1
|
Marshall Moscon S, Neely E, Proctor E, Connor J. A common variant in the iron regulatory gene (Hfe) alters the metabolic and transcriptional landscape in brain regions vulnerable to neurodegeneration. J Neurochem 2024; 168:3132-3153. [PMID: 39072788 DOI: 10.1111/jnc.16171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024]
Abstract
The role of iron dyshomeostasis in neurodegenerative disease has implicated the involvement of genes that regulate brain iron. The homeostatic iron regulatory gene (HFE) has been at the forefront of these studies given the role of the H63D variant (H67D in mice) in increasing brain iron load. Despite iron's role in oxidative stress production, H67D mice have shown robust protection against neurotoxins and improved recovery from intracerebral hemorrhage. Previous data support the notion that H67D mice adapt to the increased brain iron concentrations and hence develop a neuroprotective environment. This adaptation is particularly evident in the lumbar spinal cord (LSC) and ventral midbrain (VM), both relevant to neurodegeneration. We studied C57BL6/129 mice with homozygous H67D compared to WT HFE. Immunohistochemistry was used to analyze dopaminergic (in the VM) and motor (in the LSC) neuron population maturation in the first 3 months. Immunoblotting was used to measure protein carbonyl content and the expression of oxidative phosphorylation complexes. Seahorse assay was used to analyze metabolism of mitochondria isolated from the LSC and VM. Finally, a Nanostring transcriptomic analysis of genes relevant to neurodegeneration within these regions was performed. Compared to WT mice, we found no difference in the viability of motor neurons in the LSC, but the dopaminergic neurons in H67D mice experienced significant decline before 3 months of age. Both regions in H67D mice had alterations in oxidative phosphorylation complex expression indicative of stress adaptation. Mitochondria from both regions of H67D mice demonstrated metabolic differences compared to WT. Transcriptional differences in these regions of H67D mice were related to cell structure and adhesion as well as cell signaling. Overall, we found that the LSC and VM undergo significant and distinct metabolic and transcriptional changes in adaptation to iron-related stress induced by the H67D HFE gene variant.
Collapse
Affiliation(s)
- Savannah Marshall Moscon
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Elizabeth Neely
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Elizabeth Proctor
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - James Connor
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
2
|
Varillas-Delgado D. Association of iron supplementation, HFE and AMPD1 polymorphisms and biochemical iron metabolism parameters in the performance of a men's World Tour cycling team: A pilot study. J Trace Elem Med Biol 2024; 84:127470. [PMID: 38744035 DOI: 10.1016/j.jtemb.2024.127470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Nutritional strategies with iron supplementation have been shown to be effective in preventing the decline of blood biochemical parameters and sports performance. The aim of the study was to describe biochemical iron metabolism parameters in association with iron supplementation and HFE and AMPD1 polymorphisms in a Union Cycliste Internationale (UCI) World Tour cycling team to evaluate performance during a whole season METHODS: Twenty-eight professional men cyclists took part in this longitudinal observational pilot study. AMPD1 c.34 C>T (rs17602729) and HFE c.187 C>G (rs1799945) polymorphisms were genotyped using Single Nucleotide Primer Extension (SNPE). All the professional cyclists took oral iron supplementation throughout the season. Four complete blood analyses were carried out corresponding to UCI controls in January (1st), April (2nd), June (3rd) and October (4th). Data on participation in three-week Grand Tours, kms of competition and wins were analyzed. RESULTS In performance, especially in wins, there was a significant effect in HFE on biochemical hemoglobin (F = 4.255; p = 0.021) and biochemical hematocrit (F = 5.335; p = 0.009) and a hematocrit biochemical × genotype interaction (F = 3.418; p = 0.041), with higher values in professional cyclist with GC genotype. In AMPD1 there were significant effects in the biochemical iron x genotype interaction in three-week Grand Tours (F = 3.874; p = 0.029) and wins (F = 3.930; p = 0.028) CONCLUSIONS: Blood biochemical iron metabolism parameters could be related to performance in the season due to increasing hemoglobin and hematocrit concentration under iron supplementation, associated with winning in the professional cyclists with GC genotype of the HFE polymorphism.
Collapse
Affiliation(s)
- David Varillas-Delgado
- Universidad Francisco de Vitoria, Faculty of Health Sciences, Research Unit, Pozuelo de Alarcón, Madrid, Spain; SPORTNOMICS S.L., Madrid, Spain.
| |
Collapse
|
3
|
Kardasis W, Naquin ER, Garg R, Arun T, Gopianand JS, Karmakar E, Gnana-Prakasam JP. The IRONy in Athletic Performance. Nutrients 2023; 15:4945. [PMID: 38068803 PMCID: PMC10708480 DOI: 10.3390/nu15234945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Iron is an essential micronutrient for athletes, intricately linked to their performance, by regulating cellular respiration and metabolism. Impaired iron levels in the body can significantly hinder athletic performance. The increased demand for iron due to exercise, coupled with potential dietary iron insufficiencies, particularly among endurance athletes, amplifies the risk of iron deficiency. Moreover, prolonged exercise can impact iron absorption, utilization, storage, and overall iron concentrations in an athlete. On the contrary, iron overload may initially lead to enhanced performance; however, chronic excess iron intake or underlying genetic conditions can lead to detrimental health consequences and may negatively impact athletic performance. Excess iron induces oxidative damage, not only compromising muscle function and recovery, but also affecting various tissues and organs in the body. This narrative review delineates the complex relationship between exercise and iron metabolism, and its profound effects on athletic performance. The article also provides guidance on managing iron intake through dietary adjustments, oral iron supplementation for performance enhancement in cases of deficiency, and strategies for addressing iron overload in athletes. Current research is focused on augmenting iron absorption by standardizing the route of administration while minimizing side effects. Additionally, there is ongoing work to identify inhibitors and activators that affect iron absorption, aiming to optimize the body's iron levels from dietary sources, supplements, and chelators. In summary, by refining the athletic diet, considering the timing and dosage of iron supplements for deficiency, and implementing chelation therapies for iron overload, we can effectively enhance athletic performance and overall well-being.
Collapse
Affiliation(s)
| | | | | | | | | | - Eshani Karmakar
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA; (W.K.); (E.R.N.); (R.G.); (T.A.); (J.S.G.)
| | - Jaya P. Gnana-Prakasam
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA; (W.K.); (E.R.N.); (R.G.); (T.A.); (J.S.G.)
| |
Collapse
|
4
|
Muniz-Santos R, Magno-França A, Jurisica I, Cameron LC. From Microcosm to Macrocosm: The -Omics, Multiomics, and Sportomics Approaches in Exercise and Sports. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:499-518. [PMID: 37943554 DOI: 10.1089/omi.2023.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
This article explores the progressive integration of -omics methods, including genomics, metabolomics, and proteomics, into sports research, highlighting the development of the concept of "sportomics." We discuss how sportomics can be used to comprehend the multilevel metabolism during exercise in real-life conditions faced by athletes, enabling potential personalized interventions to improve performance and recovery and reduce injuries, all with a minimally invasive approach and reduced time. Sportomics may also support highly personalized investigations, including the implementation of n-of-1 clinical trials and the curation of extensive datasets through long-term follow-up of athletes, enabling tailored interventions for athletes based on their unique physiological responses to different conditions. Beyond its immediate sport-related applications, we delve into the potential of utilizing the sportomics approach to translate Big Data regarding top-level athletes into studying different human diseases, especially with nontargeted analysis. Furthermore, we present how the amalgamation of bioinformatics, artificial intelligence, and integrative computational analysis aids in investigating biochemical pathways, and facilitates the search for various biomarkers. We also highlight how sportomics can offer relevant information about doping control analysis. Overall, sportomics offers a comprehensive approach providing novel insights into human metabolism during metabolic stress, leveraging cutting-edge systems science techniques and technologies.
Collapse
Affiliation(s)
- Renan Muniz-Santos
- Laboratory of Protein Biochemistry, The Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Magno-França
- Laboratory of Protein Biochemistry, The Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - L C Cameron
- Laboratory of Protein Biochemistry, The Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Zeitoun T, El-Sohemy A. Using Mendelian Randomization to Study the Role of Iron in Health and Disease. Int J Mol Sci 2023; 24:13458. [PMID: 37686261 PMCID: PMC10487635 DOI: 10.3390/ijms241713458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Iron has been shown to play a dual role in health and disease, with either a protective or harmful effect. Some of the contradictory findings from observational studies may be due to reverse causation, residual confounding, or small sample size. One approach that may overcome these limitations without the high cost of randomized control trials is the use of Mendelian randomization to examine the long-term role of iron in a variety of health outcomes. As there is emerging evidence employing Mendelian randomization as a method of assessing the role of micronutrients in health and disease, this narrative review will highlight recent Mendelian randomization findings examining the role of iron in cardiometabolic disorders, inflammation, neurological disorders, different cancers, and a number of other health-related outcomes.
Collapse
Affiliation(s)
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Building, Room 5326A, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada;
| |
Collapse
|
6
|
Bonilla DA, Moreno Y, Petro JL, Forero DA, Vargas-Molina S, Odriozola-Martínez A, Orozco CA, Stout JR, Rawson ES, Kreider RB. A Bioinformatics-Assisted Review on Iron Metabolism and Immune System to Identify Potential Biomarkers of Exercise Stress-Induced Immunosuppression. Biomedicines 2022; 10:724. [PMID: 35327526 PMCID: PMC8945881 DOI: 10.3390/biomedicines10030724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
The immune function is closely related to iron (Fe) homeostasis and allostasis. The aim of this bioinformatics-assisted review was twofold; (i) to update the current knowledge of Fe metabolism and its relationship to the immune system, and (ii) to perform a prediction analysis of regulatory network hubs that might serve as potential biomarkers during stress-induced immunosuppression. Several literature and bioinformatics databases/repositories were utilized to review Fe metabolism and complement the molecular description of prioritized proteins. The Search Tool for the Retrieval of Interacting Genes (STRING) was used to build a protein-protein interactions network for subsequent network topology analysis. Importantly, Fe is a sensitive double-edged sword where two extremes of its nutritional status may have harmful effects on innate and adaptive immunity. We identified clearly connected important hubs that belong to two clusters: (i) presentation of peptide antigens to the immune system with the involvement of redox reactions of Fe, heme, and Fe trafficking/transport; and (ii) ubiquitination, endocytosis, and degradation processes of proteins related to Fe metabolism in immune cells (e.g., macrophages). The identified potential biomarkers were in agreement with the current experimental evidence, are included in several immunological/biomarkers databases, and/or are emerging genetic markers for different stressful conditions. Although further validation is warranted, this hybrid method (human-machine collaboration) to extract meaningful biological applications using available data in literature and bioinformatics tools should be highlighted.
Collapse
Affiliation(s)
- Diego A. Bonilla
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogota 110311, Colombia; (Y.M.); (J.L.P.)
- Research Group in Biochemistry and Molecular Biology, Faculty of Science and Education, Universidad Distrital Francisco José de Caldas, Bogota 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Yurany Moreno
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogota 110311, Colombia; (Y.M.); (J.L.P.)
- Research Group in Biochemistry and Molecular Biology, Faculty of Science and Education, Universidad Distrital Francisco José de Caldas, Bogota 110311, Colombia
| | - Jorge L. Petro
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogota 110311, Colombia; (Y.M.); (J.L.P.)
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
| | - Diego A. Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia; (D.A.F.); (C.A.O.)
| | - Salvador Vargas-Molina
- Faculty of Sport Sciences, EADE-University of Wales Trinity Saint David, 29018 Málaga, Spain;
| | - Adrián Odriozola-Martínez
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia, Spain
| | - Carlos A. Orozco
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia; (D.A.F.); (C.A.O.)
| | - Jeffrey R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA;
| | - Eric S. Rawson
- Department of Health, Nutrition and Exercise Science, Messiah University, Mechanicsburg, PA 17055, USA;
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
7
|
Kalpouzos G, Mangialasche F, Falahati F, Laukka EJ, Papenberg G. Contributions of HFE polymorphisms to brain and blood iron load, and their links to cognitive and motor function in healthy adults. Neuropsychopharmacol Rep 2021; 41:393-404. [PMID: 34291615 PMCID: PMC8411306 DOI: 10.1002/npr2.12197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022] Open
Abstract
Background Brain iron overload is linked to brain deterioration, and cognitive and motor impairment in neurodegenerative disorders and normal aging. Mutations in the HFE gene are associated with iron dyshomeostasis and are risk factors for peripheral iron overload. However, links to brain iron load and cognition are less consistent and data are scarce. Aims and methods Using quantitative susceptibility mapping with magnetic resonance imaging, we investigated whether C282Y and H63D contributed to aging‐related increases in brain iron load and lower cognitive and motor performance in 208 healthy individuals aged 20‐79 years. We also assessed the modulatory effects of HFE mutations on associations between performance and brain iron load, as well as peripheral iron metabolism. Results Independent of age, carriers of either C282Y and/or H63D (HFE‐pos group, n = 66) showed a higher load of iron in putamen than non‐carriers (HFE‐neg group, n = 142), as well as higher transferrin saturation and lower transferrin and transferrin receptors in blood. In the HFE‐neg group, higher putaminal iron was associated with lower working memory. In the HFE‐pos group, higher putaminal iron was instead linked to higher executive function, and lower plasma transferrin was related to higher episodic memory. Iron‐performance associations were modest albeit reliable. Conclusion Our findings suggest that HFE status is characterized by higher regional brain iron load across adulthood, and support the presence of a modulatory effect of HFE status on the relationships between iron load and cognition. Future studies in healthy individuals are needed to confirm the reported patterns. This study investigated the contribution of genetic polymorphisms in the HFE gene (C282Y and H63D) on blood and brain iron load, and their relationships with cognition, in a healthy sample of adults. The findings indicated that carriers of C282Y and/or H63D displayed higher iron load in putamen and higher transferrin saturation in blood. Results further suggested that in carriers, higher iron load may be beneficial for cognitive performance, independent of age.![]()
Collapse
Affiliation(s)
- Grégoria Kalpouzos
- Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Francesca Mangialasche
- Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.,Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Farshad Falahati
- Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Erika J Laukka
- Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.,Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Goran Papenberg
- Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| |
Collapse
|