1
|
Oliveira JH, Sá Gomes J, Bauer P, Pezarat-Correia P, Vaz JR. Torque Regularity is not Affected by the Nature of Visual Feedback During Hold Type of Isometric Contractions in Adults. J Mot Behav 2025:1-9. [PMID: 40040575 DOI: 10.1080/00222895.2025.2469725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/13/2025] [Accepted: 02/14/2025] [Indexed: 03/06/2025]
Abstract
The literature that investigated the influence of visual feedback properties on the magnitude and temporal structure of variability suggests that increases in the precision of visual information of the torque output (through manipulation of visual gain and its intermittency) lead the neuromuscular system to produce torque in a more steady and complex manner. However, less is known about the influence of the nature of visual feedback on torque variability. The present study aimed to investigate the effect of two different feedback natures, one from the angular position and the other from the torque produced, on the magnitude and temporal structure of torque variability during submaximal hold isometric tasks. Twenty healthy and young participants performed a knee extension isometric task, consisting in sustaining an applied resistance equivalent to 40% of their Maximal Voluntary Isometric Contraction for 30 s with visual feedback from angular position (Hangle) and with visual feedback from torque (Htorque). The magnitude of torque variability was calculated through the coefficient of variation. Sample Entropy was used to analyze the temporal structure of torque fluctuations, i.e., torque complexity. We observed no significant differences between conditions (Hangle vs Htorque) in both magnitude (p = 0.117) and the temporal structure of torque fluctuations (p = 0.940). Our results demonstrated that torque regulation seems not to be affected by the nature of the visual feedback during hold submaximal isometric tasks, suggesting a participation of sensorimotor system due to the nature of the task. Researchers should take this into account to take methodological decisions when using hold submaximal isometric tasks to investigate possible changes in motor control.
Collapse
Affiliation(s)
- João Henriques Oliveira
- Neuromuscular Research Laboratory, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
- CIPER, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
| | - João Sá Gomes
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Caparica, Portugal
| | - Philipp Bauer
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Caparica, Portugal
| | - Pedro Pezarat-Correia
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Caparica, Portugal
| | - João Rocha Vaz
- CIPER, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Caparica, Portugal
| |
Collapse
|
2
|
Pereira HM, Keenan KG, Hunter SK. Influence of visual feedback and cognitive challenge on the age-related changes in force steadiness. Exp Brain Res 2024; 242:1411-1419. [PMID: 38613669 DOI: 10.1007/s00221-024-06831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Force steadiness can be influenced by visual feedback as well as presence of a cognitive tasks and potentially differs with age and sex. This study determined the impact of altered visual feedback on force steadiness in the presence of a difficult cognitive challenge in young and older men and women. Forty-nine young (19-30 yr; 25 women, 24 men) and 25 older (60-85 yr; 15 women; 10 men) performed low force (5% of maximum) static contractions with the elbow flexor muscles in the presence and absence of a cognitive challenge (counting backwards by 13) either with low or high visual feedback gain. The cognitive challenge reduced force steadiness (increased force fluctuation amplitude) particularly in women (cognitive challenge × sex: P < 0.05) and older individuals (cognitive challenge × age: P < 0.05). Force steadiness improved with high-gain visual feedback compared with low-gain visual feedback (P < 0.01) for all groups (all interactions: P > 0.05). Manipulation of visual feedback had no influence on the reduced force steadiness in presence of the cognitive challenge for all groups (all P > 0.05). These findings indicate that older individuals and women have greater risk of impaired motor performance of the upper extremity if steadiness is required during a low-force static contraction. Manipulation of visual feedback had minimal effects on the reduced force steadiness in presence of a difficult cognitive challenge.
Collapse
Affiliation(s)
- Hugo M Pereira
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA.
| | - Kevin G Keenan
- Joseph J. Zilber College of Public Health, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, USA
- Athletic and Human Performance Research Center, Marquette University, Milwaukee, USA
| |
Collapse
|
3
|
Lee H, Lee TL, Kang N. Effects of visual feedback and force level on bilateral ankle-dorsiflexion force control. Neurosci Lett 2024; 824:137671. [PMID: 38346532 DOI: 10.1016/j.neulet.2024.137671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
This study investigated the potential effects of visual feedback and force level on bilateral force control capabilities in the lower limbs. Thirty-nine healthy young adults performed bilateral ankle-dorsiflexion isometric force control tasks for different visual feedback conditions, including continuous visual feedback (CVF) and withdrawal of visual feedback (WVF), indicating the removal of visual feedback on force outputs during the task and force level conditions (i.e., 10 % and 40 % of the maximum voluntary contraction). Bilateral force control capabilities were estimated using force accuracy, variability, regularity, and absolute power in 0-4 Hz and interlimb coordination by cross-correlation with time lag and uncontrolled manifold (UCM) variables. Correlation analyses determined the relationship between changes in bilateral force control capabilities and interlimb coordination from the CVF to WVF conditions. The findings revealed better bilateral force control capabilities in the CVF condition as indicated by less force error, variability, regularity, absolute power in 0-4 Hz, and advanced interlimb force coordination. From CVF to WVF conditions, increased bad variability correlated with greater force control deficits. These findings suggest that visuomotor processing is an important resource for successful fine motor control in the lower limbs.
Collapse
Affiliation(s)
- Hajun Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea.
| | - Tae Lee Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea.
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea; Division of Sport Science, Sport Science Institute & Health Promotion Center, Incheon National University, Incheon, South Korea.
| |
Collapse
|
4
|
Heintz Walters B, Huddleston WE, O'Connor K, Wang J, Hoeger Bement M, Keenan KG. Visual feedback and declines in attention are associated with altered visual strategy during a force-steadiness task in older adults. J Neurophysiol 2023; 130:1309-1320. [PMID: 37877175 PMCID: PMC10972634 DOI: 10.1152/jn.00486.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 09/07/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
Greater heterogeneity exists in older adults relative to young adults when performing highly skilled manual tasks. The purpose of this study was to assess the influence of visual feedback and attentional demand on visual strategy during a submaximal force-steadiness task in young and older adults. Eye movements of 21 young (age 20-38 yr; 11 females, 10 males) and 21 older (age 65-90 yr; 11 females, 10 males) adults were recorded during a pinch force-steadiness task while viewing feedback with higher and lower gain and while performing a visuospatial task. For the visuospatial task, participants imagined a star moving around four boxes and reported the final location after a series of directions. Performance on standardized tests of attention was measured. All participants gazed near the target line and made left-to-right saccadic eye movements during the force-steadiness tasks without the visuospatial task. Older adults made fewer saccades than young adults (21.0 ± 2.9 and 23.6 ± 4.4 saccades, respectively) and with higher versus lower gain (20.9 ± 4.0 and 23.7 ± 3.5 saccades, respectively). Most participants used the same visual strategy when performing the visuospatial task though seven older adults used an altered strategy; gaze did not stay near the target line nor travel exclusively left to right. Performance on standardized measures of attention was impaired in this subset compared with older adults who did not use the altered visual strategy. Results indicate that visual feedback influences visual strategy and reveals unique eye movements in some older adults when allocating attention across tasks.NEW & NOTEWORTHY This study contributes novel findings of age-related changes in visual strategy and associations with attentional deficits during hand motor tasks. Older adults used fewer saccades than young adults and with higher versus lower gain visual feedback during a force-steadiness task. A subset of older adults used an altered visual strategy when allocating attention across multiple tasks. Given that this subset demonstrated attentional deficits, the altered visual strategy could serve to indicate motor and/or cognitive impairments.
Collapse
Affiliation(s)
| | - Wendy E Huddleston
- Department of Rehabilitation Sciences & Technology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States
| | - Kristian O'Connor
- Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States
| | - Jinsung Wang
- Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States
| | - Marie Hoeger Bement
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Kevin G Keenan
- Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States
| |
Collapse
|
5
|
Raffalt PC, Yentes JM, Freitas SR, Vaz JR. Calculating sample entropy from isometric torque signals: methodological considerations and recommendations. Front Physiol 2023; 14:1173702. [PMID: 37324377 PMCID: PMC10267410 DOI: 10.3389/fphys.2023.1173702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
We investigated the effect of different sampling frequencies, input parameters and observation times for sample entropy (SaEn) calculated on torque data recorded from a submaximal isometric contraction. Forty-six participants performed sustained isometric knee flexion at 20% of their maximal contraction level and torque data was sampled at 1,000 Hz for 180 s. Power spectral analysis was used to determine the appropriate sampling frequency. The time series were downsampled to 750, 500, 250, 100, 50, and 25 Hz to investigate the effect of different sampling frequency. Relative parameter consistency was investigated using combinations of vector lengths of two and three and tolerance limits of 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, and 0.4, and data lengths between 500 and 18,000 data points. The effect of different observations times was evaluated using Bland-Altman plot for observations times between 5 and 90 s. SaEn increased at sampling frequencies below 100 Hz and was unaltered above 250 Hz. In agreement with the power spectral analysis, this advocates for a sampling frequency between 100 and 250 Hz. Relative consistency was observed across the tested parameters and at least 30 s of observation time was required for a valid calculation of SaEn from torque data.
Collapse
Affiliation(s)
- Peter C. Raffalt
- Department of Biology, University of Southern Denmark, Odense, Denmark
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jennifer M. Yentes
- Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX, United States
| | - Sandro R. Freitas
- Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
| | - João R. Vaz
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Caparica, Almada, Portugal
| |
Collapse
|
6
|
Gopaul U, Laver D, Carey L, Matyas T, van Vliet P, Callister R. Measures of Maximal Tactile Pressures during a Sustained Grasp Task Using a TactArray Device Have Satisfactory Reliability and Concurrent Validity in People with Stroke. SENSORS (BASEL, SWITZERLAND) 2023; 23:3291. [PMID: 36992002 PMCID: PMC10059963 DOI: 10.3390/s23063291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Sensor-based devices can record pressure or force over time during grasping and therefore offer a more comprehensive approach to quantifying grip strength during sustained contractions. The objectives of this study were to investigate the reliability and concurrent validity of measures of maximal tactile pressures and forces during a sustained grasp task using a TactArray device in people with stroke. Participants with stroke (n = 11) performed three trials of sustained maximal grasp over 8 s. Both hands were tested in within- and between-day sessions, with and without vision. Measures of maximal tactile pressures and forces were measured for the complete (8 s) grasp duration and plateau phase (5 s). Tactile measures are reported using the highest value among three trials, the mean of two trials, and the mean of three trials. Reliability was determined using changes in mean, coefficients of variation, and intraclass correlation coefficients (ICCs). Pearson correlation coefficients were used to evaluate concurrent validity. This study found that measures of reliability assessed by changes in means were good, coefficients of variation were good to acceptable, and ICCs were very good for maximal tactile pressures using the average pressure of the mean of three trials over 8 s in the affected hand with and without vision for within-day sessions and without vision for between-day sessions. In the less affected hand, changes in mean were very good, coefficients of variations were acceptable, and ICCs were good to very good for maximal tactile pressures using the average pressure of the mean of three trials over 8 s and 5 s, respectively, in between-day sessions with and without vision. Maximal tactile pressures had moderate correlations with grip strength. The TactArray device demonstrates satisfactory reliability and concurrent validity for measures of maximal tactile pressures in people with stroke.
Collapse
Affiliation(s)
- Urvashy Gopaul
- KITE Research—Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada
| | - Derek Laver
- Human Physiology, School of Biomedical Sciences & Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Leeanne Carey
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne Campus, Melbourne, VIC 3086, Australia
- Neurorehabilitation and Recovery Group, the Florey Institute of Neuroscience and Mental Health, Austin Campus, Heidelberg, VIC 3084, Australia
| | - Thomas Matyas
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne Campus, Melbourne, VIC 3086, Australia
| | - Paulette van Vliet
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Robin Callister
- Human Physiology, School of Biomedical Sciences & Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
7
|
Bauer P, Gomes JS, Oliveira J, Santos P, Pezarat-Correia P, Vaz JR. Torque Regulation Is Influenced by the Nature of the Isometric Contraction. SENSORS (BASEL, SWITZERLAND) 2023; 23:726. [PMID: 36679523 PMCID: PMC9861772 DOI: 10.3390/s23020726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The present study aimed to investigate the effects of a continuous visual feedback and the isometric contraction nature on the complexity and variability of force. Thirteen healthy and young male adults performed three MVCs followed by three submaximal isometric force tasks at a target force of 40% of their MVC for 30 s, as follows: (i) push isometric task with visual feedback (Pvisual); (ii) hold isometric task with visual feedback (Hvisual); (iii) hold isometric task without visual feedback (Hnon-visual). Force complexity was evaluated through sample entropy (SampEn) of the force output. Force variability was analyzed through the coefficient of variation (CV). Results showed that differences were task-related, with Pvisual showing higher complexity (i.e., higher SampEn) and decreased variability (i.e., lower CV) when compared with the remaining tasks. Additionally, no significant differences were found between the two hold isometric force tasks (i.e., no influence of visual feedback). Our results are promising as we showed these two isometric tasks to induce different motor control strategies. Furthermore, we demonstrated that visual feedback's influence is also dependent on the type of isometric task. These findings should motivate researchers and physiologists to shift training paradigms and incorporate different force control evaluation tasks.
Collapse
Affiliation(s)
- Philipp Bauer
- Centro Interdisciplinar de Performance Humana (CIPER), Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, 1495-751 Lisbon, Portugal
- Interdisciplinary Research Centre Egas Moniz (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - João Sá Gomes
- Centro Interdisciplinar de Performance Humana (CIPER), Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, 1495-751 Lisbon, Portugal
- Interdisciplinary Research Centre Egas Moniz (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - João Oliveira
- Centro Interdisciplinar de Performance Humana (CIPER), Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, 1495-751 Lisbon, Portugal
| | - Paulo Santos
- Centro Interdisciplinar de Performance Humana (CIPER), Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, 1495-751 Lisbon, Portugal
| | - Pedro Pezarat-Correia
- Centro Interdisciplinar de Performance Humana (CIPER), Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, 1495-751 Lisbon, Portugal
| | - João R. Vaz
- Centro Interdisciplinar de Performance Humana (CIPER), Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, 1495-751 Lisbon, Portugal
- Interdisciplinary Research Centre Egas Moniz (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| |
Collapse
|
8
|
Pethick J, Taylor MJD, Harridge SDR. Ageing and skeletal muscle force control: current perspectives and future directions. Scand J Med Sci Sports 2022; 32:1430-1443. [PMID: 35815914 PMCID: PMC9541459 DOI: 10.1111/sms.14207] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
During voluntary muscle contractions, force output is characterized by constant inherent fluctuations, which can be quantified either according to their magnitude or temporal structure, that is, complexity. The presence of such fluctuations when targeting a set force indicates that control of force is not perfectly accurate, which can have significant implications for task performance. Compared to young adults, older adults demonstrate a greater magnitude and lower complexity in force fluctuations, indicative of decreased steadiness, and adaptability of force output, respectively. The nature of this loss‐of‐force control depends not only on the age of the individual but also on the muscle group performing the task, the intensity and type of contraction and whether the task is performed with additional cognitive load. Importantly, this age‐associated loss‐of‐force control is correlated with decreased performance in a range of activities of daily living and is speculated to be of greater importance for functional capacity than age‐associated decreases in maximal strength. Fortunately, there is evidence that acute physical activity interventions can reverse the loss‐of‐force control in older individuals, though whether this translates to improved functional performance and whether lifelong physical activity can protect against the changes have yet to be established. A number of mechanisms, related to both motor unit properties and the behavior of motor unit populations, have been proposed for the age‐associated changes in force fluctuations. It is likely, though, that age‐associated changes in force control are related to increased common fluctuations in the discharge times of motor units.
Collapse
Affiliation(s)
- Jamie Pethick
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Essex, UK
| | - Matthew J D Taylor
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Essex, UK
| | | |
Collapse
|
9
|
Visual feedback improves bimanual force control performances at planning and execution levels. Sci Rep 2021; 11:21149. [PMID: 34707163 PMCID: PMC8551182 DOI: 10.1038/s41598-021-00721-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/18/2021] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study was to determine the effect of different visual conditions and targeted force levels on bilateral motor synergies and bimanual force control performances. Fourteen healthy young participants performed bimanual isometric force control tasks by extending their wrists and fingers under two visual feedback conditions (i.e., vision and no-vision) and three targeted force levels (i.e., 5%, 25%, and 50% of maximum voluntary contraction: MVC). To estimate bilateral motor synergies across multiple trials, we calculated the proportion of good variability relative to bad variability using an uncontrolled manifold analysis. To assess bimanual force control performances within a trial, we used the accuracy, variability, and regularity of total forces produced by two hands. Further, analysis included correlation coefficients between forces from the left and right hands. In addition, we examined the correlations between altered bilateral motor synergies and force control performances from no-vision to vision conditions for each targeted force level. Importantly, our findings revealed that the presence of visual feedback increased bilateral motor synergies across multiple trials significantly with a reduction of bad variability as well as improved bimanual force control performances within a trial based on higher force accuracy, lower force variability, less force regularity, and decreased correlation coefficients between hands. Further, we found two significant correlations in (a) increased bilateral motor synergy versus higher force accuracy at 5% of MVC and (b) increased bilateral motor synergy versus lower force variability at 50% of MVC. Together, these results suggested that visual feedback effectively improved both synergetic coordination behaviors across multiple trials and stability of task performance within a trial across various submaximal force levels.
Collapse
|
10
|
Age-associated increase in postural variability relate to greater low-frequency center of pressure oscillations. Gait Posture 2021; 85:103-109. [PMID: 33524665 PMCID: PMC8084964 DOI: 10.1016/j.gaitpost.2020.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Postural control is impaired in older adults, as evidenced from greater variability of the center of pressure (COP) during postural tasks. Although COP variability associates with low-frequency COP oscillations (<1 Hz) in young adults, it remains unknown if the age-associated increase in COP variability relates to greater low-frequency COP oscillations. RESEARCH QUESTION Do low-frequency oscillations contribute to greater postural sway (center of pressure (COP) variability) in older adults when attempting to voluntarily maintain posture in a forward leaning position compared to young adults? METHODS Seven young (25.7 ± 4.8) and seven older (71.0 ± 7.0) adults performed a postural lean forward task and attempted to match a COP target in the anterior-posterior direction as steady as possible. We quantified the COP variability as the standard deviation (SD) of COP displacements in the anterior-posterior and medial-lateral directions and quantified the frequency modulation of COP as the power in COP displacement spectra from 0-1 Hz. RESULTS We found that older adults had significantly greater anterior-posterior SD of COP (p = 0.027) and power below 0.5 Hz (p = 0.048) than young adults, but power from 0.5-1 Hz was similar (p = 0.083). In contrast, the medial-lateral SD of COP (p = 0.5) and power from 0-1 Hz (p = 0.228) was similar for the two age groups. For both the anterior-posterior and medial-lateral direction, the SD of COP was related to low frequency oscillations below 0.5 Hz. SIGNIFICANCE For the first time, we show that the age-associated increase in postural variability relates to greater COP oscillations below 0.5 Hz.
Collapse
|
11
|
Grooms DR, Criss CR, Simon JE, Haggerty AL, Wohl TR. Neural Correlates of Knee Extension and Flexion Force Control: A Kinetically-Instrumented Neuroimaging Study. Front Hum Neurosci 2021; 14:622637. [PMID: 33613205 PMCID: PMC7890238 DOI: 10.3389/fnhum.2020.622637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Background: The regulation of muscle force is a vital aspect of sensorimotor control, requiring intricate neural processes. While neural activity associated with upper extremity force control has been documented, extrapolation to lower extremity force control is limited. Knowledge of how the brain regulates force control for knee extension and flexion may provide insights as to how pathology or intervention impacts central control of movement. Objectives: To develop and implement a neuroimaging-compatible force control paradigm for knee extension and flexion. Methods: A magnetic resonance imaging (MRI) safe load cell was used in a customized apparatus to quantify force (N) during neuroimaging (Philips Achieva 3T). Visual biofeedback and a target sinusoidal wave that fluctuated between 0 and 5 N was provided via an MRI-safe virtual reality display. Fifteen right leg dominant female participants (age = 20.3 ± 1.2 years, height = 1.6 ± 0.10 m, weight = 64.8 ± 6.4 kg) completed a knee extension and flexion force matching paradigm during neuroimaging. The force-matching error was calculated based on the difference between the visual target and actual performance. Brain activation patterns were calculated and associated with force-matching error and the difference between quadriceps and hamstring force-matching tasks were evaluated with a mixed-effects model (z > 3.1, p < 0.05, cluster corrected). Results: Knee extension and flexion force-matching tasks increased BOLD signal among cerebellar, sensorimotor, and visual-processing regions. Increased knee extension force-matching error was associated with greater right frontal cortex and left parietal cortex activity and reduced left lingual gyrus activity. Increased knee flexion force-matching error was associated with reduced left frontal and right parietal region activity. Knee flexion force control increased bilateral premotor, secondary somatosensory, and right anterior temporal activity relative to knee extension. The force-matching error was not statistically different between tasks. Conclusion: Lower extremity force control results in unique activation strategies depending on if engaging knee extension or flexion, with knee flexion requiring increased neural activity (BOLD signal) for the same level of force and no difference in relative error. These fMRI compatible force control paradigms allow precise behavioral quantification of motor performance concurrent with brain activity for lower extremity sensorimotor function and may serve as a method for future research to investigate how pathologies affect lower extremity neuromuscular function.
Collapse
Affiliation(s)
- Dustin R Grooms
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Grover Center, Athens, OH, United States.,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Grover Center, Athens, OH, United States.,Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Grover Center, Athens, OH, United States
| | - Cody R Criss
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Grover Center, Athens, OH, United States.,Translational Biomedical Sciences Program, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Janet E Simon
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Grover Center, Athens, OH, United States.,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Grover Center, Athens, OH, United States
| | - Adam L Haggerty
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Grover Center, Athens, OH, United States.,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Grover Center, Athens, OH, United States
| | - Timothy R Wohl
- Honors Tutorial College, Ohio University, Athens, OH, United States.,Division of Physical Therapy, School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH, United States
| |
Collapse
|
12
|
Force Steadiness during Submaximal Isometric Plantar and Dorsiflexion in Resistance Training: Experienced vs Non-experienced Individuals. CENTRAL EUROPEAN JOURNAL OF SPORT SCIENCES AND MEDICINE 2021. [DOI: 10.18276/cej.2021.2-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Liu H, Sun M, Ye H, Wang D, Ge L. Providing depth information in the display for pursuit and compensatory tracking and optimization in 3‐D space. AUSTRALIAN JOURNAL OF PSYCHOLOGY 2020. [DOI: 10.1111/ajpy.12117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongyan Liu
- Department of Psychology, Zhejiang Sci‐Tech University, Hangzhou, China,
| | - Mengdan Sun
- Department of Psychology, Zhejiang Sci‐Tech University, Hangzhou, China,
| | - Haili Ye
- Department of Psychology, Zhejiang Sci‐Tech University, Hangzhou, China,
| | - Duming Wang
- Department of Psychology, Zhejiang Sci‐Tech University, Hangzhou, China,
| | - Liezhong Ge
- Department of Psychology, Zhejiang Sci‐Tech University, Hangzhou, China,
| |
Collapse
|
14
|
Wu R, Ditroilo M, Delahunt E, De Vito G. Age Related Changes in Motor Function (II). Decline in Motor Performance Outcomes. Int J Sports Med 2020; 42:215-226. [PMID: 33137831 DOI: 10.1055/a-1265-7073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Age-related impairments in motor performance are caused by a deterioration in mechanical and neuromuscular functions, which have been investigated from the macro-level of muscle-tendon unit to the micro-level of the single muscle fiber. When compared to the healthy young skeletal muscle, aged skeletal muscle is: (1) weaker, slower and less powerful during the performance of voluntary contractions; (2) less steady during the performance of isometric contractions, particularly at low levels of force; and (3) less susceptible to fatigue during the performance of sustained isometric contractions, but more susceptible to fatigue during the performance of high-velocity dynamic contractions. These impairments have been discussed to be mainly the result of: a) loss of muscle mass and selective atrophy of type II muscle fibers; b) altered tendon mechanical properties (decreased tendon stiffness); c) reduced number and altered function of motor units; d) slower muscle fiber shortening velocity; e) increased oscillation in common synaptic input to motor neurons; and f) altered properties and activity of sarcoplasmic reticulum. In this second part of a two-part review we have detailed the age-related impairments in motor performance with a reference to the most important mechanical and neuromuscular contributing factors.
Collapse
Affiliation(s)
- Rui Wu
- School of Public Health Physiotherapy and Sports Science, University College Dublin, Dublin
| | - Massimiliano Ditroilo
- School of Public Health Physiotherapy and Sports Science, University College Dublin, Dublin
| | - Eamonn Delahunt
- School of Public Health Physiotherapy and Sports Science, University College Dublin, Dublin
| | | |
Collapse
|
15
|
Lee JH, Kang N. Effects of online-bandwidth visual feedback on unilateral force control capabilities. PLoS One 2020; 15:e0238367. [PMID: 32941453 PMCID: PMC7498075 DOI: 10.1371/journal.pone.0238367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/15/2020] [Indexed: 11/19/2022] Open
Abstract
Purpose The purpose of this study was to examine how different threshold ranges of online-bandwidth visual feedback influence unilateral force control capabilities in healthy young women. Methods Twenty-five right-handed young women (mean±standard deviation age = 23.6±1.5 years) participated in this study. Participants unilaterally executed hand-grip force control tasks with their dominant and non-dominant hands, respectively. Each participant completed four experimental blocks in a different order of block presentation for each hand condition: (a) 10% of maximum voluntary contraction (MVC) with ±5% bandwidth threshold range (BTR), (b) 10% of MVC with ±10% BTR, (c) 40% of MVC with ±5% BTR, and (d) 40% of MVC with ±10% BTR. Outcome measures on force control capabilities included: (a) force accuracy, (b) force variability, (c) force regularity, and (d) the number of times and duration out of BTR. Results The non-dominant hand showed significant improvements in force control capabilities, as indicated by higher force accuracy, less force variability, and decreased force regularity from ±10% BTR to ±5% BTR during higher targeted force level task. For both hands, the number of times and duration out of BTR increased from ±10% BTR to ±5% BTR. Conclusions The current findings suggested that the narrow threshold range of online-bandwidth visual feedback effectively revealed transient improvements in unilateral isometric force control capabilities during higher targeted force level tasks.
Collapse
Affiliation(s)
- Joon Ho Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
- Division of Sport Science & Sport Science Institute, Incheon National University, Incheon, South Korea
- * E-mail:
| |
Collapse
|
16
|
Accuracy of older adults in judging self-generated elbow torques during multi-joint isometric tasks. Sci Rep 2020; 10:13011. [PMID: 32747667 PMCID: PMC7400576 DOI: 10.1038/s41598-020-69470-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/08/2020] [Indexed: 11/16/2022] Open
Abstract
Successful execution of daily activities requires accurate perception of the torques one generates about multiple joints. Even so, previous studies are mostly limited to an individual’s perception when torques are generated about a single joint. Consequently, this study investigates how accurately individuals judge torques at their arm during a multi-joint task. The accuracy of fifteen right-hand dominant participants (age: 60 ± 10 years) in matching isometric elbow torques, within the same arm, was quantified during single- and/or multi-joint tasks. Participants generated and matched elbow torques when the shoulder was: (1) not abducted (single-to-single-joint), (2) abducted (multi-to-multi-joint), and (3) abducted and then not abducted (multi-to-single-joint). The constant error for the multi-to-single-joint condition (dominant: 6.9 ± 5.9 Nm, non-dominant: 6.0 ± 5.5 Nm) was greater than that for the single-to-single-joint condition (dominant: 2.7 ± 3.1 Nm, non-dominant: 3.4 ± 2.8 Nm) (p < 0.001) and multi-to-multi-joint condition (dominant: 3.0 ± 2.8 Nm, non-dominant: 3.9 ± 2.7 Nm) (p < 0.001). The constant error for the multi-to-multi-joint condition did not significantly differ from that of the single-to-single-joint condition (p \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$=$$\end{document}= 0.780). Findings indicate that in older adults the perception of a self-generated torque during a 2-degree-of-freedom (DOF), multi-joint task is largely influenced by the motor commands associated with the 2-DOF task and is not specific to the DOF at each joint.
Collapse
|
17
|
Association between the trunk muscle function performance and the presence of vertebral fracture in older women with low bone mass. Aging Clin Exp Res 2020; 32:1067-1076. [PMID: 31471893 DOI: 10.1007/s40520-019-01296-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/25/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Despite the clinical importance, it has remained unclear which changes in the trunk muscle function parameters are more associated with the presence of vertebral fracture (VF). AIMS The aim of this study was to verify the association between the trunk muscle function performance and the presence of VF in older women with low bone mass. The secondary aim was to evaluate the correlation between trunk muscle function and both fall history and muscle mass. METHODS This cross-sectional study was composed by 94 women over 60 years within value of T-Score lumbar spine BMD <- 1.0 DP. Multidimensional evaluations were performed: appendicular skeletal muscle mass index (ASMI) was determined by the total body DEXA; the radiographic evaluations measured the degree of thoracic kyphosis and classification of VF. The trunk muscle function parameters, such as peak torque (PT), rate of torque development (RTD) and torque steadiness (TS) were evaluated by isokinetic dynamometer. The trunk muscle endurance was evaluated by the timed loaded standing test. The adjusted multivariate logistic regression model and multivariate linear regression were performed to verify the association between the variables studied. RESULTS The results showed that the trunk muscle function parameter with greater association with the presence of VF is TS extensors (OR = 1.70; p < 0.001). The other two significant muscle parameters were: RTD30 flexors (OR = 0.31; p = 0.033) and PT extensors (OR = 0.13; p = 0.009). No statistical association was found between the presence of VF and the ASMI and trunk muscle endurance. No correlation between trunk muscle function and fall history was observed. There was a weak correlation between ASMI and extensor PT (R2 = 0.21; p = 0.027) and extensor RTD30 (R2 = 0.21; p = 0.026). CONCLUSIONS This study demonstrated that deficit in trunk muscle function has shown a strong association with the presence of VF, highlighting issues heretofore unexplored regarding the association between VF with muscle power and motor control.
Collapse
|
18
|
Kang N, Roberts LM, Aziz C, Cauraugh JH. Age-related deficits in bilateral motor synergies and force coordination. BMC Geriatr 2019; 19:287. [PMID: 31651243 PMCID: PMC6814115 DOI: 10.1186/s12877-019-1285-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 09/20/2019] [Indexed: 11/21/2022] Open
Abstract
Background Ageing may cause impairments in executing bilateral movement control. This study investigated age-related changes in interlimb force coordination across multiple trials by quantifying bilateral motor synergies based on the uncontrolled manifold hypothesis. Participants completed the trials with and without visual feedback. Methods Twenty healthy individuals (10 older adults and 10 young adults) performed 12 isometric force control trials for the two vision conditions at 5% of maximal voluntary contraction. All dependent variables were analyzed in two-way mixed model (Group × Vision Condition; 2 × 2) ANOVAs with repeated measures on the last factor. Results The analyses revealed that older adults had greater mean force produced by two hands in both vision conditions (i.e., yes and no visual feedback). Across both vision conditions, the older adult group showed greater asymmetrical force variability (i.e., standard deviation of non-dominant hand > standard deviation of dominant hand) and revealed more positive correlation coefficients between forces produced by two hands as compared with the young adult group. Finally, an index of bilateral motor synergies was significantly greater in young adults than older adults when visual feedback was available. Conclusion The current findings indicate that deficits in interlimb force coordination across multiple trials appeared in older adults.
Collapse
Affiliation(s)
- Nyeonju Kang
- Division of Sport Science and Sport Science Institute, Incheon, South Korea.,Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611-8206, USA
| | - Lisa M Roberts
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611-8206, USA.,Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Clara Aziz
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611-8206, USA
| | - James H Cauraugh
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611-8206, USA.
| |
Collapse
|
19
|
Choi J, Yeoh WL, Loh PY, Muraki S. Force and electromyography responses during isometric force release of different rates and step-down magnitudes. Hum Mov Sci 2019; 67:102516. [PMID: 31539754 DOI: 10.1016/j.humov.2019.102516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 11/26/2022]
Abstract
This study investigated motor responses of force release during isometric elbow flexion by comparing effects of different ramp durations and step-down magnitudes. Twelve right-handed participants (age: 23.1 ± 1.1) performed trajectory tracking tasks. Participants were instructed to release their force from the reference magnitude (REF; 40% of maximal voluntary contraction force) to a step-down magnitude of 67% REF or 33% REF and maintain the released magnitude. Force release was guided by ramp durations of either 1 s or 5 s. Electromyography of the biceps brachii and triceps brachii was performed during the experimental task, and the co-contraction ratio was evaluated. Force output was recorded to evaluate the parameters of motor performance, such as force variability and overshoot ratio. Although a longer ramp duration of 5 s decreased the force variability and overshoot ratio than did shorter ramp duration of 1 s, higher perceived exertion and co-contraction ratio were followed. Force variability was greater when force was released to the step-down magnitude of 33% REF than that when the magnitude was 67% REF, however, the overshoot ratio showed opposite results. This study provided evidence proving that motor control strategies adopted for force release were affected by both duration and step-down magnitude. In particular, it implies that different control strategies are required according to the level of step-down magnitude with a relatively short ramp duration.
Collapse
Affiliation(s)
- Jeewon Choi
- Department of Human Science, Graduate School of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka 815-8540, Japan.
| | - Wen Liang Yeoh
- Department of Human Science, Graduate School of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka 815-8540, Japan
| | - Ping Yeap Loh
- Department of Human Science, Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka 815-8540, Japan
| | - Satoshi Muraki
- Department of Human Science, Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka 815-8540, Japan
| |
Collapse
|
20
|
Norheim KL, Samani A, Bønløkke JH, Omland Ø, Madeleine P. The effects of age and musculoskeletal pain on force variability among manual workers. Hum Mov Sci 2019; 64:19-27. [PMID: 30641456 DOI: 10.1016/j.humov.2018.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/18/2018] [Accepted: 12/22/2018] [Indexed: 10/27/2022]
Abstract
The present study investigated the influence of age and musculoskeletal pain on force variability during a continuous isometric handgrip force task performed at 30% of maximal voluntary contraction carried out until failure. We recruited 96 male manual workers aged 51-72 years. The participants were stratified according to their age (50-59 and 60+ years) and by pain status (no pain, acute pain and chronic pain). The amplitude and structure of variability expressed as respectively standard deviation (SD) and coefficient of variation (CV), and sample entropy (SaEn) were calculated from the endurance task. The oldest group had an approximately 18% longer endurance time than the youngest group. No between-group differences were found in SD or CV, whereas a significant interaction between age and pain stage was found for SaEn. The youngest group showed lower SaEn than the oldest for both those with chronic pain and those without pain, indicating less force complexity, whereas a tendency for the opposite was found in the acute pain group. Within the pain stage groups, workers with acute pain had higher SaEn compared with both the no pain and chronic pain groups. These findings suggest that age and musculoskeletal pain differentially affects the structure of force variability in manual workers.
Collapse
Affiliation(s)
- Kristoffer Larsen Norheim
- Sport Sciences, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark; Department of Occupational and Environmental Medicine, Danish Ramazzini Centre, Aalborg University Hospital, Aalborg, Denmark.
| | - Afshin Samani
- Sport Sciences, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.
| | - Jakob Hjort Bønløkke
- Department of Occupational and Environmental Medicine, Danish Ramazzini Centre, Aalborg University Hospital, Aalborg, Denmark.
| | - Øyvind Omland
- Department of Occupational and Environmental Medicine, Danish Ramazzini Centre, Aalborg University Hospital, Aalborg, Denmark.
| | - Pascal Madeleine
- Sport Sciences, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
21
|
Kim C, Yacoubi B, Christou EA. Visual load and variability of muscle activation: Effects on reactive driving of older adults. Hum Mov Sci 2018; 63:172-181. [PMID: 30562674 DOI: 10.1016/j.humov.2018.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND The functional significance of the increase in motor output variability with increased visual information processing in older adults remains unclear. Here, we test the hypothesis that increased visual information processing increases muscle activation variability in older adults and impairs their ability to react as fast and as precisely as young adults during a simulated reactive driving task. METHODS Fourteen young and sixteen older adults performed a reactive driving simulation task that required responding to unexpected brake lights of the car ahead during a simple reaction time task (low visual information processing condition) and a choice reaction time task with "no go" trials condition (high visual information processing condition). We quantified the following: 1) reactive driving performance - combination of premotor response time, motor response time, and brake force error; 2) motor output variability - brake impulse variability; 3) muscle activation variability - variability in the tibialis anterior (TA) muscle activity. RESULTS The increase in information processing exacerbated the impaired reactive driving performance in older adults. The best predictor of this impairment was the increase in brake force error. The impaired reactive driving performance was related to brake impulse variability and variability in the TA activity. CONCLUSIONS This study provides novel evidence that increased information processing increases muscle activation variability in older adults with detrimental consequences to their ability to perform a simulated reactive driving task.
Collapse
Affiliation(s)
- Changki Kim
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| | - Basma Yacoubi
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Evangelos A Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
22
|
Thorstensen JR, Tucker MG, Kavanagh JJ. Antagonism of the D2 dopamine receptor enhances tremor but reduces voluntary muscle activation in humans. Neuropharmacology 2018; 141:343-352. [DOI: 10.1016/j.neuropharm.2018.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 02/04/2023]
|
23
|
Kim C, Yacoubi B, Christou EA. Speed but not amplitude of visual feedback exacerbates force variability in older adults. Exp Brain Res 2018; 236:2563-2571. [PMID: 29936533 DOI: 10.1007/s00221-018-5317-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/18/2018] [Indexed: 01/05/2023]
Abstract
Magnification of visual feedback (VF) impairs force control in older adults. In this study, we aimed to determine whether the age-associated increase in force variability with magnification of visual feedback is a consequence of increased amplitude or speed of visual feedback. Seventeen young and 18 older adults performed a constant isometric force task with the index finger at 5% of MVC. We manipulated the vertical (force gain) and horizontal (time gain) aspect of the visual feedback so participants performed the task with the following VF conditions: (1) high amplitude-fast speed; (2) low amplitude-slow speed; (3) high amplitude-slow speed. Changing the visual feedback from low amplitude-slow speed to high amplitude-fast speed increased force variability in older adults but decreased it in young adults (P < 0.01). Changing the visual feedback from low amplitude-slow speed to high amplitude-slow speed did not alter force variability in older adults (P > 0.2), but decreased it in young adults (P < 0.01). Changing the visual feedback from high amplitude-slow speed to high amplitude-fast speed increased force variability in older adults (P < 0.01) but did not alter force variability in young adults (P > 0.2). In summary, increased force variability in older adults with magnification of visual feedback was evident only when the speed of visual feedback increased. Thus, we conclude that in older adults deficits in the rate of processing visual information and not deficits in the processing of more visual information impair force control.
Collapse
Affiliation(s)
- Changki Kim
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - Basma Yacoubi
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - Evangelos A Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA. .,Department of Physical Therapy, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
24
|
Blomkvist AW, Eika F, de Bruin ED, Andersen S, Jorgensen M. Handgrip force steadiness in young and older adults: a reproducibility study. BMC Musculoskelet Disord 2018; 19:96. [PMID: 29609577 PMCID: PMC5879800 DOI: 10.1186/s12891-018-2015-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/21/2018] [Indexed: 01/07/2023] Open
Abstract
Background Force steadiness is a quantitative measure of the ability to control muscle tonus. It is an independent predictor of functional performance and has shown to correlate well with different degrees of motor impairment following stroke. Despite being clinically relevant, few studies have assessed the validity of measuring force steadiness. The aim of this study was to explore the reproducibility of handgrip force steadiness, and to assess age difference in steadiness. Method Intrarater reproducibility (the degree to which a rating gives consistent result on separate occasions) was investigated in a test-retest design with seven days between sessions. Ten young and thirty older adults were recruited and handgrip steadiness was tested at 5%, 10% and 25% of maximum voluntary contraction (MVC) using Nintendo Wii Balance Board (WBB). Coefficients of variation were calculated from the mean force produced (CVM) and the target force (CVT). Area between the force curve and the target force line (Area) was also calculated. For the older adults we explored reliability using intraclass correlation coefficient (ICC) and agreement using standard error of measurement (SEM), limits of agreement (LOA) and smallest real difference (SRD). Results A systematic improvement in handgrip steadiness was found between sessions for all measures (CVM, CVT, Area). CVM and CVT at 5% of MVC showed good to high reliability, while Area had poor reliability for all percentages of MVC. Averaged ICC for CVM, CVT and Area was 0.815, 0.806 and 0.464, respectively. Averaged ICC on 5%, 10%, and 25% of MVC was 0.751, 0.667 and 0.668, respectively. Measures of agreement showed similar trends with better results for CVM and CVT than for Area. Young adults had better handgrip steadiness than older adults across all measures. Conclusion The CVM and CVT measures demonstrated good reproducibility at lower percentages of MVC using the WBB, and could become relevant measures in the clinical setting. The Area measure had poor reproducibility. Young adults have better handgrip steadiness than old adults.
Collapse
Affiliation(s)
- Andreas W Blomkvist
- Department of Geriatric and Internal Medicine, Aalborg University Hospital, Copenhagen, Denmark
| | - Fredrik Eika
- Department of Geriatric and Internal Medicine, Aalborg University Hospital, Copenhagen, Denmark
| | - Eling D de Bruin
- Institute of Human Movement Sciences and Sport, Department Health Sciences and Technology, ETH Zurich, HCP H 25.1, Leopold-Ruzicka-Weg 4, CH-8093, Zürich, Switzerland. .,Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, SE141, 83, Huddinge, Sweden.
| | - Stig Andersen
- Department of Geriatric and Internal Medicine, Aalborg University Hospital, Copenhagen, Denmark
| | - Martin Jorgensen
- Department of Geriatric and Internal Medicine, Aalborg University Hospital, Copenhagen, Denmark
| |
Collapse
|
25
|
Smart RR, Baudry S, Fedorov A, Kuzyk SL, Jakobi JM. Influence of biceps brachii tendon mechanical properties on elbow flexor force steadiness in young and old males. Scand J Med Sci Sports 2018; 28:983-991. [PMID: 29161769 DOI: 10.1111/sms.13024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2017] [Indexed: 11/28/2022]
Abstract
Elbow flexor force steadiness (FS) depends on strength and decreases with age. Achilles tendon mechanics effect standing balance and isometric plantarflexion FS. This study investigated the influence of distal biceps brachii (BB) tendon mechanics and elbow flexor strength on age-related decline in FS. Nine young (23 ± 2 years) and nine old (77 ± 5 years) males performed submaximal isometric elbow flexion tasks at low (2.5%, 5%, 10% maximal voluntary contraction (MVC)) and high (20%, 40%, 60%, 80%MVC) forces in a neutral forearm position. Distal BB tendon elongation and cross-sectional area (CSA) were recorded on ultrasound to calculate mechanics of strain, stress, and stiffness. Coefficient of variation (CV) of force was used to assess relationship of FS to tendon mechanics and strength. Young were 22% stronger and 41% steadier than old (P < .05). Tendon stiffness (170.1 ± 132.9 N/mm; 113.0 ± 55.1 N/mm) did not differ with age (P > .05). Young had 40% less strain compared to old at 5% MVC, but 42% greater strain at 60% and 80% MVC (P ≤ .05). Stress was ~18% greater in young at 10%, 20%, and 80% MVC (P ≤ .05). At low forces, CV of force was predicted by stress (r2 = 0.56) in young, and stress and MVC (r2 = 0.641) in old. At high forces for both age groups, CV of force was predicted by MVC and stress (r2 = 0.39-0.43). Stress and strain is greater in young compared with old males. Because strength influences tendon mechanics and is also associated with FS, absolute strength is a large and modifiable contributor to age-related decline in FS.
Collapse
Affiliation(s)
- R R Smart
- Healthy Exercise and Aging Lab, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - S Baudry
- Laboratory of Applied Biology and Neurophysiology, Université Libre de Bruxelles, Brussels, Belgium
| | - A Fedorov
- Healthy Exercise and Aging Lab, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - S L Kuzyk
- Healthy Exercise and Aging Lab, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - J M Jakobi
- Healthy Exercise and Aging Lab, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
26
|
Chen YC, Lin LL, Lin YT, Hu CL, Hwang IS. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly. Front Hum Neurosci 2017; 11:538. [PMID: 29167637 PMCID: PMC5682334 DOI: 10.3389/fnhum.2017.00538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/23/2017] [Indexed: 11/13/2022] Open
Abstract
Error amplification (EA) feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG). EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations [Formula: see text], short-term effective diffusion coefficients (Ds), and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13-35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.
Collapse
Affiliation(s)
- Yi-Ching Chen
- Department of Physical Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung City, Taiwan.,Physical Therapy Room, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Linda L Lin
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan City, Taiwan
| | - Yen-Ting Lin
- Physical Education Office, Asian University, Taichung City, Taiwan
| | - Chia-Ling Hu
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Ing-Shiou Hwang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan.,Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
27
|
Chow JW, Stokic DS. Improvements in force variability and structure from vision- to memory-guided submaximal isometric knee extension in subacute stroke. J Appl Physiol (1985) 2017; 124:592-603. [PMID: 29097632 DOI: 10.1152/japplphysiol.00717.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined changes in variability, accuracy, frequency composition, and temporal regularity of force signal from vision-guided to memory-guided force-matching tasks in 17 subacute stroke and 17 age-matched healthy subjects. Subjects performed a unilateral isometric knee extension at 10, 30, and 50% of peak torque [maximum voluntary contraction (MVC)] for 10 s (3 trials each). Visual feedback was removed at the 5-s mark in the first two trials (feedback withdrawal), and 30 s after the second trial the subjects were asked to produce the target force without visual feedback (force recall). The coefficient of variation and constant error were used to quantify force variability and accuracy. Force structure was assessed by the median frequency, relative spectral power in the 0-3-Hz band, and sample entropy of the force signal. At 10% MVC, the force signal in subacute stroke subjects became steadier, more broadband, and temporally more irregular after the withdrawal of visual feedback, with progressively larger error at higher contraction levels. Also, the lack of modulation in the spectral frequency at higher force levels with visual feedback persisted in both the withdrawal and recall conditions. In terms of changes from the visual feedback condition, the feedback withdrawal produced a greater difference between the paretic, nonparetic, and control legs than the force recall. The overall results suggest improvements in force variability and structure from vision- to memory-guided force control in subacute stroke despite decreased accuracy. Different sensory-motor memory retrieval mechanisms seem to be involved in the feedback withdrawal and force recall conditions, which deserves further study. NEW & NOTEWORTHY We demonstrate that in the subacute phase of stroke, force signals during a low-level isometric knee extension become steadier, more broadband in spectral power, and more complex after removal of visual feedback. Larger force errors are produced when recalling target forces than immediately after withdrawing visual feedback. Although visual feedback offers better accuracy, it worsens force variability and structure in subacute stroke. The feedback withdrawal and force recall conditions seem to involve different memory retrieval mechanisms.
Collapse
Affiliation(s)
- John W Chow
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center , Jackson, Mississippi
| | - Dobrivoje S Stokic
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center , Jackson, Mississippi
| |
Collapse
|
28
|
Keenan KG, Huddleston WE, Ernest BE. Altered visual strategies and attention are related to increased force fluctuations during a pinch grip task in older adults. J Neurophysiol 2017; 118:2537-2548. [PMID: 28701549 DOI: 10.1152/jn.00928.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/19/2017] [Accepted: 07/08/2017] [Indexed: 11/22/2022] Open
Abstract
The purpose of the study was to determine the visual strategies used by older adults during a pinch grip task and to assess the relations between visual strategy, deficits in attention, and increased force fluctuations in older adults. Eye movements of 23 older adults (>65 yr) were monitored during a low-force pinch grip task while subjects viewed three common visual feedback displays. Performance on the Grooved Pegboard test and an attention task (which required no concurrent hand movements) was also measured. Visual strategies varied across subjects and depended on the type of visual feedback provided to the subjects. First, while viewing a high-gain compensatory feedback display (horizontal bar moving up and down with force), 9 of 23 older subjects adopted a strategy of performing saccades during the task, which resulted in 2.5 times greater force fluctuations in those that exhibited saccades compared with those who maintained fixation near the target line. Second, during pursuit feedback displays (force trace moving left to right across screen and up and down with force), all subjects exhibited multiple saccades, and increased force fluctuations were associated (rs = 0.6; P = 0.002) with fewer saccades during the pursuit task. Also, decreased low-frequency (<4 Hz) force fluctuations and Grooved Pegboard times were significantly related (P = 0.033 and P = 0.005, respectively) with higher (i.e., better) attention z scores. Comparison of these results with our previously published results in young subjects indicates that saccadic eye movements and attention are related to force control in older adults.NEW & NOTEWORTHY The significant contributions of the study are the addition of eye movement data and an attention task to explain differences in hand motor control across different visual displays in older adults. Older participants used different visual strategies across varying feedback displays, and saccadic eye movements were related with motor performance. In addition, those older individuals with deficits in attention had impaired motor performance on two different hand motor control tasks, including the Grooved Pegboard test.
Collapse
Affiliation(s)
- Kevin G Keenan
- Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin; and .,Center for Aging and Translational Research, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Wendy E Huddleston
- Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin; and.,Center for Aging and Translational Research, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Bradley E Ernest
- Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin; and
| |
Collapse
|
29
|
Oomen NM, van Dieën JH. Effects of age on force steadiness: A literature review and meta-analysis. Ageing Res Rev 2017; 35:312-321. [PMID: 27836706 DOI: 10.1016/j.arr.2016.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/04/2016] [Indexed: 11/25/2022]
Abstract
The variability of force is indicative of the biological variability inherent in the human motor system. Previous literature showed inconsistent findings of the effect of age on the variability of force and hence a systematic review was performed. Twenty studies were included in this systematic review, of which twelve provided sufficient data to determine effect sizes for the effect of age. After determining the pooled effect size, the effect of sample size on dichotomized effect sizes (significant vs. non-significant) was determined. Also, the effect of possible determinants, age difference between age groups, dominance of investigated limb, muscle group, muscle location (proximal vs. distal and upper vs. lower extremity) and target force level on effect size (categorized as small, medium, or large) were investigated. A large pooled effect size of age was found (rtotal=0.67, 95% CI [0.61; 0.72]). No relation between sample size and effect size significance was found, indicative of no lack of power in the studies reviewed. No relations were found of associations between age difference, upper vs. lower extremity muscle location, and dominance and effect size. Significant relations of effect size with muscle group, proximal vs. distal muscle location and target force level were found. Also, an interaction effect of muscle group and target force level was suggested. The meta-analysis results are in line with motor unit loss as the main cause of the effect of ageing on force steadiness and this effect can partially explain decreased motor performance associated with ageing.
Collapse
|
30
|
Deering RE, Senefeld JW, Pashibin T, Neumann DA, Hunter SK. Muscle function and fatigability of trunk flexors in males and females. Biol Sex Differ 2017; 8:12. [PMID: 28428836 PMCID: PMC5393031 DOI: 10.1186/s13293-017-0133-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/05/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Optimal function of the abdominal muscles is necessary for several life functions including lifting and carrying tasks. Sex differences in strength and fatigability are established for many limb muscles and back extensor muscles, but it is unknown if sex differences exist for the abdominal muscles despite their functional importance. METHODS Eighteen females (24.3 ± 4.8 years) and 15 males (24.1 ± 6.6 years) performed (1) isometric trunk flexion maximal voluntary contractions (MVCs) in a range of trunk positions to establish a torque-angle curve and (2) submaximal (50% MVC), intermittent isometric contraction (6 s on, 4 s off) until task failure to determine fatigability of the trunk flexor muscles. Dual X-ray absorptiometry quantified body fat and lean mass. Physical activity levels were quantified with a questionnaire. Torque-angle curves, electromyography (EMG), MVC torque, and torque steadiness were compared with repeated measures ANOVA with sex as a between-subjects factor. RESULTS For the torque-angle curve, MVC torque was reduced as the trunk angle increased toward flexion (p < 0.001). Males had greater MVC torque than females at the extended positions (31% difference), with no sex differences in torque in upright sitting (p > 0.05). Time-to-task failure for the submaximal fatigability task in upright sitting was similar between males and females (12.4 ± 7 vs 10.5 ± 6 min). Time-to-task failure was positively associated with strength (r = 0.473, p = 0.005) and self-reported physical activity (r = 0.456, p = 0.030). Lean mass in the trunk was positively associated with trunk flexor strength (r = 0.378, p = 0.011) and self-reported physical activity (r = 0.486, p = 0.007). Finally, torque steadiness [coefficient of variation of torque (CV)] during submaximal isometric contractions decreased with contraction intensity and was similar for males and females across all intensities. CONCLUSIONS Unlike many limb muscle groups, males and females had similar fatigability and torque steadiness of the trunk flexor muscles during isometric contractions. Stronger individuals, however, exhibited less fatigability. Lower self-reported physical activity was associated with greater fatigability of trunk flexor muscles. The relationship between strength and fatigability of the trunk flexor muscles and physical activity supports the importance of abdominal muscle strengthening to offset fatigability in both males and females.
Collapse
Affiliation(s)
- Rita E. Deering
- Department of Physical Therapy, Marquette University, PO Box 1881, Milwaukee, WI 53201 USA
| | - Jonathon W. Senefeld
- Department of Physical Therapy, Marquette University, PO Box 1881, Milwaukee, WI 53201 USA
| | - Tatyana Pashibin
- Department of Physical Therapy, Marquette University, PO Box 1881, Milwaukee, WI 53201 USA
| | - Donald A. Neumann
- Department of Physical Therapy, Marquette University, PO Box 1881, Milwaukee, WI 53201 USA
| | - Sandra K. Hunter
- Department of Physical Therapy, Marquette University, PO Box 1881, Milwaukee, WI 53201 USA
| |
Collapse
|
31
|
Motor output oscillations with magnification of visual feedback in older adults. Neurosci Lett 2017; 647:8-13. [PMID: 28300635 DOI: 10.1016/j.neulet.2017.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 11/22/2022]
Abstract
Magnification of task visual feedback increases force variability in older adults. Although the increased force variability with magnified visual feedback in older adults relates to the amplification of oscillations in force below 0.5Hz, the related frequency modulation in muscle activity remains unknown. The purpose of this study, therefore, was to characterize the oscillations in muscle activity that contribute to the amplification of force variability with magnified visual feedback in older adults. Fifteen older adults (76.7±6.4years, 7 females) performed isometric contractions at 15% of maximal voluntary contraction (MVC) with ankle dorsiflexion with low-gain (0.05°) or high-gain visual feedback (1.2°). The standard deviation (SD) of force increased significantly (55%) from low- to high-gain visual feedback condition (P<0.0001), without changing the mean force (P>0.5). The increase in force variability was related to greater power in force oscillations from 0 to 0.5Hz (R2=0.37). The increase in force oscillations was associated with greater power in EMG burst oscillations from 0.5 to 1.0Hz (R2=0.50). In conclusion, these findings suggest that magnification of visual feedback alters the modulation of the motor neuron pool in older adults and exacerbates force variability by increasing the oscillations in force below 0.5Hz.
Collapse
|
32
|
Takimoto K, Takebayashi H, Miyamoto K, Takuma Y, Inoue Y, Miyamoto S, Okabe T, Okuda T, Kaba H. Comparison of timing and force control of foot tapping between elderly and young subjects. J Phys Ther Sci 2016; 28:1909-15. [PMID: 27390445 PMCID: PMC4932086 DOI: 10.1589/jpts.28.1909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 03/12/2016] [Indexed: 11/24/2022] Open
Abstract
[Purpose] To examine the ability of young and elderly individuals to control the timing
and force of periodic sequential foot tapping. [Subjects and Methods] Participants were 10
young (age, 22.1 ± 4.3 years) and 10 elderly individuals (74.8 ± 6.7 years) who were
healthy and active. The foot tapping task consisted of practice (stimulus-synchronized
tapping with visual feedback) and recall trials (self-paced tapping without visual
feedback), periodically performed in this order, at 500-, 1,000-, and 2,000-ms target
interstimulus-onset intervals, with a target force of 20% maximum voluntary contraction of
the ankle plantar-flexor muscle. [Results] The coefficients of variation of force and
intertap interval, used for quantifying the steadiness of the trials, were significantly
greater in the elderly than in the young individuals. At the 500-ms interstimulus-onset
interval, age-related effects were observed on the normalized mean absolute error of
force, which was used to quantify the accuracy of the trials. The coefficients of
variation of intertap interval for elderly individuals were significantly greater in the
practice than in the recall trials at the 500- and 1,000-ms interstimulus-onset intervals.
[Conclusion] The elderly individuals exhibited greater force and timing variability than
the young individuals and showed impaired visuomotor processing during foot tapping
sequences.
Collapse
Affiliation(s)
- Koji Takimoto
- Department of Physical Therapy, Tosa Rehabilitation College, Japan; Department of Physiology, Kochi Medical School, Kochi University, Japan
| | | | - Kenzo Miyamoto
- Department of Physical Therapy, Tosa Rehabilitation College, Japan
| | - Yutaka Takuma
- Department of Physical Therapy, Tosa Rehabilitation College, Japan
| | - Yoshikazu Inoue
- Department of Physical Therapy, Tosa Rehabilitation College, Japan
| | - Shoko Miyamoto
- Department of Physical Therapy, Tosa Rehabilitation College, Japan
| | - Takao Okabe
- Department of Physical Therapy, Tosa Rehabilitation College, Japan
| | - Takahiro Okuda
- Department of Physical Therapy, Tosa Rehabilitation College, Japan
| | - Hideto Kaba
- Department of Physiology, Kochi Medical School, Kochi University, Japan
| |
Collapse
|
33
|
Parikh PJ, Cole KJ. Editorial: A Hand at Work: Effects of Aging. Front Aging Neurosci 2016; 8:141. [PMID: 27378913 PMCID: PMC4906627 DOI: 10.3389/fnagi.2016.00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/30/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pranav J Parikh
- Department of Health and Human Performance, Center for Neuromotor and Biomechanics Research, University of HoustonHouston, TX, USA; School of Biological and Health Systems Engineering, Arizona State UniversityTempe, AZ, USA
| | - Kelly J Cole
- Department of Health and Human Physiology, University of Iowa Iowa City, IA, USA
| |
Collapse
|
34
|
Ryu YU, Lee KH, Lee H, Park J. Age-related differences in control of a visuomotor coordination task: a preliminary study. J Phys Ther Sci 2016; 28:1255-9. [PMID: 27190463 PMCID: PMC4868223 DOI: 10.1589/jpts.28.1255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/08/2016] [Indexed: 12/02/2022] Open
Abstract
[Purpose] The purpose of the current study was to examine age-related differences in
control of a perception-action coordination skill. We adapted a visuomotor tracking
experiment requiring various coordination patterns between a limb’s motion and an external
signal. [Subjects and Methods] A total of 12 subjects (6 elderly and 6 young) voluntarily
participated in the study. The experimental session consisted of 3 trials for 3 different
relative phase patterns: 0°, 90°, and 180°, defined by the relationship between the online
visual feedback of the joystick motion and the white dot signal. [Results] The 0° and 180°
tracking patterns were stable compared with the 90° tracking pattern for both age groups.
The present results also showed that the elderly subjects were less stable than were young
subjects for all tracking patterns. [Conclusion] The intrinsic coordination dynamics
predicted by the Haken-Kelso-Bunz (HKB) mathematical model did not change with age,
whereas utilization of visual feedback information declined overall. Further research is
needed regarding methods for increasing utilization of visual feedback information from
the perspective of rehabilitation.
Collapse
Affiliation(s)
- Young Uk Ryu
- Department of Physical Therapy, College of Medical Science, Catholic University of Daegu, Republic of Korea
| | - Kyu-Ho Lee
- Department of Physical Therapy, College of Medical Science, Catholic University of Daegu, Republic of Korea
| | - Hocheol Lee
- School of Mechanical and Automotive Engineering, Catholic University of Daegu, Republic of Korea
| | - Jungsik Park
- Center for Medical Humanities and Convergent Contents, Ajou University, Republic of Korea
| |
Collapse
|
35
|
Abstract
Knowledge of motor control differences during rapid goal-directed movements of the upper and lower limbs could be useful in improving rehabilitation protocols. The authors investigated performance and control differences between elbow and knee joints and between different contraction types (concentric vs. eccentric) during rapid movements under externally applied load. There were no significant differences in performance and control with respect to joint (elbow vs. knee) but the performance during concentric contractions was better than eccentric for both the joints. The findings indicate that despite anatomical and functional differences, the CNS is finely tuned for both the joints to maximize the efficiency of movement during a dynamic environment, but there are differences in control strategies between the 2 contraction types.
Collapse
Affiliation(s)
- Rahul Goel
- a Center for Neuromotor and Biomechanics Research , Department of Health and Human Performance, University of Houston , Texas
| | - William H Paloski
- a Center for Neuromotor and Biomechanics Research , Department of Health and Human Performance, University of Houston , Texas
| |
Collapse
|
36
|
Tracy BL, Hitchcock LN, Welsh SJ, Paxton RJ, Feldman-Kothe CE. Visuomotor Correction is a Robust Contributor to Force Variability During Index Finger Abduction by Older Adults. Front Aging Neurosci 2015; 7:229. [PMID: 26696881 PMCID: PMC4678381 DOI: 10.3389/fnagi.2015.00229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/23/2015] [Indexed: 11/21/2022] Open
Abstract
We examined aging-related differences in the contribution of visuomotor correction to force fluctuations during index finger abduction via the analysis of two datasets from similar subjects. Study (1) Young (N = 27, 23 ± 8 years) and older adults (N = 14, 72 ± 9 years) underwent assessment of maximum voluntary contraction force (MVC) and force steadiness during constant-force (CF) index finger abduction (2.5, 30, 65% MVC). For each trial, visual feedback of the force (VIS) was provided for 8–10 s and removed for 8–10 s (NOVIS). Visual gain of the force feedback at 2.5% MVC was high; 12- and 26-fold greater than the 30 and 65% MVC targets. Mean force, standard deviation (SD) of force, and coefficient of variation (CV) of force was calculated for detrended (<0.5 Hz drift removed) VIS and NOVIS data segments. Study (2) A similar group of 14 older adults performed discrete, randomly-ordered VIS or NOVIS trials at low target forces (1–3% MVC) and high visual gain. Study (1) For young adults the CV of force was similar between VIS and NOVIS for the 2.5% (4.8 vs. 4.3%), 30% (3.2 vs. 3.2%) and 65% (3.5 vs. 4.2%) target forces. In contrast, for older adults the CV of force was greater for VIS than NOVIS for 2.5% MVC (6.6 vs. 4.2%, p < 0.001), but not for the 30% (2.4 vs. 2.4%) and 65% (3.1 vs. 3.3%) target forces. At 2.5% MVC, the increase in CV of force for VIS compared with NOVIS was significantly greater (age × visual condition p = 0.008) for older than young adults. Study (2) Similarly, for older adults performing discrete, randomly ordered trials the CV of force was greater for VIS than NOVIS (6.04 vs. 3.81%, p = 0.01). When visual force feedback was a dominant source of information at low forces, normalized force variability was ~58% greater for older adults, but only 11% greater for young adults. The significant effect of visual feedback for older adults was not dependent on the order of presentation of visual conditions. The results indicate that impaired processing of visuomotor information underlies the greater motor variability observed in older adults during lab-based isometric contractions of a hand muscle.
Collapse
Affiliation(s)
- Brian L Tracy
- Department of Health and Exercise Science, Colorado State University Fort Collins, CO, USA
| | - Leah N Hitchcock
- Department of Health and Exercise Science, Colorado State University Fort Collins, CO, USA
| | - Seth J Welsh
- Department of Health and Exercise Science, Colorado State University Fort Collins, CO, USA
| | - Roger J Paxton
- Department of Health and Exercise Science, Colorado State University Fort Collins, CO, USA
| | | |
Collapse
|
37
|
Saito A, Ando R, Akima H. Effects of prolonged patellar tendon vibration on force steadiness in quadriceps femoris during force-matching task. Exp Brain Res 2015; 234:209-17. [DOI: 10.1007/s00221-015-4447-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/16/2015] [Indexed: 11/25/2022]
|
38
|
Processing of visual information compromises the ability of older adults to control novel fine motor tasks. Exp Brain Res 2015; 233:3475-88. [PMID: 26298044 DOI: 10.1007/s00221-015-4408-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/07/2015] [Indexed: 11/26/2022]
Abstract
We performed two experiments to determine whether amplified motor output variability and compromised processing of visual information in older adults impair short-term adaptations when learning novel fine motor tasks. In Experiment 1, 12 young and 12 older adults underwent training to learn how to accurately trace a sinusoidal position target with abduction-adduction of their index finger. They performed 48 trials, which included 8 blocks of 6 trials (the last trial of each block was performed without visual feedback). Afterward, subjects received an interference task (watched a movie) for 60 min. We tested retention by asking subjects to perform the sinusoidal task (5 trials) with and without visual feedback. In Experiment 2, 12 young and 10 older adults traced the same sinusoidal position target with their index finger and ankle at three distinct visual angles (0.25°, 1° and 5.4°). In Experiment 1, the movement error and variability were greater for older adults during the visual feedback trials when compared with young adults. In contrast, during the no-vision trials, age-associated differences in movement error and variability were ameliorated. Short-term adaptations in learning the sinusoidal task were similar for young and older adults. In Experiment 2, lower amount of visual feedback minimized the age-associated differences in movement variability for both the index finger and ankle movements. We demonstrate that although short-term adaptations are similar for young and older adults, older adults do not process visual information as well as young adults and that compromises their ability to control novel fine motor tasks during acquisition, which could influence long-term retention and transfer.
Collapse
|
39
|
Abstract
INTRODUCTION The purpose was to determine the effect of peripheral neuropathy (PN) on motor output variability for ankle muscles of older adults, and the relation between ankle motor variability and postural stability in PN patients. METHODS Older adults with (O-PN) and without PN (O), and young adults (Y) underwent assessment of standing postural stability and ankle muscle force steadiness. RESULTS O-PN displayed impaired ankle muscle force control and postural stability compared with O and Y groups. For O-PN, the amplitude of plantarflexor force fluctuations was moderately correlated with postural stability under no-vision conditions (r = .54, p = .01). DISCUSSION The correlation of variations in ankle force with postural stability in PN suggests a contribution of ankle muscle dyscontrol to the postural instability that impacts physical function for older adults with PN.
Collapse
|
40
|
Onushko T, Schmit BD, Hyngstrom A. The Effect of Antagonist Muscle Sensory Input on Force Regulation. PLoS One 2015; 10:e0133561. [PMID: 26186590 PMCID: PMC4506057 DOI: 10.1371/journal.pone.0133561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/27/2015] [Indexed: 11/26/2022] Open
Abstract
The purpose of this study was to understand how stretch-related sensory feedback from an antagonist muscle affects agonist muscle output at different contraction levels in healthy adults. Ten young (25.3 ± 2.4 years), healthy subjects performed constant isometric knee flexion contractions (agonist) at 6 torque levels: 5%, 10%, 15%, 20%, 30%, and 40% of their maximal voluntary contraction. For half of the trials, subjects received patellar tendon taps (antagonist sensory feedback) during the contraction. We compared error in targeted knee flexion torque and hamstring muscle activity, with and without patellar tendon tapping, across the 6 torque levels. At lower torque levels (5%, 10%, and 15%), subjects produced greater knee torque error following tendon tapping compared with the same torque levels without tendon tapping. In contrast, we did not find any difference in torque output at higher target levels (20%, 30%, and 40%) between trials with and without tendon tapping. We also observed a load-dependent increase in the magnitude of agonist muscle activity after tendon taps, with no associated load-dependent increase in agonist and antagonist co-activation, or reflex inhibition from the antagonist tapping. The findings suggest that at relatively low muscle activity there is a deficiency in the ability to correct motor output after sensory disturbances, and cortical centers (versus sub-cortical) are likely involved.
Collapse
Affiliation(s)
- Tanya Onushko
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Brian D. Schmit
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Allison Hyngstrom
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
41
|
Chung-Hoon K, Tracy BL, Marcus R, Dibble L, Burgess P, Lastayo PC. Effects of practice on variability of muscle force. Percept Mot Skills 2015; 120:475-90. [PMID: 25799026 DOI: 10.2466/26.pms.120v12x4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The motor skill required to decrease the variability in muscle force steadiness can be challenging. The purposes of this study were to determine whether muscle force steadiness improved following repeated trials and whether the number of trials varied for healthy younger adults, healthy older adults, and older adults who have fallen to obtain stable muscle force steadiness measures. Sixty participants performed 30 concentric and eccentric contractions of the knee extensors on an isokinetic dynamometer. Each group had significant improvements in muscle force steadiness and obtained stable measures within six to nine trials. Healthy younger and older adults, and older adults who have fallen, can improve muscle force steadiness. These findings provide a framework for methodological approaches when testing steadiness in varying populations.
Collapse
|
42
|
Force control in chronic stroke. Neurosci Biobehav Rev 2015; 52:38-48. [PMID: 25704075 DOI: 10.1016/j.neubiorev.2015.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 11/23/2022]
Abstract
Force control deficits are common dysfunctions after a stroke. This review concentrates on various force control variables associated with motor impairments and suggests new approaches to quantifying force control production and modulation. Moreover, related neurophysiological mechanisms were addressed to determine variables that affect force control capabilities. Typically, post stroke force control impairments include: (a) decreased force magnitude and asymmetrical forces between hands, (b) higher task error, (c) greater force variability, (d) increased force regularity, and (e) greater time-lag between muscular forces. Recent advances in force control analyses post stroke indicated less bimanual motor synergies and impaired low-force frequency structure. Brain imaging studies demonstrate possible neurophysiological mechanisms underlying force control impairments: (a) decreased activation in motor areas of the ipsilesional hemisphere, (b) increased activation in secondary motor areas between hemispheres, (c) cerebellum involvement, and (d) relatively greater interhemispheric inhibition from the contralesional hemisphere. Consistent with identifying neurophysiological mechanisms, analyzing bimanual motor synergies as well as low-force frequency structure will advance our understanding of post stroke force control.
Collapse
|
43
|
Kang N, Cauraugh JH. Bimanual force variability in chronic stroke: With and without visual information. Neurosci Lett 2015; 587:41-5. [DOI: 10.1016/j.neulet.2014.12.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/24/2014] [Accepted: 12/14/2014] [Indexed: 11/17/2022]
|
44
|
Pereira HM, Spears VC, Schlinder-Delap B, Yoon T, Nielson KA, Hunter SK. Age and sex differences in steadiness of elbow flexor muscles with imposed cognitive demand. Eur J Appl Physiol 2015; 115:1367-79. [PMID: 25633070 DOI: 10.1007/s00421-015-3113-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/14/2015] [Indexed: 01/25/2023]
Abstract
PURPOSE These studies determined (1) age- and sex-related differences in steadiness of isometric contractions when high cognitive demand was imposed across a range of forces with the elbow flexor muscles (study 1) and; (2) sex differences in steadiness among older adults when low cognitive demand was imposed (study 2). METHODS 36 young adults (18-25 years; 18 women) and 30 older adults (60-82 years; 17 women) performed isometric contractions at 5, 30 and 40 % of maximum voluntary contraction (MVC). Study 1 involved a high-cognitive demand session (serial subtractions by 13 during the contraction) and a control session (no mental math). Study 2 (older adults only) involved a low-cognitive demand session (subtracting by 1s). RESULTS Older individuals exhibited greater increases in force fluctuations (coefficient of variation of force, CV) with high cognitive demand than young adults, with the largest age difference at 5 % MVC (P = 0.01). Older adults had greater agonist EMG activity with high-cognitive demand and women had greater coactivation than men (P < 0.05). In study 2, CV of force increased with low cognitive demand for the older women but not for the older men (P = 0.03). CONCLUSION Older adults had reduced steadiness and increased muscle activation when high cognitive demand was imposed while low cognitive demand induced increased force fluctuations in older women but not older men. These findings have implications for daily and work-related tasks that involve cognitive demand performed simultaneously during submaximal isometric contractions in an aging workforce.
Collapse
Affiliation(s)
- Hugo M Pereira
- Department of Physical Therapy, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | | | | | | | | | | |
Collapse
|
45
|
Effects of visual feedback absence on force control during isometric contraction. Eur J Appl Physiol 2014; 115:507-19. [PMID: 25366253 DOI: 10.1007/s00421-014-3036-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE The aim of the study was to evaluate the force control in the complete absence of visual feedback and the effect of repeated contractions without visual feedback. METHODS Twelve physically active males (age 23 ± 1 years; stature 1.74 ± 0.07 m; body mass 71 ± 6 kg) performed isometric tasks at 20, 40 and 60% maximal voluntary contraction (MVC) for 20 s. For each intensity, a trial with force visual feedback (FB) was followed by 3 trials without FB (noFB-1, noFB-2, noFB-3). During contraction, force and surface electromyogram (EMG) from the vastus lateralis muscle were recorded. From force signal, the coefficient of variation (CV, force stability index), the distance of force from target (ΔF, force accuracy index) and the time within the target (t-target) were determined. From EMG signal, the root mean square (RMS) and mean frequency (MF) were calculated. RESULTS MVC was 679.14 ± 38.22 N. In noFB-1, CV was similar to FB, ΔF was higher and t-target lower (P < 0.05) than in FB. EMG-RMS in noFB-1 was lower than in FB at 40 and 60%MVC (P < 0.05). A decrease in ΔF between noFB-1 and noFB-3 (P < 0.05) and an increase in t-target from noFB-1 to noFB-3 (P < 0.05) occurred at 20% MVC. A difference in EMG-RMS among noFB conditions was retrieved only at 60% MVC (P < 0.05). CONCLUSIONS These findings suggest that the complete absence of visual feedback decreased force accuracy but did not affect force stability. Moreover, the repetition of noFB trials improved force accuracy at low exercise intensity, suggesting that real-time visual information could be obviated by other feedbacks for force control.
Collapse
|
46
|
Removing visual feedback for a single limb alters between-limb force tremor relationships during isometric bilateral contractions. Exp Brain Res 2014; 233:115-24. [DOI: 10.1007/s00221-014-4098-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
|
47
|
Hyngstrom AS, Kuhnen HR, Kirking KM, Hunter SK. Functional implications of impaired control of submaximal hip flexion following stroke. Muscle Nerve 2014; 49:225-32. [PMID: 23625534 DOI: 10.1002/mus.23886] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 11/09/2022]
Abstract
INTRODUCTION We quantified submaximal torque regulation during low to moderate intensity isometric hip flexion contractions in individuals with stroke and the associations with leg function. METHODS Ten participants with chronic stroke and 10 controls performed isometric hip flexion contractions at 5%, 10%, 15%, 20%, and 40% of maximal voluntary contraction (MVC) in paretic, nonparetic, and control legs. RESULTS Participants with stroke had larger torque fluctuations (coefficient of variation, CV), for both the paretic and nonparetic legs, than controls (P < 0.05) with the largest CV at 5% MVC in the paretic leg (P < 0.05). The paretic CV correlated with walking speed (r2 = 0.54) and Berg Balance Score (r2 = 0.40). At 5% MVC, there were larger torque fluctuations in the contralateral leg during paretic contractions compared with the control leg. CONCLUSIONS Impaired low-force regulation of paretic leg hip flexion can be functionally relevant and related to control versus strength deficits poststroke.
Collapse
|
48
|
Critchley K, Kokubu M, Iemitsu M, Fujita S, Isaka T. Age-related differences in the availability of visual feedback during bimanual pinch. Eur J Appl Physiol 2014; 114:1925-32. [PMID: 24907975 DOI: 10.1007/s00421-014-2916-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/15/2014] [Indexed: 11/25/2022]
Abstract
PURPOSE Previous research has indicated that older adults have significantly lower accuracy in terms of force control than young adults. In addition, accuracy of force control is known to decrease in the absence of visual feedback. However, whether the effect of visual feedback on fine motor control is similar for young adults and older adults is not clear. The purpose of this study, therefore, was to examine the effect of visual feedback on bimanual pinch force control in older adults. METHODS Thirty-one undergraduate students (age 19.7 ± 0.9 years) and 31 older adults (age 65.1 ± 8.1 years) participated in this study. After measuring finger-pinch maximal voluntary force (MVF), the participants were asked to maintain 10% MVF as steadily as possible in two different conditions: with visual feedback (visual feedback condition; VF condition) and without visual feedback (no visual feedback condition; NVF condition). RESULTS We found that older adults had significantly greater targeting error and force variability than young adults in the VF condition, but not in the NVF condition. In addition, older participants exhibited a significantly greater sum of power for the 0-4 and 4-8 Hz frequency bin than young adults (p < 0.05) in the VF condition, although there was no significant difference in the NVF condition. CONCLUSIONS These results suggest that older adults do not use visual information as effectively as younger adults to reduce force control error.
Collapse
Affiliation(s)
- Kazumi Critchley
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | | | | | | | | |
Collapse
|
49
|
Kang N, Cauraugh JH. Force frequency structure below 1Hz in chronic stroke: Paretic arm control. Brain Res 2014; 1569:32-40. [DOI: 10.1016/j.brainres.2014.04.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/26/2014] [Accepted: 04/28/2014] [Indexed: 11/28/2022]
|
50
|
Vanden Noven ML, Pereira HM, Yoon T, Stevens AA, Nielson KA, Hunter SK. Motor Variability during Sustained Contractions Increases with Cognitive Demand in Older Adults. Front Aging Neurosci 2014; 6:97. [PMID: 24904410 PMCID: PMC4033244 DOI: 10.3389/fnagi.2014.00097] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/05/2014] [Indexed: 01/26/2023] Open
Abstract
To expose cortical involvement in age-related changes in motor performance, we compared steadiness (force fluctuations) and fatigability of submaximal isometric contractions with the ankle dorsiflexor muscles in older and young adults and with varying levels of cognitive demand imposed. Sixteen young (20.4 ± 2.1 year: 8 men, 9 women) and 17 older adults (68.8 ± 4.4 years: 9 men, 8 women) attended three sessions and performed a 40 s isometric contraction at 5% maximal voluntary contraction (MVC) force followed by an isometric contraction at 30% MVC until task failure. The cognitive demand required during the submaximal contractions in each session differed as follows: (1) high-cognitive demand session where difficult mental math was imposed (counting backward by 13 from a 4-digit number); (2) low-cognitive demand session which involved simple mental math (counting backward by 1); and (3) control session with no mental math. Anxiety was elevated during the high-cognitive demand session compared with other sessions for both age groups but more so for the older adults than young adults (p < 0.05). Older adults had larger force fluctuations than young adults during: (1) the 5% MVC task as cognitive demand increased (p = 0.007), and (2) the fatiguing contraction for all sessions (p = 0.002). Time to task failure did not differ between sessions or age groups (p > 0.05), but the variability between sessions (standard deviation of three sessions) was greater for older adults than young (2.02 ± 1.05 vs. 1.25 ± 0.51 min, p < 0.05). Thus, variability in lower limb motor performance for low- and moderate-force isometric tasks increased with age and was exacerbated when cognitive demand was imposed, and may be related to modulation of synergist and antagonist muscles and an altered neural strategy with age originating from central sources. These data have significant implications for cognitively demanding low-force motor tasks that are relevant to functional and ergonomic in an aging workforce.
Collapse
Affiliation(s)
- Marnie L Vanden Noven
- Exercise Science Program, Department of Physical Therapy, Marquette University , Milwaukee, WI , USA
| | - Hugo M Pereira
- Exercise Science Program, Department of Physical Therapy, Marquette University , Milwaukee, WI , USA
| | - Tejin Yoon
- Exercise Science Program, Department of Physical Therapy, Marquette University , Milwaukee, WI , USA
| | - Alyssa A Stevens
- Exercise Science Program, Department of Physical Therapy, Marquette University , Milwaukee, WI , USA
| | - Kristy A Nielson
- Department of Psychology, Marquette University , Milwaukee, WI , USA
| | - Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University , Milwaukee, WI , USA
| |
Collapse
|