1
|
Mougin L, Millet GP, Vilmen C, Bendahan D, Rupp T. Muscle deoxygenation responses are similar between repeated sprints in hypoxia performed with uni- versus bi-lateral knee extensions but reduced compared to cycling. Eur J Sport Sci 2025; 25:e12234. [PMID: 40261828 PMCID: PMC12013730 DOI: 10.1002/ejsc.12234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 10/29/2024] [Accepted: 11/26/2024] [Indexed: 04/24/2025]
Abstract
The aim of this study was to assess the effects of oxygen availability (normoxia vs. hypoxia), muscle mass and exercise type on pulse oxygen saturation, and quadriceps muscle oxygenation during repeated sprint exercises. Sixteen healthy participants completed 5× ${\times} $ 12 s sprints (21 s rest). This sprint-like exercise was performed under two environmental conditions (normoxia: FiO2 = 21%; systemic hypoxia: FiO2 = 13%) and for three exercise modalities: unilateral knee extensions (KE) involving the right leg extensors (UNI), bilateral KE involving both legs extensors (BIL), and bilateral leg cycling (CYC). Measurements included power output, pulse oxygen saturation (SpO2), and vastus lateralis oxygenation (delta in tissue saturation index; ΔTSI). In hypoxia, a similar minimal SpO2 was reported in UNI and BIL but SpO2 was lower in CYC (p = 0.047 and p = 0.021). ΔTSI during sprints and recoveries were similar in UNI and BIL but greater in CYC (p < 0.001) and in normoxia compared to hypoxia (main condition effect; p = 0.002). The power output was lower during KE exercises than during cycling, and no effect of hypoxia has been reported. The main results of this study indicate that unilateral and bilateral KE at high intensity induce comparable pulse and local muscular desaturation in hypoxia, and that these alterations are exacerbated during cycling.
Collapse
Affiliation(s)
- Loïs Mougin
- Inter‐University Laboratory of Human Movement SciencesSavoie Mont‐Blanc UniversityChambéryFrance
- School of SportExercise and Health SciencesNational Centre for Sport and Exercise MedicineLoughborough UniversityLoughboroughUK
| | | | - Christophe Vilmen
- Center for Magnetic Resonance in Biology and MedicineUMR CNRS 6612Faculty of Medicine of MarseilleMarseilleFrance
| | - David Bendahan
- Center for Magnetic Resonance in Biology and MedicineUMR CNRS 6612Faculty of Medicine of MarseilleMarseilleFrance
| | - Thomas Rupp
- Inter‐University Laboratory of Human Movement SciencesSavoie Mont‐Blanc UniversityChambéryFrance
- Center for Magnetic Resonance in Biology and MedicineUMR CNRS 6612Faculty of Medicine of MarseilleMarseilleFrance
| |
Collapse
|
2
|
Cao Y, He W, Ding L, Lei TH, Schlader Z, Mundel T, Wang R, Guo L, Liu J, Girard O. Dose-response effects of caffeine during repeated cycling sprints in normobaric hypoxia to exhaustion. Eur J Appl Physiol 2025; 125:223-236. [PMID: 39179881 DOI: 10.1007/s00421-024-05576-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
PURPOSE With limited studies exploring the dose-response of caffeine consumption on repeated sprint ability in hypoxia, this study aimed to determine the optimal caffeine dose (low, moderate or high) during repeated sprints in hypoxia to exhaustion. METHODS On separate visits, twelve active males randomly performed four experimental trials in normobaric hypoxia (inspired oxygen fraction: 16.5 ± 0.2%). Participants ingested placebo (PLA) or caffeine capsules (3, 6 or 9 mg/kg or LOW, MOD and HIGH, respectively) 1 h before exercise and then underwent a repeated cycling sprint test (10 s sprint/20 s active recovery) to exhaustion. Total sprint number and work done, peak and mean power output, blood lactate concentration, cardiorespiratory and perceptual responses were recorded. RESULTS Total sprint number was greater in MOD and HIGH compared to PLA (20 ± 7 and 18 ± 8 vs. 13 ± 4; all P < 0.05), with MOD also higher than LOW (15 ± 6; P = 0.02). Total work done was greater in MOD (111 ± 40 kJ) and HIGH (100 ± 35 kJ) compared to LOW (83 ± 29 kJ) and PLA (76 ± 25 kJ) (all P < 0.05). However, there were no significant differences in total sprint number or total work done between MOD and HIGH (all P > 0.05). Blood lactate concentration was higher in both MOD and HIGH compared to PLA (all P < 0.05). However, peak and mean power outputs, fatigue index, and ratings of perceived exertion did not differ across different caffeine dosages (all P > 0.05). CONCLUSION A moderate dose of caffeine (6 mg/kg) is the optimal amount for enhancing repeated cycling sprint ability when compared to low and high doses in moderate normobaric hypoxia.
Collapse
Affiliation(s)
- Yinhang Cao
- School of Athletic Performance, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Wei He
- School of Athletic Performance, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Li Ding
- School of Athletic Performance, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Tze-Huan Lei
- Occupational Safety and Health Group (OSHG), College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an, People's Republic of China
| | - Zachary Schlader
- Department of Kinesiology, Indiana University School of Public Health, Bloomington, IN, USA
| | - Toby Mundel
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Ran Wang
- School of Athletic Performance, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Li Guo
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Jue Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China.
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia
| |
Collapse
|
3
|
Chambion-Diaz M, Faiss R, Pialoux V, Millet GP. Effect of repeated sprint training in hypoxia on acute and chronic redox balance modulation. Free Radic Res 2025; 59:1-8. [PMID: 39841119 DOI: 10.1080/10715762.2024.2443609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/12/2024] [Accepted: 10/16/2024] [Indexed: 01/23/2025]
Abstract
Little is known regarding the effects high-intensity training performed in hypoxia on the oxidative stress and antioxidant systems. The aim of this study was to assess the potential effect of 4 weeks of repeated sprint training in hypoxia (RSH) on the redox balance. Forty male well-trained cyclists were matched into two different interventions (RSH, n = 20) or in normoxia, RSN, n = 20) and tested twice (before (Pre-) and after (Post-) a 4-week of training) for performance (repeated sprint ability (RSA) test), oxidative stress, and antioxidant status. Antioxidant enzyme activity (Superoxide Dismutase, Glutathione Peroxidase, and catalase), NO metabolites (NOx: nitrites and nitrates), ferric reducing antioxidant power, Malondialdehyde (MDA), nitrotyrosine, and carbonyls were measured in plasma. At Post-, MDA, and carbonyls increased (p < 0.05) in the RSN group both at rest (+90.6%) and also acutely in response to RSA (+22.9%); but not in RSH. At Post-, in the RSH group, catalase increased (p < 0.05) both at rest (+44.7%) and in response to the RSA test (+66.3%). At Post-, SOD, and nitrotyrosine decreased after RSA and at rest, regardless of the group (p = 0.0012 and p = 0.0413, respectively). At Post-, NOx decreased after the RSA test, regardless of the group (p < 0.05). In conclusion, several weeks of RSH training limits the increase in oxidative stress markers both at rest and in response to RSA test. Moreover, such training downregulated SOD activity, possibly due to an overproduction of reactive oxygen species. These findings could constitute a paradigm shift with a better enzymatic adaptation after RSH concomitant with a distinct reactive oxygen species (ROS) production between RSH and RSN.
Collapse
Affiliation(s)
- M Chambion-Diaz
- LIBM, Team Atherosclerosis, Thrombosis and Physical Activity, University Claude Bernard Lyon 1, Univ Lyon, Lyon, France
- Kinesiology Department, Medicine Faculty, Laval University, Québec, QC, Canada
| | - R Faiss
- Institute of Sport Sciences, University of Lausanne, Lausanne, Suisse
| | - V Pialoux
- LIBM, Team Atherosclerosis, Thrombosis and Physical Activity, University Claude Bernard Lyon 1, Univ Lyon, Lyon, France
- Institut Universitaire de France, Paris, France
| | - G P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Suisse
| |
Collapse
|
4
|
Rosa CH, Monteiro CP, Barata C, Espada MC, Valamatos MJ, Bento A, Minhalma RJ, Reis JF. Cardiorespiratory and muscle oxygenation responses to voluntary hypoventilation at low lung volume in upper body repeated sprints. Eur J Appl Physiol 2024; 124:3741-3754. [PMID: 39138688 PMCID: PMC11568980 DOI: 10.1007/s00421-024-05569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
PURPOSE To investigate the impact of voluntary hypoventilation at low lung volumes (VHL) during upper body repeated sprints (RS) on performance, metabolic markers and muscle oxygenation in Brazilian Jiu-Jitsu (BJJ) athletes. METHODS Eighteen male well-trained athletes performed two randomized RS sessions, one with normal breathing (RSN) and another with VHL (RS-VHL), on an arm cycle ergometer, consisting of two sets of eight all-out 6-s sprints performed every 30 s. Peak (PPO), mean power output (MPO), and RS percentage decrement score were calculated. Arterial oxygen saturation (SpO2), heart rate (HR), gas exchange, and muscle oxygenation of the long head of the triceps brachii were continuously recorded. Blood lactate concentration ([La]) was measured at the end of each set. Bench press throw peak power (BPPP) was recorded before and after the RS protocol. RESULTS Although SpO2 was not different between conditions, PPO and MPO were significantly lower in RS-VHL. V ˙ E, HR, [La], and RER were lower in RS-VHL, and VO2 was higher in RS-VLH than in RSN. Muscle oxygenation was not different between conditions nor was its pattern of change across the RS protocol influenced by condition. [La] was lower in RS-VHL than in RSN after both sets. CONCLUSION Performance was significantly lower in RS-VHL, even though SPO2 was not consistent with hypoxemia. However, the fatigue index was not significantly affected by VHL, nor was the neuromuscular upper body power after the RS-VHL protocol. Additionally, [La] was lower, and oxygen consumption was higher in RS-VHL, suggesting a higher aerobic contribution in this condition.
Collapse
Affiliation(s)
- Cristóvão H Rosa
- Laboratory of Physiology and Biochemistry of Exercise, Faculdade de Motricidade Humana, Universidade de Lisboa, Oeiras, Portugal
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Cristina P Monteiro
- Laboratory of Physiology and Biochemistry of Exercise, Faculdade de Motricidade Humana, Universidade de Lisboa, Oeiras, Portugal
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia Barata
- Laboratory of Physiology and Biochemistry of Exercise, Faculdade de Motricidade Humana, Universidade de Lisboa, Oeiras, Portugal
| | - Mário C Espada
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
- Instituto Politécnico de Setúbal, Escola Superior de Educação, Setúbal, Portugal
- Sport Physical Activity and Health Research & Innovation Center (SPRINT), Rio Maior, Portugal
- Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal
- Life Quality Research Centre (CIEQV), Setúbal, Portugal
| | - Maria João Valamatos
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
- Neuromuscular Research Laboratory, Faculdade Motricidade Humana, Universidade Lisboa, Oeiras, Portugal
| | - André Bento
- Laboratory of Physiology and Biochemistry of Exercise, Faculdade de Motricidade Humana, Universidade de Lisboa, Oeiras, Portugal
| | - Ricardo J Minhalma
- Sport Physical Activity and Health Research & Innovation Center (SPRINT), Rio Maior, Portugal
- Escola Superior de Educacao e Comunicacao, Universidade do Algarve, Faro, Portugal
| | - Joana Filipa Reis
- Laboratory of Physiology and Biochemistry of Exercise, Faculdade de Motricidade Humana, Universidade de Lisboa, Oeiras, Portugal.
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal.
- Portugal Football School, Portuguese Football Federation, FPF, Cruz-Quebrada, Portugal.
| |
Collapse
|
5
|
Faiss R, Raberin A, Brocherie F, Millet GP. Repeated-sprint training in hypoxia: A review with 10 years of perspective. J Sports Sci 2024:1-15. [PMID: 39445500 DOI: 10.1080/02640414.2024.2416821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Over the past decade, numerous studies have investigated an innovative "live low-train high" approach based on the repetition of short (<30 s) "all-out" sprints with incomplete recoveries in hypoxia; the so-called Repeated-Sprint training in Hypoxia (RSH). The aims of the present review are therefore threefold. First, this study summarizes the available evidence on putative additional performance enhancement after RSH comparing to the same training in normoxia (RSN). Second, a critical analysis of underpinning mechanisms discusses how advantages can be obtained through RSH for sea-level performance enhancement. An enhanced microcirculatory vasodilation leading to improved muscle perfusion and/or oxygenation and an increase in muscular phosphocreatine content may help explain the superiority of RSH vs. RSN. Third, the present review aims to provide guidelines for coaches, athletes and scientists to apply RSH interventions with regard to the interval duration, exercise-to-rest ratio and training volume. In conclusion, this review supports repeated-sprint training in hypoxia as an efficient (but not magic) training intervention with 77% of the controlled studies reporting an additional benefit with added hypoxia, mainly for team-, combat- and racket-sports athletes but also for all other sports (e.g. endurance) that require repeated accelerations with lesser fatigue.
Collapse
Affiliation(s)
- Raphaël Faiss
- Institute of Sports Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Antoine Raberin
- Institute of Sports Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance, French Institute of Sport, Paris, France
| | - Grégoire P Millet
- Institute of Sports Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Solsona R, Sabater Pastor F, Normand-Gravier T, Borrani F, Sanchez AM. Sprint training in hypoxia and with blood flow restriction: Controversies and perspectives. J Sports Sci 2024:1-15. [PMID: 39422258 DOI: 10.1080/02640414.2024.2416839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
This narrative review assesses the effects of repeated sprint training (RST) in hypoxia (RSH) and blood flow restriction (BFR) methods on skeletal muscle adaptations and performance. Current literature suggests that RSH promotes metabolic modifications in muscle cells, especially driven by reactive oxygen species production, HIF-1α stabilization, and changes in metabolism. Training with BFR promotes metabolite accumulation in working muscles due to limited blood flow, however, cellular mechanisms affected by BFR during RST are less explored. Data highlight that RSH improves repeated sprint ability (RSA) in several sport disciplines (e.g. rugby, tennis, soccer, cross-country skiing). However, recent studies showed that addition of hypoxia or BFR during RST did not promote supplementary benefits on aerobic performance, force-velocity power profile, and V ˙ O 2 max . Nonetheless, gains in V ˙ O 2 max were observed during sprint interval training protocols when BFR was applied during recovery between sets. Finally, recent studies highlighted that RSH can improve RSA in a short period. Thus, RSH and sprint training with BFR may be useful for sports disciplines requiring high glycolytic demand and can promote gains in RSA in a short window. Further studies must be encouraged to better understand the biological consequences of adding such stimuli to exercise, especially BFR, on long-term adaptation.
Collapse
Affiliation(s)
- Robert Solsona
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), University of Perpignan Via Domitia, Font-Romeu, France
| | - Frederic Sabater Pastor
- Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), University of Perpignan Via Domitia, Font-Romeu, France
| | - Tom Normand-Gravier
- Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), University of Perpignan Via Domitia, Font-Romeu, France
- Dynamique du Muscle et Métabolisme (DMeM), University of Montpellier, Montpellier, France
| | - Fabio Borrani
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Anthony Mj Sanchez
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), University of Perpignan Via Domitia, Font-Romeu, France
| |
Collapse
|
7
|
Li SN, Anbalagan P, Pang J, Ihsan M, Girard O. Exercise responses to repeated cycle sprints with continuous and intermittent hypoxic exposure. Eur J Sport Sci 2024; 24:1045-1055. [PMID: 38874584 PMCID: PMC11295084 DOI: 10.1002/ejsc.12146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/14/2024] [Accepted: 05/19/2024] [Indexed: 06/15/2024]
Abstract
We examine the impact of the acute manipulation of oxygen availability during discrete phases (active and passive) of a repeated-sprint cycling protocol on performance, physiological, and perceptual responses. On separate days, twelve trained males completed four sets of five 5-s 'all out' cycle sprints (25-s inter-sprint recovery and 5-min interset rest) in four randomized conditions: normobaric hypoxia (inspired oxygen fraction of 12.9%) applied continuously (C-HYP), intermittently during only the sets of sprints (I-HYPSPRINT) or between-sets recovery periods (I-HYPRECOVERY), or not at all (C-NOR). Peak and mean power output, peripheral oxygen saturation, heart rate, blood lactate concentration, exercise-related sensations, and vastus lateralis muscle oxygenation using near-infrared spectroscopy were assessed. Peak and mean power output was ∼4%-5% lower for C-HYP compared to C-NOR (P ≤ 0.050) and I-HYPRECOVERY (P ≤ 0.027). Peripheral oxygen saturation was lower during C-HYP and I-HYPSPRINT compared with C-NOR and I-HYPRECOVERY during sets of sprints (∼83-85 vs. ∼95%-97%; P < 0.001), while lower values were obtained for C-HYP and I-HYPRECOVERY than C-NOR and I-HYPSPRINT during between-sets rest period (∼84-85 vs. ∼96%; P < 0.001). Difficulty in breathing was ∼21% higher for C-HYP than C-NOR (P = 0.050). Ratings of perceived exertion (P = 0.435), limb discomfort (P = 0.416), heart rate (P = 0.605), blood lactate concentration (P = 0.976), and muscle oxygenation-derived variables (P = 0.056 to 0.605) did not differ between conditions. In conclusion, the method of hypoxic exposure application (continuous vs. intermittent) affects mechanical performance, while internal demands remained essentially comparable during repeated cycle sprints.
Collapse
Affiliation(s)
- Siu Nam Li
- School of Human Sciences (Exercise and Sports Science)The University of Western AustraliaPerthWestern AustraliaAustralia
| | - Prashan Anbalagan
- School of Human Sciences (Exercise and Sports Science)The University of Western AustraliaPerthWestern AustraliaAustralia
| | - Joel Pang
- School of Human Sciences (Exercise and Sports Science)The University of Western AustraliaPerthWestern AustraliaAustralia
| | - Mohammed Ihsan
- Hong Kong Sports InstituteScientific Conditioning CentreElite Training Science and Technology DivisionHong KongHong Kong
| | - Olivier Girard
- School of Human Sciences (Exercise and Sports Science)The University of Western AustraliaPerthWestern AustraliaAustralia
| |
Collapse
|
8
|
Lanfranchi C, Willis SJ, Laramée L, Conde Alonso S, Pialoux V, Kayser B, Place N, Millet GP, Zanou N. Repeated sprint training in hypoxia induces specific skeletal muscle adaptations through S100A protein signaling. FASEB J 2024; 38:e23615. [PMID: 38651657 DOI: 10.1096/fj.202302084rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Athletes increasingly engage in repeated sprint training consisting in repeated short all-out efforts interspersed by short recoveries. When performed in hypoxia (RSH), it may lead to greater training effects than in normoxia (RSN); however, the underlying molecular mechanisms remain unclear. This study aimed at elucidating the effects of RSH on skeletal muscle metabolic adaptations as compared to RSN. Sixteen healthy young men performed nine repeated sprint training sessions in either normoxia (FIO2 = 0.209, RSN, n = 7) or normobaric hypoxia (FIO2 = 0.136, RSH, n = 9). Before and after the training period, exercise performance was assessed by using repeated sprint ability (RSA) and Wingate tests. Vastus lateralis muscle biopsies were performed to investigate muscle metabolic adaptations using proteomics combined with western blot analysis. Similar improvements were observed in RSA and Wingate tests in both RSN and RSH groups. At the muscle level, RSN and RSH reduced oxidative phosphorylation protein content but triggered an increase in mitochondrial biogenesis proteins. Proteomics showed an increase in several S100A family proteins in the RSH group, among which S100A13 most strongly. We confirmed a significant increase in S100A13 protein by western blot in RSH, which was associated with increased Akt phosphorylation and its downstream targets regulating protein synthesis. Altogether our data indicate that RSH may activate an S100A/Akt pathway to trigger specific adaptations as compared to RSN.
Collapse
Affiliation(s)
- Clément Lanfranchi
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sarah J Willis
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - Louis Laramée
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sonia Conde Alonso
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Vincent Pialoux
- Inter-University Laboratory of Human Movement Biology UR7424, University Claude Bernard Lyon 1, Lyon, France
| | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Place
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nadège Zanou
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Hansen C, Brocherie F, Millet GP, Girard O. Effects of Hypoxia Severity on Muscle Oxygenation Kinetics Using Statistical Parametric Mapping During Repeated Treadmill Sprints. Int J Sports Physiol Perform 2024; 19:417-421. [PMID: 38215729 DOI: 10.1123/ijspp.2023-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/14/2024]
Abstract
PURPOSE We examined the effects of increasing hypoxia severity on oxygenation kinetics in the vastus lateralis muscle during repeated treadmill sprints, using statistical parametric mapping (SPM). METHODS Ten physically active males completed 8 sprints of 5 seconds each (recovery = 25 s) on a motorized sprint treadmill in normoxia (sea level; inspired oxygen fraction = 0.21), moderate hypoxia (inspired oxygen fraction = 0.17), and severe hypoxia (SH; inspired oxygen fraction = 0.13). Continuous assessment of tissue saturation index (TSI) in the vastus lateralis muscle was conducted using near-infrared spectroscopy. Subsequently, TSI data were averaged for the sprint-recovery cycle of all sprints and compared between conditions. RESULTS The SPM analysis revealed no discernible difference in TSI signal amplitude between conditions during the actual 5-second sprint phase. However, during the latter portion of the 25-second recovery phase, TSI values were lower in SH compared with both sea level (from 22 to 30 s; P = .003) and moderate hypoxia (from 16 to 30 s; P = .001). The mean distance covered at sea level (22.9 [1.0] m) was greater than for both moderate hypoxia (22.5 [1.2] m; P = .045) and SH (22.3 [1.4] m; P = .043). CONCLUSIONS The application of SPM demonstrated that only SH reduced muscle oxygenation levels during the late portion of the passive (recovery) phase and not the active (sprint) phase during repeated treadmill sprints. These findings underscore the usefulness of SPM for assessing muscle oxygenation differences due to hypoxic exposure and the importance of the duration of the between-sprints recovery period.
Collapse
Affiliation(s)
- Clint Hansen
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Franck Brocherie
- Laboratory of Sport, Expertise and Performance, French Institute of Sport (INSEP), Paris, France
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Olivier Girard
- School of Human Science (Exercise and Sport Sciences), University of Western Australia, Perth, WA, Australia
| |
Collapse
|
10
|
Burtscher J, Raberin A, Brocherie F, Malatesta D, Manferdelli G, Citherlet T, Krumm B, Bourdillon N, Antero J, Rasica L, Burtscher M, Millet GP. Recommendations for Women in Mountain Sports and Hypoxia Training/Conditioning. Sports Med 2024; 54:795-811. [PMID: 38082199 PMCID: PMC11052836 DOI: 10.1007/s40279-023-01970-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 04/28/2024]
Abstract
The (patho-)physiological responses to hypoxia are highly heterogeneous between individuals. In this review, we focused on the roles of sex differences, which emerge as important factors in the regulation of the body's reaction to hypoxia. Several aspects should be considered for future research on hypoxia-related sex differences, particularly altitude training and clinical applications of hypoxia, as these will affect the selection of the optimal dose regarding safety and efficiency. There are several implications, but there are no practical recommendations if/how women should behave differently from men to optimise the benefits or minimise the risks of these hypoxia-related practices. Here, we evaluate the scarce scientific evidence of distinct (patho)physiological responses and adaptations to high altitude/hypoxia, biomechanical/anatomical differences in uphill/downhill locomotion, which is highly relevant for exercising in mountainous environments, and potentially differential effects of altitude training in women. Based on these factors, we derive sex-specific recommendations for mountain sports and intermittent hypoxia conditioning: (1) Although higher vulnerabilities of women to acute mountain sickness have not been unambiguously shown, sex-dependent physiological reactions to hypoxia may contribute to an increased acute mountain sickness vulnerability in some women. Adequate acclimatisation, slow ascent speed and/or preventive medication (e.g. acetazolamide) are solutions. (2) Targeted training of the respiratory musculature could be a valuable preparation for altitude training in women. (3) Sex hormones influence hypoxia responses and hormonal-cycle and/or menstrual-cycle phases therefore may be factors in acclimatisation to altitude and efficiency of altitude training. As many of the recommendations or observations of the present work remain partly speculative, we join previous calls for further quality research on female athletes in sports to be extended to the field of altitude and hypoxia.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Antoine Raberin
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Davide Malatesta
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Giorgio Manferdelli
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Juliana Antero
- Institut de Recherche Bio-Médicale Et d'Épidémiologie du Sport (EA 7329), French Institute of Sport, Paris, France
| | - Letizia Rasica
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland.
| |
Collapse
|
11
|
Perrey S, Quaresima V, Ferrari M. Muscle Oximetry in Sports Science: An Updated Systematic Review. Sports Med 2024; 54:975-996. [PMID: 38345731 PMCID: PMC11052892 DOI: 10.1007/s40279-023-01987-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 04/28/2024]
Abstract
BACKGROUND In the last 5 years since our last systematic review, a significant number of articles have been published on the technical aspects of muscle near-infrared spectroscopy (NIRS), the interpretation of the signals and the benefits of using the NIRS technique to measure the physiological status of muscles and to determine the workload of working muscles. OBJECTIVES Considering the consistent number of studies on the application of muscle oximetry in sports science published over the last 5 years, the objectives of this updated systematic review were to highlight the applications of muscle oximetry in the assessment of skeletal muscle oxidative performance in sports activities and to emphasize how this technology has been applied to exercise and training over the last 5 years. In addition, some recent instrumental developments will be briefly summarized. METHODS Preferred Reporting Items for Systematic Reviews guidelines were followed in a systematic fashion to search, appraise and synthesize existing literature on this topic. Electronic databases such as Scopus, MEDLINE/PubMed and SPORTDiscus were searched from March 2017 up to March 2023. Potential inclusions were screened against eligibility criteria relating to recreationally trained to elite athletes, with or without training programmes, who must have assessed physiological variables monitored by commercial oximeters or NIRS instrumentation. RESULTS Of the identified records, 191 studies regrouping 3435 participants, met the eligibility criteria. This systematic review highlighted a number of key findings in 37 domains of sport activities. Overall, NIRS information can be used as a meaningful marker of skeletal muscle oxidative capacity and can become one of the primary monitoring tools in practice in conjunction with, or in comparison with, heart rate or mechanical power indices in diverse exercise contexts and across different types of training and interventions. CONCLUSIONS Although the feasibility and success of the use of muscle oximetry in sports science is well documented, there is still a need for further instrumental development to overcome current instrumental limitations. Longitudinal studies are urgently needed to strengthen the benefits of using muscle oximetry in sports science.
Collapse
Affiliation(s)
- Stephane Perrey
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, Montpellier, France
| | - Valentina Quaresima
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Marco Ferrari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
12
|
Papoti M, Manchado-Gobatto FB, Gobatto CA. Inter-effort recovery hypoxia: a new paradigm in sport science? BMJ Open Sport Exerc Med 2023; 9:e001520. [PMID: 37780131 PMCID: PMC10533790 DOI: 10.1136/bmjsem-2022-001520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
High-intensity interval training (HIIT) is a popular method for optimising sports performance and, more recently, improving health-related parameters. The inclusion of hypoxia during HIIT can promote additional gains compared with normoxia. However, reductions in the effort intensities compared with the same training performed in normoxia have been reported. Studies have reported that adding hypoxia during periods of inter-effort recovery (IEH) enables maintenance of the intensity of efforts. It also promotes additional gains from exposure to hypoxia. Our call is for researchers to consider IEH in experiments involving different models of HIIT. Additionally, we consider the need to answer the following questions: What is the clinically relevant minimum dose of exposure to hypoxia during the recovery periods between efforts so that favourable adaptations of parameters are associated with health and sports performance? How does the intensity of exertion influence the responses to hypoxia exposure during recovery periods? What are the chronic effects of different models of HIIT and hypoxia recovery on sports performance?
Collapse
Affiliation(s)
- Marcelo Papoti
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | | | | |
Collapse
|
13
|
Bouten J, Brick M, Saboua A, Hadjadj JL, Piscione J, Margot C, Doucende G, Bourrel N, Millet GP, Brocherie F. Effects of 2 Different Protocols of Repeated-Sprint Training in Hypoxia in Elite Female Rugby Sevens Players During an Altitude Training Camp. Int J Sports Physiol Perform 2023; 18:953-959. [PMID: 37487586 DOI: 10.1123/ijspp.2023-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVES Repeated-sprint training in hypoxia (RSH) is an effective way of improving physical performance compared with similar training in normoxia. RSH efficiency relies on hypoxia severity, but also on the oxidative-glycolytic balance determined by both sprint duration and exercise-to-rest ratio. This study investigated the effect of 2 types of RSH sessions during a classic altitude camp in world-class female rugby sevens players. METHODS Sixteen players performed 5 RSH sessions on a cycle ergometer (simulated altitude: 3000 m above sea level [asl]) during a 3-week natural altitude camp (1850 m asl). Players were assigned to 2 different protocols with either a high (RSH1:3, sprint duration: 8-10 s; exercise-to-rest ratios: 1:2-1:3; n = 7) or a low exercise-to-rest ratio (RSH1:5, sprint duration: 5-15 s; exercise-to-rest ratios: 1:2-1:5; n = 9). Repeated-sprint performances (maximal and mean power outputs [PPOmax, and PPOmean]) were measured before and after the intervention, along with physiological responses. RESULTS PPOmax (962 [100] to 1020 [143] W, P = .008, Cohen d = 0.47) and PPOmean (733 [71] to 773 [91] W, P = .008, d = 0.50) increased from before to after. A significant interaction effect (P = .048, d = 0.50) was observed for PPOmean, with a larger increase observed in RSH1:3 (P = .003). No interaction effects were observed (P > .05) for the other variables. CONCLUSION A classic altitude camp with 5 RSH sessions superimposed on rugby-sevens-specific training led to an improved repeated-sprint performance, suggesting that RSH effects are not blunted by prolonged hypoxic exposure. Interestingly, using a higher exercise-to-rest ratio during RSH appears to be more effective than when applying a lower exercise-to-rest ratio.
Collapse
Affiliation(s)
- Janne Bouten
- Laboratory of Sport, Expertise and Performance, French Institute of Sport (INSEP), Paris,France
| | - Maxime Brick
- Research Department, French Rugby Union, Marcoussis,France
| | - Antoine Saboua
- Research Department, French Rugby Union, Marcoussis,France
| | | | | | - Chloé Margot
- Institute of Sport Sciences, University of Lausanne, Lausanne,Switzerland
| | - Gregory Doucende
- Centre National d'Entraînement en Altitude, Font Romeu,France
- Laboratoire Interdisciplinaire Performance Santé en Environnement de Montagne (LIPSEM), Université de Perpignan Via Domitia, Font Romeu,France
| | - Nicolas Bourrel
- Centre National d'Entraînement en Altitude, Font Romeu,France
- Institut National du Sport (INS), Montreal, QC,Canada
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne,Switzerland
| | - Franck Brocherie
- Laboratory of Sport, Expertise and Performance, French Institute of Sport (INSEP), Paris,France
| |
Collapse
|