1
|
Giuriato G, Barbi C, Laginestra FG, Andani ME, Favaretto T, Martignon C, Pedrinolla A, Vernillo G, Moro T, Franchi M, Romanelli MG, Schena F, Venturelli M. Mitochondrial Influence on Performance Fatigability: Considering Sex Variability. Med Sci Sports Exerc 2025; 57:376-389. [PMID: 39231737 DOI: 10.1249/mss.0000000000003558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
OBJECTIVE Existing literature indicates that females generally demonstrate higher fatigue resistance than males during isometric contractions. However, when it comes to single-limb dynamic exercises, the intricate interplay between performance fatigability (PF), cardiovascular responses, and muscle metabolism in relation to sex differences remains underexplored. PURPOSE This study investigates how sex affects the relationship between muscle oxidative characteristics and the development of PF during dynamic single-leg exercise. METHODS Twenty-four young healthy participants (12 males vs 12 females) performed a constant-load single-leg knee extension task (85% peak power output; 60 rpm) to exhaustion (TTE). Neuromuscular assessments via transcranial magnetic and peripheral stimulations were conducted before and after exercise to evaluate central and peripheral factors of PF. Vastus lateralis muscle biopsies were obtained for mitochondrial respiration and immunohistochemistry analyses. RESULTS Participants performed similar total work (28 ± 7 vs 27 ± 14 kJ, P = 0.81) and TTE (371 ± 139 vs 377 ± 158 s, P = 0.98); after the TTE, females' maximal isometric voluntary contraction (MVIC: -36% ± 13% vs -24% ± 9%, P = 0.006) and resting twitch (RT; -65% ± 9% vs -40% ± 24%, P = 0.004) force declined less. No differences were observed in supraspinal neuromuscular factors ( P > 0.05). During exercise, the cardiovascular responses differed between sexes. Although fiber type composition was similar (type I: 47% ± 13% vs 56% ± 14%, P = 0.11), males had lower mitochondrial net oxidative capacity (61 ± 30 vs 89 ± 37, P = 0.049) and higher Complex II contribution to maximal respiration (CII; 59% ± 8% vs 48% ± 6%, P < 0.001), which correlated with the decline in MVIC ( r = -0.74, P < 0.001) and RT ( r = -0.60, P = 0.002). CONCLUSIONS Females display greater resistance to PF during dynamic contractions, likely due to their superior mitochondrial efficiency and lower dependence on mitochondrial CII activity.
Collapse
Affiliation(s)
| | - Chiara Barbi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, ITALY
| | | | - Mehran Emadi Andani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, ITALY
| | - Thomas Favaretto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, ITALY
| | - Camilla Martignon
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, ITALY
| | | | | | - Tatiana Moro
- Department of Biomedical Sciences, University of Padova, Padova, ITALY
| | - Martino Franchi
- Department of Biomedical Sciences, University of Padova, Padova, ITALY
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, ITALY
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, ITALY
| | | |
Collapse
|
2
|
Kwak M, Succi PJ, Benitez B, Mitchinson CJ, Bergstrom HC. The effects of sex and contraction intensity on fatigability and muscle oxygenation in trained individuals. Appl Physiol Nutr Metab 2025; 50:1-12. [PMID: 39298792 DOI: 10.1139/apnm-2024-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Fatigability varies depending on sex and contraction intensity during sustained exercise. This study examined the responses of time to task failure (TTF), performance fatigability (PF), and muscle oxygenation (SmO2) in males and females during isometric handgrip holds to failure (HTF) at 30% and 60% maximum voluntary isometric contraction (MVIC). Males (n = 12) and females (n = 12) performed a pre-MVIC, handgrip HTF at randomly ordered percentages of MVIC (either 30% or 60%), followed by a post-MVIC on the dominant arm. During the HTF testing, the TTF and SmO2 responses were recorded, and PF was determined from the pre- to post-MVICs. TTF for 30% MVIC HTF was greater than 60% MVIC HTF (p < 0.001), but was not different between males and females (p = 0.117). PF exhibited an inverse relationship with intensity for each sex, while males demonstrated greater PF than females for both 30% and 60% MVIC HTF. For the 60% MVIC HTF, males demonstrated greater desaturation than females (CI95% = [-28.1, -2.6%], p = 0.021, d = 0.621), but not for the 30% MVIC HTF (CI95% = [-12.2, 7.9%], p = 0.315, d = 0.621). Sex differences in PF and SmO2 may be attributed to the differences in muscle mass, absolute strength, contractile properties, and muscle metabolism between males and females. However, these proposed differences between males and females may not fully inform exercise performance (e.g., TTF). Sex-specific fatigue responses may be affected by complex physio-psychological mechanisms, and therefore, additional investigations under diverse exercise conditions are required to better prescribe exercise for both males and females.
Collapse
Affiliation(s)
- Minyoung Kwak
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, USA
| | - Pasquale J Succi
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, USA
| | - Brian Benitez
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, USA
| | - Clara J Mitchinson
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, USA
| | - Haley C Bergstrom
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, USA
| |
Collapse
|
3
|
Hunter SK, Senefeld JW. Sex differences in human performance. J Physiol 2024; 602:4129-4156. [PMID: 39106346 DOI: 10.1113/jp284198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/08/2024] [Indexed: 08/09/2024] Open
Abstract
Sex as a biological variable is an underappreciated aspect of biomedical research, with its importance emerging in more recent years. This review assesses the current understanding of sex differences in human physical performance. Males outperform females in many physical capacities because they are faster, stronger and more powerful, particularly after male puberty. This review highlights key sex differences in physiological and anatomical systems (generally conferred via sex steroids and puberty) that contribute to these sex differences in human physical performance. Specifically, we address the effects of the primary sex steroids that affect human physical development, discuss insight gained from an observational study of 'real-world data' and elite athletes, and highlight the key physiological mechanisms that contribute to sex differences in several aspects of physical performance. Physiological mechanisms discussed include those for the varying magnitude of the sex differences in performance involving: (1) absolute muscular strength and power; (2) fatigability of limb muscles as a measure of relative performance; and (3) maximal aerobic power and endurance. The profound sex-based differences in human performance involving strength, power, speed and endurance, and that are largely attributable to the direct and indirect effects of sex-steroid hormones, sex chromosomes and epigenetics, provide a scientific rationale and framework for policy decisions on sex-based categories in sports during puberty and adulthood. Finally, we highlight the sex bias and problem in human performance research of insufficient studies and information on females across many areas of biology and physiology, creating knowledge gaps and opportunities for high-impact studies.
Collapse
Affiliation(s)
- Sandra K Hunter
- Movement Science Program, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathon W Senefeld
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
4
|
Ortega DG, Smith RW, Arnett JE, Neltner TJ, Roberts TD, Schmidt RJ, Housh TJ. Perceived Factors That Contributed to Task Termination during Fatiguing Tasks Anchored to Perceptual Intensities. J Funct Morphol Kinesiol 2024; 9:152. [PMID: 39311260 PMCID: PMC11417799 DOI: 10.3390/jfmk9030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
This study examined the effects of sustained, isometric forearm flexion tasks anchored to ratings of perceived exertion of 2 (RPE2FT) and 8 (RPE8FT) on the patterns of fatigue-induced changes in torque and neuromuscular responses, time to task failure (TTF), performance fatigability (% decline in maximal voluntary isometric contraction [MVIC]), and perceived factors that contributed to task termination. Twelve men (mean ± SD: age = 20.9 ± 2.2 yrs) performed MVICs before and after the tasks and completed post-test questionnaires (PTQ). Data were analyzed using polynomial regression analyses, dependent t-tests, Spearman's rank order correlations, and Wilcoxon signed rank tests. The RPE8FT had greater (p < 0.001) performance fatigability than the RPE2FT, despite no difference (p > 0.05) in TTF. During both tasks, there were significant (p ≤ 0.05) composite linear decreases for torque, electromyographic amplitude, and neuromuscular efficiency, and substantial individual variability in the neuromuscular responses. There were no significant (p > 0.05) associations among the perceived factors and TTF or performance fatigability. Thus, there were RPE-specific differences in performance fatigability, but not TTF or the composite patterns of changes in torque and neuromuscular responses. In addition, in most cases, the individual neuromuscular, but not torque, patterns of responses were RPE-specific. Furthermore, the perceived factors assessed by the PTQ were not related to TTF or performance fatigability.
Collapse
Affiliation(s)
- Dolores G. Ortega
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska—Lincoln, Lincoln, NE 68510, USA; (J.E.A.); (T.D.R.); (R.J.S.)
| | - Robert W. Smith
- Department of Health, Human Performance, and Sport, Wayne State College, Wayne, NE 68787, USA;
| | - Jocelyn E. Arnett
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska—Lincoln, Lincoln, NE 68510, USA; (J.E.A.); (T.D.R.); (R.J.S.)
| | - Tyler J. Neltner
- Department of Health and Human Performance, University of Wisconsin—Platteville, Platteville, WI 53818, USA;
| | - Trevor D. Roberts
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska—Lincoln, Lincoln, NE 68510, USA; (J.E.A.); (T.D.R.); (R.J.S.)
| | - Richard J. Schmidt
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska—Lincoln, Lincoln, NE 68510, USA; (J.E.A.); (T.D.R.); (R.J.S.)
| | - Terry J. Housh
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska—Lincoln, Lincoln, NE 68510, USA; (J.E.A.); (T.D.R.); (R.J.S.)
| |
Collapse
|
5
|
Olarogba OB, Lockyer EJ, Antolinez AK, Button DC. Sex-related differences in corticospinal excitability outcome measures of the biceps brachii during a submaximal elbow flexor contraction. Physiol Rep 2024; 12:e16102. [PMID: 39095333 PMCID: PMC11296885 DOI: 10.14814/phy2.16102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 08/04/2024] Open
Abstract
The purpose of this study was to investigate the effects of sex, muscle thickness, and subcutaneous fat thickness (SFT) on corticospinal excitability outcome measures of the biceps brachii. Eighteen participants (10 males and 8 females) completed this study. Ultrasound was used to assess biceps brachii muscle thickness and the overlying SFT. Transcranial magnetic stimulation (TMS) was used to determine corticospinal excitability by inducing motor-evoked potentials (MEPs) at eight different TMS intensities from 90% to 160% of active motor threshold (AMT) from the biceps brachii during an isometric contraction of the elbow flexors at 10% of maximum voluntary contraction (MVC). Biceps brachii maximal compound muscle action potential (Mmax) was also recorded prior to and after TMS. Males had higher (p < 0.001) biceps brachii muscle thickness and lower SFT, produced higher levels of MVC force and had, on average, higher (p < 0.001) MEP amplitudes at lower (p < 0.05) percentages of maximal stimulator output than females during the 10% elbow flexion MVC. Multiple linear regression modeling revealed that sex was not associated with any of the neurophysiological parameters examined, while SFT showed a positive association with the stimulation intensity required at AMT (p = 0.035) and a negative association with biceps brachii pre-stimulus electromyography (EMG) activity (p = 0.021). Additionally, there was a small positive association between muscle thickness and biceps brachii pre-stimulus EMG activity (p = 0.049). Overall, this study suggests that some measures of corticospinal excitability may be different between the sexes and influenced by SFT and muscle thickness.
Collapse
Affiliation(s)
- Olalekan B. Olarogba
- Human Neurophysiology LabSchool of Human Kinetics and RecreationSt. John'sNewfoundlandCanada
| | - Evan J. Lockyer
- Human Neurophysiology LabSchool of Human Kinetics and RecreationSt. John'sNewfoundlandCanada
- Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Angie K. Antolinez
- Human Neurophysiology LabSchool of Human Kinetics and RecreationSt. John'sNewfoundlandCanada
| | - Duane C. Button
- Human Neurophysiology LabSchool of Human Kinetics and RecreationSt. John'sNewfoundlandCanada
- Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| |
Collapse
|
6
|
Hunter SK, S Angadi S, Bhargava A, Harper J, Hirschberg AL, D Levine B, L Moreau K, J Nokoff N, Stachenfeld NS, Bermon S. The Biological Basis of Sex Differences in Athletic Performance: Consensus Statement for the American College of Sports Medicine. Med Sci Sports Exerc 2023; 55:2328-2360. [PMID: 37772882 DOI: 10.1249/mss.0000000000003300] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
ABSTRACT Biological sex is a primary determinant of athletic performance because of fundamental sex differences in anatomy and physiology dictated by sex chromosomes and sex hormones. Adult men are typically stronger, more powerful, and faster than women of similar age and training status. Thus, for athletic events and sports relying on endurance, muscle strength, speed, and power, males typically outperform females by 10%-30% depending on the requirements of the event. These sex differences in performance emerge with the onset of puberty and coincide with the increase in endogenous sex steroid hormones, in particular testosterone in males, which increases 30-fold by adulthood, but remains low in females. The primary goal of this consensus statement is to provide the latest scientific knowledge and mechanisms for the sex differences in athletic performance. This review highlights the differences in anatomy and physiology between males and females that are primary determinants of the sex differences in athletic performance and in response to exercise training, and the role of sex steroid hormones (particularly testosterone and estradiol). We also identify historical and nonphysiological factors that influence the sex differences in performance. Finally, we identify gaps in the knowledge of sex differences in athletic performance and the underlying mechanisms, providing substantial opportunities for high-impact studies. A major step toward closing the knowledge gap is to include more and equitable numbers of women to that of men in mechanistic studies that determine any of the sex differences in response to an acute bout of exercise, exercise training, and athletic performance.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, and Athletic and Human Performance Center, Marquette University, Milwaukee, WI
| | | | - Aditi Bhargava
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California, San Francisco, CA
| | - Joanna Harper
- Loughborough University, Loughborough, UNITED KINGDOM
| | - Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Karolinska Institutet, and Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, SWEDEN
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, and the Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kerrie L Moreau
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, and Eastern Colorado Health Care System, Geriatric Research Education and Clinical Center, Aurora, CO
| | - Natalie J Nokoff
- Department of Pediatrics, Section of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Nina S Stachenfeld
- The John B. Pierce Laboratory and Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Stéphane Bermon
- Health and Science Department, World Athletics, Monaco and the LAMHESS, University Côte d'Azur, Nice, FRANCE
| |
Collapse
|
7
|
Nuzzo JL. Narrative Review of Sex Differences in Muscle Strength, Endurance, Activation, Size, Fiber Type, and Strength Training Participation Rates, Preferences, Motivations, Injuries, and Neuromuscular Adaptations. J Strength Cond Res 2023; 37:494-536. [PMID: 36696264 DOI: 10.1519/jsc.0000000000004329] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ABSTRACT Nuzzo, JL. Narrative review of sex differences in muscle strength, endurance, activation, size, fiber type, and strength training participation rates, preferences, motivations, injuries, and neuromuscular adaptations. J Strength Cond Res 37(2): 494-536, 2023-Biological sex and its relation with exercise participation and sports performance continue to be discussed. Here, the purpose was to inform such discussions by summarizing the literature on sex differences in numerous strength training-related variables and outcomes-muscle strength and endurance, muscle mass and size, muscle fiber type, muscle twitch forces, and voluntary activation; strength training participation rates, motivations, preferences, and practices; and injuries and changes in muscle size and strength with strength training. Male subjects become notably stronger than female subjects around age 15 years. In adults, sex differences in strength are more pronounced in upper-body than lower-body muscles and in concentric than eccentric contractions. Greater male than female strength is not because of higher voluntary activation but to greater muscle mass and type II fiber areas. Men participate in strength training more frequently than women. Men are motivated more by challenge, competition, social recognition, and a desire to increase muscle size and strength. Men also have greater preference for competitive, high-intensity, and upper-body exercise. Women are motivated more by improved attractiveness, muscle "toning," and body mass management. Women have greater preference for supervised and lower-body exercise. Intrasexual competition, mate selection, and the drive for muscularity are likely fundamental causes of exercise behaviors in men and women. Men and women increase muscle size and strength after weeks of strength training, but women experience greater relative strength improvements depending on age and muscle group. Men exhibit higher strength training injury rates. No sex difference exists in strength loss and muscle soreness after muscle-damaging exercise.
Collapse
Affiliation(s)
- James L Nuzzo
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
8
|
Besson T, Parent A, Brownstein CG, Espeit L, Lapole T, Martin V, Royer N, Rimaud D, Sabater Pastor F, Singh B, Varesco G, Rossi J, Temesi J, Millet GY. Sex Differences in Neuromuscular Fatigue and Changes in Cost of Running after Mountain Trail Races of Various Distances. Med Sci Sports Exerc 2021; 53:2374-2387. [PMID: 34107510 DOI: 10.1249/mss.0000000000002719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Women have been shown to experience less neuromuscular fatigue than men in knee extensors (KE) and less peripheral fatigue in plantar flexors (PF) after ultratrail running, but it is unknown if these differences exist for shorter trail running races and whether this may impact running economy. The purpose of this study was to characterize sex differences in fatigability over a range of running distances and to examine possible differences in the postrace alteration of the cost of running (Cr). METHODS Eighteen pairs of men and women were matched by performance after completing different races ranging from 40 to 171 km, divided into SHORT versus LONG races (<60 and >100 km, respectively). Neuromuscular function and Cr were tested before and after each race. Neuromuscular function was evaluated on both KE and PF with voluntary and evoked contractions using electrical nerve (KE and PF) and transcranial magnetic (KE) stimulation. Oxygen uptake, respiratory exchange ratio, and ventilation were measured on a treadmill and used to calculate Cr. RESULTS Compared with men, women displayed a smaller decrease in maximal strength in KE (-36% vs -27%, respectively, P < 0.01), independent of race distance. In SHORT only, women displayed less peripheral fatigue in PF compared with men (Δ peak twitch: -10% vs -24%, respectively, P < 0.05). Cr increased similarly in men and women. CONCLUSIONS Women experience less neuromuscular fatigue than men after both "classic" and "extreme" prolonged running exercises but this does not impact the degradation of the energy Cr.
Collapse
Affiliation(s)
- Thibault Besson
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, FRANCE
| | - Audrey Parent
- Department of Biological Sciences, Université du Québec à Montréal (UQÀM), Montreal, Quebec, CANADA
| | - Callum G Brownstein
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, FRANCE
| | - Loïc Espeit
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, FRANCE
| | - Thomas Lapole
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, FRANCE
| | | | - Nicolas Royer
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, FRANCE
| | - Diana Rimaud
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, FRANCE
| | - Frederic Sabater Pastor
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, FRANCE
| | - Benjamin Singh
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, FRANCE
| | - Giorgio Varesco
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, FRANCE
| | - Jeremy Rossi
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, FRANCE
| | - John Temesi
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UNITED KINGDOM
| | | |
Collapse
|
9
|
Yacyshyn AF, McNeil CJ. Electrically evoked force loss of the knee extensors is equivalent for young and old females and males. Appl Physiol Nutr Metab 2020; 45:1270-1276. [DOI: 10.1139/apnm-2020-0199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Data are scant on sex-related differences for electrically evoked contractions, which assess intrinsic contractile properties while limiting spinal and supraspinal adaptations to mitigate fatigue. Furthermore, the few studies that exist use stimulus frequencies considerably higher than the natural motor unit discharge rate for the target force. The purpose of this study was to compare force loss to electrically evoked contractions at a physiological stimulus frequency among young females (n = 12), young males (n = 12), old females (n = 11), and old males (n = 11). The quadriceps of the dominant leg were fatigued by 3 min of intermittent transcutaneous muscle belly stimulation (15 Hz stimulus train to initially evoke 25% of maximal voluntary force). Impairment of tetanic contractile impulse (area under the curve) did not differ between sexes for young or old adults or between age groups, with a pooled value of 55.2% ± 12.4% control at the end of fatigue. These data contrast with previous findings at 30 Hz, when the quadriceps of females had greater fatigue resistance than males for young and old adults. The present results highlight the impact stimulus frequency has on intrinsic fatigability of muscle; the findings have implications for future fatigue paradigms and treatment approaches when utilizing electrical stimulation for rehabilitation. Novelty Fatigue was not different between sexes with a stimulation frequency comparable to discharge rates during voluntary contractions. These results highlight that stimulus frequency not only influences fatigue development but also between-group differences.
Collapse
Affiliation(s)
- Alexandra F. Yacyshyn
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, The University of British Columbia – Okanagan Campus, 1147 Research Road, Kelowna, BC V1V 1V7, Canada
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, The University of British Columbia – Okanagan Campus, 1147 Research Road, Kelowna, BC V1V 1V7, Canada
| | - Chris J. McNeil
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, The University of British Columbia – Okanagan Campus, 1147 Research Road, Kelowna, BC V1V 1V7, Canada
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, The University of British Columbia – Okanagan Campus, 1147 Research Road, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
10
|
Ansdell P, Thomas K, Hicks KM, Hunter SK, Howatson G, Goodall S. Physiological sex differences affect the integrative response to exercise: acute and chronic implications. Exp Physiol 2020; 105:2007-2021. [PMID: 33002256 DOI: 10.1113/ep088548] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the topic of this review? We review sex differences within physiological systems implicated in exercise performance; specifically, how they integrate to determine metabolic thresholds and fatigability. Thereafter, we discuss the implications that these sex differences might have for long-term adaptation to exercise. What advances does it highlight? The review collates evidence from recent physiological studies that have investigated sex as a biological variable, demonstrating that the physiological response to equivalent 'dosages' of exercise is not the same in males and females; thus, highlighting the need to research diversity in physiological responses to interventions. ABSTRACT The anatomical and physiological differences between males and females are thought to determine differences in the limits of human performance. The notion of studying sex as a biological variable has recently been emphasized in the biosciences as a vital step in enhancing human health. In this review, we contend that the effects of biological sex on acute and chronic responses must be studied and accounted for when prescribing aerobic exercise, much like any intervention targeting the optimization of physiological function. Emerging evidence suggests that the response of physiological systems to exercise differs between males and females, potentially mediating the beneficial effects in healthy and clinical populations. We highlight evidence that integrative metabolic thresholds during exercise are influenced by phenotypical sex differences throughout many physiological systems. Furthermore, we discuss evidence that female skeletal muscle is more resistant to fatigue elicited by equivalent dosages of high-intensity exercise. How the different acute responses affect the long-term trainability of males and females is considered, with discussion about tailoring exercise to the characteristics of the individual presented within the context of biological sex. Finally, we highlight the influence of endogenous and exogenous sex hormones on physiological responses to exercise in females. Sex is one of many mediating influences on the outcomes of exercise, and with careful experimental designs, physiologists can advance the collective understanding of diversity in physiology and optimize outcomes for both sexes.
Collapse
Affiliation(s)
- Paul Ansdell
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Kevin Thomas
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Kirsty M Hicks
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Sandra K Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.,Water Research Group, School of Environmental Sciences and Development, North-West University, Potchefstroom, South Africa
| | - Stuart Goodall
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
11
|
Effect of New Zealand Blackcurrant Extract on Isometric Contraction-Induced Fatigue and Recovery: Potential Muscle-Fiber Specific Effects. Sports (Basel) 2020; 8:sports8100135. [PMID: 33076273 PMCID: PMC7602451 DOI: 10.3390/sports8100135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/24/2020] [Accepted: 10/14/2020] [Indexed: 11/26/2022] Open
Abstract
New Zealand blackcurrant (NZBC) extract has shown performance-enhancing effects during cycling, running and sport climbing. We examined effects of NZBC extract on (1) voluntary and twitch force of the quadriceps femoris muscles during repeated isometric contraction-induced fatigue, (2) twitch force during recovery and (3) muscle fiber-specific effects. Familiarized recreationally active males (n = 12, age: 24 ± 5 yrs; height: 180 ± 5 cm; body mass: 89 ± 11 kg) performed sixteen, 5-s voluntary maximal isometric contractions (iMVC) separated by 3-s rest. Twitch force was recorded before, during the 3-s rests and 5-min recovery. Supplementation consisted of 7-days intake of NZBC extract (600 mg∙day−1 containing 210 mg anthocyanin) in a double-blind, randomized, placebo-controlled crossover design with a 14-days washout. NZBC extract allowed for greater force in the first quartile of the iMVCs. Twitch force at baseline was 12% higher with NZBC extract (p = 0.05). However, there was no effect of NZBC for twitch force during the 16-iMVCs and recovery. Based on the maximum post-activation potentiation during the placebo 16-iMVCs, four subjects were classified of having a predominant type I or II muscle fiber typology. In type II, NZBC extract provided a trend for increased MVC force (~14%) in the first quartile and for type I in the fourth quartile (~10%). In type I, NZBC extract seemed to have higher twitch forces during the fatiguing exercise protocol and recovery, indicating increased fatigue resistance. New Zealand blackcurrant extract affects force during repeated maximal isometric contractions. Future work on mechanisms by NZBC extract for muscle fiber-specific fatigue-induced force responses is warranted.
Collapse
|
12
|
Kavanagh JJ, Smith KA, Minahan CL. Sex differences in muscle activity emerge during sustained low-intensity contractions but not during intermittent low-intensity contractions. Physiol Rep 2020; 8:e14398. [PMID: 32281749 PMCID: PMC7153036 DOI: 10.14814/phy2.14398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/10/2023] Open
Abstract
Sex differences in motor performance may arise depending on the mode of contraction being performed. In particular, contractions that are held for long durations, rather than contractions that are interspersed with rest periods, may induce greater levels of fatigue in men compared to women. The purpose of this study was to examine fatigue responses in a cohort of healthy men (n = 7, age [mean] = 21.6 ± [SD] 1.1 year) and women (n = 7, age: 22.0 ± 2.0 year) during sustained isometric and intermittent isometric contractions. Two contraction protocols were matched for intensity (20% MVC) and total contraction time (600-s). Biceps brachii EMG and elbow flexion torque steadiness were examined throughout each protocol, and motor nerve stimulation was used to quantify central and peripheral fatigue. Overall, there were few sex-related differences in the fatigue responses during intermittent contractions. However, men exhibited progressively lower maximal torque generation (39% versus 27% decrease), progressively greater muscle activity (220% versus 144% increase), progressively greater declines in elbow flexion steadiness (354% versus 285% decrease), and progressively greater self-perception of fatigue (Borg scale: 8.8 ± 1.2 versus 6.3 ± 1.1) throughout the sustained contractions. The mechanism underlying fatigue responses had a muscle component, as voluntary activation of the biceps brachii did not differ between sexes, but the amplitude of resting twitches decreased throughout the sustained contractions (m: 32%, w: 10% decrease). As generating large sustained forces causes a progressive increase in intramuscular pressure and mechanical occlusion-which has the effect of enhancing metabolite accumulation and peripheral fatigue-it is likely that the greater maximal strength of men contributed to their exacerbated levels of fatigue.
Collapse
Affiliation(s)
- Justin J. Kavanagh
- Menzies Health Institute QueenslandGriffith UniversityGold CoastAustralia
| | - Kristen A. Smith
- Menzies Health Institute QueenslandGriffith UniversityGold CoastAustralia
| | - Clare L. Minahan
- Menzies Health Institute QueenslandGriffith UniversityGold CoastAustralia
- Griffith Sports Physiology and PerformanceSchool of Allied Health SciencesGriffith UniversityGold CoastAustralia
| |
Collapse
|
13
|
Carr JC, Ye X. Strength and Electromyographic Responses of Upper and Lower Limbs During Maximal Intermittent Contractions in Males and Females. J Strength Cond Res 2020; 36:2403-2409. [PMID: 32304518 DOI: 10.1519/jsc.0000000000003580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Carr, JC and Ye, X. Strength and electromyographic responses of upper and lower limbs during maximal intermittent contractions in males and females. J Strength Cond Res XX(X): 000-000, 2020-This study examined the strength and electromyographic (EMG) responses of upper vs. lower limb muscles during intermittent maximal contractions in both sexes. Twenty subjects (n = 7 women) performed a fatiguing protocol (6, 30-second intermittent maximal isometric contractions with a 50% duty cycle) with either the elbow flexors or the knee extensors on separate visits. Bipolar surface EMG signals were detected from the biceps brachii and vastus lateralis muscles (n = 5 women retained). Women maintained more of their maximal force than men (Δforce: men vs. women = -55.0 ± 12.8% vs. -43.3 ± 9.9%, p = 0.042). Although force loss was similar between the elbow flexors and knee extensors, the EMG responses showed greater reductions for the biceps brachii than those for the vastus lateralis (Δamplitude: biceps brachii vs. vastus lateralis: -32.0 ± 22.3% vs. -18.9 ± 28.9%; Δmedian frequency: biceps brachii vs. vastus lateralis: -31.1 ± 14.5% vs. -10.3 ± 17.0%). During a series of maximal intermittent isometric contractions with 30 seconds of recovery between work bouts, women are more fatigue resistant than men. In addition, the greater electrophysiological fatigue exhibited by the biceps brachii than that by the vastus lateralis suggests that high-intensity contractions involving elbow flexion will have a greater rate of fatigue progression than those involving knee extension.
Collapse
Affiliation(s)
- Joshua C Carr
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, Utah
| | - Xin Ye
- Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, University, Mississippi
| |
Collapse
|
14
|
Akagi R, Sato S, Yoshihara K, Ishimatsu H, Ema R. Sex difference in fatigability of knee extensor muscles during sustained low-level contractions. Sci Rep 2019; 9:16718. [PMID: 31723215 PMCID: PMC6853909 DOI: 10.1038/s41598-019-53375-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/31/2019] [Indexed: 11/29/2022] Open
Abstract
This study investigated whether the sex difference in fatigability of the knee extensors (KE) is explained by the sex difference in fatigue-induced changes in the shear modulus of one or more muscles of KE in 18 young men and 23 young women. The shear moduli of the resting rectus femoris and medial and lateral vastus muscles (VL) were measured before and after a sustained contraction at 20% peak torque during a maximal voluntary isometric contraction of KE until the endurance limit, in addition to evoked torque and voluntary activation (VA%). The fatigue-induced decrease in maximal muscle strength was more prominent in men than in women. Only the VL shear modulus for men increased after the fatiguing task, and a sex difference was observed in the percentage change in the VL shear modulus before and after the fatiguing task. The fatigue-induced decreased ratio was greater for men than for women in evoked torque, but not in VA%. These results suggest that although peripheral and central fatigue both influenced the fatigue-induced decrease in maximal muscle strength regardless of sex, the sex difference in KE fatigability is explained by that in peripheral fatigue, particularly the degree of peripheral VL fatigue.
Collapse
Affiliation(s)
- Ryota Akagi
- College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama, 337-8570, Japan. .,Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama, 337-8570, Japan. .,QOL Improvement and Life Science Consortium, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama, 337-8570, Japan.
| | - Shinya Sato
- Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama, 337-8570, Japan
| | - Kana Yoshihara
- College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama, 337-8570, Japan
| | - Hideki Ishimatsu
- College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama, 337-8570, Japan
| | - Ryoichi Ema
- School of Management, Shizuoka Sangyo University, 1572-1 Owara, Iwata-shi, Shizuoka, 438-0043, Japan
| |
Collapse
|
15
|
Senefeld J, Pereira HM, Elliott N, Yoon T, Hunter SK. Sex Differences in Mechanisms of Recovery after Isometric and Dynamic Fatiguing Tasks. Med Sci Sports Exerc 2019; 50:1070-1083. [PMID: 29298217 DOI: 10.1249/mss.0000000000001537] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The purpose of this study was to determine whether supraspinal mechanisms contribute to the sex difference in fatigability during and recovery from a dynamic and isometric fatiguing task with the knee extensors. METHODS Transcranial magnetic stimulation and electrical stimulation were used to determine voluntary activation and contractile properties of the knee extensors in 14 men and 17 women (20.8 ± 1.9 yr) after a 1) 60-s sustained, maximal voluntary isometric contraction (MVIC), and 2) dynamic fatiguing task involving 120 maximal voluntary concentric contractions with a 20% MVIC load. RESULTS There were no differences between men and women in the reduction of maximal torque during the sustained MVIC (54.4% ± 18.9% vs 55.9% ± 11.2%, P = 0.49) or in the decrease in power during the dynamic fatiguing task (14.7% ± 20.1% vs 14.2% ± 18.5%, P = 0.92). However, MVIC torque recovered more quickly for women than men after the sustained MVIC and the dynamic task (P < 0.05). The transcranial magnetic stimulation-elicited superimposed twitch was larger for men than for women during the sustained MVIC and in recovery (immediately post, R0.1: 4.7% ± 3.3% vs 2.4% ± 1.9% MVIC; P = 0.02), with no sex difference after the dynamic task (P = 0.35). The reduction in resting twitch amplitude was larger for men than for women immediately after the dynamic task (37% ± 22% vs 23% ± 18%; P = 0.016) with no sex difference after the sustained MVIC (64% ± 16% vs 67% ± 11%; P = 0.46). CONCLUSIONS Supraspinal fatigue contributed to fatigability of the knee extensors more for men than for women after a maximal isometric task, whereas contractile mechanisms explained the sex difference in torque recovery after the fast-velocity dynamic task. The mechanisms for the sex difference in fatigability are task dependent.
Collapse
Affiliation(s)
- Jonathon Senefeld
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI
| | - Hugo M Pereira
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI
| | - Nicholas Elliott
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI
| | - Tejin Yoon
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI
| | - Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI
| |
Collapse
|
16
|
Yacyshyn AF, Nettleton J, McNeil CJ. The Effects of Sex and Motoneuron Pool on Central Fatigue. Med Sci Sports Exerc 2019; 50:1061-1069. [PMID: 29283935 DOI: 10.1249/mss.0000000000001536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE It is uncertain if sex influences central fatigue because the reduction in voluntary activation (VA) has been reported as not different between the sexes for elbow flexors (EF) but greater in males compared with females for knee extensors. This disparity could result from the facilitatory and inhibitory effects of group III/IV muscle afferents on flexor versus extensor motoneurons, respectively. The purpose of this study was to examine central fatigue and motoneuron responsiveness of EF and elbow extensors (EE) in males and females. METHODS Twenty-two participants (11 females) performed a 2-min isometric maximal voluntary contraction of EF and EE (on separate days) followed by 2 min of recovery. EMG potentials were recorded from biceps or triceps brachii in response to the stimulation of the brachial plexus (Mmax), corticospinal tract (cervicomedullary motor evoked potential [CMEP]), and motor cortex (motor evoked potential [MEP]). Superimposed and resting doublets (for determining VA) were evoked via muscle belly stimulation of biceps or triceps brachii. Only CMEP and superimposed doublets were recorded during fatigue. RESULTS There was no effect of sex on CMEP area for either muscle group during fatigue or recovery. During the 2 min after EE fatigue, mean normalized CMEP and MEP area were ∼85% and ∼141% of control, indicating inhibition and facilitation of the motoneurons and motor cortex, respectively. VA during recovery was significantly reduced in males but not females for the EF, and unchanged in either sex for the EE. CONCLUSION The findings do not support the concept that equivocal findings regarding sex differences in central fatigue are related to augmented effects of group III/IV afferent feedback in males compared with females.
Collapse
Affiliation(s)
- Alexandra F Yacyshyn
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, CANADA.,School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, CANADA
| | - Jane Nettleton
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, CANADA
| | - Chris J McNeil
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, CANADA.,School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, CANADA
| |
Collapse
|
17
|
Mendonca GV, Borges A, Teodósio C, Matos P, Correia J, Vila-Chã C, Mil-Homens P, Pezarat-Correia P. Muscle fatigue in response to low-load blood flow-restricted elbow-flexion exercise: are there any sex differences? Eur J Appl Physiol 2018; 118:2089-2096. [PMID: 30006670 DOI: 10.1007/s00421-018-3940-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/10/2018] [Indexed: 11/28/2022]
Abstract
PURPOSE This study aimed to determine whether men and women display a different magnitude of muscle fatigue in response to high-load (HL) and low-load blood flow-restricted (LLBFR) elbow-flexion exercise. We also explored to which extent both exercise protocols induce similar levels of muscle fatigue (i.e., torque decrement). METHODS Sixty-two young participants (31 men and 31 women) performed dynamic elbow flexions at 20 and 75% of one-repetition maximum for LLBFR and HL exercise, respectively. Maximum voluntary isometric contractions were performed before and after exercise to quantify muscle fatigue. RESULTS Men and women exhibited similar magnitude of relative torque decrement after both exercise protocols (p > 0.05). HL was more fatiguing (∆ torque output: 11.9 and 23 N.m in women and men, respectively) than LLBFR resistance exercise (∆ torque output: 8.3 and 15.4 N.m in women and men, respectively) in both sexes, but this was largely attenuated after controlling for the differences in volume load between protocols (p > 0.05). CONCLUSIONS These data show that torque decrement in response to LLBFR and HL dynamic elbow-flexion exercise does not follow a sexually dimorphic pattern. Our data also indicate that, if performed in a multiple-set fashion and prescribed for a given volume load, elbow-flexion LLBFR exercise induces similar levels of fatigue as HL acute training. Importantly, this occurs similarly in both sexes.
Collapse
Affiliation(s)
- Goncalo V Mendonca
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada Dafundo, 1499-002, Lisbon, Portugal. .,CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada Dafundo, 1499-002, Lisbon, Portugal.
| | - Afonso Borges
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada Dafundo, 1499-002, Lisbon, Portugal
| | - Carolina Teodósio
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada Dafundo, 1499-002, Lisbon, Portugal
| | - Pedro Matos
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada Dafundo, 1499-002, Lisbon, Portugal
| | - Joana Correia
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada Dafundo, 1499-002, Lisbon, Portugal
| | - Carolina Vila-Chã
- Polytechnic Institute of Guarda, Av. Dr. Francisco Sá Carneiro, n. 50, 6300-559, Guarda, Portugal.,Research Center in Sports Sciences, Health and Human Development (CIDESD), Vila Real, Portugal
| | - Pedro Mil-Homens
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada Dafundo, 1499-002, Lisbon, Portugal.,CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada Dafundo, 1499-002, Lisbon, Portugal
| | - Pedro Pezarat-Correia
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada Dafundo, 1499-002, Lisbon, Portugal.,CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada Dafundo, 1499-002, Lisbon, Portugal
| |
Collapse
|
18
|
Abstract
Performance fatigability is characterized as an acute decline in motor performance caused by an exercise-induced reduction in force or power of the involved muscles. Multiple mechanisms contribute to performance fatigability and originate from neural and muscular processes, with the task demands dictating the mechanisms. This review highlights that (1) inadequate activation of the motoneuron pool can contribute to performance fatigability, and (2) the demands of the task and the physiological characteristics of the population assessed, dictate fatigability and the involved mechanisms. Examples of task and population differences in fatigability highlighted in this review include contraction intensity and velocity, stability and support provided to the fatiguing limb, sex differences, and aging. A future challenge is to define specific mechanisms of fatigability and to translate these findings to real-world performance and exercise training in healthy and clinical populations across the life span.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin 53201
| |
Collapse
|
19
|
Latella C, Hendy A, Vanderwesthuizen D, Teo WP. The modulation of corticospinal excitability and inhibition following acute resistance exercise in males and females. Eur J Sport Sci 2018; 18:984-993. [DOI: 10.1080/17461391.2018.1467489] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Christopher Latella
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Ashlee Hendy
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Dan Vanderwesthuizen
- Clinical Exercise Science & Rehabilitation, Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Footscray, Australia
| | - Wei-Peng Teo
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| |
Collapse
|
20
|
Rozand V, Senefeld JW, Hassanlouei H, Hunter SK. Voluntary activation and variability during maximal dynamic contractions with aging. Eur J Appl Physiol 2017; 117:2493-2507. [PMID: 29058113 DOI: 10.1007/s00421-017-3737-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022]
Abstract
Whether reduced supraspinal activation contributes to age-related reductions in maximal torque during dynamic contractions is not known. The purpose was to determine whether there are age differences in voluntary activation and its variability when assessed with stimulation at the motor cortex and the muscle during maximal isometric, concentric, and eccentric contractions. Thirty young (23.6 ± 4.1 years) and 31 old (69.0 ± 5.2 years) adults performed maximal isometric, shortening (concentric) and lengthening (eccentric) contractions with the elbow flexor muscles. Maximal isometric contractions were performed at 90° elbow flexion and dynamic contractions at a velocity of 60°/s. Voluntary activation was assessed by superimposing an evoked contraction with transcranial magnetic stimulation (TMS) or with electrical stimulation over the muscle during maximal voluntary contractions (MVCs). Old adults had lower MVC torque during isometric (- 17.9%), concentric (- 19.7%), and eccentric (- 9.9%) contractions than young adults, with less of an age difference for eccentric contractions. Voluntary activation was similar between the three contraction types when assessed with TMS and electrical stimulation, with no age group differences. Old adults, however, were more variable in voluntary activation than young (standard deviation 0.99 ± 0.47% vs. 0.73 ± 0.43%, respectively) to both the motor cortex and muscle, and had greater coactivation of the antagonist muscles during dynamic contractions. Thus, the average voluntary activation to the motor cortex and muscle did not differ with aging; however, supraspinal activation was more variable during maximal dynamic and isometric contractions in the old adults. Lower predictability of voluntary activation may indicate subclinical changes in the central nervous system with advanced aging.
Collapse
Affiliation(s)
- Vianney Rozand
- Exercise Science Program, Department of Physical Therapy, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Jonathon W Senefeld
- Exercise Science Program, Department of Physical Therapy, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Hamidollah Hassanlouei
- Exercise Science Program, Department of Physical Therapy, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA.
| |
Collapse
|
21
|
Abstract
Performance fatigability differs between men and women for a range of fatiguing tasks. Women are usually less fatigable than men, and this is most widely described for isometric fatiguing contractions and some dynamic tasks. The sex difference in fatigability is specific to the task demands so that one mechanism is not universal, including any sex differences in skeletal muscle physiology, muscle perfusion, and voluntary activation. However, there are substantial knowledge gaps about the task dependency of the sex differences in fatigability, the involved mechanisms, and the relevance to clinical populations and with advanced age. The knowledge gaps are in part due to the significant deficits in the number of women included in performance fatigability studies despite a gradual increase in the inclusion of women for the last 20 yr. Therefore, this review 1) provides a rationale for the limited knowledge about sex differences in performance fatigability, 2) summarizes the current knowledge on sex differences in fatigability and the potential mechanisms across a range of tasks, 3) highlights emerging areas of opportunity in clinical populations, and 4) suggests strategies to close the knowledge gap and understanding the relevance of sex differences in performance fatigability. The limited understanding about sex differences in fatigability in healthy and clinical populations presents as a field ripe with opportunity for high-impact studies. Such studies will inform on the limitations of men and women during athletic endeavors, ergonomic tasks, and daily activities. Because fatigability is required for effective neuromuscular adaptation, sex differences in fatigability studies will also inform on optimal strategies for training and rehabilitation in both men and women.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI
| |
Collapse
|
22
|
Carroll TJ, Taylor JL, Gandevia SC. Recovery of central and peripheral neuromuscular fatigue after exercise. J Appl Physiol (1985) 2017; 122:1068-1076. [DOI: 10.1152/japplphysiol.00775.2016] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 12/29/2022] Open
Abstract
Sustained physical exercise leads to a reduced capacity to produce voluntary force that typically outlasts the exercise bout. This “fatigue” can be due both to impaired muscle function, termed “peripheral fatigue,” and a reduction in the capacity of the central nervous system to activate muscles, termed “central fatigue.” In this review we consider the factors that determine the recovery of voluntary force generating capacity after various types of exercise. After brief, high-intensity exercise there is typically a rapid restitution of force that is due to recovery of central fatigue (typically within 2 min) and aspects of peripheral fatigue associated with excitation-contraction coupling and reperfusion of muscles (typically within 3–5 min). Complete recovery of muscle function may be incomplete for some hours, however, due to prolonged impairment in intracellular Ca2+ release or sensitivity. After low-intensity exercise of long duration, voluntary force typically shows rapid, partial, recovery within the first few minutes, due largely to recovery of the central, neural component. However, the ability to voluntarily activate muscles may not recover completely within 30 min after exercise. Recovery of peripheral fatigue contributes comparatively little to the fast initial force restitution and is typically incomplete for at least 20–30 min. Work remains to identify what factors underlie the prolonged central fatigue that usually accompanies long-duration single joint and locomotor exercise and to document how the time course of neuromuscular recovery is affected by exercise intensity and duration in locomotor exercise. Such information could be useful to enhance rehabilitation and sports performance.
Collapse
Affiliation(s)
- T. J. Carroll
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, University of Queensland; and
| | - J. L. Taylor
- Neuroscience Research Australia and University of New South Wales
| | - S. C. Gandevia
- Neuroscience Research Australia and University of New South Wales
| |
Collapse
|
23
|
Meduri F, Beretta-Piccoli M, Calanni L, Segreto V, Giovanetti G, Barbero M, Cescon C, D’Antona G. Inter-Gender sEMG Evaluation of Central and Peripheral Fatigue in Biceps Brachii of Young Healthy Subjects. PLoS One 2016; 11:e0168443. [PMID: 28002429 PMCID: PMC5176311 DOI: 10.1371/journal.pone.0168443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/01/2016] [Indexed: 11/19/2022] Open
Abstract
Purpose The purpose of the present study was to evaluate inter-arm and inter-gender differences in fractal dimension (FD) and conduction velocity (CV) obtained from multichannel surface electromyographic (sEMG) recordings during sustained fatiguing contractions of the biceps brachii. Methods A total of 20 recreationally active males (24±6 years) and 18 recreationally active females (22±9 years) performed two isometric contractions at 120 degrees elbow joint angle: (1) at 20% maximal voluntary contraction (MVC) for 90 s, and (2) at 60% MVC until exhaustion the time to perform the task has been measured. Signals from sEMG were detected from the biceps brachii using bidimensional arrays of 64 electrodes and initial values and rate of change of CV and FD of the sEMG signal were calculated. Results No difference between left and right sides and no statistically significant interaction effect of sides with gender were found for all parameters measured. A significant inter-gender difference was found for MVC (p<0.0001). Initial values of CV were higher in females than in males at both force levels (20% MCV: p<0.0001; 60% MCV: p<0.05) whereas a lower initial estimate of FD was observed in females compared to males (20% MCV: p<0.05; 60% MCV: p<0.0001). No difference in CV and FD slopes was found at 20% MVC between genders. At 60% MVC significantly lower CV and FD slopes (CV and FD: p<0.05) and a more protracted time to exhaustion were found in females than in males (p<0.0001). When considering time to exhaustion at both levels of contraction no difference in percentage change (Δ%) of CV and FD slopes was found between genders (p>0.05). During the sustained 60% MVC no statistical correlation was found between MVC and CV or FD initial estimates nor between MVC and CV or FD slopes both in males and females whereas. A significant positive correlation between CV and FD slopes was found in both genders (males: r = 0,61; females: r = 0,55). Conclusions Fatigue determines changes in FD and CV values in biceps brachii during sustained contractions at 60% MVC. In particular males show greater increase in the rate of change of CV and FD than females whereas no difference in percentage change of these sEMG descriptors of fatigue was found. A significant correlation between FD and CV slopes found in both genders highlights that central and peripheral myoelectric components of fatigue may interact during submaximal isometric contractions.
Collapse
Affiliation(s)
- Federico Meduri
- Department of Public Health, Molecular and Forensic Medicine, and Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
| | - Matteo Beretta-Piccoli
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Luca Calanni
- Department of Public Health, Molecular and Forensic Medicine, and Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
| | - Valentina Segreto
- Department of Public Health, Molecular and Forensic Medicine, and Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
| | - Giuseppe Giovanetti
- Department of Public Health, Molecular and Forensic Medicine, and Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
| | - Marco Barbero
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Corrado Cescon
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Giuseppe D’Antona
- Department of Public Health, Molecular and Forensic Medicine, and Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
24
|
Todd G, Taylor JL, Gandevia SC. Measurement of voluntary activation based on transcranial magnetic stimulation over the motor cortex. J Appl Physiol (1985) 2016; 121:678-86. [PMID: 27418687 DOI: 10.1152/japplphysiol.00293.2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/11/2016] [Indexed: 11/22/2022] Open
Abstract
This article reviews the use of transcranial magnetic stimulation (TMS) over the motor cortex to make estimates of the level of voluntary drive to muscles. The method, described in 2003 (Todd et al. J Physiol 551: 661-671, 2003), uses a TMS pulse to produce descending corticospinal volleys that synaptically activate motoneurons, resulting in a muscle twitch. Linear regression of the superimposed twitch amplitude and voluntary force (or torque) can generate an "estimated" resting twitch for muscles involved in a task. This procedure has most commonly been applied to elbow flexors but also to knee extensors and other muscle groups. Data from 44 papers using the method were tabulated. We identify and discuss five major technical challenges, and the frequency with which they are addressed. The technical challenges include inadvertent activation of the cortical representation of antagonist muscles, the role of antagonist torques at the studied joint, uncertainty about the effectiveness of the TMS pulse in activating the motoneuron pool, the linearity of the voluntary force (or torque) and superimposed twitch relationship, and variability in the TMS-evoked EMG and force/torque responses. The ideal situation in which the descending corticospinal volleys recruit all of the agonist motoneurons and none of the antagonist motoneurons is unlikely to ever occur, and hence results must be carefully examined to assess the authenticity of the voluntary activation estimates in the context of the experimental design. A partial compromise lies in the choice of stimulus intensity. We also identify aspects of the procedure that require further investigation.
Collapse
Affiliation(s)
- Gabrielle Todd
- School of Pharmacy and Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Janet L Taylor
- Neuroscience Research Australia, Randwick, NSW, Australia; and University of New South Wales, Kensington, NSW, Australia
| | - Simon C Gandevia
- Neuroscience Research Australia, Randwick, NSW, Australia; and University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
25
|
Hunter SK. Sex differences in fatigability of dynamic contractions. Exp Physiol 2015; 101:250-5. [PMID: 26440505 DOI: 10.1113/ep085370] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/30/2015] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? Women are usually less fatigable than men for isometric fatiguing contractions of similar intensity, but whether this occurs for dynamic tasks is less clear. This review presents evidence that the sex difference in muscle fatigue of repeated dynamic contractions is specific to the task requirements, including the velocity of shortening and the muscle group involved. What advances does it highlight? Contractile mechanisms are responsible for the sex differences in muscle fatigue for slow-velocity and low-load dynamic tasks. The variability of the sex difference in fatigability among dynamic tasks has implications for fatiguing contractions prescribed in training and rehabilitation to men and women. Women are usually less fatigable than men during single-limb isometric contractions, primarily because of sex-related differences in contractile mechanisms. It is less clear whether these sex differences in muscle fatigue occur for dynamic fatiguing tasks. This review highlights new findings that the sex difference in fatigability for dynamic shortening contractions with a single limb is dependent on the contraction velocity and the muscle group involved. Recent studies demonstrate that women are less fatigable than men for a dynamic task as follows: (i) the elbow-flexor muscles at slow- but not high-velocity contractions; and (ii) the knee-extensor muscles when muscle fatigue was quantified as a reduction in the maximal voluntary isometric contraction force after the dynamic fatiguing task. Contractile mechanisms are responsible for the sex difference in muscle fatigue of the dynamic contractions, with no evidence for a sex difference in the reduction in voluntary activation (i.e. central fatigue). Thus, these findings indicate that the sex difference in muscle fatigue of dynamic contractions is task specific. These data also challenge the assumption that men and women respond in a similar manner to training and rehabilitation that involve fatiguing contractions to overload the neuromuscular system. There is, however, a tremendous opportunity for conducting high-impact studies to gain insight into those factors that define the sex-based differences in muscle fatigue during dynamic tasks. Such studies can define the boundaries to human performance in both men and women during athletic endeavours, ergonomic tasks and rehabilitation.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| |
Collapse
|
26
|
Pereira HM, Spears VC, Schlinder-Delap B, Yoon T, Harkins A, Nielson KA, Hoeger Bement M, Hunter SK. Sex Differences in Arm Muscle Fatigability With Cognitive Demand in Older Adults. Clin Orthop Relat Res 2015; 473:2568-77. [PMID: 25712862 PMCID: PMC4488210 DOI: 10.1007/s11999-015-4205-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Muscle fatigability can increase when a stressful, cognitively demanding task is imposed during a low-force fatiguing contraction with the arm muscles, especially in women. Whether this occurs among older adults (>60 years) is currently unknown. QUESTIONS/PURPOSES We aimed to determine if higher cognitive demands, stratified by sex, increased fatigability in older adults (>60 years). Secondarily, we assessed if varying cognitive demand resulted in decreased steadiness and was explained by anxiety or cortisol levels. METHODS Seventeen older women (70±6 years) and 13 older men (71±5 years) performed a sustained, isometric, fatiguing contraction at 20% of maximal voluntary contraction until task failure during three sessions: high cognitive demand (high CD=mental subtraction by 13); low cognitive demand (low CD=mental subtraction by 1); and control (no subtraction). RESULTS Fatigability was greater when high and low CD were performed during the fatiguing contraction for the women but not for the men. In women, time to failure with high CD was 16±8 minutes and with low CD was 17±4 minutes, both of which were shorter than time to failure in control contractions (21±7 minutes; high CD mean difference: 5 minutes [95% confidence interval {CI}, 0.78-9.89], p=0.02; low CD mean difference: 4 minutes [95% CI, 0.57-7.31], p=0.03). However, in men, no differences were detected in time to failure with cognitive demand (control: 13±5 minutes; high CD mean difference: -0.09 minutes [95% CI, -2.8 to 2.7], p=1.00; low CD mean difference: 0.75 minutes [95% CI, -1.1 to 2.6], p=0.85). Steadiness decreased (force fluctuations increased) more during high CD than control. Elevated anxiety, mean arterial pressure, and salivary cortisol levels in both men and women did not explain the greater fatigability during high CD. CONCLUSIONS Older women but not men showed marked increases in fatigability when low or high CD was imposed during sustained static contractions with the elbow flexor muscles and contrasts with previous findings for the lower limb. Steadiness decreased in both sexes when high CD was imposed. CLINICAL RELEVANCE Older women are susceptible to greater fatigability of the upper limb with heightened mental activity during sustained postural contractions, which are the foundation of many work-related tasks.
Collapse
Affiliation(s)
- Hugo M. Pereira
- Department of Physical Therapy, Marquette University, PO Box 1881, Milwaukee, WI 53201 USA
| | - Vincent C. Spears
- Department of Physical Therapy, Marquette University, PO Box 1881, Milwaukee, WI 53201 USA
| | - Bonnie Schlinder-Delap
- Department of Physical Therapy, Marquette University, PO Box 1881, Milwaukee, WI 53201 USA
| | - Tejin Yoon
- Michigan Technological University, Houghton, MI USA
| | - April Harkins
- Department of Clinical Laboratory Sciences, Marquette University, Milwaukee, WI USA
| | | | - Marie Hoeger Bement
- Department of Physical Therapy, Marquette University, PO Box 1881, Milwaukee, WI 53201 USA
| | - Sandra K. Hunter
- Department of Physical Therapy, Marquette University, PO Box 1881, Milwaukee, WI 53201 USA
| |
Collapse
|
27
|
Yoon T, Doyel R, Widule C, Hunter SK. Sex differences with aging in the fatigability of dynamic contractions. Exp Gerontol 2015; 70:1-10. [PMID: 26159162 DOI: 10.1016/j.exger.2015.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 01/18/2023]
Abstract
This study determined the sex difference with aging in fatigability of the elbow flexor muscles during a dynamic fatiguing task, and explored the associated mechanisms. We compared fatigability of the elbow flexor muscles in 18 young (20.2 ± 1 years: 9 men) and 36 old adults (73.5 ± 1 years: 16 men) during and in recovery from repeated dynamic contractions (~60°/s) with a load equivalent to 20% of maximal voluntary isometric contraction (MVIC) torque until failure. Transcranial magnetic stimulation (TMS) was used to assess supraspinal fatigue (an increase in the superimposed twitch, SIT) and the peak rate of muscle relaxation. Time to failure was briefer for the men than the women (6.1 ± 2.1 vs. 9.7 ± 5.5 min, respectively; P=0.02) with no difference between young and old adults (7.2 ± 2.9 vs. 8.4 ± 5.2 min, respectively, P=0.45) and no interaction (P>0.05). The relative decline in peak relaxation rate with fatigability was similar for young and old adults (P=0.11), but greater for men than women (P=0.046). Supraspinal fatigue increased for all groups and was associated with the time to failure (P<0.05). Regression analysis however, indicated that the time to failure was best predicted by the peak relaxation rate (baseline values and slowing with fatigability) (r(2)=0.55). Rate-limiting contractile mechanisms (e.g. excitation-contraction coupling) were responsible for the increased fatigability of the elbow flexors of men compared with women for a dynamic fatiguing task of slow angular velocity, and this sex difference was maintained with aging. The age difference in fatigability for the dynamic task was diminished for both sexes relative to what is typically observed with isometric fatiguing contractions.
Collapse
Affiliation(s)
- Tejin Yoon
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI, United States; Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| | - Ryan Doyel
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI, United States; Creighton University School of Medicine, Omaha, NE, United States
| | - Claire Widule
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI, United States; Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, MD, United States
| | - Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI, United States.
| |
Collapse
|
28
|
TEMESI JOHN, ARNAL PIERRICKJ, RUPP THOMAS, FÉASSON LÉONARD, CARTIER RÉGINE, GERGELÉ LAURENT, VERGES SAMUEL, MARTIN VINCENT, MILLET GUILLAUMEY. Are Females More Resistant to Extreme Neuromuscular Fatigue? Med Sci Sports Exerc 2015; 47:1372-82. [DOI: 10.1249/mss.0000000000000540] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Keller-Ross ML, Schlinder-Delap B, Doyel R, Larson G, Hunter SK. Muscle fatigability and control of force in men with posttraumatic stress disorder. Med Sci Sports Exerc 2015; 46:1302-13. [PMID: 24389520 DOI: 10.1249/mss.0000000000000244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Acute stress can increase fatigability and decrease steadiness of sustained low-force contractions that are required for functional tasks in upper limb muscles. Whether motor performance is more impaired in people with a chronic stress disorder is not known. PURPOSE This study compared the fatigability and steadiness (force fluctuations) of handgrip muscles in veterans with posttraumatic stress disorder (PTSD) and civilian controls in the presence and absence of varying levels of cognitive demand. METHODS Eighteen veterans with PTSD and 21 healthy controls (33 ± 9 yr) attended three randomized experimental sessions to perform an isometric fatiguing contraction (20% of maximal strength) with the handgrip muscles. Two sessions involved performing a cognitive task during the fatiguing contraction: 1) difficult mental math task (stressor) and 2) a simple mental math task (mental attentiveness). A third session involved a fatiguing contraction with no mental task (control). RESULTS Stress elevated heart rate, blood pressure, and levels of anxiety in veterans with PTSD (P < 0.05) but blunted cortisol levels (P < 0.05). Time to failure was briefer (7.2 ± 2.5 vs 9.3 ± 5.2 min, P = 0.03), and force fluctuations increased at a greater rate for veterans with PTSD than for controls (P < 0.05). Cognitive stress did not influence time to failure or force fluctuations for either group (P > 0.05). CONCLUSIONS Veterans with PTSD demonstrated greater fatigability and loss of steadiness (greater force fluctuations) of the handgrip muscles compared with healthy controls. SIGNIFICANCE Male veterans with PTSD demonstrated altered neuromuscular function of arm muscles that potentially affects functional tasks during daily, ergonomic, and military activities.
Collapse
Affiliation(s)
- Manda L Keller-Ross
- 1Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI; and 2Department of Psychiatry, Veteran Affairs Medical Centre, Milwaukee, WI
| | | | | | | | | |
Collapse
|
30
|
Yoon T, Vanden Noven ML, Nielson KA, Hunter SK. Brain areas associated with force steadiness and intensity during isometric ankle dorsiflexion in men and women. Exp Brain Res 2014; 232:3133-45. [PMID: 24903120 PMCID: PMC4172577 DOI: 10.1007/s00221-014-3976-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
Although maintenance of steady contractions is required for many daily tasks, there is little understanding of brain areas that modulate lower limb force accuracy. Functional magnetic resonance imaging was used to determine brain areas associated with steadiness and force during static (isometric) lower limb target-matching contractions at low and high intensities. Fourteen young adults (6 men and 8 women; 27.1 ± 9.1 years) performed three sets of 16-s isometric contractions with the ankle dorsiflexor muscles at 10, 30, 50, and 70 % of maximal voluntary contraction (MVC). Percent signal changes (PSCs, %) of the blood oxygenation level-dependent response were extracted for each contraction using region of interest analysis. Mean PSC increased with contraction intensity in the contralateral primary motor area (M1), supplementary motor area, putamen, pallidum cingulate cortex, and ipsilateral cerebellum (p < 0.05). The amplitude of force fluctuations (standard deviation, SD) increased from 10 to 70 % MVC but relative to the mean force (coefficient of variation, CV %) was greatest at 10 % MVC. The CV of force was associated with PSC in the ipsilateral parietal lobule (r = -0.28), putamen (r = -0.29), insula (r = -0.33), and contralateral superior frontal gyrus (r = -0.33, p < 0.05). There were minimal sex differences in brain activation across the isometric motor tasks indicating men and women were similarly motivated and able to activate cortical motor centers during static tasks. Control of steady lower limb contractions involves cortical and subcortical motor areas in both men and women and provides insight into key areas for potential cortical plasticity with impaired or enhanced leg function.
Collapse
Affiliation(s)
- Tejin Yoon
- Exercise Science Program, Department of Physical Therapy, Marquette
University, P.O. Box 1881, Milwaukee, WI 53201, USA
- Kinesiology and Integrative Physiology, Michigan Technological University,
Houghton, MI, USA
| | - Marnie L. Vanden Noven
- Exercise Science Program, Department of Physical Therapy, Marquette
University, P.O. Box 1881, Milwaukee, WI 53201, USA
| | - Kristy A. Nielson
- Department of Psychology, Marquette University, Milwaukee, WI, USA
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI,
USA
| | - Sandra K. Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette
University, P.O. Box 1881, Milwaukee, WI 53201, USA
| |
Collapse
|
31
|
Mizuno K, Tajima K, Watanabe Y, Kuratsune H. Fatigue correlates with the decrease in parasympathetic sinus modulation induced by a cognitive challenge. Behav Brain Funct 2014; 10:25. [PMID: 25069864 PMCID: PMC4123830 DOI: 10.1186/1744-9081-10-25] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/15/2014] [Indexed: 12/30/2022] Open
Abstract
Background It is known that enhancement of sympathetic nerve activity based on a decrease in parasympathetic nerve activity is associated with fatigue induced by mental tasks lasting more than 30 min. However, to measure autonomic nerve function and assess fatigue levels in both clinical and industrial settings, shorter experimental durations and more sensitive measurement methods are needed. The aim of the present study was to establish an improved method for inducing fatigue and evaluating the association between it and autonomic nerve activity. Methods Twenty-eight healthy female college students participated in the study. We used a kana pick-out test (KPT) as a brief verbal cognitive task and recorded electrocardiography (ECG) to measure autonomic nerve activity. The experimental design consisted of a 16-min period of ECG: A pre-task resting state with eyes open for 3 min and eyes closed for 3 min, the 4-min KPT, and a post-task resting state with eyes open for 3 min and eyes closed for 3 min. Results Baseline fatigue sensation, measured by a visual analogue scale before the experiment, was associated with the decrease in parasympathetic sinus modulation, as indicated the by ratio of low-frequency component power (LF) to high-frequency component power (HF), during the KPT. The LF/HF ratio during the post-KPT rest with eyes open tended to be greater than the ratio during the KPT and correlated with fatigue sensation. Fatigue sensation was correlated negatively with log-transformed HF, which is an index of parasympathetic sinus modulation, during the post-KPT rest with eyes open. Conclusions The methods described here are useful for assessing the association between fatigue sensation and autonomic nerve activity using a brief cognitive test in healthy females.
Collapse
Affiliation(s)
- Kei Mizuno
- Pathophysiological and Health Science Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | | | | | | |
Collapse
|
32
|
TEMESI JOHN, RUPP THOMAS, MARTIN VINCENT, ARNAL PIERRICKJ, FÉASSON LÉONARD, VERGES SAMUEL, MILLET GUILLAUMEY. Central Fatigue Assessed by Transcranial Magnetic Stimulation in Ultratrail Running. Med Sci Sports Exerc 2014; 46:1166-75. [DOI: 10.1249/mss.0000000000000207] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Hunter SK. Sex differences in human fatigability: mechanisms and insight to physiological responses. Acta Physiol (Oxf) 2014; 210:768-89. [PMID: 24433272 DOI: 10.1111/apha.12234] [Citation(s) in RCA: 351] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/29/2013] [Accepted: 01/08/2014] [Indexed: 12/17/2022]
Abstract
Sex-related differences in physiology and anatomy are responsible for profound differences in neuromuscular performance and fatigability between men and women. Women are usually less fatigable than men for similar intensity isometric fatiguing contractions. This sex difference in fatigability, however, is task specific because different neuromuscular sites will be stressed when the requirements of the task are altered, and the stress on these sites can differ for men and women. Task variables that can alter the sex difference in fatigability include the type, intensity and speed of contraction, the muscle group assessed and the environmental conditions. Physiological mechanisms that are responsible for sex-based differences in fatigability may include activation of the motor neurone pool from cortical and subcortical regions, synaptic inputs to the motor neurone pool via activation of metabolically sensitive small afferent fibres in the muscle, muscle perfusion and skeletal muscle metabolism and fibre type properties. Non-physiological factors such as the sex bias of studying more males than females in human and animal experiments can also mask a true understanding of the magnitude and mechanisms of sex-based differences in physiology and fatigability. Despite recent developments, there is a tremendous lack of understanding of sex differences in neuromuscular function and fatigability, the prevailing mechanisms and the functional consequences. This review emphasizes the need to understand sex-based differences in fatigability to shed light on the benefits and limitations that fatigability can exert for men and women during daily tasks, exercise performance, training and rehabilitation in both health and disease.
Collapse
Affiliation(s)
- S. K. Hunter
- Exercise Science Program; Department of Physical Therapy; Marquette University; Milwaukee WI USA
| |
Collapse
|
34
|
Keller-Ross ML, Pereira HM, Pruse J, Yoon T, Schlinder-Delap B, Nielson KA, Hunter SK. Stressor-induced increase in muscle fatigability of young men and women is predicted by strength but not voluntary activation. J Appl Physiol (1985) 2014; 116:767-78. [PMID: 24526582 DOI: 10.1152/japplphysiol.01129.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigated mechanisms for the stressor-induced changes in muscle fatigability in men and women. Participants performed an isometric-fatiguing contraction at 20% maximal voluntary contraction (MVC) until failure with the elbow flexor muscles. Study one (n = 55; 29 women) involved two experimental sessions: 1) a high-stressor session that required a difficult mental-math task before and during a fatiguing contraction and 2) a control session with no mental math. For some participants (n = 28; 14 women), cortical stimulation was used to examine mechanisms that contributed to muscle fatigability during the high-stressor and control sessions. Study two (n = 23; nine women) determined the influence of a low stressor, i.e., a simple mental-math task, on muscle fatigability. In study one, the time-to-task failure was less for the high-stressor session than control (P < 0.05) for women (19.4%) and men (9.5%): the sex difference response disappeared when covaried for initial strength (MVC). MVC force, voluntary activation, and peak-twitch amplitude decreased similarly for the control and high-stressor sessions (P < 0.05). In study two, the time-to-task failure of men or women was not influenced by the low stressor (P > 0.05). The greater fatigability, when exposed to a high stressor during a low-force task, was not exclusive to women but involved a strength-related mechanism in both weaker men and women that accelerated declines in voluntary activation and slowing of contractile properties.
Collapse
Affiliation(s)
- Manda L Keller-Ross
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin
| | | | | | | | | | | | | |
Collapse
|
35
|
Assessment of calf muscle fatigue during submaximal exercise using transcranial magnetic stimulation versus transcutaneous motor nerve stimulation. Eur J Appl Physiol 2013; 114:113-21. [DOI: 10.1007/s00421-013-2757-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
|
36
|
Senefeld J, Yoon T, Bement MH, Hunter SK. Fatigue and recovery from dynamic contractions in men and women differ for arm and leg muscles. Muscle Nerve 2013; 48:436-9. [PMID: 23494882 DOI: 10.1002/mus.23836] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2013] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Whether there is a gender difference in fatigue and recovery from maximal velocity fatiguing contractions and across muscles is not understood. METHODS Sixteen men and 19 women performed 90 isotonic contractions at maximal voluntary shortening velocity (maximal velocity concentric contractions, MVCC) with the elbow flexor and knee extensor muscles (separate days) at a load equivalent to 20% maximal voluntary isometric contraction (MVIC). RESULTS Power (from MVCCs) decreased similarly for men and women for both muscles (P > 0.05). Men and women had similar declines in MVIC of elbow flexors, but men had greater reductions in knee extensor MVIC force and MVIC electromyogram activity than women (P < 0.05). The decline in MVIC and power was greater, and force recovery was slower for the elbow flexors compared with knee extensors. CONCLUSIONS The gender difference in muscle fatigue often observed during isometric tasks was diminished during fast dynamic contractions for upper and lower limb muscles.
Collapse
Affiliation(s)
- Jonathon Senefeld
- Department of Physical Therapy, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin, 53201, USA
| | | | | | | |
Collapse
|
37
|
Quadriceps function assessment using an incremental test and magnetic neurostimulation: A reliability study. J Electromyogr Kinesiol 2013; 23:649-58. [DOI: 10.1016/j.jelekin.2012.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 09/18/2012] [Accepted: 11/12/2012] [Indexed: 01/18/2023] Open
|
38
|
Gruet M, Temesi J, Rupp T, Levy P, Millet G, Verges S. Stimulation of the motor cortex and corticospinal tract to assess human muscle fatigue. Neuroscience 2013; 231:384-99. [DOI: 10.1016/j.neuroscience.2012.10.058] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/10/2012] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
|
39
|
HUNTER SANDRAK, STEVENS ALYSSAA. Sex Differences in Marathon Running with Advanced Age. Med Sci Sports Exerc 2013; 45:148-56. [DOI: 10.1249/mss.0b013e31826900f6] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
KLASS MALGORZATA, ROELANDS BART, LÉVÉNEZ MORGAN, FONTENELLE VINCIANE, PATTYN NATHALIE, MEEUSEN ROMAIN, DUCHATEAU JACQUES. Effects of Noradrenaline and Dopamine on Supraspinal Fatigue in Well-Trained Men. Med Sci Sports Exerc 2012; 44:2299-308. [DOI: 10.1249/mss.0b013e318265f356] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Yoon T, Schlinder-Delap B, Keller ML, Hunter SK. Supraspinal fatigue impedes recovery from a low-intensity sustained contraction in old adults. J Appl Physiol (1985) 2011; 112:849-58. [PMID: 22174405 DOI: 10.1152/japplphysiol.00799.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study determined the contribution of supraspinal fatigue and contractile properties to the age difference in neuromuscular fatigue during and recovery from a low-intensity sustained contraction. Cortical stimulation was used to evoke measures of voluntary activation and muscle relaxation during and after a contraction sustained at 20% of maximal voluntary contraction (MVC) until task failure with elbow flexor muscles in 14 young adults (20.9 ± 3.6 yr, 7 men) and 14 old adults (71.6 ± 5.4 yr, 7 men). Old adults exhibited a longer time to task failure than the young adults (23.8 ± 9.0 vs. 11.5 ± 3.9 min, respectively, P < 0.001). The time to failure was associated with initial peak rates of relaxation of muscle fibers and pressor response (P < 0.05). Increments in torque (superimposed twitch; SIT) generated by transcranial magnetic stimulation (TMS) during brief MVCs, increased during the fatiguing contraction (P < 0.001) and then decreased during recovery (P = 0.02). The increase in the SIT was greater for the old adults than the young adults during the fatiguing contraction and recovery (P < 0.05). Recovery of MVC torque was less for old than young adults at 10 min post-fatiguing contraction (75.1 ± 8.7 vs. 83.6 ± 7.8% of control MVC, respectively, P = 0.01) and was associated with the recovery of the SIT (r = -0.59, r(2) = 0.35, P < 0.001). Motor evoked potential (MEP) amplitude and the silent period elicited during the fatiguing contraction increased less for old adults than young adults (P < 0.05). The greater fatigue resistance with age during a low-intensity sustained contraction was attributable to mechanisms located within the muscle. Recovery of maximal strength after the low-intensity fatiguing contraction however, was impeded more for old adults than young because of greater supraspinal fatigue. Recovery of strength could be an important variable to consider in exercise prescription of old populations.
Collapse
Affiliation(s)
- Tejin Yoon
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin 53201, USA
| | | | | | | |
Collapse
|