi
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Michael Adamzik
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Björn Koos
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Tim Rahmel
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
21
|
Meta-Analysis of Physical Training on Natriuretic Peptides and Inflammation in Heart Failure. Am J Cardiol 2022; 178:60-71. [PMID: 35817596 DOI: 10.1016/j.amjcard.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022]
Abstract
Physical training has been reported to attenuate myocardial stress and inflammation in heart failure (HF). We aimed to assess the impact of physical training on B-type natriuretic peptide and N-terminal pro-B-type natriuretic peptide (NT-proBNP), as well as biomarkers of inflammation-C-reactive protein, tumor necrosis factor α (TNF-α), and interleukins (ILs). A systematic electronic literature search was conducted up to May 2021 in PubMed, Cochrane Library, CINAHL, Embase, and SPORTDiscus to identify randomized clinical trials reporting associations between any formal physical training intervention and biomarker levels in patients with HF. Random-effects meta-analyses was used to calculate pooled correlations between physical training and blood biomarkers. Biomarker outcomes were expressed as mean difference or ratio of means and 95% confidence interval between the intervention and control groups, according to the normality of the data. A total of 38 trials were included in the final meta-analysis (2,652 randomized patients). Physical training was associated with decreased B-type natriuretic peptide (p = 0.02), NT-proBNP (p <0.01), C-reactive protein (p <0.00001), TNF-α (p = 0.03), IL-6 (p = 0.04), and IL-1β (p = 0.001). Aerobic continuous training was associated with a 35% reduction in NT-proBNP (p = 0.01); ≥150 min/week of exercise was associated with a greater reduction in TNF-α levels (p = 0.0004), and aerobic interval training was associated with lower IL-6 levels (p = 0.01). In conclusion, physical training in patients with HF is associated with beneficial effects on natriuretic peptides and biomarkers of inflammation because they were all reduced by the intervention.
Collapse
|
22
|
Wang M, Zhao M, Yu J, Xu Y, Zhang J, Liu J, Zheng Z, Ye J, Wang Z, Ye D, Feng Y, Xu S, Pan W, Wei C, Wan J. MCC950, a Selective NLRP3 Inhibitor, Attenuates Adverse Cardiac Remodeling Following Heart Failure Through Improving the Cardiometabolic Dysfunction in Obese Mice. Front Cardiovasc Med 2022; 9:727474. [PMID: 35647084 PMCID: PMC9133382 DOI: 10.3389/fcvm.2022.727474] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is often accompanied by hypertension. Although a large number of studies have confirmed that NLRP3 inhibitors can improve cardiac remodeling in mice with a normal diet, it is still unclear whether NLRP3 inhibitors can improve heart failure (HF) induced by pressure overload in obese mice. The purpose of this study was to explore the role of MCC950, a selective NLRP3 inhibitor, on HF in obese mice and its metabolic mechanism. Obese mice induced with a 10-week high-fat diet (HFD) were used in this study. After 4 weeks of HFD, transverse aortic constriction (TAC) surgery was performed to induce a HF model. MCC950 (10 mg/kg, once/day) was injected intraperitoneally from 2 weeks after TAC and continued for 4 weeks. After echocardiography examination, we harvested left ventricle tissues and performed molecular experiments. The results suggest that in obese mice, MCC950 can significantly improve cardiac hypertrophy and fibrosis caused by pressure overload. MCC950 ameliorated cardiac inflammation after TAC surgery and promoted M2 macrophage infiltration in the cardiac tissue. MCC950 not only restored fatty acid uptake and utilization by regulating the expression of CD36 and CPT1β but also reduced glucose uptake and oxidation via regulating the expression of GLUT4 and p-PDH. In addition, MCC950 affected the phosphorylation of AKT and AMPK in obese mice with HF. In summary, MCC950 can alleviate HF induced by pressure overload in obese mice via improving cardiac metabolism, providing a basis for the clinical application of NLRP3 inhibitors in obese patients with HF.
Collapse
Affiliation(s)
- Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Junping Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
23
|
Lin Z, Ding Q, Li X, Feng Y, He H, Huang C, Zhu Y. Targeting Epigenetic Mechanisms in Vascular Aging. Front Cardiovasc Med 2022; 8:806988. [PMID: 35059451 PMCID: PMC8764463 DOI: 10.3389/fcvm.2021.806988] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
Environment, diseases, lack of exercise, and aged tendency of population have becoming crucial factors that induce vascular aging. Vascular aging is unmodifiable risk factor for diseases like diabetes, hypertension, atherosclerosis, and hyperlipidemia. Effective interventions to combat this vascular function decline is becoming increasingly urgent as the rising hospitalization rate caused by vascular aging-related diseases. Fortunately, recent transformative omics approaches have enabled us to examine vascular aging mechanisms at unprecedented levels and precision, which make our understanding of slowing down or reversing vascular aging become possible. Epigenetic viz. DNA methylation, histone modifications, and non-coding RNA-based mechanisms, is a hallmark of vascular aging, its deregulation leads to aberrant transcription changes in tissues. Epigenetics mechanisms by mediating covalent modifications to DNA and histone proteins, consequently, influence the sensitivity and activities of signaling pathways in cells and tissues. A growing body of evidence supports correlations between epigenetic changes and vascular aging. In this article, we will provide a comprehensive overview of epigenetic changes associated with vascular aging based on the recent findings with a focus on molecular mechanisms of action, strategies to reverse epigenetic changes, and future perspectives.
Collapse
Affiliation(s)
- Zhongxiao Lin
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
- Key Laboratory of Molecular Target and Clinical Pharmacology and National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Xinzhi Li
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Yuliang Feng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Hao He
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Chuoji Huang
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - YiZhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Qiu Y, Pan X, Chen Y, Xiao J. Hallmarks of exercised heart. J Mol Cell Cardiol 2021; 164:126-135. [PMID: 34914934 DOI: 10.1016/j.yjmcc.2021.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022]
Abstract
The benefits of exercise in humans on the heart have been well recognized for many years. Long-term endurance exercise training can induce physiologic cardiac hypertrophy with normal or enhanced heart function, and provide protective benefits in preventing heart failure. The heart-specific responses that occur during exercise are complex and highly variable. This review mainly focuses on the current understanding of the structural and functional cardiac adaptations to exercise as well as molecular pathways and signaling proteins responsible for these changes. Here, we summarize eight tentative hallmarks that represent common denominators of the exercised heart. These hallmarks are: cardiomyocyte growth, cardiomyocyte fate reprogramming, angiogenesis and lymphangiogenesis, mitochondrial remodeling, epigenetic alteration, enhanced endothelial function, quiescent cardiac fibroblast, and improved cardiac metabolism. A major challenge is to explore the underlying molecular mechanisms for cardio-protective effects of exercise, and to identify therapeutic targets for heart diseases.
Collapse
Affiliation(s)
- Yan Qiu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xue Pan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yiwen Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
25
|
Szabo TM, Frigy A, Nagy EE. Targeting Mediators of Inflammation in Heart Failure: A Short Synthesis of Experimental and Clinical Results. Int J Mol Sci 2021; 22:13053. [PMID: 34884857 PMCID: PMC8657742 DOI: 10.3390/ijms222313053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 01/22/2023] Open
Abstract
Inflammation has emerged as an important contributor to heart failure (HF) development and progression. Current research data highlight the diversity of immune cells, proteins, and signaling pathways involved in the pathogenesis and perpetuation of heart failure. Chronic inflammation is a major cardiovascular risk factor. Proinflammatory signaling molecules in HF initiate vicious cycles altering mitochondrial function and perturbing calcium homeostasis, therefore affecting myocardial contractility. Specific anti-inflammatory treatment represents a novel approach to prevent and slow HF progression. This review provides an update on the putative roles of inflammatory mediators involved in heart failure (tumor necrosis factor-alpha; interleukin 1, 6, 17, 18, 33) and currently available biological and non-biological therapy options targeting the aforementioned mediators and signaling pathways. We also highlight new treatment approaches based on the latest clinical and experimental research.
Collapse
Affiliation(s)
- Timea Magdolna Szabo
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Department of Cardiology, Clinical County Hospital Mures, 540103 Targu Mures, Romania;
| | - Attila Frigy
- Department of Cardiology, Clinical County Hospital Mures, 540103 Targu Mures, Romania;
- Department of Internal Medicine IV, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540103 Targu Mures, Romania
| | - Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Laboratory of Medical Analysis, Clinical County Hospital Mures, 540394 Targu Mures, Romania
| |
Collapse
|
26
|
Wu G, Zhang X, Gao F. The epigenetic landscape of exercise in cardiac health and disease. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:648-659. [PMID: 33333247 PMCID: PMC8724625 DOI: 10.1016/j.jshs.2020.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/16/2020] [Accepted: 11/16/2020] [Indexed: 05/02/2023]
Abstract
With the rising incidence of cardiovascular diseases, the concomitant mortality and morbidity impose huge burdens on quality of life and societal costs. It is generally accepted that physical inactivity is one of the major risk factors for cardiac disease and that exercise benefits the heart in both physiological and pathologic conditions. However, the molecular mechanisms governing the cardioprotective effects exerted by exercise remain incompletely understood. Most recently, an increasing number of studies indicate the involvement of epigenetic modifications in the promotion of cardiac health and prevention of cardiac disease. Exercise and other lifestyle factors extensively induce epigenetic modifications, including DNA/RNA methylation, histone post-translational modifications, and non-coding RNAs in multiple tissues, which may contribute to their positive effects in human health and diseases. In addition, several studies have shown that maternal or paternal exercise prevents age-associated or high-fat diet-induced metabolic dysfunction in the offspring, reinforcing the importance of epigenetics in mediating the beneficial effects of exercise. It has been shown that exercise can directly modify cardiac epigenetics to promote cardiac health and protect the heart against various pathological processes, or it can modify epigenetics in other tissues, which reduces the risk of cardiac disease and affords cardioprotection through exerkines. An in-depth understanding of the epigenetic landscape of cardioprotective response to exercise will provide new therapeutic targets for cardiac diseases. This review, therefore, aimed to acquaint the cardiac community with the rapidly advancing and evolving field of exercise and epigenetics.
Collapse
Affiliation(s)
- Guiling Wu
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xing Zhang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Feng Gao
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
27
|
Wu J, Dong E, Zhang Y, Xiao H. The Role of the Inflammasome in Heart Failure. Front Physiol 2021; 12:709703. [PMID: 34776995 PMCID: PMC8581560 DOI: 10.3389/fphys.2021.709703] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation promotes the development of heart failure (HF). The inflammasome is a multimeric protein complex that plays an essential role in the innate immune response by triggering the cleavage and activation of the proinflammatory cytokines interleukins (IL)-1β and IL-18. Blocking IL-1β with the monoclonal antibody canakinumab reduced hospitalizations and mortality in HF patients, suggesting that the inflammasome is involved in HF pathogenesis. The inflammasome is activated under various pathologic conditions that contribute to the progression of HF, including pressure overload, acute or chronic overactivation of the sympathetic system, myocardial infarction, and diabetic cardiomyopathy. Inflammasome activation is responsible for cardiac hypertrophy, fibrosis, and pyroptosis. Besides inflammatory cells, the inflammasome in other cardiac cells initiates local inflammation through intercellular communication. Some inflammasome inhibitors are currently being investigated in clinical trials in patients with HF. The current evidence suggests that the inflammasome is a critical mediator of cardiac inflammation during HF and a promising therapeutic target. The present review summarizes the recent advances in both basic and clinical research on the role of the inflammasome in HF.
Collapse
Affiliation(s)
- Jimin Wu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Erdan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Youyi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China.,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| |
Collapse
|
28
|
An Epigenetic Insight into NLRP3 Inflammasome Activation in Inflammation-Related Processes. Biomedicines 2021; 9:biomedicines9111614. [PMID: 34829842 PMCID: PMC8615487 DOI: 10.3390/biomedicines9111614] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Aberrant NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome activation in innate immune cells, triggered by diverse cellular danger signals, leads to the production of inflammatory cytokines (IL-1β and IL-18) and cell death by pyroptosis. These processes are involved in the pathogenesis of a wide range of diseases such as autoimmune, neurodegenerative, renal, metabolic, vascular diseases and cancer, and during physiological processes such as aging. Epigenetic dynamics mediated by changes in DNA methylation patterns, chromatin assembly and non-coding RNA expression are key regulators of the expression of inflammasome components and its further activation. Here, we review the role of the epigenome in the expression, assembly, and activation of the NLRP3 inflammasome, providing a critical overview of its involvement in the disease and discussing how targeting these mechanisms by epigenetic treatments could be a useful strategy for controlling NLRP3-related inflammatory diseases.
Collapse
|
29
|
Papaioannou F, Karatzanos E, Chatziandreou I, Philippou A, Nanas S, Dimopoulos S. Epigenetic effects following acute and chronic exercise in cardiovascular disease: A systematic review. Int J Cardiol 2021; 341:88-95. [PMID: 34339767 DOI: 10.1016/j.ijcard.2021.07.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Acute exercise and exercise training may confer epigenetic modifications in healthy subjects. Epigenetic effects after exercise have been showed in patients with cardiovascular disease. The aim of this systematic review was to summarize the evidence from available clinical trials that study epigenetic adaptations after exercise in patients with cardiovascular disease. METHODS The search strategy was performed in PubMed and CENTRAL databases on articles published until September 2020. Studies with titles and abstracts relevant to exercise epigenetic modification applied to cardiovascular patients were fully examined. Inclusion and exclusion criteria were utilized for studies screening. Quality assessment with PEDro scale and evaluation by two independent reviewers was performed. RESULTS Of the 1714 articles retrieved, 88 articles were assessed for eligibility criteria and 8 articles matched our search criteria and finally included in the systematic analysis. The acute exercise epigenetic (miRNAs) effects were assessed in three studies and the chronic exercise training effects (miRNAs and DNA methylation) in six studies. The results have shown that there is possibly an acute significant exercise effect on epigenetic targets which is more evident after chronic exercise training. CONCLUSIONS By the present systematic review, we provide preliminary evidence of beneficial epigenetic adaptations following acute and chronic exercise in patients with cardiovascular disease. More controlled studies are needed to confirm such evidence.
Collapse
Affiliation(s)
- Foivos Papaioannou
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Karatzanos
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, National and Kapodistrian University of Athens, Athens, Greece
| | - Ilenia Chatziandreou
- 1(st) Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastassios Philippou
- Department of Physiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Serafim Nanas
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavros Dimopoulos
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, National and Kapodistrian University of Athens, Athens, Greece; Cardiac Surgery ICU, Onassis Cardiac Surgery Center, Athens, Greece.
| |
Collapse
|
30
|
Ding Y, Xu X. Effects of regular exercise on inflammasome activation-related inflammatory cytokine levels in older adults: a systematic review and meta-analysis. J Sports Sci 2021; 39:2338-2352. [PMID: 34121608 DOI: 10.1080/02640414.2021.1932279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Exercise has been found to play important roles in regulating inflammation, although the mechanisms are unclear. The present systematic review and meta-analysis aimed to investigate whether regular exercise could regulate inflammation through inflammasome activation signalling in older adults. Five databases were searched, and 19 randomised controlled trials (RCTs) studying effects of regular exercise on inflammasome activation-related inflammatory cytokines interleukin (IL)-1β and IL-18 and other key molecules involved in inflammasome activation signalling such as NOD-like receptor family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1 in older adults aged 50 years or older were included. The results showed that regular exercise could significantly decrease the levels of IL-1β and IL-18, important end-products of inflammasome activation in older adults. Subgroup analyses showed that aerobic exercise is the most effective training modality, and low-to-moderate intensity and mixed intensity are better compared with high intensity to decrease IL-1β and IL-18. The effect of regular exercise on key molecules involved in inflammasome activation signalling including NLRP3, ASC and caspase-1 is understudied and needs to be further investigated. These findings demonstrate that regular exercise could effectively decrease inflammasome activation-related inflammatory cytokine levels in older adults.
Collapse
Affiliation(s)
- Yijian Ding
- Department of Physical Education, Nanjing University of Science & Technology, Nanjing, P. R. China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, P. R. China
| |
Collapse
|
31
|
Gedefaw L, Ullah S, Leung PHM, Cai Y, Yip SP, Huang CL. Inflammasome Activation-Induced Hypercoagulopathy: Impact on Cardiovascular Dysfunction Triggered in COVID-19 Patients. Cells 2021; 10:916. [PMID: 33923537 PMCID: PMC8073302 DOI: 10.3390/cells10040916] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is the most devastating infectious disease in the 21st century with more than 2 million lives lost in less than a year. The activation of inflammasome in the host infected by SARS-CoV-2 is highly related to cytokine storm and hypercoagulopathy, which significantly contribute to the poor prognosis of COVID-19 patients. Even though many studies have shown the host defense mechanism induced by inflammasome against various viral infections, mechanistic interactions leading to downstream cellular responses and pathogenesis in COVID-19 remain unclear. The SARS-CoV-2 infection has been associated with numerous cardiovascular disorders including acute myocardial injury, myocarditis, arrhythmias, and venous thromboembolism. The inflammatory response triggered by the activation of NLRP3 inflammasome under certain cardiovascular conditions resulted in hyperinflammation or the modulation of angiotensin-converting enzyme 2 signaling pathways. Perturbations of several target cells and tissues have been described in inflammasome activation, including pneumocytes, macrophages, endothelial cells, and dendritic cells. The interplay between inflammasome activation and hypercoagulopathy in COVID-19 patients is an emerging area to be further addressed. Targeted therapeutics to suppress inflammasome activation may have a positive effect on the reduction of hyperinflammation-induced hypercoagulopathy and cardiovascular disorders occurring as COVID-19 complications.
Collapse
Affiliation(s)
| | | | | | | | - Shea-Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (L.G.); (S.U.); (P.H.M.L.); (Y.C.)
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (L.G.); (S.U.); (P.H.M.L.); (Y.C.)
| |
Collapse
|
32
|
Pellegrini C, Martelli A, Antonioli L, Fornai M, Blandizzi C, Calderone V. NLRP3 inflammasome in cardiovascular diseases: Pathophysiological and pharmacological implications. Med Res Rev 2021; 41:1890-1926. [PMID: 33460162 DOI: 10.1002/med.21781] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/30/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
Growing evidence points out the importance of nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome in the pathogenesis of cardiovascular diseases (CVDs), including hypertension, myocardial infarct (MI), ischemia, cardiomyopathies (CMs), heart failure (HF), and atherosclerosis. In this regard, intensive research efforts both in humans and in animal models of CVDs are being focused on the characterization of the pathophysiological role of NLRP3 inflammasome signaling in CVDs. In addition, clinical and preclinical evidence is coming to light that the pharmacological blockade of NLRP3 pathways with drugs, including novel chemical entities as well as drugs currently employed in the clinical practice, biologics and phytochemicals, could represent a suitable therapeutic approach for prevention and management of CVDs. On these bases, the present review article provides a comprehensive overview of clinical and preclinical studies about the role of NLRP3 inflammasome in the pathophysiology of CVDs, including hypertension, MI, ischemic injury, CMs, HF and atherosclerosis. In addition, particular attention has been focused on current evidence on the effects of drugs, biologics, and phytochemicals, targeting different steps of inflammasome signaling, in CVDs.
Collapse
Affiliation(s)
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | | |
Collapse
|
33
|
Ramos-Lopez O, Milagro FI, Riezu-Boj JI, Martinez JA. Epigenetic signatures underlying inflammation: an interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition. Inflamm Res 2021; 70:29-49. [PMID: 33231704 PMCID: PMC7684853 DOI: 10.1007/s00011-020-01425-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
AIM AND OBJECTIVE Emerging translational evidence suggests that epigenetic alterations (DNA methylation, miRNA expression, and histone modifications) occur after external stimuli and may contribute to exacerbated inflammation and the risk of suffering several diseases including diabetes, cardiovascular diseases, cancer, and neurological disorders. This review summarizes the current knowledge about the harmful effects of high-fat/high-sugar diets, micronutrient deficiencies (folate, manganese, and carotenoids), obesity and associated complications, bacterial/viral infections, smoking, excessive alcohol consumption, sleep deprivation, chronic stress, air pollution, and chemical exposure on inflammation through epigenetic mechanisms. Additionally, the epigenetic phenomena underlying the anti-inflammatory potential of caloric restriction, n-3 PUFA, Mediterranean diet, vitamin D, zinc, polyphenols (i.e., resveratrol, gallic acid, epicatechin, luteolin, curcumin), and the role of systematic exercise are discussed. METHODS Original and review articles encompassing epigenetics and inflammation were screened from major databases (including PubMed, Medline, Science Direct, Scopus, etc.) and analyzed for the writing of the review paper. CONCLUSION Although caution should be exercised, research on epigenetic mechanisms is contributing to understand pathological processes involving inflammatory responses, the prediction of disease risk based on the epigenotype, as well as the putative design of therapeutic interventions targeting the epigenome.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Baja California, Mexico
| | - Fermin I Milagro
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain.
| | - Jose I Riezu-Boj
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - J Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Madrid, Spain
| |
Collapse
|
34
|
Nieman DC, Ferrara F, Pecorelli A, Woodby B, Hoyle AT, Simonson A, Valacchi G. Postexercise Inflammasome Activation and IL-1β Production Mitigated by Flavonoid Supplementation in Cyclists. Int J Sport Nutr Exerc Metab 2020; 30:396-404. [PMID: 32932235 DOI: 10.1123/ijsnem.2020-0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/21/2020] [Accepted: 07/19/2020] [Indexed: 11/18/2022]
Abstract
Inflammasomes are multiprotein signaling platforms of the innate immune system that detect markers of physiological stress and promote the maturation of caspase-1 and interleukin 1 beta (IL-1β), IL-18, and gasdermin D. This randomized, cross-over trial investigated the influence of 2-week mixed flavonoid (FLAV) versus placebo (PL) supplementation on inflammasome activation and IL-1β and IL-18 production after 75-km cycling in 22 cyclists (42 ± 1.7 years). Blood samples were collected before and after the 2-week supplementation, and then 0 hr, 1.5 hr, and 21 hr postexercise (176 ± 5.4 min, 73.4 ± 2.0 %VO2max). The supplement (678 mg FLAVs) included quercetin, green tea catechins, and bilberry anthocyanins. The pattern of change in the plasma levels of the inflammasome adaptor oligomer ASC (apoptosis-associated speck-like protein containing caspase recruitment domain) was different between the FLAV and PL trials, with the FLAV ASC levels 52% lower (Cohen's d = 1.06) than PL immediately following 75-km cycling (interaction effect, p = .012). The plasma IL-1β levels in FLAV were significantly lower than PL (23-42%; Cohen's d = 0.293-0.644) throughout 21 hr of recovery (interaction effect, p = .004). The change in plasma gasdermin D levels were lower immediately postexercise in FLAV versus PL (15% contrast, p = .023; Cohen's d = 0.450). The patterns of change in plasma IL-18 and IL-37 did not differ between the FLAV and PL trials (interaction effects, p = .388, .716, respectively). These data indicate that 2-week FLAV ingestion mitigated inflammasome activation, with a corresponding decrease in IL-1β release in cyclists after a 75-km cycling time trial. The data from this study support the strategy of ingesting high amounts of FLAV to mitigate postexercise inflammation.
Collapse
|
35
|
Barrón-Cabrera E, González-Becerra K, Rosales-Chávez G, Mora-Jiménez A, Hernández-Cañaveral I, Martínez-López E. Low-grade chronic inflammation is attenuated by exercise training in obese adults through down-regulation of ASC gene in peripheral blood: a pilot study. GENES AND NUTRITION 2020; 15:15. [PMID: 32854610 PMCID: PMC7457251 DOI: 10.1186/s12263-020-00674-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
Background Obesity is characterized by low-grade chronic inflammation and an excess of adipose tissue. The ASC gene encodes a protein that is part of the NLRP3 inflammasome, a cytosolic multiprotein complex that is associated with inflammation and metabolic alterations. To our knowledge, there is no evidence regarding ASC gene activity in obese adults in response to lifestyle modifications. Purpose To evaluate the effect of hypocaloric diet and moderate-intensity structured exercise intervention on ASC gene expression and inflammatory markers in obese adults. Methods Thirty-seven obese individuals aged 25 to 50 years were randomized to the hypocaloric diet exercise group or hypocaloric diet group. The participants underwent a 4-month follow-up. Electrical bioimpedance was used for body composition analysis. Biochemical data were analyzed by dry chemistry and insulin levels by ELISA. ASC gene expression from peripheral blood was performed using real-time PCR. Dietary data was collected through questionnaires and analyzed using the Nutritionist Pro™ software. Quantification of cytokines was conducted using Bio-Plex Pro™ Human cytokine. The Astrand-Ryhming test was used to estimate the maximum oxygen volume and design the moderate-intensity structured exercise program ~ 75% heart rate (HR) Results After the intervention, both study groups significantly improved body composition (decreased weight, fat mass, waist circumference and abdominal obesity, p < 0.05). Besides, the diet-exercise group significantly decreased ASC mRNA expression, MCP-1, and MIP-1β inflammatory cytokines compared to the diet group (p < 0.05). While in the diet group, MCP-1 and IL-8 exhibited significantly decreased levels (p < 0.05). In the diet-exercise group, a positive correlation between the atherogenic index and waist circumference was found (r = 0.822, p = 0.011), and a negative correlation was observed between the delta of ASC mRNA expression and IL-10 levels at the end of the intervention (r = − 0.627, p = 0.019). Conclusion Low-grade chronic inflammation was attenuated through individualized exercise prescription and our findings highlight the role of the ASC gene in the inflammation of obese adults. Trial registration ClinicalTrials.gov, number NCT04315376. Registered 20 March 2020—retrospectively registered
Collapse
Affiliation(s)
- Elisa Barrón-Cabrera
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Sierra Mojada 950, zip code, 44340, Guadalajara, Jalisco, México
| | - Karina González-Becerra
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Sierra Mojada 950, zip code, 44340, Guadalajara, Jalisco, México
| | - Gustavo Rosales-Chávez
- Respiratory Therapy Unit, Health Sciences University Center, University of Guadalajara, Sierra Mojada 950, zip code, 44340, Guadalajara, Jalisco, México
| | - Alondra Mora-Jiménez
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Sierra Mojada 950, zip code, 44340, Guadalajara, Jalisco, México
| | - Iván Hernández-Cañaveral
- Microbiology and Pathology Department, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Sierra Mojada 950, zip code, 44340, Guadalajara, Jalisco, México
| | - Erika Martínez-López
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Sierra Mojada 950, zip code, 44340, Guadalajara, Jalisco, México.
| |
Collapse
|
36
|
Xiao C, Beitler JJ, Higgins KA, Chico CE, Withycombe JS, Zhu Y, Zhao H, Lin IH, Li F, Jeon S, Irwin M, Bruner DW, Miller AH, Gary R. Pilot study of combined aerobic and resistance exercise on fatigue for patients with head and neck cancer: Inflammatory and epigenetic changes. Brain Behav Immun 2020; 88:184-192. [PMID: 32330594 PMCID: PMC7415514 DOI: 10.1016/j.bbi.2020.04.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022] Open
Abstract
This pilot study examined whether a combined aerobic resistance exercise program reduced fatigue and the potential inflammatory and epigenetic mechanisms in patients with head and neck cancer (HNC) receiving intensity-modulated radiotherapy. The exercise group (N = 12) received a 3-month supervised aerobic resistance exercise intervention that was initiated before a 6-week radiotherapy regimen; the control group (N = 14) received standard care. Fatigue was measured using Multidimensional Fatigue Inventory-20; physical function measures included a 6-minute walk distance (6MWD), chair stands, bicep curls, and hand grip strength. Inflammatory markers and DNA methylation data were acquired using standardized protocol. Patients were mostly white (93%) and male (81%) with a mean age of 57 years. At the end of the intervention, the exercise group had a marginal decrease in fatigue compared with the control (-5.0 vs. 4.9; P = 0.10). The exercise group had a significantly greater improvement in 6MWD (29.8 vs. -55.5 m; P = 0.04), and a marginally smaller decline in hand grip (-0.3 vs. -5.8 lbs; P = 0.05) at the end of the intervention than the control. No significant difference in inflammatory markers was observed between groups. Lower plasma interleukin (IL) 6, IL1 receptor antagonist, tumor necrosis factor α (TNFα), soluble TNF receptor II and C-reactive protein were significantly associated with increased 6MWD, chair stand, and bicep curl at the end of the intervention (p < 0.05). Among the 1152 differentially methylated sites (DMS) after intervention (p < 0.001), 163 DMS were located in gene promoter regions. Enrichment analysis suggested that the top 10 upstream regulators were associated with tumor (HNF4A, RPP38, HOXA9, SAHM1, CDK7, NDN, RPS15) and inflammation (IRF7, CRKL, ONECUT1). The top 5 diseases or functions annotations of the 62 hypermethylated DMS indicated anti-tumor and anti-inflammatory effects that might be linked to exercise. These findings suggest that exercise may improve physical performance and reduce fatigue, which could be further linked to decreased inflammation, during active radiotherapy for HNC patients. Larger studies are warranted.
Collapse
Affiliation(s)
- Canhua Xiao
- School of Nursing, Yale University, 400 West Campus Drive, Orange 06477, United States.
| | - Jonathan J Beitler
- Department of Radiation, School of Medicine, Emory University, 1520 Clifton Road NE, Atlanta 30322, United States
| | - Kristin A Higgins
- Department of Radiation, School of Medicine, Emory University, 1520 Clifton Road NE, Atlanta 30322, United States
| | - Cynthia E Chico
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, 1365-B Clifton Road, Atlanta, GA 30322, United States
| | - Janice S Withycombe
- School of Nursing, Clemson University, 508 Edward's, Clemson, SC 29634, United States
| | - Ying Zhu
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Hongyu Zhao
- Department of Epidemiology and Public Health, School of Medicine, Yale University, 300 George Street, New Haven, CT 06510, United States
| | - I-Hsin Lin
- Yale Center for Analytical Sciences, School of Public Health, Yale University, 300 George Street, New Haven, CT 06510, United States
| | - Fangyong Li
- School of Public Health, Yale University, 60 College St, New Haven, CT 06510, United States
| | - Sangchoon Jeon
- School of Nursing, Yale University, 400 West Campus Drive, Orange 06477, United States
| | - Melinda Irwin
- School of Public Health, Yale University, 60 College St, New Haven, CT 06510, United States
| | - Deborah W Bruner
- School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta 30322, United States
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, 1365-B Clifton Road, Atlanta, GA 30322, United States
| | - Rebecca Gary
- School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta 30322, United States
| |
Collapse
|
37
|
Liu H, Liu X, Zhuang H, Fan H, Zhu D, Xu Y, He P, Liu J, Feng D. Mitochondrial Contact Sites in Inflammation-Induced Cardiovascular Disease. Front Cell Dev Biol 2020; 8:692. [PMID: 32903766 PMCID: PMC7438832 DOI: 10.3389/fcell.2020.00692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
The mitochondrion, the ATP-producing center, is both physically and functionally associated with almost all other organelles in the cell. Mitochondrial-associated membranes (MAMs) are involved in a variety of biological processes, such as lipid exchange, protein transport, mitochondrial fission, mitophagy, and inflammation. Several inflammation-related diseases in the cardiovascular system involve several intracellular events including mitochondrial dysfunction as well as disruption of MAMs. Therefore, an in-depth exploration of the function of MAMs will be of great significance for us to understand the initiation, progression, and clinical complications of cardiovascular disease (CVD). In this review, we summarize the recent advances in our knowledge of MAM regulation and function in CVD-related cells. We discuss the potential roles of MAMs in activating inflammation to influence the development of CVD.
Collapse
Affiliation(s)
- Hao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Haixia Zhuang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hualin Fan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Guangdong Provincial People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Diseases, The Second Affiliated Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yiming Xu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Pengcheng He
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Du Feng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
38
|
The Role of Nutri(epi)genomics in Achieving the Body's Full Potential in Physical Activity. Antioxidants (Basel) 2020; 9:antiox9060498. [PMID: 32517297 PMCID: PMC7346155 DOI: 10.3390/antiox9060498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Physical activity represents a powerful tool to achieve optimal health. The overall activation of several molecular pathways is associated with many beneficial effects, mainly converging towards a reduced systemic inflammation. Not surprisingly, regular activity can contribute to lowering the “epigenetic age”, acting as a modulator of risk toward several diseases and enhancing longevity. Behind this, there are complex molecular mechanisms induced by exercise, which modulate gene expression, also through epigenetic modifications. The exercise-induced epigenetic imprint can be transient or permanent and contributes to the muscle memory, which allows the skeletal muscle adaptation to environmental stimuli previously encountered. Nutrition, through key macro- and micronutrients with antioxidant properties, can play an important role in supporting skeletal muscle trophism and those molecular pathways triggering the beneficial effects of physical activity. Nutrients and antioxidant food components, reversibly altering the epigenetic imprint, have a big impact on the phenotype. This assigns a role of primary importance to nutri(epi)genomics, not only in optimizing physical performance, but also in promoting long term health. The crosstalk between physical activity and nutrition represents a major environmental pressure able to shape human genotypes and phenotypes, thus, choosing the right combination of lifestyle factors ensures health and longevity.
Collapse
|
39
|
Wang Y, Liu X, Shi H, Yu Y, Yu Y, Li M, Chen R. NLRP3 inflammasome, an immune-inflammatory target in pathogenesis and treatment of cardiovascular diseases. Clin Transl Med 2020; 10:91-106. [PMID: 32508013 PMCID: PMC7240865 DOI: 10.1002/ctm2.13] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation is an important process involved in several cardiovascular diseases (CVDs), and nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a vital player in innate immunity and inflammation. In this review, we aim to provide a comprehensive summary of the current knowledge on the role and involvement of NLRP3 inflammasome in the pathogenesis and treatment of CVDs. NLRP3 inflammasome functions as a molecular platform, and triggers the activation of caspase-1 and cleavage of pro-IL-1β, pro-IL-18, and gasdermin D (GSDMD). Cleaved NT-GSDMD forms pores in the cell membrane and initiates pyroptosis, inducing cell death and release of many intracellular pro-inflammatory molecules. NLRP3 inflammasome activation is triggered via inter-related pathways downstream of K+ efflux, lysosomal disruption, and mitochondrial dysfunction. In addition, the Golgi apparatus and noncoding RNAs are gradually being recognized to play important roles in NLRP3 inflammasome activation. Many investigations have revealed the association between NLRP3 inflammasome and CVDs, including atherosclerosis, ischemia/reperfusion (I/R) injury and heart failure induced by pressure overload or cardiomyopathy. Some existing medications, including orthodox and natural medicines, used for CVD treatment have been newly discovered to act via NLRP3 inflammasome. In addition, NLRP3 inflammasome pathway components such as NLRP3, caspase-1, and IL-1β may be considered as novel therapeutic targets for CVDs. Thus, NLRP3 inflammasome is a key molecule involved in the pathogenesis of CVDs, and further research focused on development of NLRP3 inflammasome-based targeted therapies for CVDs and the clinical evaluation of these therapies is essential.
Collapse
Affiliation(s)
- Yucheng Wang
- Department of CardiologyZhongshan HospitalShanghai Institute of Cardiovascular DiseasesShanghai Medical College of Fudan UniversityShanghaiChina
| | - Xiaoxiao Liu
- Department of CardiologyZhongshan HospitalShanghai Institute of Cardiovascular DiseasesShanghai Medical College of Fudan UniversityShanghaiChina
| | - Hui Shi
- Department of CardiologyZhongshan HospitalShanghai Institute of Cardiovascular DiseasesShanghai Medical College of Fudan UniversityShanghaiChina
| | - Yong Yu
- Department of CardiologyZhongshan HospitalShanghai Institute of Cardiovascular DiseasesShanghai Medical College of Fudan UniversityShanghaiChina
| | - Ying Yu
- Department of General PracticeZhongshan HospitalShanghai Medical College of Fudan UniversityShanghaiChina
| | - Minghui Li
- Department of CardiologyZhongshan HospitalShanghai Institute of Cardiovascular DiseasesShanghai Medical College of Fudan UniversityShanghaiChina
| | - Ruizhen Chen
- Department of CardiologyZhongshan HospitalShanghai Institute of Cardiovascular DiseasesShanghai Medical College of Fudan UniversityShanghaiChina
| |
Collapse
|