1
|
Colman MA, Varela M, MacLeod RS, Hancox JC, Aslanidi OV. Interactions between calcium-induced arrhythmia triggers and the electrophysiological-anatomical substrate underlying the induction of atrial fibrillation. J Physiol 2024; 602:835-853. [PMID: 38372694 DOI: 10.1113/jp285740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia and is sustained by spontaneous focal excitations and re-entry. Spontaneous electrical firing in the pulmonary vein (PV) sleeves is implicated in AF generation. The aim of this simulation study was to identify the mechanisms determining the localisation of AF triggers in the PVs and their contribution to the genesis of AF. A novel biophysical model of the canine atria was used that integrates stochastic, spontaneous subcellular Ca2+ release events (SCRE) with regional electrophysiological heterogeneity in ionic properties and a detailed three-dimensional model of atrial anatomy, microarchitecture and patchy fibrosis. Simulations highlighted the importance of the smaller inward rectifier potassium current (IK1 ) in PV cells compared to the surrounding atria, which enabled SCRE more readily to result in delayed-afterdepolarisations that induced triggered activity. There was a leftward shift in the dependence of the probability of triggered activity on sarcoplasmic reticulum Ca2+ load. This feature was accentuated in 3D tissue compared to single cells (Δ half-maximal [Ca2+ ]SR = 58 μM vs. 22 μM). In 3D atria incorporating electrical heterogeneity, excitations preferentially emerged from the PV region. These triggered focal excitations resulted in transient re-entry in the left atrium. Addition of fibrotic patches promoted localised emergence of focal excitations and wavebreaks that had a more substantial impact on generating AF-like patterns than the PVs. Thus, a reduced IK1 , less negative resting membrane potential, and fibrosis-induced changes of the electrotonic load all contribute to the emergence of complex excitation patterns from spontaneous focal triggers. KEY POINTS: Focal excitations in the atria are most commonly associated with the pulmonary veins, but the mechanisms for this localisation are yet to be elucidated. We applied a multi-scale computational modelling approach to elucidate the mechanisms underlying such localisations. Myocytes in the pulmonary vein region of the atria have a less negative resting membrane potential and reduced time-independent potassium current; we demonstrate that both of these factors promote triggered activity in single cells and tissues. The less negative resting membrane potential also contributes to heterogeneous inactivation of the fast sodium current, which can enable re-entrant-like excitation patterns to emerge without traditional conduction block.
Collapse
Affiliation(s)
- Michael A Colman
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Marta Varela
- National Heart & Lung Institute, Faculty of Medicine, Imperial College London, London, UK
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Rob S MacLeod
- The Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - Jules C Hancox
- School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Oleg V Aslanidi
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| |
Collapse
|
2
|
Colman MA, Alvarez-Lacalle E, Echebarria B, Sato D, Sutanto H, Heijman J. Multi-Scale Computational Modeling of Spatial Calcium Handling From Nanodomain to Whole-Heart: Overview and Perspectives. Front Physiol 2022; 13:836622. [PMID: 35370783 PMCID: PMC8964409 DOI: 10.3389/fphys.2022.836622] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of intracellular calcium is a critical component of cardiac electrophysiology and excitation-contraction coupling. The calcium spark, the fundamental element of the intracellular calcium transient, is initiated in specialized nanodomains which co-locate the ryanodine receptors and L-type calcium channels. However, calcium homeostasis is ultimately regulated at the cellular scale, by the interaction of spatially separated but diffusively coupled nanodomains with other sub-cellular and surface-membrane calcium transport channels with strong non-linear interactions; and cardiac electrophysiology and arrhythmia mechanisms are ultimately tissue-scale phenomena, regulated by the interaction of a heterogeneous population of coupled myocytes. Recent advances in imaging modalities and image-analysis are enabling the super-resolution reconstruction of the structures responsible for regulating calcium homeostasis, including the internal structure of nanodomains themselves. Extrapolating functional and imaging data from the nanodomain to the whole-heart is non-trivial, yet essential for translational insight into disease mechanisms. Computational modeling has important roles to play in relating structural and functional data at the sub-cellular scale and translating data across the scales. This review covers recent methodological advances that enable image-based modeling of the single nanodomain and whole cardiomyocyte, as well as the development of multi-scale simulation approaches to integrate data from nanometer to whole-heart. Firstly, methods to overcome the computational challenges of simulating spatial calcium dynamics in the nanodomain are discussed, including image-based modeling at this scale. Then, recent whole-cell models, capable of capturing a range of different structures (such as the T-system and mitochondria) and cellular heterogeneity/variability are discussed at two different levels of discretization. Novel methods to integrate the models and data across the scales and simulate stochastic dynamics in tissue-scale models are then discussed, enabling elucidation of the mechanisms by which nanodomain remodeling underlies arrhythmia and contractile dysfunction. Perspectives on model differences and future directions are provided throughout.
Collapse
Affiliation(s)
- Michael A. Colman
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Blas Echebarria
- Departament de Fisica, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
| | - Daisuke Sato
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Henry Sutanto
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
3
|
Pharmacogenomics of Pediatric Cardiac Arrest: Cisplatin Treatment Worsened by a Ryanodine Receptor 2 Gene Mutation. CARDIOGENETICS 2022. [DOI: 10.3390/cardiogenetics12010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In thelast few decades, the roles of cardio-oncology and cardiovascular geneticsgained more and more attention in research and daily clinical practice, shaping a new clinical approach and management of patients affected by cancer and cardiovascular disease. Genetic characterization of patients undergoing cancer treatment can support a better cardiovascular risk stratification beyond the typical risk factors, suchas contractile function and QT interval duration, uncovering a possible patient’s concealed predisposition to heart failure, life threatening arrhythmias and sudden death. Specifically, an integrated cardiogenetic approach in daily oncological clinical practice can ensure the best patient-centered healthcare model, suggesting, also the adequate cardiac monitoring timing and alternative cancer treatments, reducing drug-related complications. We report the case of a 14-month-old girl affected by neuroblastoma, treated by cisplatin, complicated by cardiac arrest. We described the genetic characterization of a Ryanodine receptor 2 (RYR2) gene mutation and subsequent pharmacogenomic approach to better shape the cancer treatment.
Collapse
|
4
|
D'Imperio S, Monasky MM, Micaglio E, Ciconte G, Anastasia L, Pappone C. Brugada Syndrome: Warning of a Systemic Condition? Front Cardiovasc Med 2021; 8:771349. [PMID: 34722688 PMCID: PMC8553994 DOI: 10.3389/fcvm.2021.771349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) is a hereditary disorder, characterized by a specific electrocardiogram pattern and highly related to an increased risk of sudden cardiac death. BrS has been associated with other cardiac and non-cardiac pathologies, probably because of protein expression shared by the heart and other tissue types. In fact, the most commonly found mutated gene in BrS, SCN5A, is expressed throughout nearly the entire body. Consistent with this, large meals and alcohol consumption can trigger arrhythmic events in patients with BrS, suggesting a role for organs involved in the digestive and metabolic pathways. Ajmaline, a drug used to diagnose BrS, can have side effects on non-cardiac tissues, such as the liver, further supporting the idea of a role for organs involved in the digestive and metabolic pathways in BrS. The BrS electrocardiogram (ECG) sign has been associated with neural, digestive, and metabolic pathways, and potential biomarkers for BrS have been found in the serum or plasma. Here, we review the known associations between BrS and various organ systems, and demonstrate support for the hypothesis that BrS is not only a cardiac disorder, but rather a systemic one that affects virtually the whole body. Any time that the BrS ECG sign is found, it should be considered not a single disease, but rather the final step in any number of pathways that ultimately threaten the patient's life. A multi-omics approach would be appropriate to study this syndrome, including genetics, epigenomics, transcriptomics, proteomics, metabolomics, lipidomics, and glycomics, resulting eventually in a biomarker for BrS and the ability to diagnose this syndrome using a minimally invasive blood test, avoiding the risk associated with ajmaline testing.
Collapse
Affiliation(s)
- Sara D'Imperio
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Michelle M Monasky
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Emanuele Micaglio
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Giuseppe Ciconte
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Luigi Anastasia
- Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy.,Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
5
|
Zhou J, Peng F, Cao X, Xie X, Chen D, Yang L, Rao C, Peng C, Pan X. Risk Compounds, Preclinical Toxicity Evaluation, and Potential Mechanisms of Chinese Materia Medica-Induced Cardiotoxicity. Front Pharmacol 2021; 12:578796. [PMID: 33867974 PMCID: PMC8044783 DOI: 10.3389/fphar.2021.578796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
Chinese materia medica (CMM) has been applied for the prevention and treatment of diseases for thousands of years. However, arrhythmia, myocardial ischemia, heart failure, and other cardiac adverse reactions during CMM application were gradually reported. CMM-induced cardiotoxicity has aroused widespread attention. Our review aimed to summarize the risk compounds, preclinical toxicity evaluation, and potential mechanisms of CMM-induced cardiotoxicity. All relevant articles published on the PubMed, Embase, and China National Knowledge Infrastructure (CNKI) databases for the latest twenty years were searched and manually extracted. The risk substances of CMM-induced cardiotoxicity are relatively complex. A single CMM usually contains various risk compounds, and the same risk substance may exist in various CMM. The active and risk substances in CMM may be transformed into each other under different conditions, such as drug dosage, medication methods, and body status. Generally, the risk compounds of CMM-induced cardiotoxicity can be classified into alkaloids, terpenoids, steroids, heavy metals, organic acids, toxic proteins, and peptides. Traditional evaluation methods of chemical drug-induced cardiotoxicity primarily include cardiac function monitoring, endomyocardial biopsy, myocardial zymogram, and biomarker determination. In the preclinical stage, CMM-induced cardiotoxicity should be systematically evaluated at the overall, tissue, cellular, and molecular levels, including cardiac function, histopathology, cytology, myocardial zymogram, and biomarkers. Thanks to the development of systematic biology, the higher specificity and sensitivity of biomarkers, such as genes, proteins, and metabolic small molecules, are gradually applied for evaluating CMM-induced cardiotoxicity. Previous studies on the mechanisms of CMM-induced cardiotoxicity focused on a single drug, monomer or components of CMM. The interaction among ion homeostasis (sodium, potassium, and calcium ions), oxidative damage, mitochondrial injury, apoptosis and autophagy, and metabolic disturbance is involved in CMM-induced cardiotoxicity. Clarification on the risk compounds, preclinical toxicity evaluation, and potential mechanisms of CMM-induced cardiotoxicity must be beneficial to guide new CMM development and post-marketed CMM reevaluation.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dayi Chen
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lian Yang
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaolong Rao
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqi Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Yoshimoto A, Yamashiro K, Ikegaya Y, Matsumoto N. Acute Ramelteon Treatment Maintains the Cardiac Rhythms of Rats during Non-REM Sleep. Biol Pharm Bull 2021; 44:789-797. [PMID: 34078810 DOI: 10.1248/bpb.b20-00932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sleep curtailment negatively affects cardiac activities and thus should be ameliorated by pharmacological methods. One of the therapeutic targets is melatonin receptors, which tune circadian rhythms. Ramelteon, a melatonin MT1/MT2 receptor agonist, has recently been developed to modulate sleep-wake rhythms. To date, the sleep-promoting effect of ramelteon has been widely delineated, but whether ramelteon treatment physiologically influences cardiac function is not well understood. To address this question, we recorded electrocardiograms, electromyograms, and electrocorticograms in the frontal cortex and the olfactory bulb of unrestrained rats treated with either ramelteon or vehicle. We detected vigilance states based on physiological measurements and analyzed cardiac and muscular activities. We found that during non-rapid eye movement (non-REM) sleep, heartrate variability was maintained by ramelteon treatment. Analysis of the electromyograms confirmed that neither microarousal during non-REM sleep nor the occupancy of phasic periods during REM sleep was altered by ramelteon. Our results indicate that ramelteon has a remedial effect on cardiac activity by keeping the heartrate variability and may reduce cardiac dysfunction during sleep.
Collapse
Affiliation(s)
- Airi Yoshimoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Kotaro Yamashiro
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
- Institute for AI and Beyond, The University of Tokyo
- Center for Information and Neural Networks, National Institute of Information and Communications Technology
| | | |
Collapse
|
7
|
Ginsenoside Rb1 exerts antiarrhythmic effects by inhibiting I Na and I CaL in rabbit ventricular myocytes. Sci Rep 2019; 9:20425. [PMID: 31892729 PMCID: PMC6938504 DOI: 10.1038/s41598-019-57010-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Ginsenoside Rb1 exerts its pharmacological action by regulating sodium, potassium and calcium ion channels in the membranes of nerve cells. These ion channels are also present in cardiomyocytes, but no studies have been reported to date regarding the effects of Rb1 on cardiac sodium currents (INa), L-type calcium currents (ICaL) and action potentials (APs). Additionally, the antiarrhythmic potential of Rb1 has not been assessed. In this study, we used a whole-cell patch clamp technique to assess the effect of Rb1 on these ion channels. The results showed that Rb1 inhibited INa and ICaL, reduced the action potential amplitude (APA) and maximum upstroke velocity (Vmax), and shortened the action potential duration (APD) in a concentration-dependent manner but had no effect on the inward rectifier potassium current (IK1), delayed rectifier potassium current (IK) or resting membrane potential (RMP). We also designed a pathological model at the cellular and organ level to verify the role of Rb1. The results showed that Rb1 abolished high calcium-induced delayed afterdepolarizations (DADs), depressed the increase in intracellular calcium ([Ca2+]i), relieved calcium overload and protected cardiomyocytes. Rb1 can also reduce the occurrence of ventricular premature beats (VPBs) and ventricular tachycardia (VT) in ischemia-reperfusion (I-R) injury.
Collapse
|
8
|
Colman MA. Arrhythmia mechanisms and spontaneous calcium release: Bi-directional coupling between re-entrant and focal excitation. PLoS Comput Biol 2019; 15:e1007260. [PMID: 31393876 PMCID: PMC6687119 DOI: 10.1371/journal.pcbi.1007260] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
Spontaneous sub-cellular calcium release events (SCRE) are conjectured to promote rapid arrhythmias associated with conditions such as heart failure and atrial fibrillation: they can underlie the emergence of spontaneous action potentials in single cells which can lead to arrhythmogenic triggers in tissue. The multi-scale mechanisms of the development of SCRE into arrhythmia triggers, and their dynamic interaction with the tissue substrate, remain elusive; rigorous and simultaneous study of dynamics from the nanometre to the centimetre scale is a major challenge. The aim of this study was to develop a computational approach to overcome this challenge and study potential bi-directional coupling between sub-cellular and tissue-scale arrhythmia phenomena. A framework comprising a hierarchy of computational models was developed, which includes detailed single-cell models describing spatio-temporal calcium dynamics in 3D, efficient non-spatial cell models, and both idealised and realistic tissue models. A phenomenological approach was implemented to reproduce SCRE morphology and variability in the efficient cell models, comprising the definition of analytical Spontaneous Release Functions (SRF) whose parameters may be randomly sampled from appropriate distributions in order to match either the 3D cell models or experimental data. Pro-arrhythmogenic pacing protocols were applied to initiate re-entry and promote calcium overload, leading to the emergence of SCRE. The SRF accurately reproduced the dynamics of SCRE and its dependence on environment variables under multiple different conditions. Sustained re-entrant excitation promoted calcium overload, and led to the emergence of focal excitations after termination. A purely functional mechanism of re-entry and focal activity localisation was demonstrated, related to the unexcited spiral wave core. In conclusion, a novel approach has been developed to dynamically model SCRE at the tissue scale, which facilitates novel, detailed multi-scale mechanistic analysis. It was revealed that complex re-entrant excitation patterns and SCRE may be bi-directionally coupled, promoting novel mechanisms of arrhythmia perpetuation.
Collapse
Affiliation(s)
- Michael A. Colman
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
9
|
Yang Y, Zhao J, Qiu J, Li J, Liang X, Zhang Z, Zhang X, Fu H, Korantzopoulos P, Letsas KP, Tse G, Li G, Liu T. Xanthine Oxidase Inhibitor Allopurinol Prevents Oxidative Stress-Mediated Atrial Remodeling in Alloxan-Induced Diabetes Mellitus Rabbits. J Am Heart Assoc 2018; 7:e008807. [PMID: 29720500 PMCID: PMC6015332 DOI: 10.1161/jaha.118.008807] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/29/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND There are several mechanisms, including inflammation, oxidative stress and abnormal calcium homeostasis, involved in the pathogenesis of atrial fibrillation. In diabetes mellitus (DM), increased oxidative stress may be attributable to higher xanthine oxidase activity. In this study, we examined the relationship between oxidative stress and atrial electrical and structural remodeling, and calcium handling abnormalities, and the potential beneficial effects of the xanthine oxidase inhibitor allopurinol upon these pathological changes. METHODS AND RESULTS Ninety rabbits were randomly and equally divided into 3 groups: control, DM, and allopurinol-treated DM group. Echocardiographic and hemodynamic assessments were performed in vivo. Serum and tissue markers of oxidative stress and atrial fibrosis, including the protein expression were examined. Atrial interstitial fibrosis was evaluated by Masson trichrome staining. ICaL was measured from isolated left atrial cardiomyocytes using voltage-clamp techniques. Confocal microscopy was used to detect intracellular calcium transients. The Ca2+ handling protein expression was analyzed by Western blotting. Mitochondrial-related proteins were analyzed as markers of mitochondrial function. Compared with the control group, rabbits with DM showed left ventricular hypertrophy, increased atrial interstitial fibrosis, oxidative stress and fibrosis markers, ICaL and intracellular calcium transient, and atrial fibrillation inducibility. These abnormalities were alleviated by allopurinol treatment. CONCLUSIONS Allopurinol, via its antioxidant effects, reduces atrial mechanical, structural, ion channel remodeling and mitochondrial synthesis abnormalities induced by DM-related increases in oxidative stress.
Collapse
Affiliation(s)
- Yajuan Yang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jianping Zhao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jiuchun Qiu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jian Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xue Liang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiwei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaowei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Huaying Fu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | | | - Konstantinos P Letsas
- Laboratory of Cardiac Electrophysiology, Second Department of Cardiology, Evangelismos General Hospital of Athens, Greece
| | - Gary Tse
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
10
|
Liu B, Walton SD, Ho HT, Belevych AE, Tikunova SB, Bonilla I, Shettigar V, Knollmann BC, Priori SG, Volpe P, Radwański PB, Davis JP, Györke S. Gene Transfer of Engineered Calmodulin Alleviates Ventricular Arrhythmias in a Calsequestrin-Associated Mouse Model of Catecholaminergic Polymorphic Ventricular Tachycardia. J Am Heart Assoc 2018; 7:JAHA.117.008155. [PMID: 29720499 PMCID: PMC6015318 DOI: 10.1161/jaha.117.008155] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmogenic syndrome characterized by sudden death. There are several genetic forms of CPVT associated with mutations in genes encoding the cardiac ryanodine receptor (RyR2) and its auxiliary proteins including calsequestrin (CASQ2) and calmodulin (CaM). It has been suggested that impairment of the ability of RyR2 to stay closed (ie, refractory) during diastole may be a common mechanism for these diseases. Here, we explore the possibility of engineering CaM variants that normalize abbreviated RyR2 refractoriness for subsequent viral‐mediated delivery to alleviate arrhythmias in non–CaM‐related CPVT. Methods and Results To that end, we have designed a CaM protein (GSH‐M37Q; dubbed as therapeutic CaM or T‐CaM) that exhibited a slowed N‐terminal Ca dissociation rate and prolonged RyR2 refractoriness in permeabilized myocytes derived from CPVT mice carrying the CASQ2 mutation R33Q. This T‐CaM was introduced to the heart of R33Q mice through recombinant adeno‐associated viral vector serotype 9. Eight weeks postinfection, we performed confocal microscopy to assess Ca handling and recorded surface ECGs to assess susceptibility to arrhythmias in vivo. During catecholamine stimulation with isoproterenol, T‐CaM reduced isoproterenol‐promoted diastolic Ca waves in isolated CPVT cardiomyocytes. Importantly, T‐CaM exposure abolished ventricular tachycardia in CPVT mice challenged with catecholamines. Conclusions Our results suggest that gene transfer of T‐CaM by adeno‐associated viral vector serotype 9 improves myocyte Ca handling and alleviates arrhythmias in a calsequestrin‐associated CPVT model, thus supporting the potential of a CaM‐based antiarrhythmic approach as a therapeutic avenue for genetically distinct forms of CPVT.
Collapse
Affiliation(s)
- Bin Liu
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH.,Department of Biological Sciences, Mississippi State University, Starkville, MI
| | - Shane D Walton
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH
| | - Hsiang-Ting Ho
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH
| | - Andriy E Belevych
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH
| | - Svetlana B Tikunova
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH
| | - Ingrid Bonilla
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH
| | - Vikram Shettigar
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH
| | - Bjorn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Vanderbilt, TN
| | - Silvia G Priori
- Division of Cardiology and Molecular Cardiology, Maugeri Foundation-University of Pavia, Italy
| | - Pompeo Volpe
- Department of Biomedical Sciences, University of Padova, Italy
| | - Przemysław B Radwański
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH
| | - Sándor Györke
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH
| |
Collapse
|
11
|
Anesthetics, the Ryanodine Receptors, and the Heart. Anesthesiology 2017; 126:373-375. [PMID: 28079565 DOI: 10.1097/aln.0000000000001520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Colman MA, Pinali C, Trafford AW, Zhang H, Kitmitto A. A computational model of spatio-temporal cardiac intracellular calcium handling with realistic structure and spatial flux distribution from sarcoplasmic reticulum and t-tubule reconstructions. PLoS Comput Biol 2017; 13:e1005714. [PMID: 28859079 PMCID: PMC5597258 DOI: 10.1371/journal.pcbi.1005714] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/13/2017] [Accepted: 08/08/2017] [Indexed: 12/28/2022] Open
Abstract
Intracellular calcium cycling is a vital component of cardiac excitation-contraction coupling. The key structures responsible for controlling calcium dynamics are the cell membrane (comprising the surface sarcolemma and transverse-tubules), the intracellular calcium store (the sarcoplasmic reticulum), and the co-localisation of these two structures to form dyads within which calcium-induced-calcium-release occurs. The organisation of these structures tightly controls intracellular calcium dynamics. In this study, we present a computational model of intracellular calcium cycling in three-dimensions (3-D), which incorporates high resolution reconstructions of these key regulatory structures, attained through imaging of tissue taken from the sheep left ventricle using serial block face scanning electron microscopy. An approach was developed to model the sarcoplasmic reticulum structure at the whole-cell scale, by reducing its full 3-D structure to a 3-D network of one-dimensional strands. The model reproduces intracellular calcium dynamics during control pacing and reveals the high-resolution 3-D spatial structure of calcium gradients and intracellular fluxes in both the cytoplasm and sarcoplasmic reticulum. We also demonstrated the capability of the model to reproduce potentially pro-arrhythmic dynamics under perturbed conditions, pertaining to calcium-transient alternans and spontaneous release events. Comparison with idealised cell models emphasised the importance of structure in determining calcium gradients and controlling the spatial dynamics associated with calcium-transient alternans, wherein the probabilistic nature of dyad activation and recruitment was constrained. The model was further used to highlight the criticality in calcium spark propagation in relation to inter-dyad distances. The model presented provides a powerful tool for future investigation of structure-function relationships underlying physiological and pathophysiological intracellular calcium handling phenomena at the whole-cell. The approach allows for the first time direct integration of high-resolution images of 3-D intracellular structures with models of calcium cycling, presenting the possibility to directly assess the functional impact of structural remodelling at the cellular scale. The organisation of the membrane and sub-cellular structures of cells in the heart closely controls the coupling between its electrical and mechanical function. Computational models of the cellular calcium handling system, which is responsible for this electro-mechanical coupling, have been developed in recent years to study underlying structure-function relationships. Previous models have been largely idealised in structure; we present a new model which incorporates experimental data describing the high-resolution organisation of the primary structures involved in calcium dynamics. Significantly, the structure of the intracellular calcium store is modelled for the first time. The model is shown to reproduce calcium dynamics in control cells in both normal and abnormal conditions, demonstrating its suitability for future investigation of structure-function relationships. Thus, the model presented provides a powerful tool for the direct integration of experimentally acquired structural data in healthy and diseased cells and assessment of the role of structure in regulating normal and abnormal calcium dynamics.
Collapse
Affiliation(s)
- Michael A. Colman
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| | - Christian Pinali
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew W. Trafford
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Henggui Zhang
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Manchester, Manchester, United Kingdom
| | - Ashraf Kitmitto
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
13
|
Gondim ANS, Lara A, Santos-Miranda A, Roman-Campos D, Lauton-Santos S, Menezes-Filho JER, de Vasconcelos CML, Conde-Garcia EA, Guatimosim S, Cruz JS. (-)-Terpinen-4-ol changes intracellular Ca 2+ handling and induces pacing disturbance in rat hearts. Eur J Pharmacol 2017; 807:56-63. [PMID: 28435092 DOI: 10.1016/j.ejphar.2017.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
(-)-Terpinen-4-ol is a naturally occurring plant monoterpene and has been shown to have a plethora of biological activities. The objective of this study was to investigate the effects of (-)-terpinen-4-ol on the rat heart, a key player in the control and maintenance of arterial blood pressure. The effects of (-)-terpinen-4-ol on the rat heart were investigated using isolated left atrium isometric force measurements, in vivo electrocardiogram (ECG) recordings, patch clamp technique, and confocal microscopy. It was observed that (-)-terpinen-4-ol reduced contraction force in an isolated left atrium at millimolar concentrations. Conversely, it induced a positive inotropic effect and extrasystoles at micromolar concentrations, suggesting that (-)-terpinen-4-ol may have arrhythmogenic activity on cardiac tissue. In anaesthetized animals, (-)-terpinen-4-ol also elicited rhythm disturbance, such as supraventricular tachycardia and atrioventricular block. To investigate the cellular mechanism underlying the dual effect of (-)-terpinen-4-ol on heart muscle, experiments were performed on isolated ventricular cardiomyocytes to determine the effect of (-)-terpinen-4-ol on L-type Ca2+ currents, Ca2+ sparks, and Ca2+ transients. The arrhythmogenic activity of (-)-terpinen-4-ol in vitro and in vivo may be explained by its effect on intracellular Ca2+ handling. Taken together, our data suggest that (-)-terpinen-4-ol has cardiac arrhythmogenic activity.
Collapse
Affiliation(s)
- Antonio Nei Santana Gondim
- Departamento de Educação - Campus XII, Universidade do Estado da Bahia, Av. Vanessa Cardoso e Cardoso, s/n, Postal Code 46430-000 Guanambi, BA, Brazil; Laboratório das Membranas Excitáveis e Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, ICB - Bloco K-4, Postal Code 30161-970 Belo Horizonte, MG, Brazil
| | - Aline Lara
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, ICB - Bloco D-4, Postal Code 30161-970 Belo Horizonte, MG, Brazil
| | - Artur Santos-Miranda
- Laboratório das Membranas Excitáveis e Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, ICB - Bloco K-4, Postal Code 30161-970 Belo Horizonte, MG, Brazil
| | - Danilo Roman-Campos
- Laboratório de Biofísica, Departamento de Biofísica, Universidade Federal de São Paulo, Rua Botucatu 862, Vila Clementino, Zipcode 04023-062 São Paulo, SP, Brazil
| | - Sandra Lauton-Santos
- Departamento de Fisiologia, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Jardim Rosa Elze, Postal Code 49100-000 São Cristóvão, SE, Brazil
| | - José Evaldo Rodrigues Menezes-Filho
- Departamento de Fisiologia, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Jardim Rosa Elze, Postal Code 49100-000 São Cristóvão, SE, Brazil
| | - Carla Maria Lins de Vasconcelos
- Departamento de Fisiologia, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Jardim Rosa Elze, Postal Code 49100-000 São Cristóvão, SE, Brazil
| | - Eduardo Antonio Conde-Garcia
- Departamento de Fisiologia, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Jardim Rosa Elze, Postal Code 49100-000 São Cristóvão, SE, Brazil
| | - Silvia Guatimosim
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, ICB - Bloco D-4, Postal Code 30161-970 Belo Horizonte, MG, Brazil
| | - Jader S Cruz
- Laboratório das Membranas Excitáveis e Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, ICB - Bloco K-4, Postal Code 30161-970 Belo Horizonte, MG, Brazil.
| |
Collapse
|
14
|
Wakizaka M, Eshima H, Tanaka Y, Shirakawa H, Poole DC, Kano Y. In vivo Ca 2+ dynamics induced by Ca 2+ injection in individual rat skeletal muscle fibers. Physiol Rep 2017; 5:5/5/e13180. [PMID: 28292875 PMCID: PMC5350183 DOI: 10.14814/phy2.13180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 01/21/2023] Open
Abstract
In contrast to cardiomyocytes, store overload‐induced calcium ion (Ca2+) release (SOICR) is not considered to constitute a primary Ca2+ releasing system from the sarcoplasmic reticulum (SR) in skeletal muscle myocytes. In the latter, voltage‐induced Ca2+ release (VICR) is regarded as the dominant mechanism facilitating contractions. Any role of the SOICR in the regulation of cytoplasmic Ca2+ concentration ([Ca2+]i) and its dynamics in skeletal muscle in vivo remains poorly understood. By means of in vivo single fiber Ca2+ microinjections combined with bioimaging techniques, we tested the hypothesis that the [Ca2+]i dynamics following Ca2+ injection would be amplified and fiber contraction facilitated by SOICR. The circulation‐intact spinotrapezius muscle of adult male Wistar rats (n = 34) was exteriorized and loaded with Fura‐2 AM to monitor [Ca2+]i dynamics. Groups of rats underwent the following treatments: (1) 0.02, 0.2, and 2.0 mmol/L Ca2+ injections, (2) 2.0 mmol/L Ca2+ with inhibition of ryanodine receptors (RyR) by dantrolene sodium (DAN), and (3) 2.0 mmol/L Ca2+ with inhibition of SR Ca2+ ATPase (SERCA) by cyclopiazonic acid (CPA). A quantity of 0.02 mmol/L Ca2+ injection yielded no detectable response, whereas peak evoked [Ca2+]i increased 9.9 ± 1.8% above baseline for 0.2 mmol/L and 23.8 ± 4.3% (P < 0.05) for 2.0 mmol/L Ca2+ injections. The peak [Ca2+]i in response to 2.0 mmol/L Ca2+ injection was largely abolished by DAN and CPA (−85.8%, −71.0%, respectively, both P < 0.05 vs. unblocked) supporting dependence of the [Ca2+]i dynamics on Ca2+ released by SOICR rather than injected Ca2+ itself. Thus, this investigation demonstrates the presence of a robust SR‐evoked SOICR operant in skeletal muscle in vivo.
Collapse
Affiliation(s)
- Mario Wakizaka
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Hiroaki Eshima
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan.,Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Hongo, Tokyo, Japan
| | - Yoshinori Tanaka
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Hideki Shirakawa
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - David C Poole
- Departments of Anatomy & Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
| |
Collapse
|
15
|
Kaur S, Kong CHT, Cannell MB, Ward ML. Depotentiation of intact rat cardiac muscle unmasks an Epac-dependent increase in myofilament Ca(2+) sensitivity. Clin Exp Pharmacol Physiol 2016; 43:88-94. [PMID: 26466753 DOI: 10.1111/1440-1681.12504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/01/2015] [Accepted: 10/09/2015] [Indexed: 12/21/2022]
Abstract
Recently, a family of guanine nucleotide exchange factors have been identified in many cell types as important effectors of cyclic adenosine 3',5'-monophospahte (cAMP) signalling that is independent of protein kinase A (PKA). In the heart, investigation of exchange protein directly activated by cAMP (Epac) has yielded conflicting results. Since cAMP is an important regulator of cardiac contractility, this study aimed to examine whether Epac activation modulates excitation-contraction coupling in ventricular preparations from rat hearts. The study used 8-(4-chlorophenylthio)-2'-O-methyladenosine-3', 5'-cyclic monophosphate (cpTOME), an analogue of cAMP that activates Epac, but not PKA. In isolated myocytes, cpTOME increased Ca(2+) spark frequency from about 7 to 32/100 μm(3)/s (n = 10), P = 0.05 with a reduction in the peak amplitude of the sparks. Simultaneous measurements of intracellular Ca(2+) and isometric force in multicellular trabeculae (n = 7, 1.5 mmol/L [Ca(2+)]o) revealed no effect of Epac activation on either the amplitude of Ca(2+) transients (Control 0.7 ± 0.1 vs cpTOME 0.7 ± 0.1; 340/380 fura-2 ratio, P = 0.35) or on peak stress (Control 24 ± 5 mN/mm(2) vs cpTOME 23 ± 5 mN/mm(2), P = 0.20). However, an effect of Epac in trabeculae was unmasked by lowering extracellular [Ca(2+)]o. In these depotentiated trabeculae, activation of the Epac pathway increased myofilament Ca(2+) sensitivity, an effect that was blocked by addition of KN-93, a Ca(2+)/calmodulin-dependent protein kinase II (CaMK-II) inhibitor. This study suggests that Epac activation may be a useful therapeutic target to increase the strength of contraction during low inotropic states.
Collapse
Affiliation(s)
- Sarbjot Kaur
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Cherrie H T Kong
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Mark B Cannell
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Marie-Louise Ward
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Weber S, Meyer-Roxlau S, El-Armouche A. Role of protein phosphatase inhibitor-1 in cardiac beta adrenergic pathway. J Mol Cell Cardiol 2016; 101:116-126. [PMID: 27639308 DOI: 10.1016/j.yjmcc.2016.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 01/08/2023]
Abstract
Phosphoproteomic studies have shown that about one third of all cardiac proteins are reversibly phosphorylated, affecting virtually every cellular signaling pathway. The reversibility of this process is orchestrated by the opposing enzymatic activity of kinases and phosphatases. Conversely, imbalances in subcellular protein phosphorylation patterns are a hallmark of many cardiovascular diseases including heart failure and cardiac arrhythmias. While numerous studies have revealed excessive beta-adrenergic signaling followed by deregulated kinase expression or activity as a major driver of the latter cardiac pathologies, far less is known about the beta-adrenergic regulation of their phosphatase counterparts. In fact, most of the limited knowledge stems from the detailed analysis of the endogenous inhibitor of the protein phosphatase 1 (I-1) in cellular and animal models. I-1 acts as a nodal point between adrenergic and putatively non-adrenergic cardiac signaling pathways and is able to influence widespread cellular functions of protein phosphatase 1 which are contributing to cardiac health and disease, e.g. Ca2+ handling, sarcomere contractility and glucose metabolism. Finally, nearly all of these studies agree that I-1 is a promising drug target on the one hand but the outcome of its pharmacological regulation maybe extremely context-dependent on the other hand, thus warranting for careful interpretation of past and future experimental results. In this respect we will: 1) comprehensively review the current knowledge about structural, functional and regulatory properties of I-1 within the heart 2) highlight current working hypothesis and potential I-1 mediated disease mechanisms 3) discuss state-of-the-art knowledge and future prospects of a potential therapeutic strategy targeting I-1 by restoring the balance of cardiac protein phosphorylation.
Collapse
Affiliation(s)
- Silvio Weber
- Department of Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany.
| | - Stefanie Meyer-Roxlau
- Department of Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany.
| |
Collapse
|
17
|
Functional Impact of Ryanodine Receptor Oxidation on Intracellular Calcium Regulation in the Heart. Rev Physiol Biochem Pharmacol 2016; 171:39-62. [PMID: 27251471 DOI: 10.1007/112_2016_2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 2 ryanodine receptor (RyR2) serves as the major intracellular Ca2+ release channel that drives heart contraction. RyR2 is activated by cytosolic Ca2+ via the process of Ca2+-induced Ca2+ release (CICR). To ensure stability of Ca2+ dynamics, the self-reinforcing CICR must be tightly controlled. Defects in this control cause sarcoplasmic reticulum (SR) Ca2+ mishandling, which manifests in a variety of cardiac pathologies that include myocardial infarction and heart failure. These pathologies are also associated with oxidative stress. Given that RyR2 contains a large number of cysteine residues, it is no surprise that RyR2 plays a key role in the cellular response to oxidative stress. RyR's many cysteine residues pose an experimental limitation in defining a specific target or mechanism of action for oxidative stress. As a result, the current understanding of redox-mediated RyR2 dysfunction remains incomplete. Several oxidative modifications, including S-glutathionylation and S-nitrosylation, have been suggested playing an important role in the regulation of RyR2 activity. Moreover, oxidative stress can increase RyR2 activity by forming disulfide bonds between two neighboring subunits (intersubunit cross-linking). Since intersubunit interactions within the RyR2 homotetramer complex dictate the channel gating, such posttranslational modification of RyR2 would have a significant impact on RyR2 function and Ca2+ regulation. This review summarizes recent findings on oxidative modifications of RyR2 and discusses contributions of these RyR2 modifications to SR Ca2+ mishandling during cardiac pathologies.
Collapse
|
18
|
Non-β-blocking R-carvedilol enantiomer suppresses Ca2+ waves and stress-induced ventricular tachyarrhythmia without lowering heart rate or blood pressure. Biochem J 2015; 470:233-42. [PMID: 26348911 DOI: 10.1042/bj20150548] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/08/2015] [Indexed: 01/28/2023]
Abstract
Carvedilol is the current β-blocker of choice for suppressing ventricular tachyarrhythmia (VT). However, carvedilol's benefits are dose-limited, attributable to its potent β-blocking activity that can lead to bradycardia and hypotension. The clinically used carvedilol is a racemic mixture of β-blocking S-carvedilol and non-β-blocking R-carvedilol. We recently reported that novel non-β-blocking carvedilol analogues are effective in suppressing arrhythmogenic Ca(2+) waves and stress-induced VT without causing bradycardia. Thus, the non-β-blocking R-carvedilol enantiomer may also possess this favourable anti-arrhythmic property. To test this possibility, we synthesized R-carvedilol and assessed its effect on Ca(2+) release and VT. Like racemic carvedilol, R-carvedilol directly reduces the open duration of the cardiac ryanodine receptor (RyR2), suppresses spontaneous Ca(2+) oscillations in human embryonic kidney (HEK) 293 cells, Ca(2+) waves in cardiomyocytes in intact hearts and stress-induced VT in mice harbouring a catecholaminergic polymorphic ventricular tachycardia (CPVT)-causing RyR2 mutation. Importantly, R-carvedilol did not significantly alter heart rate or blood pressure. Therefore, the non-β-blocking R-carvedilol enantiomer represents a very promising prophylactic treatment for Ca(2+)- triggered arrhythmia without the bradycardia and hypotension often associated with racemic carvedilol. Systematic clinical assessments of R-carvedilol as a new anti-arrhythmic agent may be warranted.
Collapse
|
19
|
S100A1 DNA-based Inotropic Therapy Protects Against Proarrhythmogenic Ryanodine Receptor 2 Dysfunction. Mol Ther 2015; 23:1320-1330. [PMID: 26005840 DOI: 10.1038/mt.2015.93] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/28/2015] [Indexed: 12/21/2022] Open
Abstract
Restoring expression levels of the EF-hand calcium (Ca(2+)) sensor protein S100A1 has emerged as a key factor in reconstituting normal Ca(2+) handling in failing myocardium. Improved sarcoplasmic reticulum (SR) function with enhanced Ca(2+) resequestration appears critical for S100A1's cyclic adenosine monophosphate-independent inotropic effects but raises concerns about potential diastolic SR Ca(2+) leakage that might trigger fatal arrhythmias. This study shows for the first time a diminished interaction between S100A1 and ryanodine receptors (RyR2s) in experimental HF. Restoring this link in failing cardiomyocytes, engineered heart tissue and mouse hearts, respectively, by means of adenoviral and adeno-associated viral S100A1 cDNA delivery normalizes diastolic RyR2 function and protects against Ca(2+)- and β-adrenergic receptor-triggered proarrhythmogenic SR Ca(2+) leakage in vitro and in vivo. S100A1 inhibits diastolic SR Ca(2+) leakage despite aberrant RyR2 phosphorylation via protein kinase A and calmodulin-dependent kinase II and stoichiometry with accessory modulators such as calmodulin, FKBP12.6 or sorcin. Our findings demonstrate that S100A1 is a regulator of diastolic RyR2 activity and beneficially modulates diastolic RyR2 dysfunction. S100A1 interaction with the RyR2 is sufficient to protect against basal and catecholamine-triggered arrhythmic SR Ca(2+) leak in HF, combining antiarrhythmic potency with chronic inotropic actions.
Collapse
|
20
|
Mattiazzi A, Bassani RA, Escobar AL, Palomeque J, Valverde CA, Vila Petroff M, Bers DM. Chasing cardiac physiology and pathology down the CaMKII cascade. Am J Physiol Heart Circ Physiol 2015; 308:H1177-91. [PMID: 25747749 DOI: 10.1152/ajpheart.00007.2015] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/16/2015] [Indexed: 11/22/2022]
Abstract
Calcium dynamics is central in cardiac physiology, as the key event leading to the excitation-contraction coupling (ECC) and relaxation processes. The primary function of Ca(2+) in the heart is the control of mechanical activity developed by the myofibril contractile apparatus. This key role of Ca(2+) signaling explains the subtle and critical control of important events of ECC and relaxation, such as Ca(2+) influx and SR Ca(2+) release and uptake. The multifunctional Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) is a signaling molecule that regulates a diverse array of proteins involved not only in ECC and relaxation but also in cell death, transcriptional activation of hypertrophy, inflammation, and arrhythmias. CaMKII activity is triggered by an increase in intracellular Ca(2+) levels. This activity can be sustained, creating molecular memory after the decline in Ca(2+) concentration, by autophosphorylation of the enzyme, as well as by oxidation, glycosylation, and nitrosylation at different sites of the regulatory domain of the kinase. CaMKII activity is enhanced in several cardiac diseases, altering the signaling pathways by which CaMKII regulates the different fundamental proteins involved in functional and transcriptional cardiac processes. Dysregulation of these pathways constitutes a central mechanism of various cardiac disease phenomena, like apoptosis and necrosis during ischemia/reperfusion injury, digitalis exposure, post-acidosis and heart failure arrhythmias, or cardiac hypertrophy. Here we summarize significant aspects of the molecular physiology of CaMKII and provide a conceptual framework for understanding the role of the CaMKII cascade on Ca(2+) regulation and dysregulation in cardiac health and disease.
Collapse
Affiliation(s)
- Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina;
| | - Rosana A Bassani
- Centro de Engenharia Biomédica, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Ariel L Escobar
- Biological Engineering and Small Scale Technologies, School of Engineering, University of California, Merced, California; and
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Martín Vila Petroff
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, California
| |
Collapse
|
21
|
Shemarova IV, Nesterov VP. Evolution of Ca2+-signaling mechanisms: The role of Ca2+ in regulation of specialized cardiomyocyte functions in chronic heart diseases. J EVOL BIOCHEM PHYS+ 2015. [DOI: 10.1134/s0022093014060027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Gonano LA, Petroff MV. Subcellular Mechanisms Underlying Digitalis-Induced Arrhythmias: Role of Calcium/Calmodulin-Dependent Kinase II (CaMKII) in the Transition from an Inotropic to an Arrhythmogenic Effect. Heart Lung Circ 2014; 23:1118-24. [DOI: 10.1016/j.hlc.2014.07.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/03/2014] [Accepted: 07/23/2014] [Indexed: 11/27/2022]
|
23
|
The cardiac ryanodine receptor luminal Ca2+ sensor governs Ca2+ waves, ventricular tachyarrhythmias and cardiac hypertrophy in calsequestrin-null mice. Biochem J 2014; 461:99-106. [PMID: 24758151 DOI: 10.1042/bj20140126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CASQ2 (cardiac calsequestrin) is commonly believed to serve as the SR (sarcoplasmic reticulum) luminal Ca2+ sensor. Ablation of CASQ2 promotes SCWs (spontaneous Ca2+ waves) and CPVT (catecholaminergic polymorphic ventricular tachycardia) upon stress but not at rest. How SCWs and CPVT are triggered by stress in the absence of the CASQ2-based luminal Ca2+ sensor is an important unresolved question. In the present study, we assessed the role of the newly identified RyR2 (ryanodine receptor 2)-resident luminal Ca2+ sensor in determining SCW propensity, CPVT susceptibility and cardiac hypertrophy in Casq2-KO (knockout) mice. We crossbred Casq2-KO mice with RyR2 mutant (E4872Q+/-) mice, which lack RyR2-resident SR luminal Ca2+ sensing, to generate animals with both deficiencies. Casq2+/- and Casq2-/- mice showed stress-induced VTs (ventricular tachyarrhythmias), whereas Casq2+/-/E4872Q+/- and Casq2-/-/E4872Q+/- mice displayed little or no stress-induced VTs. Confocal Ca2+ imaging revealed that Casq2-/- hearts frequently exhibited SCWs after extracellular Ca2+ elevation or adrenergic stimulation, whereas Casq2-/-/E4872Q+/- hearts had few or no SCWs under the same conditions. Cardiac hypertrophy developed and CPVT susceptibility increased with age in Casq2-/- mice, but not in Casq2-/-/E4872Q+/- mice. However, the amplitudes and dynamics of voltage-induced Ca2+ transients in Casq2-/- and Casq2-/-/E4872Q+/- hearts were not significantly different. Our results indicate that SCWs, CPVT and hypertrophy in Casq2-null cardiac muscle are governed by the RyR2-resident luminal Ca2+ sensor. This implies that defects in CASQ2-based lumi-nal Ca2+ sensing can be overridden by the RyR2-resident luminal Ca2+ sensor. This makes this RyR2-resident sensor a promising molecular target for the treatment of Ca2+-mediated arrhythmias.
Collapse
|
24
|
Rueda A, de Alba-Aguayo DR, Valdivia HH. [Ryanodine receptor, calcium leak and arrhythmias]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2014; 84:191-201. [PMID: 25103920 DOI: 10.1016/j.acmx.2013.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/30/2013] [Accepted: 12/02/2013] [Indexed: 11/28/2022] Open
Abstract
The participation of the ionic Ca(2+) release channel/ryanodine receptor in cardiac excitation-contraction coupling is well known since the late '80s, when various seminal papers communicated its purification for the first time and its identity with the "foot" structures located at the terminal cisternae of the sarcoplasmic reticulum. In addition to its main role as the Ca(2+) channel responsible for the transient Ca(2+) increase that activates the contractile machinery of the cardiomyocytes, the ryanodine receptor releases Ca(2+) during the relaxation phase of the cardiac cycle, giving rise to a diastolic Ca(2+) leak. In normal physiological conditions, diastolic Ca(2+) leak regulates the proper level of luminal Ca(2+), but in pathological conditions it participates in the generation of both, acquired and hereditary arrhythmias. Very recently, several groups have focused their efforts into the development of pharmacological tools to control the altered diastolic Ca(2+) leak via ryanodine receptors. In this review, we focus our interest on describing the participation of cardiac ryanodine receptor in the diastolic Ca(2+) leak under physiological or pathological conditions and also on the therapeutic approaches to control its undesired exacerbated activity during diastole.
Collapse
Affiliation(s)
- Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Zacatenco, México D.F., México.
| | - David R de Alba-Aguayo
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Zacatenco, México D.F., México
| | - Héctor H Valdivia
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, Estados Unidos
| |
Collapse
|
25
|
|
26
|
Rietdorf K, Bootman MD, Sanderson MJ. Spontaneous, pro-arrhythmic calcium signals disrupt electrical pacing in mouse pulmonary vein sleeve cells. PLoS One 2014; 9:e88649. [PMID: 24586364 PMCID: PMC3930634 DOI: 10.1371/journal.pone.0088649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/08/2014] [Indexed: 11/18/2022] Open
Abstract
The pulmonary vein, which returns oxygenated blood to the left atrium, is ensheathed by a population of unique, myocyte-like cells called pulmonary vein sleeve cells (PVCs). These cells autonomously generate action potentials that propagate into the left atrial chamber and cause arrhythmias resulting in atrial fibrillation; the most common, often sustained, form of cardiac arrhythmia. In mice, PVCs extend along the pulmonary vein into the lungs, and are accessible in a lung slice preparation. We exploited this model to study how aberrant Ca(2+) signaling alters the ability of PVC networks to follow electrical pacing. Cellular responses were investigated using real-time 2-photon imaging of lung slices loaded with a Ca(2+)-sensitive fluorescent indicator (Ca(2+) measurements) and phase contrast microscopy (contraction measurements). PVCs displayed global Ca(2+) signals and coordinated contraction in response to electrical field stimulation (EFS). The effects of EFS relied on both Ca(2+) influx and Ca(2+) release, and could be inhibited by nifedipine, ryanodine or caffeine. Moreover, PVCs had a high propensity to show spontaneous Ca(2+) signals that arose via stochastic activation of ryanodine receptors (RyRs). The ability of electrical pacing to entrain Ca(2+) signals and contractile responses was dramatically influenced by inherent spontaneous Ca(2+) activity. In PVCs with relatively low spontaneous Ca(2+) activity (<1 Hz), entrainment with electrical pacing was good. However, in PVCs with higher frequencies of spontaneous Ca(2+) activity (>1.5 Hz), electrical pacing was less effective; PVCs became unpaced, only partially-paced or displayed alternans. Because spontaneous Ca(2+) activity varied between cells, neighboring PVCs often had different responses to electrical pacing. Our data indicate that the ability of PVCs to respond to electrical stimulation depends on their intrinsic Ca(2+) cycling properties. Heterogeneous spontaneous Ca(2+) activity arising from stochastic RyR opening can disengage them from sinus rhythm and lead to autonomous, pro-arrhythmic activity.
Collapse
Affiliation(s)
- Katja Rietdorf
- Department of Microbiology and Physiological Systems, University of Massachusetts, Medical School, Worcester, Massachusetts, United States of America
- Department of Life, Health and Chemical Science, The Open University, Milton Keynes, United Kingdom
- * E-mail:
| | - Martin D. Bootman
- Department of Life, Health and Chemical Science, The Open University, Milton Keynes, United Kingdom
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Michael J. Sanderson
- Department of Microbiology and Physiological Systems, University of Massachusetts, Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
27
|
The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2+-triggered arrhythmias. Nat Med 2014; 20:184-92. [PMID: 24441828 DOI: 10.1038/nm.3440] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022]
Abstract
Spontaneous Ca(2+) release from intracellular stores is important for various physiological and pathological processes. In cardiac muscle cells, spontaneous store overload-induced Ca(2+) release (SOICR) can result in Ca(2+) waves, a major cause of ventricular tachyarrhythmias (VTs) and sudden death. The molecular mechanism underlying SOICR has been a mystery for decades. Here we show that a point mutation, E4872A, in the helix bundle crossing region (the proposed gate) of the cardiac ryanodine receptor (RyR2) completely abolishes luminal, but not cytosolic, Ca(2+) activation of RyR2. The introduction of metal-binding histidines at this site converts RyR2 into a luminal Ni(2+)-gated channel. Mouse hearts harboring a heterozygous RyR2 mutation at this site (E4872Q) are resistant to SOICR and are completely protected against Ca(2+)-triggered VTs. These data show that the RyR2 gate directly senses luminal (store) Ca(2+), explaining the regulation of RyR2 by luminal Ca(2+), the initiation of Ca(2+) waves and Ca(2+)-triggered arrhythmias. This newly identified store-sensing gate structure is conserved in all RyR and inositol 1,4,5-trisphosphate receptor isoforms.
Collapse
|
28
|
Effects of wenxin keli on the action potential and L-type calcium current in rats with transverse aortic constriction-induced heart failure. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:572078. [PMID: 24319478 PMCID: PMC3844239 DOI: 10.1155/2013/572078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 09/08/2013] [Accepted: 09/10/2013] [Indexed: 11/17/2022]
Abstract
Objective. We investigated the effects of WXKL on the action potential (AP) and the L-type calcium current (ICa-L) in normal and hypertrophied myocytes. Methods. Forty male rats were randomly divided into two groups: the control group and the transverse aortic constriction- (TAC-) induced heart failure group. Cardiac hypertrophy was induced by TAC surgery, whereas the control group underwent a sham operation. Eight weeks after surgery, single cardiac ventricular myocytes were isolated from the hearts of the rats. The APs and ICa-L were recorded using the whole-cell patch clamp technique. Results. The action potential duration (APD) of the TAC group was prolonged compared with the control group and was markedly shortened by WXKL treatment in a dose-dependent manner. The current densities of the ICa-L in the TAC group treated with 5 g/L WXKL were significantly decreased compared with the TAC group. We also determined the effect of WXKL on the gating mechanism of the ICa-L in the TAC group. We found that WXKL decreased the ICa-L by accelerating the inactivation of the channels and delaying the recovery time from inactivation. Conclusions. The results suggest that WXKL affects the AP and blocked the ICa-L, which ultimately resulted in the treatment of arrhythmias.
Collapse
|
29
|
Sivakumaran V, Stanley BA, Tocchetti CG, Ballin JD, Caceres V, Zhou L, Keceli G, Rainer PP, Lee DI, Huke S, Ziolo MT, Kranias EG, Toscano JP, Wilson GM, O'Rourke B, Kass DA, Mahaney JE, Paolocci N. HNO enhances SERCA2a activity and cardiomyocyte function by promoting redox-dependent phospholamban oligomerization. Antioxid Redox Signal 2013; 19:1185-97. [PMID: 23919584 PMCID: PMC3785857 DOI: 10.1089/ars.2012.5057] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIMS Nitroxyl (HNO) interacts with thiols to act as a redox-sensitive modulator of protein function. It enhances sarcoplasmic reticular Ca(2+) uptake and myofilament Ca(2+) sensitivity, improving cardiac contractility. This activity has led to clinical testing of HNO donors for heart failure. Here we tested whether HNO alters the inhibitory interaction between phospholamban (PLN) and the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) in a redox-dependent manner, improving Ca(2+) handling in isolated myocytes/hearts. RESULTS Ventriculocytes, sarcoplasmic reticulum (SR) vesicles, and whole hearts were isolated from control (wildtype [WT]) or PLN knockout (pln(-/-)) mice. Compared to WT, pln(-/-) myocytes displayed enhanced resting sarcomere shortening, peak Ca(2+) transient, and blunted β-adrenergic responsiveness. HNO stimulated shortening, relaxation, and Ca(2+) transient in WT cardiomyocytes, and evoked positive inotropy/lusitropy in intact hearts. These changes were markedly blunted in pln(-/-) cells/hearts. HNO enhanced SR Ca(2+) uptake in WT but not pln(-/-) SR-vesicles. Spectroscopic studies in insect cell microsomes expressing SERCA2a±PLN showed that HNO increased Ca(2+)-dependent SERCA2a conformational flexibility but only when PLN was present. In cardiomyocytes, HNO achieved this effect by stabilizing PLN in an oligomeric disulfide bond-dependent configuration, decreasing the amount of free inhibitory monomeric PLN available. INNOVATION HNO-dependent redox changes in myocyte PLN oligomerization relieve PLN inhibition of SERCA2a. CONCLUSIONS PLN plays a central role in HNO-induced enhancement of SERCA2a activity, leading to increased inotropy/lusitropy in intact myocytes and hearts. PLN remains physically associated with SERCA2a; however, less monomeric PLN is available resulting in decreased inhibition of the enzyme. These findings offer new avenues to improve Ca(2+) handling in failing hearts.
Collapse
Affiliation(s)
- Vidhya Sivakumaran
- 1 Division of Cardiology, Johns Hopkins Medical Institutions , Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ho HT, Liu B, Snyder JS, Lou Q, Brundage EA, Velez-Cortes F, Wang H, Ziolo MT, Anderson ME, Sen CK, Wehrens XHT, Fedorov VV, Biesiadecki BJ, Hund TJ, Györke S. Ryanodine receptor phosphorylation by oxidized CaMKII contributes to the cardiotoxic effects of cardiac glycosides. Cardiovasc Res 2013; 101:165-74. [PMID: 24104877 DOI: 10.1093/cvr/cvt233] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIMS Recent studies suggest that proarrhythmic effects of cardiac glycosides (CGs) on cardiomyocyte Ca(2+) handling involve generation of reactive oxygen species (ROS). However, the specific pathway(s) of ROS production and the subsequent downstream molecular events that mediate CG-dependent arrhythmogenesis remain to be defined. METHODS AND RESULTS We examined the effects of digitoxin (DGT) on Ca(2+) handling and ROS production in cardiomyocytes using a combination of pharmacological approaches and genetic mouse models. Myocytes isolated from mice deficient in NADPH oxidase type 2 (NOX2KO) and mice transgenically overexpressing mitochondrial superoxide dismutase displayed markedly increased tolerance to the proarrhythmic action of DGT as manifested by the inhibition of DGT-dependent ROS and spontaneous Ca(2+) waves (SCW). Additionally, DGT-induced mitochondrial membrane potential depolarization was abolished in NOX2KO cells. DGT-dependent ROS was suppressed by the inhibition of PI3K, PKC, and the mitochondrial KATP channel, suggesting roles for these proteins, respectively, in activation of NOX2 and in mitochondrial ROS generation. Western blot analysis revealed increased levels of oxidized CaMKII in WT but not in NOX2KO hearts treated with DGT. The DGT-induced increase in SCW frequency was abolished in myocytes isolated from mice in which the Ser 2814 CaMKII phosphorylation site on RyR2 is constitutively inactivated. CONCLUSION These results suggest that the arrhythmogenic adverse effects of CGs on Ca(2+) handling involve PI3K- and PKC-mediated stimulation of NOX2 and subsequent NOX2-dependent ROS release from the mitochondria; mitochondria-derived ROS then activate CaMKII with consequent phosphorylation of RyR2 at Ser 2814.
Collapse
Affiliation(s)
- Hsiang-Ting Ho
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Neef S, Maier LS. Novel aspects of excitation-contraction coupling in heart failure. Basic Res Cardiol 2013; 108:360. [PMID: 23740218 DOI: 10.1007/s00395-013-0360-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/18/2013] [Accepted: 03/28/2013] [Indexed: 12/19/2022]
Abstract
Excitation-contraction coupling is the process by which electrical activation is translated into contraction of a cardiac myocyte and thus the heart. In heart failure, expression, phosphorylation, and function of several intracellular proteins that are involved in excitation-contraction coupling are altered. The present review article summarizes central principles and highlights novel aspects of alterations in heart failure, focusing especially on recent findings regarding altered sarcoplasmic reticulum Ca2+ -leak and late Na+ -current without being able to cover all changes in full detail. These two pathomechanisms seem to play interesting roles with respect to systolic and diastolic dysfunction and may also be important for cardiac arrhythmias. Furthermore, the article outlines the translation of these novel findings into potential therapeutic approaches.
Collapse
Affiliation(s)
- Stefan Neef
- Abt. Kardiologie und Pneumologie/Herzzentrum, Georg-August-Universität Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | | |
Collapse
|
32
|
Interactions between bufadienolides derived from toad venom and verapamil in langendorff-perfused guinea-pig hearts. Toxicol In Vitro 2013; 27:396-401. [DOI: 10.1016/j.tiv.2012.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/21/2012] [Accepted: 08/05/2012] [Indexed: 11/17/2022]
|
33
|
Zhou YH, Piao XM, Liu X, Liang HH, Wang LM, Xiong XH, Wang L, Lu YJ, Shan HL. Arrhythmogenesis toxicity of aconitine is related to intracellular ca(2+) signals. Int J Med Sci 2013; 10:1242-9. [PMID: 23935402 PMCID: PMC3739024 DOI: 10.7150/ijms.6541] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/22/2013] [Indexed: 11/25/2022] Open
Abstract
Aconitine is a well-known arrhythmogenic toxin and induces triggered activities through cardiac voltage-gated Na(+) channels. However, the effects of aconitine on intracellular Ca(2+) signals were previously unknown. We investigated the effects of aconitine on intracellular Ca(2+) signals in rat ventricular myocytes and explored the possible mechanism of arrhythmogenic toxicity induced by aconitine. Ca(2+) signals were evaluated by measuring L-type Ca(2+) currents, caffeine-induced Ca(2+) release and the expression of NCX and SERCA2a. Action potential and triggered activities were recorded by whole-cell patch-clamp techniques. In rat ventricular myocytes, the action potential duration was significantly prolonged by 1 µM aconitine. At higher concentrations (5 µM and 10 µM), aconitine induced triggered activities and delayed after-depolarizations (6 of 8 cases), which were inhibited by verapamil. Aconitine (1 µM) significantly increased the ICa-L density from 12.77 ± 3.12 pA/pF to 18.98 ± 3.89 pA/pF (n=10, p<0.01). The activation curve was shifted towards more negative potential, while the inactivation curve was shifted towards more positive potential by 1 μM aconitine. The level of Ca(2+) release induced by 10 mM caffeine was markedly increased. Aconitine (1 µM) increased the expression of NCX, while SERCA2a expression was reduced. In conclusion, aconitine increased the cytosolic [Ca(2+)]i by accelerating ICa-L and changing the expression of NCX and SERCA2a. Then, the elevation of cytosolic [Ca(2+)]i induced triggered activities and delayed after-depolarizations. Arrhythmogenesis toxicity of aconitine is related to intracellular Ca(2+) signals.
Collapse
Affiliation(s)
- Yu-hong Zhou
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Miura M, Murai N, Hattori T, Nagano T, Stuyvers BD, Shindoh C. Role of reactive oxygen species and Ca(2+) dissociation from the myofilaments in determination of Ca(2+) wave propagation in rat cardiac muscle. J Mol Cell Cardiol 2012; 56:97-105. [PMID: 23266595 DOI: 10.1016/j.yjmcc.2012.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/14/2012] [Accepted: 12/10/2012] [Indexed: 11/30/2022]
Abstract
Ca(2+) waves are initiated not only by Ca(2+) leak from the sarcoplasmic reticulum (SR), but also by Ca(2+) dissociation from the myofilaments in the myocardium with nonuniform contraction. We investigated whether contractile properties and the production of reactive oxygen species (ROS) affect Ca(2+) wave propagation. Trabeculae were obtained from 76 rat hearts. Force was measured with a strain gauge, sarcomere length with a laser diffraction technique, and [Ca(2+)](i) with fura-2 and a CCD camera (24°C, 2.0mmol/L [Ca(2+)](o)). ROS production was estimated from 2',7'-dichlorofluorescein (DCF) fluorescence. Trabeculae were regionally exposed to a jet of solution containing 1) 10mmol/L Ca(2+) to initiate Ca(2+) waves by SR Ca(2+) leak due to Ca(2+) overload within the jet-exposed region, and 2) 0.2mmol/L Ca(2+) or 5mmol/L caffeine to initiate such waves by Ca(2+) dissociation from the myofilaments due to nonuniform contraction. Ca(2+) waves were induced by stimulus trains for 7.5s. Ten-percent muscle stretch increased DCF fluorescence and accelerated Ca(2+) waves initiated due to both Ca(2+) overload and nonuniform contraction. Preincubation with 3μmol/L diphenyleneiodonium or 10μmol/L colchicine suppressed the increase in DCF fluorescence but suppressed acceleration of Ca(2+) waves initiated only due to Ca(2+) overload. Irrespective of preincubation with colchicine, reduction of force after the addition of 10μmol/L blebbistatin did not decelerate Ca(2+) waves initiated due to Ca(2+) overload, while it did decelerate waves initiated due to nonuniform contraction. These results suggest that Ca(2+) wave propagation is modulated by ROS production through an intact microtubule network only during stretch and may be additionally modulated by Ca(2+) dissociated from the myofilaments in the case of nonuniform contraction.
Collapse
Affiliation(s)
- Masahito Miura
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Tian X, Liu Y, Liu Y, Wang R, Wagenknecht T, Liu Z, Chen SRW. Ligand-dependent conformational changes in the clamp region of the cardiac ryanodine receptor. J Biol Chem 2012; 288:4066-75. [PMID: 23258540 DOI: 10.1074/jbc.m112.427864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Global conformational changes in the three-dimensional structure of the Ca(2+) release channel/ryanodine receptor (RyR) occur upon ligand activation. A number of ligands are able to activate the RyR channel, but whether these structurally diverse ligands induce the same or different conformational changes in the channel is largely unknown. Here we constructed a fluorescence resonance energy transfer (FRET)-based probe by inserting a CFP after residue Ser-2367 and a YFP after residue Tyr-2801 in the cardiac RyR (RyR2) to yield a CFP- and YFP-dual labeled RyR2 (RyR2(Ser-2367-CFP/Tyr-2801-YFP)). Both of these insertion sites have previously been mapped to the "clamp" region in the four corners of the square-shaped cytoplasmic assembly of the three-dimensional structure of RyR2. Using this novel FRET probe, we monitored the extent of conformational changes in the clamp region of RyR2(Ser-2367-CFP/Tyr-2801-YFP) induced by various ligands. We also monitored the extent of Ca(2+) release induced by the same ligands in HEK293 cells expressing RyR2(Ser-2367-CFP/Tyr-2801-YFP). We detected conformational changes in the clamp region for the ligands caffeine, aminophylline, theophylline, ATP, and ryanodine but not for Ca(2+) or 4-chloro-m-cresol, although they all induced Ca(2+) release. Interestingly, caffeine is able to induce further conformational changes in the clamp region of the ryanodine-modified channel, suggesting that ryanodine does not lock RyR in a fixed conformation. Our data demonstrate that conformational changes in the clamp region of RyR are ligand-dependent and suggest the existence of multiple ligand dependent RyR activation mechanisms associated with distinct conformational changes.
Collapse
Affiliation(s)
- Xixi Tian
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Nivala M, Ko CY, Nivala M, Weiss JN, Qu Z. Criticality in intracellular calcium signaling in cardiac myocytes. Biophys J 2012; 102:2433-42. [PMID: 22713558 DOI: 10.1016/j.bpj.2012.05.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/30/2012] [Accepted: 05/01/2012] [Indexed: 11/18/2022] Open
Abstract
Calcium (Ca) is a ubiquitous second messenger that regulates many biological functions. The elementary events of local Ca signaling are Ca sparks, which occur randomly in time and space, and integrate to produce global signaling events such as intra- and intercellular Ca waves and whole-cell Ca oscillations. Despite extensive experimental characterization in many systems, the transition from local random to global synchronous events is still poorly understood. Here we show that criticality, a ubiquitous dynamical phenomenon in nature, is responsible for the transition from local to global Ca signaling. We demonstrate this first in a computational model of Ca signaling in a cardiac myocyte and then experimentally in mouse ventricular myocytes, complemented by a theoretical agent-based model to delineate the underlying dynamics. We show that the interaction between the Ca release units via Ca-induced Ca release causes self-organization of Ca spark clusters. When the coupling between Ca release units is weak, the cluster-size distribution is exponential. As the interactions become strong, the cluster-size distribution changes to a power-law distribution, which is characteristic of criticality in thermodynamic and complex nonlinear systems, and facilitates the formation and propagation of Ca waves and whole-cell Ca oscillations. Our findings illustrate how criticality is harnessed by a biological cell to regulate Ca signaling via self-organization of random subcellular events into cellular-scale oscillations, and provide a general theoretical framework for the transition from local Ca signaling to global Ca signaling in biological cells.
Collapse
Affiliation(s)
- Michael Nivala
- Cardiology Division, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
37
|
Jung CB, Moretti A, Mederos y Schnitzler M, Iop L, Storch U, Bellin M, Dorn T, Ruppenthal S, Pfeiffer S, Goedel A, Dirschinger RJ, Seyfarth M, Lam JT, Sinnecker D, Gudermann T, Lipp P, Laugwitz KL. Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Mol Med 2012; 4:180-91. [PMID: 22174035 PMCID: PMC3376852 DOI: 10.1002/emmm.201100194] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 12/23/2022] Open
Abstract
Coordinated release of calcium (Ca2+) from the sarcoplasmic reticulum (SR) through cardiac ryanodine receptor (RYR2) channels is essential for cardiomyocyte function. In catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited disease characterized by stress-induced ventricular arrhythmias in young patients with structurally normal hearts, autosomal dominant mutations in RYR2 or recessive mutations in calsequestrin lead to aberrant diastolic Ca2+ release from the SR causing arrhythmogenic delayed after depolarizations (DADs). Here, we report the generation of induced pluripotent stem cells (iPSCs) from a CPVT patient carrying a novel RYR2 S406L mutation. In patient iPSC-derived cardiomyocytes, catecholaminergic stress led to elevated diastolic Ca2+ concentrations, a reduced SR Ca2+ content and an increased susceptibility to DADs and arrhythmia as compared to control myocytes. This was due to increased frequency and duration of elementary Ca2+ release events (Ca2+ sparks). Dantrolene, a drug effective on malignant hyperthermia, restored normal Ca2+ spark properties and rescued the arrhythmogenic phenotype. This suggests defective inter-domain interactions within the RYR2 channel as the pathomechanism of the S406L mutation. Our work provides a new in vitro model to study the pathogenesis of human cardiac arrhythmias and develop novel therapies for CPVT.
Collapse
Affiliation(s)
- Christian B Jung
- Klinikum rechts der Isar, Technische Universität München, I. Medizinische Klinik, Kardiologie, München, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Calcium plays important role in biological systems where it is involved in diverse mechanisms such as signaling, muscle contraction and neuromodulation. Action potentials are generated by dynamic interaction of ionic channels located on the plasma-membrane and these drive the rhythmic activity of biological systems such as the smooth muscle and the heart. However, ionic channels are not the only pacemakers; an intimate interaction between intracellular Ca(2+) stores and ionic channels underlie rhythmic activity. In this review we will focus on the role of Ca(2+) stores in regulation of rhythmical behavior.
Collapse
Affiliation(s)
- Mohammad S Imtiaz
- Department of Physiology & Pharmacology, Faculty of Medicine, University of Calgary, Health Sciences Centre, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
39
|
Ho HT, Stevens SCW, Terentyeva R, Carnes CA, Terentyev D, Györke S. Arrhythmogenic adverse effects of cardiac glycosides are mediated by redox modification of ryanodine receptors. J Physiol 2011; 589:4697-708. [PMID: 21807619 DOI: 10.1113/jphysiol.2011.210005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The therapeutic use of cardiac glycosides (CGs), agents commonly used in treating heart failure (HF), is limited by arrhythmic toxicity. The adverse effects of CGs have been attributed to excessive accumulation of intracellular Ca(2+) resulting from inhibition of Na(+)/K(+)-ATPase ion transport activity. However, CGs are also known to increase intracellular reactive oxygen species (ROS), which could contribute to arrhythmogenesis through redox modification of cardiac ryanodine receptors (RyR2s). Here we sought to determine whether modification of RyR2s by ROS contributes to CG-dependent arrhythmogenesis and examine the relevant sources of ROS. In isolated rat ventricular myocytes, the CG digitoxin (DGT) increased the incidence of arrhythmogenic spontaneous Ca(2+) waves, decreased the sarcoplasmic reticulum (SR) Ca(2+) load, and increased both ROS and RyR2 thiol oxidation. Additionally, pretreatment with DGT increased spark frequency in permeabilized myocytes. These effects on Ca(2+) waves and sparks were prevented by the antioxidant N-(2-mercaptopropionyl) glycine (MPG). The CG-dependent increases in ROS, RyR2 oxidation and arrhythmogenic propensity were reversed by inhibitors of NADPH oxidase, mitochondrial ATP-dependent K(+) channels (mito-K(ATP)) or permeability transition pore (PTP), but not by inhibition of xanthine oxidase. These results suggest that the arrhythmogenic adverse effects of CGs involve alterations in RyR2 function caused by oxidative changes in the channel structure by ROS. These CG-dependent effects probably involve release of ROS from mitochondria possibly mediated by NADPH oxidase.
Collapse
Affiliation(s)
- Hsiang-Ting Ho
- Davis Heart and Lung Research Institute, The Ohio State University Medical Centre, 473 W. 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
40
|
El-Ani D, Stav H, Guetta V, Arad M, Shainberg A. Rapamycin (sirolimus) protects against hypoxic damage in primary heart cultures via Na+/Ca2+ exchanger activation. Life Sci 2011; 89:7-14. [PMID: 21600903 DOI: 10.1016/j.lfs.2011.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/29/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
Abstract
AIMS Rapamycin (sirolimus) is an antibiotic that inhibits protein synthesis through mammalian targeting of rapamycin (mTOR) signaling, and is used as an immunosuppressant in the treatment of organ rejection in transplant recipients. Rapamycin confers preconditioning-like protection against ischemic-reperfusion injury in isolated mouse heart cultures. Our aim was to further define the role of rapamycin in intracellular Ca(2+) homeostasis and to investigate the mechanism by which rapamycin protects cardiomyocytes from hypoxic damage. MAIN METHODS We demonstrate here that rapamycin protects rat heart cultures from hypoxic-reoxygenation (H/R) damage, as revealed by assays of lactate dehydrogenase (LDH) and creatine kinase (CK) leakage to the medium, by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) measurements, and desmin immunostaining. As a result of hypoxia, intracellular calcium levels ([Ca(2+)](i)) were elevated. However, treatment of heart cultures with rapamycin during hypoxia attenuated the increase of [Ca(2+)](i). Rapamycin also attenuated (45)Ca(2+) uptake into the sarcoplasmic reticulum (SR) of skinned heart cultures in a dose- and time-dependent manner. KB-R7943, which inhibits the "reverse" mode of Na(+)/Ca(2+) exchanger (NCX), protected heart cultures from H/R damage with or without the addition of rapamycin. Rapamycin decreased [Ca(2+)](i) following its elevation by extracellular Ca(2+) ([Ca(2+)](o)) influx, thapsigargin treatment, or depolarization with KCl. KEY FINDINGS We suggest that rapamycin induces cardioprotection against hypoxic/reoxygenation damage in primary heart cultures by stimulating NCX to extrude Ca(2+) outside the cardiomyocytes. SIGNIFICANCE According to our findings, rapamycin preserves Ca(2+) homeostasis and prevents Ca(2+) overload via extrusion of Ca(2+) surplus outside the sarcolemma, thereby protecting the cells from hypoxic stress.
Collapse
Affiliation(s)
- Dalia El-Ani
- Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | |
Collapse
|
41
|
Porta M, Zima AV, Nani A, Diaz-Sylvester PL, Copello JA, Ramos-Franco J, Blatter LA, Fill M. Single ryanodine receptor channel basis of caffeine's action on Ca2+ sparks. Biophys J 2011; 100:931-8. [PMID: 21320437 DOI: 10.1016/j.bpj.2011.01.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 01/03/2011] [Accepted: 01/10/2011] [Indexed: 10/18/2022] Open
Abstract
Caffeine (1, 3, 7-trimethylxanthine) is a widely used pharmacological agonist of the cardiac ryanodine receptor (RyR2) Ca(2+) release channel. It is also a well-known stimulant that can produce adverse side effects, including arrhythmias. Here, the action of caffeine on single RyR2 channels in bilayers and Ca(2+) sparks in permeabilized ventricular cardiomyocytes is defined. Single RyR2 caffeine activation depended on the free Ca(2+) level on both sides of the channel. Cytosolic Ca(2+) enhanced RyR2 caffeine affinity, whereas luminal Ca(2+) essentially scaled maximal caffeine activation. Caffeine activated single RyR2 channels in diastolic quasi-cell-like solutions (cytosolic MgATP, pCa 7) with an EC(50) of 9.0 ± 0.4 mM. Low-dose caffeine (0.15 mM) increased Ca(2+) spark frequency ∼75% and single RyR2 opening frequency ∼150%. This implies that not all spontaneous RyR2 openings during diastole are associated with Ca(2+) sparks. Assuming that only the longest openings evoke sparks, our data suggest that a spark may result only when a spontaneous single RyR2 opening lasts >6 ms.
Collapse
Affiliation(s)
- Maura Porta
- Department of Physiology, Midwestern University, Downers Grove, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Miura M, Hirose M, Endoh H, Wakayama Y, Sugai Y, Nakano M, Fukuda K, Shindoh C, Shirato K, Shimokawa H. Acceleration of Ca2+ waves in monocrotaline-induced right ventricular hypertrophy in the rat. Circ J 2011; 75:1343-9. [PMID: 21467666 DOI: 10.1253/circj.cj-10-1050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Triggered arrhythmias arise from delayed afterdepolarizations (DADs), with Ca(2+) waves playing an important role in their formation. In ventricular hypertrophy, however, it remains unclear how Ca(2+) waves change their propagation features and affect arrhythmogenesis. We addressed this important issue in a rat model of hypertrophy. METHODS AND RESULTS Rats were given a subcutaneous injection of 60 mg/kg monocrotaline (MCT-rats) or solvent (Ctr-rats). After 4 weeks, MCT-rats showed high right ventricular (RV) pressure and RV hypertrophy. Trabeculae were dissected from 36 right ventricles. The force was measured using a silicon strain gauge and regional intracellular Ca(2+) ([Ca(2+)](i)) was determined using microinjected fura-2. Reproducible Ca(2+) waves were induced by stimulus trains (2 Hz, 7.5s). MCT-rats showed a higher diastolic [Ca(2+)](i) and faster and larger Ca(2+) waves (P<0.01). The velocity and amplitude of Ca(2+) waves were correlated with the diastolic [Ca(2+)](i) both in the Ctr- and MCT-rats. The velocity of Ca(2+) waves in the MCT-rats was larger at the given amplitude of Ca(2+) waves than that in the Ctr-rats (P < 0.01). The amplitude of DADs was correlated with the velocity and amplitude of Ca(2+) waves in the Ctr- and MCT-rats. CONCLUSIONS The results suggest that an increase in diastolic [Ca(2+)](i) and an increase in Ca(2+) sensitivity of the sarcoplasmic reticulum Ca(2+) release channel accelerate Ca(2+) waves in ventricular hypertrophy, thereby causing arrhythmogenesis.
Collapse
Affiliation(s)
- Masahito Miura
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Joung B, Park HW, Maruyama M, Tang L, Song J, Han S, Piccirillo G, Weiss JN, Lin SF, Chen PS. Intracellular calcium and the mechanism of anodal supernormal excitability in langendorff perfused rabbit ventricles. Circ J 2011; 75:834-43. [PMID: 21301131 DOI: 10.1253/circj.cj-10-1014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Anodal stimulation hyperpolarizes the cell membrane and increases the intracellular Ca(2+) (Ca(i)) transient. This study tested the hypothesis that the maximum slope of the Ca(i) decline (-(dCa(i)/dt)(max)) corresponds to the timing of anodal dip on the strength-interval curve and the initiation of repetitive responses and ventricular fibrillation (VF) after a premature stimulus (S(2)). METHODS AND RESULTS We simultaneously mapped the membrane potential (V(m)) and Ca(i) in 23 rabbit ventricles. A dip in the anodal strength-interval curve was observed. During the anodal dip, ventricles were captured by anodal break excitation directly under the S(2) electrode. The Ca(i) following anodal stimuli is larger than that following cathodal stimuli. The S(1)-S(2) intervals of the anodal dip (203±10 ms) coincided with the -(dCa(i)/dt)(max) (199±10 ms, P=NS). BAPTA-AM (n=3), inhibition of the electrogenic Na(+)-Ca(2+) exchanger current (I(NCX)) by low extracellular Na(+) (n=3), and combined ryanodine and thapsigargin infusion (n=2) eliminated the anodal supernormality. Strong S(2) during the relative refractory period (n=5) induced 29 repetitive responses and 10 VF episodes. The interval between S(2) and the first non-driven beat was coincidental with the time of -(dCa(i)/dt)(max). CONCLUSIONS Larger Ca(i) transient and I(NCX) activation induced by anodal stimulation produces anodal supernormality. The time of maximum I(NCX) activation is coincidental to the induction of non-driven beats from the Ca(i) sinkhole after a strong premature stimulation.
Collapse
Affiliation(s)
- Boyoung Joung
- Krannert Institute of Cardiology and the Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kobayashi S, Yano M, Uchinoumi H, Suetomi T, Susa T, Ono M, Xu X, Tateishi H, Oda T, Okuda S, Doi M, Yamamoto T, Matsuzaki M. Dantrolene, a therapeutic agent for malignant hyperthermia, inhibits catecholaminergic polymorphic ventricular tachycardia in a RyR2(R2474S/+) knock-in mouse model. Circ J 2010; 74:2579-84. [PMID: 20944434 DOI: 10.1253/circj.cj-10-0680] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Dantrolene, a specific agent for the treatment of malignant hyperthermia, was found to inhibit Ca(2+) leak through not only the skeletal ryanodine receptor (RyR1), but also the cardiac ryanodine receptor (RyR2) by correcting the defective inter-domain interaction between N-terminal (1-619 amino acid) and central (2,000-2,500 amino acid) domains of RyRs. Here, the in vivo anti-arrhythmic effect of dantrolene in a human catecholaminergic polymorphic ventricular tachycardia (CPVT)-associated RyR2(R2474S/+) knock-in (KI) mouse model was investigated. METHODS AND RESULTS ECG was monitored in KI mice (n=6) and wild-type (WT) mice (n=6), before and after an injection of epinephrine (1.0mg/kg) or on exercise using a treadmill. In all KI (but not WT) mice, bi-directional ventricular tachycardia (VT) was induced after an injection of epinephrine or on exercise. Pre-treatment with dantrolene (for 7-10 days) significantly inhibited the inducible VT (P<0.01). In KI cardiomyocytes, Ca(2+) spark frequency (SpF; s(-1)·100µm(-1): 5.8±0.3, P<0.01) was much more increased after the addition of isoproterenol than in WT cardiomyocytes (SpF: 3.6±0.2). The increase in SpF seen in KI cardiomyocytes was attenuated by 1.0µmol/L dantrolene (SpF: 3.6±0.5, P<0.01). CONCLUSIONS Dantrolene prevents CPVT, presumably by inhibiting Ca(2+) leak through the RyR2.
Collapse
Affiliation(s)
- Shigeki Kobayashi
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
BACKGROUND The mechanism of sinoatrial node (SAN) automaticity is traditionally attributed to membrane ion currents. Recent evidence indicates spontaneous sarcoplasmic reticulum (SR) Ca(2+) cycling also plays an important role. METHODS AND RESULTS A computer simulation on SAN cell and 1D tissue model was performed. In the SAN cells, SR Ca(2+) cycling broadly modulated the sinus rate from 1.74 Hz to 3.87 Hz. Shortening of the junctional SR refilling time and increase of SR Ca(2+) release were responsible for sinus rate acceleration. However, under the fast SR Ca(2+) cycling, decreased L-type Ca(2+) current (I(CaL)) resulted in irregular firing. When Ca(2+) cycling was suppressed, I(f) and I(CaT) both acted to stabilize the pacemaker rhythm, but I(CaT) had less effect than I(f). At the 1D level, the electrical coupling between neighboring cells had little effect on the earliest pacemaker location. The leading pacemaking site always colocalized with the site with the highest SR Ca(2+) cycling rate, but shifted to the site with less inhibited I(CaL). CONCLUSIONS The rate of SR Ca(2+) cycling can effectively and broadly modulate the sinus rate. I(f), I(CaL) and I(CaT) play integral roles to guarantee SAN cell rhythmic firing. The leading pacemaker site is determined by intracellular Ca(2+) dynamics and membrane currents, indicating the synergistic dual automaticity not only exists in single SAN cells, but also at the tissue level.
Collapse
Affiliation(s)
- Hong Zhang
- Krannert Institute of Cardiology and the Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Boyoung Joung
- Yonsei Cardiovascular Center and Cardiovascular Research, Yonsei University, Seoul, Korea
| | - Tetsuji Shinohara
- Krannert Institute of Cardiology and the Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mei Xi
- School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Peng-Sheng Chen
- Krannert Institute of Cardiology and the Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shien-Fong Lin
- Krannert Institute of Cardiology and the Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
46
|
Schalper KA, Sánchez HA, Lee SC, Altenberg GA, Nathanson MH, Sáez JC. Connexin 43 hemichannels mediate the Ca2+ influx induced by extracellular alkalinization. Am J Physiol Cell Physiol 2010; 299:C1504-15. [PMID: 20881238 DOI: 10.1152/ajpcell.00015.2010] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although alkaline pH is known to trigger Ca(2+) influx in diverse cells, no pH-sensitive Ca(2+) channel has been identified. Here, we report that extracellular alkalinization induces opening of connexin 43 hemichannels (Cx43 HCs). Increasing extracellular pH from 7.4 to 8.5, in the presence of physiological Ca(2+)/Mg(2+) concentrations, rapidly increased the ethidium uptake rate and open probability of HCs in Cx43 and Cx43EGFP HeLa transfectants (HeLa-Cx3 and HeLa-Cx43EGFP, respectively) but not in parental HeLa cells (HeLa-parental) lacking Cx43 HCs. The increase in ethidium uptake induced by pH 8.5 was not affected by raising the extracellular Ca(2+) concentration from 1.8 to 10 mM but was inhibited by a connexin HC inhibitor (La(3+)). Probenecid, a pannexin HC blocker, had no effect. Extracellular alkalinization increased the intracellular Ca(2+) levels only in cells expressing HCs. The above changes induced by extracellular alkalinization did not change the cellular distribution of Cx43, suggesting that HC activation occurs through a gating mechanism. Experiments on cells expressing a COOH-terminal truncated Cx43 mutant indicated that the effects of alkalinization on intracellular Ca(2+) and ethidium uptake did not depend on the Cx43 C terminus. Moreover, purified dephosphorylated Cx43 HCs reconstituted in liposomes were Ca(2+) permeable, suggesting that Ca(2+) influx through Cx43 HCs could account for the elevation in intracellular Ca(2+) elicited by extracellular alkalinization. These studies identify a membrane pathway for Ca(2+) influx and provide a potential explanation for the activation of cellular events induced by extracellular alkalinization.
Collapse
Affiliation(s)
- Kurt A Schalper
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, 4 to Piso, Santiago, 8331150 Chile.
| | | | | | | | | | | |
Collapse
|
47
|
Ruiz-Meana M, Fernandez-Sanz C, Garcia-Dorado D. The SR-mitochondria interaction: a new player in cardiac pathophysiology. Cardiovasc Res 2010; 88:30-9. [DOI: 10.1093/cvr/cvq225] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
48
|
Song MK, Baek JS, Kwon BS, Kim GB, Bae EJ, Noh CI, Choi JY. Clinical Spectrum and Prognostic Factors of Pediatric Ventricular Tachycardia. Circ J 2010; 74:1951-8. [DOI: 10.1253/circj.cj-10-0264] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mi-Kyoung Song
- Department of Pediatrics, Seoul National University Children's Hospital
| | - Jae-Suk Baek
- Department of Pediatrics, Seoul National University Children's Hospital
| | - Bo-Sang Kwon
- Department of Pediatrics, Seoul National University Children's Hospital
| | - Gi-Beom Kim
- Department of Pediatrics, Seoul National University Children's Hospital
| | - Eun-Jung Bae
- Department of Pediatrics, Seoul National University Children's Hospital
| | - Chung-Il Noh
- Department of Pediatrics, Seoul National University Children's Hospital
| | - Jung-Yun Choi
- Department of Pediatrics, Seoul National University Children's Hospital
| |
Collapse
|
49
|
Abstract
During a normal lifetime, the heart may beat over 2 billion times, but the mechanisms by which the heart beats are initiated remain a subject of intense investigation. Since the discovery of a pacemaker current (I(f)) in 1978, multiple studies have shown that rhythmic changes in membrane voltage (the "membrane voltage clock") underlie the mechanisms of automaticity. The I(f) is a depolarization current activated during hyperpolarization. Therefore, when the cardiac cells recover, the I(f) is activated and slowly depolarizes the cell membrane, leading to the onset of action potential. Recent studies, however, suggest that increased intracellular Ca (Ca(i)) induced by spontaneous rhythmic sarcoplasmic reticulum Ca release (the "calcium clock") is also jointly responsible for the initiation of the heart beat. Elevated Ca(i) activates another ionic current (the sodium-calcium exchanger current or I(NCX)), leading to spontaneous phase 4 depolarization. Under normal conditions, both clocks are needed to initiate the heart beat. Malfunction of the clocks is associated with sinus node dysfunction in heart failure and atrial fibrillation. More studies are needed to determine how both clocks work together to initiate heart beat under normal and disease conditions.
Collapse
Affiliation(s)
- Peng-Sheng Chen
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Imtiaz MS, von der Weid PY, van Helden DF. Synchronization of Ca2+ oscillations: a coupled oscillator-based mechanism in smooth muscle. FEBS J 2009; 277:278-85. [PMID: 19895582 DOI: 10.1111/j.1742-4658.2009.07437.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Entrained oscillations in Ca(2+) underlie many biological pacemaking phenomena. In this article, we review a long-range signaling mechanism in smooth muscle that results in global outcomes of local interactions. Our results are derived from studies of the following: (a) slow-wave depolarizations that underlie rhythmic contractions of gastric smooth muscle; and (b) membrane depolarizations that drive rhythmic contractions of lymphatic smooth muscle. The main feature of this signaling mechanism is a coupled oscillator-based synchronization of Ca(2+) oscillations across cells that drives membrane potential changes and causes coordinated contractions. The key elements of this mechanism are as follows: (a) the Ca(2+) release-refill cycle of endoplasmic reticulum Ca(2+) stores; (b) Ca(2+)-dependent modulation of membrane currents; (c) voltage-dependent modulation of Ca(2+) store release; and (d) cell-cell coupling through gap junctions or other mechanisms. In this mechanism, Ca(2+) stores alter the frequency of adjacent stores through voltage-dependent modulation of store release. This electrochemical coupling is many orders of magnitude stronger than the coupling through diffusion of Ca(2+) or inositol 1,4,5-trisphosphate, and thus provides an effective means of long-range signaling.
Collapse
Affiliation(s)
- Mohammad S Imtiaz
- Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada.
| | | | | |
Collapse
|