1
|
Qu KY, Cheng HY, Qiao L, Jiao JC, Chang SQ, Peng XF, Cui C, Zhang F, Huang NP. Construction of engineered cardiac tissue on a heart-on-a-chip device enables modeling of arrhythmogenic right ventricular cardiomyopathy. Biosens Bioelectron 2025; 281:117478. [PMID: 40245609 DOI: 10.1016/j.bios.2025.117478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/21/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a progressive cardiac disorder characterized by the replacement of the right ventricular myocardium with fibrofatty tissue, with an incidence rate of approximately 1 in 5000. To advance our understanding of its pathology and facilitate drug screening, there is an urgent need for myocardial models that closely replicate human physiological conditions. In this study, we developed an engineered cardiac tissue (ECT) model on a chip using cardiomyocytes differentiated from induced pluripotent stem cells (iPSCs) derived from ARVC patients. The disease ECT model successfully recapitulated key phenotypic features of ARVC, including reduced contractility, arrhythmic events, and abnormal calcium transients. We further assessed the drug responses of the model to isoproterenol and amiodarone, confirming increased sensitivity to isoproterenol in the ARVC model, while amiodarone effectively alleviated the arrhythmic events. In conclusion, our ECT model successfully reproduced ARVC phenotypes, providing a novel platform for drug screening and pathological studies.
Collapse
Affiliation(s)
- Kai-Yun Qu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hong-Yi Cheng
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Li Qiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jin-Cheng Jiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Shi-Qi Chang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xia-Feng Peng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Chang Cui
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China.
| | - Feng Zhang
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China.
| | - Ning-Ping Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
2
|
Mu J, Gao Z, Bo P, You B. Promotion of maturation in CDM3-induced embryonic stem cell-derived cardiomyocytes by palmitic acid. Biomed Mater Eng 2025; 36:34-42. [PMID: 39331088 DOI: 10.3233/bme-240101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
BACKGROUND Myocardial infarction leads to myocardial necrosis, and cardiomyocytes are non-renewable. Fatty acid-containing cardiomyocyte maturation medium promotes maturation of stem cell-derived cardiomyocytes. OBJECTIVE To study the effect palmitic acid on maturation of cardiomyocytes derived from human embryonic stem cells (hESCs) to optimize differentiation for potential treatment of myocardial infarction by hESCs. METHODS hESCs were differentiated into cardiomyocytes using standard chemically defined medium 3 (CDM3). Up to day 20 of differentiation, 200 Mm palmitic acid were added, and then the culture was continued for another 8 days to mimic the environment in which human cardiomyocytes mainly use fatty acids as the main energy source. Light microscopy, transmission electron microscopy, immunofluorescence, reverse transcription-polymerase chain reaction, and cellular ATP assays, were carried out to analyze the expression of relevant cardiomyocyte-related genes, cell morphology, metabolism levels, and other indicators cardiomyocyte maturity. RESULTS Cardiomyocytes derived from hESCs under exogenous palmitic acid had an elongated pike shape and a more regular arrangement. Sarcomere stripes were clear, and the cells color was clearly visible. The cell perimeter and elongation rate were also increased. Myogenic fibers were abundant, myofibrillar z-lines were regularly, the numbers of mitochondria and mitochondrial cristae were higher, more myofilaments were observed, and the structure of round-like discs was occasionally seen. Expression of mature cardiomyocyte-associated genes TNNT2, MYL2 and MYH6, and cardiomyocyte-associated genes KCNJ4, RYR2,and PPARα, was upregulated (p < 0.05). Expression of MYH7, MYL7, KCND2, KCND3, GJA1 and TNNI1 genes was unaffected (p > 0.05). Expression of mature cardiomyocyte-associated sarcomere protein MYL2 was significantly increased (p < 0.05), MYH7 protein expression was unaffected (p > 0.05). hESC-derived cardiomyocytes exposed to exogenous palmitic acid produced more ATP per unit time (p < 0.05). CONCLUSION Exogenous palmitic acid induced more mature hESC-CMs in terms of the cellular architecture, expression of cardiomyocyte maturation genes adnprotein, and metabolism.
Collapse
Affiliation(s)
- Junsheng Mu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- The Third Affiliated Hospital of XinXiang Medical University, XinXiang, China
| | - Zhen Gao
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Ping Bo
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Bin You
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
3
|
Morrissette-McAlmon J, Xu WR, Teuben R, Boheler KR, Tung L. Adipocyte-mediated electrophysiological remodeling of human stem cell - derived cardiomyocytes. J Mol Cell Cardiol 2024; 189:52-65. [PMID: 38346641 DOI: 10.1016/j.yjmcc.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Adipocytes normally accumulate in the epicardial and pericardial layers around the human heart, but their infiltration into the myocardium can be proarrhythmic. METHODS AND RESULTS: Human adipose derived stem/stromal cells and human induced pluripotent stem cells (hiPSC) were differentiated, respectively into predominantly white fat-like adipocytes (hAdip) and ventricular cardiomyocytes (CMs). Adipocytes cultured in CM maintenance medium (CM medium) maintained their morphology, continued to express adipogenic markers, and retained clusters of intracellular lipid droplets. In contrast, hiPSC-CMs cultivated in adipogenic growth medium displayed abnormal cell morphologies and more clustering across the monolayer. Pre-plated hiPSC-CMs co-cultured in direct contact with hAdips in CM medium displayed prolonged action potential durations, increased triangulation, slowed conduction velocity, increased conduction velocity heterogeneity, and prolonged calcium transients. When hAdip-conditioned medium was added to monolayer cultures of hiPSC-CMs, results similar to those recorded with direct co-cultures were observed. Both co-culture and conditioned medium experiments resulted in increases in transcript abundance of SCN10A, CACNA1C, SLC8A1, and RYR2, with a decrease in KCNJ2. Human adipokine immunoblots revealed the presence of cytokines that were elevated in adipocyte-conditioned medium, including MCP-1, IL-6, IL-8 and CFD that could induce electrophysiological changes in cultured hiPSC-CMs. CONCLUSIONS: Co-culture of hiPSC-CMs with hAdips reveals a potentially pathogenic role of infiltrating human adipocytes on myocardial tissue. In the absence of structural changes, hAdip paracrine release alone is sufficient to cause CM electrophysiological dysfunction mirroring the co-culture conditions. These effects, mediated largely by paracrine mechanisms, could promote arrhythmias in the heart.
Collapse
Affiliation(s)
| | - William R Xu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Roald Teuben
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth R Boheler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Leslie Tung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Fan X, Yang G, Duru F, Grilli M, Akin I, Zhou X, Saguner AM, Ei-Battrawy I. Arrhythmogenic Cardiomyopathy: from Preclinical Models to Genotype-phenotype Correlation and Pathophysiology. Stem Cell Rev Rep 2023; 19:2683-2708. [PMID: 37731079 PMCID: PMC10661732 DOI: 10.1007/s12015-023-10615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/22/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a hereditary myocardial disease characterized by the replacement of the ventricular myocardium with fibrous fatty deposits. ACM is usually inherited in an autosomal dominant pattern with variable penetrance and expressivity, which is mainly related to ventricular tachyarrhythmia and sudden cardiac death (SCD). Importantly, significant progress has been made in determining the genetic background of ACM due to the development of new techniques for genetic analysis. The exact molecular pathomechanism of ACM, however, is not completely clear and the genotype-phenotype correlations have not been fully elucidated, which are useful to predict the prognosis and treatment of ACM patients. Different gene-targeted and transgenic animal models, human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) models, and heterologous expression systems have been developed. Here, this review aims to summarize preclinical ACM models and platforms promoting our understanding of the pathogenesis of ACM and assess their value in elucidating the ACM genotype-phenotype relationship.
Collapse
Affiliation(s)
- Xuehui Fan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany
| | - Guoqiang Yang
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Department of Acupuncture and Rehabilitation, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Research Unit of Molecular Imaging Probes, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Firat Duru
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Maurizio Grilli
- Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Ibrahim Akin
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany
| | - Xiaobo Zhou
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany.
- First Department of Medicine, University Medical Centre Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Ardan Muammer Saguner
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Ibrahim Ei-Battrawy
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany.
- Department of Cardiology and Angiology, Ruhr University, Bochum, Germany; Institute of Physiology, Department of Cellular and Translational Physiology and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr- University Bochum, Bochum, Germany.
| |
Collapse
|
5
|
Ng R, Gokhan I, Stankey P, Akar FG, Campbell SG. Chronic diastolic stretch unmasks conduction defects in an in vitro model of arrhythmogenic cardiomyopathy. Am J Physiol Heart Circ Physiol 2023; 325:H1373-H1385. [PMID: 37830983 PMCID: PMC10977872 DOI: 10.1152/ajpheart.00709.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
We seek to elucidate the precise nature of mechanical loading that precipitates conduction deficits in a concealed-phase model of arrhythmogenic cardiomyopathy (ACM). ACM is a progressive disorder often resulting from mutations in desmosomal proteins. Exercise has been shown to worsen disease progression and unmask arrhythmia vulnerability, yet the underlying pathomechanisms may depend on the type and intensity of exercise. Because exercise causes myriad changes to multiple inter-dependent hemodynamic parameters, it is difficult to isolate its effects to specific changes in mechanical load. Here, we use engineered heart tissues (EHTs) with iPSC-derived cardiomyocytes expressing R451G desmoplakin, an ACM-linked mutation, which results in a functionally null model of desmoplakin (DSP). We also use a novel bioreactor to independently perturb tissue strain at different time points during the cardiac cycle. We culture EHTs under three strain regimes: normal physiological shortening; increased diastolic stretch, simulating high preload; and isometric culture, simulating high afterload. DSPR451G EHTs that have been cultured isometrically undergo adaptation, with no change in action potential parameters, conduction velocity, or contractile function, a phenotype confirmed by global proteomic analysis. However, when DSPR451G EHTs are subjected to increased diastolic stretch, they exhibit concomitant reductions in conduction velocity and the expression of connexin-43. These effects are rescued by inhibition of both lysosome activity and ERK signaling. Our results indicate that the response of DSPR451G EHTs to mechanical stimuli depends on the strain and the timing of the applied stimulus, with increased diastolic stretch unmasking conduction deficits in a concealed-phase model of ACM.
Collapse
Affiliation(s)
- Ronald Ng
- Yale University, New Haven, United States
| | | | | | - Fadi G Akar
- Cardiovascular Medicine and Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Stuart G Campbell
- Division of Cardiology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
6
|
Chua CJ, Morrissette-McAlmon J, Tung L, Boheler KR. Understanding Arrhythmogenic Cardiomyopathy: Advances through the Use of Human Pluripotent Stem Cell Models. Genes (Basel) 2023; 14:1864. [PMID: 37895213 PMCID: PMC10606441 DOI: 10.3390/genes14101864] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiomyopathies (CMPs) represent a significant healthcare burden and are a major cause of heart failure leading to premature death. Several CMPs are now recognized to have a strong genetic basis, including arrhythmogenic cardiomyopathy (ACM), which predisposes patients to arrhythmic episodes. Variants in one of the five genes (PKP2, JUP, DSC2, DSG2, and DSP) encoding proteins of the desmosome are known to cause a subset of ACM, which we classify as desmosome-related ACM (dACM). Phenotypically, this disease may lead to sudden cardiac death in young athletes and, during late stages, is often accompanied by myocardial fibrofatty infiltrates. While the pathogenicity of the desmosome genes has been well established through animal studies and limited supplies of primary human cells, these systems have drawbacks that limit their utility and relevance to understanding human disease. Human induced pluripotent stem cells (hiPSCs) have emerged as a powerful tool for modeling ACM in vitro that can overcome these challenges, as they represent a reproducible and scalable source of cardiomyocytes (CMs) that recapitulate patient phenotypes. In this review, we provide an overview of dACM, summarize findings in other model systems linking desmosome proteins with this disease, and provide an up-to-date summary of the work that has been conducted in hiPSC-cardiomyocyte (hiPSC-CM) models of dACM. In the context of the hiPSC-CM model system, we highlight novel findings that have contributed to our understanding of disease and enumerate the limitations, prospects, and directions for research to consider towards future progress.
Collapse
Affiliation(s)
- Christianne J. Chua
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Justin Morrissette-McAlmon
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Leslie Tung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Kenneth R. Boheler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Reisqs JB, Moreau A, Sleiman Y, Boutjdir M, Richard S, Chevalier P. Arrhythmogenic cardiomyopathy as a myogenic disease: highlights from cardiomyocytes derived from human induced pluripotent stem cells. Front Physiol 2023; 14:1191965. [PMID: 37250123 PMCID: PMC10210147 DOI: 10.3389/fphys.2023.1191965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy characterized by the replacement of myocardium by fibro-fatty infiltration and cardiomyocyte loss. ACM predisposes to a high risk for ventricular arrhythmias. ACM has initially been defined as a desmosomal disease because most of the known variants causing the disease concern genes encoding desmosomal proteins. Studying this pathology is complex, in particular because human samples are rare and, when available, reflect the most advanced stages of the disease. Usual cellular and animal models cannot reproduce all the hallmarks of human pathology. In the last decade, human-induced pluripotent stem cells (hiPSC) have been proposed as an innovative human cellular model. The differentiation of hiPSCs into cardiomyocytes (hiPSC-CM) is now well-controlled and widely used in many laboratories. This hiPSC-CM model recapitulates critical features of the pathology and enables a cardiomyocyte-centered comprehensive approach to the disease and the screening of anti-arrhythmic drugs (AAD) prescribed sometimes empirically to the patient. In this regard, this model provides unique opportunities to explore and develop new therapeutic approaches. The use of hiPSC-CMs will undoubtedly help the development of precision medicine to better cure patients suffering from ACM. This review aims to summarize the recent advances allowing the use of hiPSCs in the ACM context.
Collapse
Affiliation(s)
- J. B. Reisqs
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
| | - A. Moreau
- Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, PhyMedExp, Montpellier, France
| | - Y. Sleiman
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
| | - M. Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, NY, United States
- Department of Medicine, New York University School of Medicine, NY, United States
| | - S. Richard
- Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, PhyMedExp, Montpellier, France
| | - P. Chevalier
- Neuromyogene Institute, Claude Bernard University, Lyon 1, Villeurbanne, France
- Service de Rythmologie, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
8
|
Malihi G, Nikoui V, Elson EL. A review on qualifications and cost effectiveness of induced pluripotent stem cells (IPSCs)-induced cardiomyocytes in drug screening tests. Arch Physiol Biochem 2023; 129:131-142. [PMID: 32783745 DOI: 10.1080/13813455.2020.1802600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human induced pluripotent stem cells (hIPSCs) have initiated a higher degree of successes in disease modelling, preclinical evaluation of drug therapy and pharmaco-toxicological testing. Since the discovery of iPSCs in 2006, many advanced techniques have been introduced to differentiate iPSCs to cardiomyocytes, which have been progressively improved. The disease models from iPSC-induced cardiomyocytes (iPSC-CM) have been successfully helping to study a variety of cardiac diseases such as long QT syndrome, drug-induced long QT, different cardiomyopathies related to mutations in mitochondria or desmosomal proteins and other rare genetic diseases. IPSC-CMs have also been used to screen the role of chemicals in cardiovascular drug discovery and individualisation of drug dosages. In this review, the quality of current procedures for characterisation and maturation of iPSC-CM lines will be discussed. Also, we will focus on time efficiency and cost of standard differentiation methods after reprogramming.
Collapse
Affiliation(s)
| | - Vahid Nikoui
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elliot L Elson
- Department of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
9
|
Chirico N, Kessler EL, Maas RGC, Fang J, Qin J, Dokter I, Daniels M, Šarić T, Neef K, Buikema JW, Lei Z, Doevendans PA, Sluijter JPG, van Mil A. Small molecule-mediated rapid maturation of human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2022; 13:531. [PMID: 36575473 PMCID: PMC9795728 DOI: 10.1186/s13287-022-03209-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/01/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs) do not display all hallmarks of mature primary cardiomyocytes, especially the ability to use fatty acids (FA) as an energy source, containing high mitochondrial mass, presenting binucleation and increased DNA content per nuclei (polyploidism), and synchronized electrical conduction. This immaturity represents a bottleneck to their application in (1) disease modelling-as most cardiac (genetic) diseases have a middle-age onset-and (2) clinically relevant models, where integration and functional coupling are key. So far, several methods have been reported to enhance iPSC-CM maturation; however, these protocols are laborious, costly, and not easily scalable. Therefore, we developed a simple, low-cost, and rapid protocol to promote cardiomyocyte maturation using two small molecule activators of the peroxisome proliferator-activated receptor β/δ and gamma coactivator 1-alpha (PPAR/PGC-1α) pathway: asiatic acid (AA) and GW501516 (GW). METHODS AND RESULTS: Monolayers of iPSC-CMs were incubated with AA or GW every other day for ten days resulting in increased expression of FA metabolism-related genes and markers for mitochondrial activity. AA-treated iPSC-CMs responsiveness to the mitochondrial respiratory chain inhibitors increased and exhibited higher flexibility in substrate utilization. Additionally, structural maturity improved after treatment as demonstrated by an increase in mRNA expression of sarcomeric-related genes and higher nuclear polyploidy in AA-treated samples. Furthermore, treatment led to increased ion channel gene expression and protein levels. CONCLUSIONS Collectively, we developed a fast, easy, and economical method to induce iPSC-CMs maturation via PPAR/PGC-1α activation. Treatment with AA or GW led to increased metabolic, structural, functional, and electrophysiological maturation, evaluated using a multiparametric quality assessment.
Collapse
Affiliation(s)
- Nino Chirico
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elise L. Kessler
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Renée G. C. Maas
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Juntao Fang
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jiabin Qin
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Inge Dokter
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark Daniels
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tomo Šarić
- grid.6190.e0000 0000 8580 3777Center for Physiology and Pathophysiology, Institute for Neurophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Klaus Neef
- grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.491096.3Department of Cardiology, Amsterdam Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Jan-Willem Buikema
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zhiyong Lei
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter A. Doevendans
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.411737.7Netherlands Heart Institute, Utrecht, The Netherlands
| | - Joost P. G. Sluijter
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alain van Mil
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
10
|
Kohela A, van Kampen SJ, Moens T, Wehrens M, Molenaar B, Boogerd CJ, Monshouwer-Kloots J, Perini I, Goumans MJ, Smits AM, van Tintelen JP, van Rooij E. Epicardial differentiation drives fibro-fatty remodeling in arrhythmogenic cardiomyopathy. Sci Transl Med 2021; 13:eabf2750. [PMID: 34550725 DOI: 10.1126/scitranslmed.abf2750] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder often caused by pathogenic variants in desmosomal genes and characterized by progressive fibrotic and fat tissue accumulation in the heart. The cellular origin and responsible molecular mechanisms of fibro-fatty deposits have been a matter of debate, due to limitations in animal models recapitulating this phenotype. Here, we used human-induced pluripotent stem cell (hiPSC)–derived cardiac cultures, single-cell RNA sequencing (scRNA-seq), and explanted human ACM hearts to study the epicardial contribution to fibro-fatty remodeling in ACM. hiPSC-epicardial cells generated from patients with ACM showed spontaneous fibro-fatty cellular differentiation that was absent in isogenic controls. This was further corroborated upon siRNA-mediated targeting of desmosomal genes in hiPSC-epicardial cells generated from healthy donors. scRNA-seq analysis identified the transcription factor TFAP2A (activating enhancer-binding protein 2 alpha) as a key trigger promoting this process. Gain- and loss-of-function studies on hiPSC-epicardial cells and primary adult epicardial-derived cells demonstrated that TFAP2A mediated epicardial differentiation through enhancing epithelial-to-mesenchymal transition (EMT). Furthermore, examination of explanted hearts from patients with ACM revealed epicardial activation and expression of TFAP2A in the subepicardial mesenchyme. These data suggest that TFAP2A-mediated epicardial EMT underlies fibro-fatty remodeling in ACM, a process amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Arwa Kohela
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, Netherlands
| | - Sebastiaan J van Kampen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, Netherlands
| | - Tara Moens
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, Netherlands
| | - Martijn Wehrens
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, Netherlands
| | - Bas Molenaar
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, Netherlands
| | - Cornelis J Boogerd
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, Netherlands
| | - Jantine Monshouwer-Kloots
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, Netherlands
| | - Ilaria Perini
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, Netherlands
| | - Marie José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Anke M Smits
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - J Peter van Tintelen
- Department of Genetics, University Medical Centre Utrecht, 3584 CX Utrecht, Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, Netherlands.,Department of Cardiology, University Medical Centre Utrecht, 3584 CX Utrecht, Netherlands
| |
Collapse
|
11
|
Song JP, Chen L, Chen X, Ren J, Zhang NN, Tirasawasdichai T, Hu ZL, Hua W, Hu YR, Tang HR, Chen HSV, Hu SS. Elevated plasma β-hydroxybutyrate predicts adverse outcomes and disease progression in patients with arrhythmogenic cardiomyopathy. Sci Transl Med 2021; 12:12/530/eaay8329. [PMID: 32051229 DOI: 10.1126/scitranslmed.aay8329] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/12/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022]
Abstract
Sudden death could be the first symptom of patients with arrhythmogenic cardiomyopathy (AC), a disease for which clinical indicators predicting adverse progression remain lacking. Recent findings suggest that metabolic dysregulation is present in AC. We performed this study to identify metabolic indicators that predicted major adverse cardiac events (MACEs) in patients with AC and their relatives. Comparing explanted hearts from patients with AC and healthy donors, we identified deregulated metabolic pathways using quantitative proteomics. Right ventricles (RVs) from patients with AC displayed elevated ketone metabolic enzymes, OXCT1 and HMGCS2, suggesting higher ketone metabolism in AC RVs. Analysis of matched coronary artery and sinus plasma suggested potential ketone body synthesis at early-stage AC, which was validated using patient-derived induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) in vitro. Targeted metabolomics analysis in RVs from end-stage AC revealed a "burned-out" state, with predominant medium-chain fatty acid rather than ketone body utilization. In an independent validation cohort, 65 probands with mostly non-heart failure manifestations of AC had higher plasma β-hydroxybutyrate (β-OHB) than 62 healthy volunteers (P < 0.001). Probands with AC with MACE had higher β-OHB than those without MACE (P < 0.001). Among 94 relatives of probands, higher plasma β-OHB distinguished 25 relatives having suspected AC from nonaffected relatives. This study demonstrates that elevated plasma β-OHB predicts MACE in probands and disease progression in patients with AC and their clinically asymptomatic relatives.
Collapse
Affiliation(s)
- Jiang-Ping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital; National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100037, China.
| | - Liang Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital; National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100037, China
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital; National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100037, China
| | - Jie Ren
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital; National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100037, China
| | - Ning-Ning Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital; National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100037, China
| | - Tiara Tirasawasdichai
- Krannert Institute of Cardiology (KIC), Indiana University, Indianapolis, IN 46202, USA
| | - Zhen-Liang Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital; National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100037, China
| | - Wei Hua
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital; National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100037, China
| | - Yi-Ran Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital; National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100037, China
| | - Hui-Ru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, China
| | | | - Sheng-Shou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital; National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100037, China.
| |
Collapse
|
12
|
Jiang X, Chen Y, Liu X, Ye L, Yu M, Shen Z, Lei W, Hu S. Uncovering Inherited Cardiomyopathy With Human Induced Pluripotent Stem Cells. Front Cell Dev Biol 2021; 9:672039. [PMID: 34079803 PMCID: PMC8166268 DOI: 10.3389/fcell.2021.672039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
In the past decades, researchers discovered the contribution of genetic defects to the pathogenesis of primary cardiomyopathy and tried to explain the pathogenesis of these diseases by establishing a variety of disease models. Although human heart tissues and primary cardiomyocytes have advantages in modeling human heart diseases, they are difficult to obtain and culture in vitro. Defects developed in genetically modified animal models are notably different from human diseases at the molecular level. The advent of human induced pluripotent stem cells (hiPSCs) provides an unprecedented opportunity to further investigate the pathogenic mechanisms of inherited cardiomyopathies in vitro using patient-specific hiPSC-derived cardiomyocytes. In this review, we will make a summary of recent advances in in vitro inherited cardiomyopathy modeling using hiPSCs.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Cardiovascular Surgery of The First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Yihuan Chen
- Department of Cardiovascular Surgery of The First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Xiaofeng Liu
- The Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Lingqun Ye
- Department of Cardiovascular Surgery of The First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Miao Yu
- Department of Cardiovascular Surgery of The First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of The First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Wei Lei
- Department of Cardiovascular Surgery of The First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of The First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
13
|
Micheu MM, Rosca AM. Patient-specific induced pluripotent stem cells as "disease-in-a-dish" models for inherited cardiomyopathies and channelopathies - 15 years of research. World J Stem Cells 2021; 13:281-303. [PMID: 33959219 PMCID: PMC8080539 DOI: 10.4252/wjsc.v13.i4.281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/11/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
Among inherited cardiac conditions, a special place is kept by cardiomyopathies (CMPs) and channelopathies (CNPs), which pose a substantial healthcare burden due to the complexity of the therapeutic management and cause early mortality. Like other inherited cardiac conditions, genetic CMPs and CNPs exhibit incomplete penetrance and variable expressivity even within carriers of the same pathogenic deoxyribonucleic acid variant, challenging our understanding of the underlying pathogenic mechanisms. Until recently, the lack of accurate physiological preclinical models hindered the investigation of fundamental cellular and molecular mechanisms. The advent of induced pluripotent stem cell (iPSC) technology, along with advances in gene editing, offered unprecedented opportunities to explore hereditary CMPs and CNPs. Hallmark features of iPSCs include the ability to differentiate into unlimited numbers of cells from any of the three germ layers, genetic identity with the subject from whom they were derived, and ease of gene editing, all of which were used to generate "disease-in-a-dish" models of monogenic cardiac conditions. Functionally, iPSC-derived cardiomyocytes that faithfully recapitulate the patient-specific phenotype, allowed the study of disease mechanisms in an individual-/allele-specific manner, as well as the customization of therapeutic regimen. This review provides a synopsis of the most important iPSC-based models of CMPs and CNPs and the potential use for modeling disease mechanisms, personalized therapy and deoxyribonucleic acid variant functional annotation.
Collapse
Affiliation(s)
- Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Bucharest 014452, Romania.
| | - Ana-Maria Rosca
- Cell and Tissue Engineering Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest 050568, Romania
| |
Collapse
|
14
|
Yamasaki Y, Matsuura K, Sasaki D, Shimizu T. Assessment of human bioengineered cardiac tissue function in hypoxic and re-oxygenized environments to understand functional recovery in heart failure. Regen Ther 2021; 18:66-75. [PMID: 33869689 PMCID: PMC8044384 DOI: 10.1016/j.reth.2021.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/09/2021] [Accepted: 03/21/2021] [Indexed: 01/30/2023] Open
Abstract
Introduction Myocardial recovery is one of the targets for heart failure treatment. A non-negligible number of heart failure with reduced ejection fraction (EF) patients experience myocardial recovery through treatment. Although myocardial hypoxia has been reported to contribute to the progression of heart failure even in non-ischemic cardiomyopathy, the relationship between contractile recovery and re-oxygenation and its underlying mechanisms remain unclear. The present study investigated the effects of hypoxia/re-oxygenation on bioengineered cardiac cell sheets-tissue function and the underlying mechanisms. Methods Bioengineered cardiac cell sheets-tissue was fabricated with human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CM) using temperature-responsive culture dishes. Cardiac tissue functions in the following conditions were evaluated with a contractile force measurement system: continuous normoxia (20% O2) for 12 days; hypoxia (1% O2) for 4 days followed by normoxia (20% O2) for 8 days; or continuous hypoxia (1% O2) for 8 days. Cell number, sarcomere structure, ATP levels, mRNA expressions and Ca2+ transients of hiPSC-CM in those conditions were also assessed. Results Hypoxia (4 days) elicited progressive decreases in contractile force, maximum contraction velocity, maximum relaxation velocity, Ca2+ transient amplitude and ATP level, but sarcomere structure and cell number were not affected. Re-oxygenation (8 days) after hypoxia (4 days) was associated with progressive increases in contractile force, maximum contraction velocity and relaxation time to the similar extent levels of continuous normoxia group, while maximum relaxation velocity was still significantly low even after re-oxygenation. Ca2+ transient magnitude, cell number, sarcomere structure and ATP level after re-oxygenation were similar to those in the continuous normoxia group. Hypoxia/re-oxygenation up-regulated mRNA expression of PLN. Conclusions Hypoxia and re-oxygenation condition directly affected human bioengineered cardiac tissue function. Further understanding the molecular mechanisms of functional recovery of cardiac tissue after re-oxygenation might provide us the new insight on heart failure with recovered ejection fraction and preserved ejection fraction.
Collapse
Key Words
- ATP, adenosine triphosphate
- Cardiac cell sheet
- Contractile force
- DMEM, Dulbecco's Modified Eagle Medium
- EF, ejection fraction
- FBS, fetal bovine serum
- HFmrEF, heart failure with midrange EF
- HFpEF, heart failure with preserved EF
- HFrEF, heart failure with reduced EF
- Heart failure
- Human induced pluripotent stem cells
- Hypoxia
- NPPA, natriuretic peptide precursor A
- PLN, phospholamban
- Re-oxygenation
- SERCA, sarco/endoplasmic reticulum Ca2+ ATPase
- cTnT, cardiac troponin T
- hiPSC-CMs, human induced pluripotent stem cell-derived cardiomyocytes
Collapse
Affiliation(s)
- Yu Yamasaki
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
- Corresponding author. Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Daisuke Sasaki
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
15
|
Genetic Cardiomyopathies: The Lesson Learned from hiPSCs. J Clin Med 2021; 10:jcm10051149. [PMID: 33803477 PMCID: PMC7967174 DOI: 10.3390/jcm10051149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
Genetic cardiomyopathies represent a wide spectrum of inherited diseases and constitute an important cause of morbidity and mortality among young people, which can manifest with heart failure, arrhythmias, and/or sudden cardiac death. Multiple underlying genetic variants and molecular pathways have been discovered in recent years; however, assessing the pathogenicity of new variants often needs in-depth characterization in order to ascertain a causal role in the disease. The application of human induced pluripotent stem cells has greatly helped to advance our knowledge in this field and enabled to obtain numerous in vitro patient-specific cellular models useful to study the underlying molecular mechanisms and test new therapeutic strategies. A milestone in the research of genetically determined heart disease was the introduction of genomic technologies that provided unparalleled opportunities to explore the genetic architecture of cardiomyopathies, thanks to the generation of isogenic pairs. The aim of this review is to provide an overview of the main research that helped elucidate the pathophysiology of the most common genetic cardiomyopathies: hypertrophic, dilated, arrhythmogenic, and left ventricular noncompaction cardiomyopathies. A special focus is provided on the application of gene-editing techniques in understanding key disease characteristics and on the therapeutic approaches that have been tested.
Collapse
|
16
|
Moreau A, Reisqs J, Delanoe‐Ayari H, Pierre M, Janin A, Deliniere A, Bessière F, Meli AC, Charrabi A, Lafont E, Valla C, Bauer D, Morel E, Gache V, Millat G, Nissan X, Faucherre A, Jopling C, Richard S, Mejat A, Chevalier P. Deciphering DSC2 arrhythmogenic cardiomyopathy electrical instability: From ion channels to ECG and tailored drug therapy. Clin Transl Med 2021; 11:e319. [PMID: 33784018 PMCID: PMC7908047 DOI: 10.1002/ctm2.319] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Severe ventricular rhythm disturbances are the hallmark of arrhythmogenic cardiomyopathy (ACM), and are often explained by structural conduction abnormalities. However, comprehensive investigations of ACM cell electrical instability are lacking. This study aimed to elucidate early electrical myogenic signature of ACM. METHODS We investigated a 41-year-old ACM patient with a missense mutation (c.394C>T) in the DSC2 gene, which encodes desmocollin 2. Pathogenicity of this variant was confirmed using a zebrafish DSC2 model system. Control and DSC2 patient-derived pluripotent stem cells were reprogrammed and differentiated into cardiomyocytes (hiPSC-CM) to examine the specific electromechanical phenotype and its modulation by antiarrhythmic drugs (AADs). Samples of the patient's heart and hiPSC-CM were examined to identify molecular and cellular alterations. RESULTS A shortened action potential duration was associated with reduced Ca2+ current density and increased K+ current density. This finding led to the elucidation of previously unknown abnormal repolarization dynamics in ACM patients. Moreover, the Ca2+ mobilised during transients was decreased, and the Ca2+ sparks frequency was increased. AAD testing revealed the following: (1) flecainide normalised Ca2+ transients and significantly decreased Ca2+ spark occurrence and (2) sotalol significantly lengthened the action potential and normalised the cells' contractile properties. CONCLUSIONS Thorough analysis of hiPSC-CM derived from the DSC2 patient revealed abnormal repolarization dynamics, prompting the discovery of a short QT interval in some ACM patients. Overall, these results confirm a myogenic origin of ACM electrical instability and provide a rationale for prescribing class 1 and 3 AADs in ACM patients with increased ventricular repolarization reserve.
Collapse
Affiliation(s)
- Adrien Moreau
- PhyMedExpINSERM U1046CNRS UMR9214Université de MontpellierMontpellierFrance
| | - Jean‐Baptiste Reisqs
- PhyMedExpINSERM U1046CNRS UMR9214Université de MontpellierMontpellierFrance
- Neuromyogene InstitutClaude Bernard University, Lyon 1VilleurbanneFrance
| | | | - Marion Pierre
- PhyMedExpINSERM U1046CNRS UMR9214Université de MontpellierMontpellierFrance
| | - Alexandre Janin
- Neuromyogene InstitutClaude Bernard University, Lyon 1VilleurbanneFrance
- Service de RythmologieHospices Civils de LyonLyonFrance
- Laboratoire de Cardiogénétique moléculaireCentre de biologie et pathologie EstBronFrance
| | | | | | - Albano C. Meli
- PhyMedExpINSERM U1046CNRS UMR9214Université de MontpellierMontpellierFrance
| | - Azzouz Charrabi
- PhyMedExpINSERM U1046CNRS UMR9214Université de MontpellierMontpellierFrance
| | - Estele Lafont
- Neuromyogene InstitutClaude Bernard University, Lyon 1VilleurbanneFrance
| | - Camille Valla
- Neuromyogene InstitutClaude Bernard University, Lyon 1VilleurbanneFrance
| | - Delphine Bauer
- Neuromyogene InstitutClaude Bernard University, Lyon 1VilleurbanneFrance
| | - Elodie Morel
- Neuromyogene InstitutClaude Bernard University, Lyon 1VilleurbanneFrance
| | - Vincent Gache
- Neuromyogene InstitutClaude Bernard University, Lyon 1VilleurbanneFrance
| | - Gilles Millat
- Neuromyogene InstitutClaude Bernard University, Lyon 1VilleurbanneFrance
- Service de RythmologieHospices Civils de LyonLyonFrance
- Laboratoire de Cardiogénétique moléculaireCentre de biologie et pathologie EstBronFrance
| | | | | | - Chris Jopling
- IGF, CNRS, INSERMUniversité de MontpellierMontpellierFrance
| | - Sylvain Richard
- PhyMedExpINSERM U1046CNRS UMR9214Université de MontpellierMontpellierFrance
| | - Alexandre Mejat
- Neuromyogene InstitutClaude Bernard University, Lyon 1VilleurbanneFrance
| | - Philippe Chevalier
- Neuromyogene InstitutClaude Bernard University, Lyon 1VilleurbanneFrance
- Service de RythmologieHospices Civils de LyonLyonFrance
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Heart failure is among the most prevalent disease complexes overall and is associated with high morbidity and mortality. The underlying aetiology is manifold including coronary artery disease, genetic alterations and mutations, viral infections, adverse immune responses, and cardiac toxicity. To date, no specific therapies have been developed despite notable efforts. This can especially be attributed to hurdles in translational research, mainly due to the lack of proficient models of heart failure limited translation of therapeutic approaches from bench to bedside. RECENT FINDINGS Human induced pluripotent stem cells (hiPSCs) are rising in popularity, granting the ability to divide infinitely, to hold human, patient-specific genome, and to differentiate into any human cell, including cardiomyocytes (hiPSC-CMs). This brings magnificent promise to cardiological research, providing the possibility to recapitulate cardiac diseases in a dish. Advances in yield, maturity, and in vivo resemblance due to straightforward, low-cost protocols, high-throughput approaches, and complex 3D cultures have made this tool widely applicable. In recent years, hiPSC-CMs have been used to model a wide variety of cardiac diseases, bringing along the possibility to not only elucidate molecular mechanisms but also to test novel therapeutic approaches in the dish. Within the last decade, hiPSC-CMs have been exponentially employed to model heart failure. Constant advancements are aiming at improvements of differentiation protocols, hiPSC-CM maturity, and assays to elucidate molecular mechanisms and cellular functions. However, hiPSC-CMs are remaining relatively immature, and in vitro models can only partially recapitulate the complex interactions in vivo. Nevertheless, hiPSC-CMs have evolved as an essential model system in cardiovascular research.
Collapse
Affiliation(s)
- Anton Deicher
- Department of Internal Medicine III, University Hospital Heidelberg, INF 410, 69126, Heidelberg, Germany
| | - Timon Seeger
- Department of Internal Medicine III, University Hospital Heidelberg, INF 410, 69126, Heidelberg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
18
|
Beffagna G, Sommariva E, Bellin M. Mechanotransduction and Adrenergic Stimulation in Arrhythmogenic Cardiomyopathy: An Overview of in vitro and in vivo Models. Front Physiol 2020; 11:568535. [PMID: 33281612 PMCID: PMC7689294 DOI: 10.3389/fphys.2020.568535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023] Open
Abstract
Arrhythmogenic Cardiomyopathy (AC) is a rare inherited heart disease, manifesting with progressive myocardium degeneration and dysfunction, and life-threatening arrhythmic events that lead to sudden cardiac death. Despite genetic determinants, most of AC patients admitted to hospital are athletes or very physically active people, implying the existence of other disease-causing factors. It is recognized that AC phenotypes are enhanced and triggered by strenuous physical activity, while excessive mechanical stretch and load, and repetitive adrenergic stimulation are mechanisms influencing disease penetrance. Different approaches have been undertaken to recapitulate and study both mechanotransduction and adrenergic signaling in AC, including the use of in vitro cellular and tissue models, and the development of in vivo models (particularly rodents but more recently also zebrafish). However, it remains challenging to reproduce mechanical load stimuli and physical activity in laboratory experimental settings. Thus, more work to drive the innovation of advanced AC models is needed to recapitulate these subtle physiological influences. Here, we review the state-of-the-art in this field both in clinical and laboratory-based modeling scenarios. Specific attention will be focused on highlighting gaps in the knowledge and how they may be resolved by utilizing novel research methodology.
Collapse
Affiliation(s)
- Giorgia Beffagna
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy.,Department of Biology, University of Padua, Padua, Italy
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Milena Bellin
- Department of Biology, University of Padua, Padua, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy.,Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
19
|
Li J, Hua Y, Miyagawa S, Zhang J, Li L, Liu L, Sawa Y. hiPSC-Derived Cardiac Tissue for Disease Modeling and Drug Discovery. Int J Mol Sci 2020; 21:E8893. [PMID: 33255277 PMCID: PMC7727666 DOI: 10.3390/ijms21238893] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
Relevant, predictive normal, or disease model systems are of vital importance for drug development. The difference between nonhuman models and humans could contribute to clinical trial failures despite ideal nonhuman results. As a potential substitute for animal models, human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) provide a powerful tool for drug toxicity screening, modeling cardiovascular diseases, and drug discovery. Here, we review recent hiPSC-CM disease models and discuss the features of hiPSC-CMs, including subtype and maturation and the tissue engineering technologies for drug assessment. Updates from the international multisite collaborators/administrations for development of novel drug discovery paradigms are also summarized.
Collapse
Affiliation(s)
- Junjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
- Department of Cell Design for Tissue Construction, Faculty of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ying Hua
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
| | - Jingbo Zhang
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
| | - Lingjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
| | - Li Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
- Department of Design for Tissue Regeneration, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
| |
Collapse
|
20
|
Li W, Han JL, Entcheva E. Syncytium cell growth increases Kir2.1 contribution in human iPSC-cardiomyocytes. Am J Physiol Heart Circ Physiol 2020; 319:H1112-H1122. [PMID: 32986966 PMCID: PMC7789971 DOI: 10.1152/ajpheart.00148.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) enable cardiotoxicity testing and personalized medicine. However, their maturity is of concern, including relatively depolarized resting membrane potential and more spontaneous activity compared with adult cardiomyocytes, implicating low or lacking inward rectifier potassium current (Ik1). Here, protein quantification confirms Kir2.1 expression in hiPSC-CM syncytia, albeit several times lower than in adult heart tissue. We find that hiPSC-CM culture density influences Kir2.1 expression at the mRNA level (potassium inwardly rectifying channel subfamily J member 2) and at the protein level and its associated electrophysiology phenotype. Namely, all-optical cardiac electrophysiology and pharmacological treatments reveal reduction of spontaneous and irregular activity and increase in action potential upstroke in denser cultures. Blocking Ik1-like currents with BaCl2 increased spontaneous frequency and blunted action potential upstrokes during pacing in a dose-dependent manner only in the highest-density cultures, in line with Ik1’s role in regulating the resting membrane potential. Our results emphasize the importance of syncytial growth of hiPSC-CMs for more physiologically relevant phenotype and the power of all-optical electrophysiology to study cardiomyocytes in their multicellular setting. NEW & NOTEWORTHY We identify cell culture density and cell-cell contact as an important factor in determining the expression of a key ion channel at the transcriptional and the protein levels, KCNJ2/Kir2.1, and its contribution to the electrophysiology of human induced pluripotent stem cell-derived cardiomyocytes. Our results indicate that studies on isolated cells, out of tissue context, may underestimate the cellular ion channel properties being characterized.
Collapse
Affiliation(s)
- Weizhen Li
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Julie L Han
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| |
Collapse
|
21
|
Ramachandra CJA, Chua J, Cong S, Kp MMJ, Shim W, Wu JC, Hausenloy DJ. Human-induced pluripotent stem cells for modelling metabolic perturbations and impaired bioenergetics underlying cardiomyopathies. Cardiovasc Res 2020; 117:694-711. [PMID: 32365198 DOI: 10.1093/cvr/cvaa125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
Normal cardiac contractile and relaxation functions are critically dependent on a continuous energy supply. Accordingly, metabolic perturbations and impaired mitochondrial bioenergetics with subsequent disruption of ATP production underpin a wide variety of cardiac diseases, including diabetic cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, anthracycline cardiomyopathy, peripartum cardiomyopathy, and mitochondrial cardiomyopathies. Crucially, there are no specific treatments for preventing the onset or progression of these cardiomyopathies to heart failure, one of the leading causes of death and disability worldwide. Therefore, new treatments are needed to target the metabolic disturbances and impaired mitochondrial bioenergetics underlying these cardiomyopathies in order to improve health outcomes in these patients. However, investigation of the underlying mechanisms and the identification of novel therapeutic targets have been hampered by the lack of appropriate animal disease models. Furthermore, interspecies variation precludes the use of animal models for studying certain disorders, whereas patient-derived primary cell lines have limited lifespan and availability. Fortunately, the discovery of human-induced pluripotent stem cells has provided a promising tool for modelling cardiomyopathies via human heart tissue in a dish. In this review article, we highlight the use of patient-derived iPSCs for studying the pathogenesis underlying cardiomyopathies associated with metabolic perturbations and impaired mitochondrial bioenergetics, as the ability of iPSCs for self-renewal and differentiation makes them an ideal platform for investigating disease pathogenesis in a controlled in vitro environment. Continuing progress will help elucidate novel mechanistic pathways, and discover novel therapies for preventing the onset and progression of heart failure, thereby advancing a new era of personalized therapeutics for improving health outcomes in patients with cardiomyopathy.
Collapse
Affiliation(s)
- Chrishan J A Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jasper Chua
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Faculty of Science, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Shuo Cong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Myu Mai Ja Kp
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Winston Shim
- Health and Social Sciences Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Joseph C Wu
- Cardiovascular Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Medicine, Stanford University, Stanford, CA 94305, USA.,Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.,Yong Loo Lin Medical School, National University of Singapore, 10 Medical Drive, Singapore 11759, Singapore.,The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, Bloomsbury, London WC1E 6HX, UK.,Cardiovascular Research Centre, College of Medical and Health Sciences, Asia University, No. 500, Liufeng Road, Wufeng District, Taichung City 41354,Taiwan
| |
Collapse
|
22
|
Ulmer BM, Eschenhagen T. Human pluripotent stem cell-derived cardiomyocytes for studying energy metabolism. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118471. [PMID: 30954570 PMCID: PMC7042711 DOI: 10.1016/j.bbamcr.2019.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/25/2022]
Abstract
Cardiomyocyte energy metabolism is altered in heart failure, and primary defects of metabolic pathways can cause heart failure. Studying cardiac energetics in rodent models has principal shortcomings, raising the question to which extent human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CM) can provide an alternative. As metabolic maturation of CM occurs mostly after birth during developmental hypertrophy, the immaturity of hiPSC-CM is an important limitation. Here we shortly review the physiological drivers of metabolic maturation and concentrate on methods to mature hiPSC-CM with the goal to benchmark the metabolic state of hiPSC-CM against in vivo data and to see how far known abnormalities in inherited metabolic disorders can be modeled in hiPSC-CM. The current data indicate that hiPSC-CM, despite their immature, approximately mid-fetal state of energy metabolism, faithfully recapitulate some basic metabolic disease mechanisms. Efforts to improve their metabolic maturity are underway and shall improve the validity of this model.
Collapse
Affiliation(s)
- Bärbel M Ulmer
- University Medical Center Hamburg-Eppendorf, Institute of Experimental Pharmacology and Toxicology, 20246 Hamburg, Germany; German Centre for Heart Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Thomas Eschenhagen
- University Medical Center Hamburg-Eppendorf, Institute of Experimental Pharmacology and Toxicology, 20246 Hamburg, Germany; German Centre for Heart Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
23
|
Abstract
Arrhythmogenic cardiomyopathy is a genetic disorder characterized by the risk of life-threatening arrhythmias, myocardial dysfunction and fibrofatty replacement of myocardial tissue. Mutations in genes that encode components of desmosomes, the adhesive junctions that connect cardiomyocytes, are the predominant cause of arrhythmogenic cardiomyopathy and can be identified in about half of patients with the condition. However, the molecular mechanisms leading to myocardial destruction, remodelling and arrhythmic predisposition remain poorly understood. Through the development of animal, induced pluripotent stem cell and other models of disease, advances in our understanding of the pathogenic mechanisms of arrhythmogenic cardiomyopathy over the past decade have brought several signalling pathways into focus. These pathways include canonical and non-canonical WNT signalling, the Hippo-Yes-associated protein (YAP) pathway and transforming growth factor-β signalling. These studies have begun to identify potential therapeutic targets whose modulation has shown promise in preclinical models. In this Review, we summarize and discuss the reported molecular mechanisms underlying the pathogenesis of arrhythmogenic cardiomyopathy.
Collapse
|
24
|
Horikoshi Y, Yan Y, Terashvili M, Wells C, Horikoshi H, Fujita S, Bosnjak ZJ, Bai X. Fatty Acid-Treated Induced Pluripotent Stem Cell-Derived Human Cardiomyocytes Exhibit Adult Cardiomyocyte-Like Energy Metabolism Phenotypes. Cells 2019; 8:cells8091095. [PMID: 31533262 PMCID: PMC6769886 DOI: 10.3390/cells8091095] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 12/17/2022] Open
Abstract
Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) (iPSC-CMs) are a promising cell source for myocardial regeneration, disease modeling and drug assessment. However, iPSC-CMs exhibit immature fetal CM-like characteristics that are different from adult CMs in several aspects, including cellular structure and metabolism. As an example, glycolysis is a major energy source for immature CMs. As CMs mature, the mitochondrial oxidative capacity increases, with fatty acid β-oxidation becoming a key energy source to meet the heart’s high energy demand. The immaturity of iPSC-CMs thereby limits their applications. The aim of this study was to investigate whether the energy substrate fatty acid-treated iPSC-CMs exhibit adult CM-like metabolic properties. After 20 days of differentiation from human iPSCs, iPSC-CMs were sequentially cultured with CM purification medium (lactate+/glucose-) for 7 days and maturation medium (fatty acids+/glucose-) for 3–7 days by mimicking the adult CM’s preference of utilizing fatty acids as a major metabolic substrate. The purity and maturity of iPSC-CMs were characterized via the analysis of: (1) Expression of CM-specific markers (e.g., troponin T, and sodium and potassium channels) using RT-qPCR, Western blot or immunofluorescence staining and electron microscopy imaging; and (2) cell energy metabolic profiles using the XF96 Extracellular Flux Analyzer. iPSCs-CMs (98% purity) cultured in maturation medium exhibited enhanced elongation, increased mitochondrial numbers with more aligned Z-lines, and increased expression of matured CM-related genes, suggesting that fatty acid-contained medium promotes iPSC-CMs to undergo maturation. In addition, the oxygen consumption rate (OCR) linked to basal respiration, ATP production, and maximal respiration and spare respiratory capacity (representing mitochondrial function) was increased in matured iPSC-CMs. Mature iPSC-CMs also displayed a larger change in basal and maximum respirations due to the utilization of exogenous fatty acids (palmitate) compared with non-matured control iPSC-CMs. Etomoxir (a carnitine palmitoyltransferase 1 inhibitor) but not 2-deoxyglucose (an inhibitor of glycolysis) abolished the palmitate pretreatment-mediated OCR increases in mature iPSC-CMs. Collectively, our data demonstrate for the first time that fatty acid treatment promotes metabolic maturation of iPSC-CMs (as evidenced by enhanced mitochondrial oxidative function and strong capacity of utilizing fatty acids as energy source). These matured iPSC-CMs might be a promising human CM source for broad biomedical application.
Collapse
Affiliation(s)
- Yuichi Horikoshi
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan.
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Yasheng Yan
- Department of Cell Biology, Neuroscience & Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Maia Terashvili
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Clive Wells
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Hisako Horikoshi
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo 113-8421, Japan.
| | - Satoshi Fujita
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan.
| | - Zeljko J Bosnjak
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Xiaowen Bai
- Department of Cell Biology, Neuroscience & Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
25
|
Blazeski A, Lowenthal J, Wang Y, Teuben R, Zhu R, Gerecht S, Tomaselli G, Tung L. Engineered Heart Slice Model of Arrhythmogenic Cardiomyopathy Using Plakophilin-2 Mutant Myocytes. Tissue Eng Part A 2019; 25:725-735. [PMID: 30520705 DOI: 10.1089/ten.tea.2018.0272] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT Genetic heart diseases such as arrhythmogenic cardiomyopathy (AC), a common genetic cause of sudden cardiac death, can be modeled using patient-specific induced pluripotent stem cell-derived cardiac myocytes (CMs). However, it is important to culture these cells in a multicellular syncytium with exposure to surrounding matrix cues to create more accurate and robust models of the disease due to the importance of cell-cell and cell-matrix interactions. The engineered heart slice, constructed by seeding CMs on intact decellularized matrix slices, allows molecular and functional studies on an aligned multilayered syncytium of CMs. This study reveals the potential for an improved disease-in-a-dish model of AC.
Collapse
Affiliation(s)
- Adriana Blazeski
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Justin Lowenthal
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yin Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Roald Teuben
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Renjun Zhu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sharon Gerecht
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gordon Tomaselli
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Leslie Tung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
26
|
Many Cells Make Life Work-Multicellularity in Stem Cell-Based Cardiac Disease Modelling. Int J Mol Sci 2018; 19:ijms19113361. [PMID: 30373227 PMCID: PMC6274721 DOI: 10.3390/ijms19113361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
Cardiac disease causes 33% of deaths worldwide but our knowledge of disease progression is still very limited. In vitro models utilising and combining multiple, differentiated cell types have been used to recapitulate the range of myocardial microenvironments in an effort to delineate the mechanical, humoral, and electrical interactions that modulate the cardiac contractile function in health and the pathogenesis of human disease. However, due to limitations in isolating these cell types and changes in their structure and function in vitro, the field is now focused on the development and use of stem cell-derived cell types, most notably, human-induced pluripotent stem cell-derived CMs (hiPSC-CMs), in modelling the CM function in health and patient-specific diseases, allowing us to build on the findings from studies using animal and adult human CMs. It is becoming increasingly appreciated that communications between cardiomyocytes (CMs), the contractile cell of the heart, and the non-myocyte components of the heart not only regulate cardiac development and maintenance of health and adult CM functions, including the contractile state, but they also regulate remodelling in diseases, which may cause the chronic impairment of the contractile function of the myocardium, ultimately leading to heart failure. Within the myocardium, each CM is surrounded by an intricate network of cell types including endothelial cells, fibroblasts, vascular smooth muscle cells, sympathetic neurons, and resident macrophages, and the extracellular matrix (ECM), forming complex interactions, and models utilizing hiPSC-derived cell types offer a great opportunity to investigate these interactions further. In this review, we outline the historical and current state of disease modelling, focusing on the major milestones in the development of stem cell-derived cell types, and how this technology has contributed to our knowledge about the interactions between CMs and key non-myocyte components of the heart in health and disease, in particular, heart failure. Understanding where we stand in the field will be critical for stem cell-based applications, including the modelling of diseases that have complex multicellular dysfunctions.
Collapse
|
27
|
Wang F, Kong J, Cui YY, Liu P, Wen JY. Is Human-induced Pluripotent Stem Cell the Best Optimal? Chin Med J (Engl) 2018; 131:852-856. [PMID: 29578130 PMCID: PMC5887745 DOI: 10.4103/0366-6999.228231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Objective: Since the advent of induced pluripotent stem cell (iPSC) technology a decade ago, enormous progress has been made in stem cell biology and regenerative medicine. Human iPSCs have been widely used for disease modeling, drug discovery, and cell therapy development. In this review, we discuss the progress in applications of iPSC technology that are particularly relevant to drug discovery and regenerative medicine, and consider the remaining challenges and the emerging opportunities in the field. Data Sources: Articles in this review were searched from PubMed database from January 2014 to December 2017. Study Selection: Original articles about iPSCs and cardiovascular diseases were included and analyzed. Results: iPSC holds great promises for human disease modeling, drug discovery, and stem cell-based therapy, and this potential is only beginning to be realized. However, several important issues remain to be addressed. Conclusions: The recent availability of human cardiomyocytes derived from iPSCs opens new opportunities to build in vitro models of cardiac disease, screening for new drugs and patient-specific cardiac therapy.
Collapse
Affiliation(s)
- Feng Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029; Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jie Kong
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yi-Yao Cui
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Peng Liu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029; Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jian-Yan Wen
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029; Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
28
|
Chen H, Zhang A, Wu JC. Harnessing cell pluripotency for cardiovascular regenerative medicine. Nat Biomed Eng 2018; 2:392-398. [PMID: 31011193 PMCID: PMC10902213 DOI: 10.1038/s41551-018-0244-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/26/2018] [Indexed: 01/14/2023]
Abstract
Human pluripotent stem cells (hPSCs), in particular embryonic stem cells and induced pluripotent stem cells, have received enormous attention in cardiovascular regenerative medicine owing to their ability to expand and differentiate into functional cardiomyocytes and other cardiovascular cell types. Despite the potential applications of hPSCs for tissue regeneration in patients suffering from cardiovascular disease, whether hPSC-based therapies can be safe and efficacious remains inconclusive, with strong evidence from clinical trials lacking. Critical factors limiting therapeutic efficacy are the degree of maturity and purity of the hPSC-derived differentiated progeny, and the tumorigenic risk associated with residual undifferentiated cells. In this Review, we discuss recent advances in cardiac-cell differentiation from hPSCs and in the direct reprogramming of non-myocyte cells for cardiovascular regenerative applications. We also discuss approaches for the delivery of cells to diseased tissue, and how such advances are contributing to progress in cardiac tissue engineering for tackling heart disease.
Collapse
Affiliation(s)
- Haodong Chen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Angela Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
29
|
Basso C, Pilichou K, Bauce B, Corrado D, Thiene G. Diagnostic Criteria, Genetics, and Molecular Basis of Arrhythmogenic Cardiomyopathy. Heart Fail Clin 2018. [DOI: 10.1016/j.hfc.2018.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
30
|
Kalra S, Montanaro F, Denning C. Can Human Pluripotent Stem Cell-Derived Cardiomyocytes Advance Understanding of Muscular Dystrophies? J Neuromuscul Dis 2018; 3:309-332. [PMID: 27854224 PMCID: PMC5123622 DOI: 10.3233/jnd-150133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Muscular dystrophies (MDs) are clinically and molecularly a highly heterogeneous group of single-gene disorders that primarily affect striated muscles. Cardiac disease is present in several MDs where it is an important contributor to morbidity and mortality. Careful monitoring of cardiac issues is necessary but current management of cardiac involvement does not effectively protect from disease progression and cardiac failure. There is a critical need to gain new knowledge on the diverse molecular underpinnings of cardiac disease in MDs in order to guide cardiac treatment development and assist in reaching a clearer consensus on cardiac disease management in the clinic. Animal models are available for the majority of MDs and have been invaluable tools in probing disease mechanisms and in pre-clinical screens. However, there are recognized genetic, physiological, and structural differences between human and animal hearts that impact disease progression, manifestation, and response to pharmacological interventions. Therefore, there is a need to develop parallel human systems to model cardiac disease in MDs. This review discusses the current status of cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSC) to model cardiac disease, with a focus on Duchenne muscular dystrophy (DMD) and myotonic dystrophy (DM1). We seek to provide a balanced view of opportunities and limitations offered by this system in elucidating disease mechanisms pertinent to human cardiac physiology and as a platform for treatment development or refinement.
Collapse
Affiliation(s)
- Spandan Kalra
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, UK
| | - Federica Montanaro
- Dubowitz Neuromuscular Centre, Department of Molecular Neurosciences, University College London - Institute of Child Health, London, UK
| | - Chris Denning
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, UK
| |
Collapse
|
31
|
Magdy T, Schuldt AJT, Wu JC, Bernstein D, Burridge PW. Human Induced Pluripotent Stem Cell (hiPSC)-Derived Cells to Assess Drug Cardiotoxicity: Opportunities and Problems. Annu Rev Pharmacol Toxicol 2018; 58:83-103. [PMID: 28992430 PMCID: PMC7386286 DOI: 10.1146/annurev-pharmtox-010617-053110] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Billions of US dollars are invested every year by the pharmaceutical industry in drug development, with the aim of introducing new drugs that are effective and have minimal side effects. Thirty percent of in-pipeline drugs are excluded in an early phase of preclinical and clinical screening owing to cardiovascular safety concerns, and several lead molecules that pass the early safety screening make it to market but are later withdrawn owing to severe cardiac side effects. Although the current drug safety screening methodologies can identify some cardiotoxic drug candidates, they cannot accurately represent the human heart in many aspects, including genomics, transcriptomics, and patient- or population-specific cardiotoxicity. Despite some limitations, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a powerful and evolving technology that has been shown to recapitulate many attributes of human cardiomyocytes and their drug responses. In this review, we discuss the potential impact of the inclusion of the hiPSC-CM platform in premarket candidate drug screening.
Collapse
Affiliation(s)
- Tarek Magdy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Adam J T Schuldt
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Daniel Bernstein
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
32
|
Bavassano C, Eigentler A, Stanika R, Obermair GJ, Boesch S, Dechant G, Nat R. Bicistronic CACNA1A Gene Expression in Neurons Derived from Spinocerebellar Ataxia Type 6 Patient-Induced Pluripotent Stem Cells. Stem Cells Dev 2017; 26:1612-1625. [PMID: 28946818 PMCID: PMC5684673 DOI: 10.1089/scd.2017.0085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Spinocerebellar ataxia type 6 (SCA6) is an autosomal-dominant neurodegenerative disorder that is caused by a CAG trinucleotide repeat expansion in the CACNA1A gene. As one of the few bicistronic genes discovered in the human genome, CACNA1A encodes not only the α1A subunit of the P/Q type voltage-gated Ca2+ channel CaV2.1 but also the α1ACT protein, a 75 kDa transcription factor sharing the sequence of the cytoplasmic C-terminal tail of the α1A subunit. Isoforms of both proteins contain the polyglutamine (polyQ) domain that is expanded in SCA6 patients. Although certain SCA6 phenotypes appear to be specific for Purkinje neurons, other pathogenic effects of the SCA6 polyQ mutation can affect a broad spectrum of central nervous system (CNS) neuronal subtypes. We investigated the expression and function of CACNA1A gene products in human neurons derived from induced pluripotent stem cells from two SCA6 patients. Expression levels of CACNA1A encoding α1A subunit were similar between SCA6 and control neurons, and no differences were found in the subcellular distribution of CaV2.1 channel protein. The α1ACT immunoreactivity was detected in the majority of cell nuclei of SCA6 and control neurons. Although no SCA6 genotype-dependent differences in CaV2.1 channel function were observed, they were found in the expression levels of the α1ACT target gene Granulin (GRN) and in glutamate-induced cell vulnerability.
Collapse
Affiliation(s)
- Carlo Bavassano
- 1 Institute for Neuroscience, Medical University of Innsbruck , Innsbruck, Austria
| | - Andreas Eigentler
- 1 Institute for Neuroscience, Medical University of Innsbruck , Innsbruck, Austria
| | - Ruslan Stanika
- 2 Division of Physiology, Medical University of Innsbruck , Innsbruck, Austria
| | - Gerald J Obermair
- 2 Division of Physiology, Medical University of Innsbruck , Innsbruck, Austria
| | - Sylvia Boesch
- 3 Department of Neurology, Medical University of Innsbruck , Innsbruck, Austria
| | - Georg Dechant
- 1 Institute for Neuroscience, Medical University of Innsbruck , Innsbruck, Austria
| | - Roxana Nat
- 1 Institute for Neuroscience, Medical University of Innsbruck , Innsbruck, Austria
| |
Collapse
|
33
|
Correia C, Koshkin A, Duarte P, Hu D, Teixeira A, Domian I, Serra M, Alves PM. Distinct carbon sources affect structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Sci Rep 2017; 7:8590. [PMID: 28819274 PMCID: PMC5561128 DOI: 10.1038/s41598-017-08713-4] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/12/2017] [Indexed: 12/15/2022] Open
Abstract
The immature phenotype of human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) constrains their potential in cell therapy and drug testing. In this study, we report that shifting hPSC-CMs from glucose-containing to galactose- and fatty acid-containing medium promotes their fast maturation into adult-like CMs with higher oxidative metabolism, transcriptional signatures closer to those of adult ventricular tissue, higher myofibril density and alignment, improved calcium handling, enhanced contractility, and more physiological action potential kinetics. Integrated "-Omics" analyses showed that addition of galactose to culture medium improves total oxidative capacity of the cells and ameliorates fatty acid oxidation avoiding the lipotoxicity that results from cell exposure to high fatty acid levels. This study provides an important link between substrate utilization and functional maturation of hPSC-CMs facilitating the application of this promising cell type in clinical and preclinical applications.
Collapse
Affiliation(s)
- Cláudia Correia
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, 2780-157, Portugal
| | - Alexey Koshkin
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, 2780-157, Portugal
| | - Patrícia Duarte
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, 2780-157, Portugal
| | - Dongjian Hu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA 02115, USA, Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Ana Teixeira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, 2780-157, Portugal
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Ibrahim Domian
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA 02115, USA, Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, 2780-157, Portugal.
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, 2780-157, Portugal.
| |
Collapse
|
34
|
Hsieh WH, Lin CY, Te ALD, Lo MT, Wu CI, Chung FP, Chang YC, Chang SL, Lin C, Lo LW, Hu YF, Liao JN, Chen YY, Jhuo SJ, Raharjo SB, Lin YJ, Chen SA. A novel noninvasive surface ECG analysis using interlead QRS dispersion in arrhythmogenic right ventricular cardiomyopathy. PLoS One 2017; 12:e0182364. [PMID: 28771538 PMCID: PMC5542590 DOI: 10.1371/journal.pone.0182364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/17/2017] [Indexed: 11/19/2022] Open
Abstract
Background This study investigated the feasibility of using the precordial surface ECG lead interlead QRS dispersion (IQRSD) in the identification of abnormal ventricular substrate in arrhythmogenic right ventricular cardiomyopathy (ARVC). Methods Seventy-one consecutive patients were enrolled and reclassified into 4 groups: definite ARVC with epicardial ablation (Group 1), ARVC with ventricular tachycardia (VT, Group 2), idiopathic right ventricular outflow tract VT without ARVC (Group 3), and controls without VT (Group 4). IQRSD was quantified by the angular difference between the reconstruction vectors obtained from the QRS-loop decomposition, based on a principal component analysis (PCA). Electroanatomic mapping and simulated ECGs were used to investigate the relationship between QRS dispersion and abnormal substrate. Results The percentage of the QRS loop area in the Group 1–2 was smaller than the controls (P = 0.01). The IQRSD between V1-V2 could differentiate all VTs from control (P<0.01). Group 1–2 had a greater IQRSD than the Group 3–4 (V4-V5,P = 0.001), and Group 1 had a greater IQRSD than Group 3–4 (V6-Lead I, P<0.001). Both real and simulated data had a positive correlation between the maximal IQRSD (γ = 0.62) and the extent of corresponding abnormal substrate (γ = 0.71, both P<0.001). Conclusions The IQRSD of the surface ECG precordial leads successfully differentiated ARVC from controls, and could be used as a noninvasive marker to identify the abnormal substrate and the status of ARVC patients who can benefit from epicardial ablation.
Collapse
Affiliation(s)
- Wan-Hsin Hsieh
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Translational and Interdisciplinary Medicine and Department of Biomedical Sciences and Engineering, National Central University, Chung-Li, Taiwan
| | - Chin-Yu Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine and Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medicine, Taipei Veterans General Hospital, Yuan-Shan Branch, I-Lan, Taiwan
| | - Abigail Louise D. Te
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- HB Calleja Heart and Vascular Institute, St. Luke’s Medical Center, Quezon City, Philippines
| | - Men-Tzung Lo
- Institute of Translational and Interdisciplinary Medicine and Department of Biomedical Sciences and Engineering, National Central University, Chung-Li, Taiwan
| | - Cheng-I Wu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fa-Po Chung
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine and Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chung Chang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Lin Chang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine and Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chen Lin
- Institute of Translational and Interdisciplinary Medicine and Department of Biomedical Sciences and Engineering, National Central University, Chung-Li, Taiwan
| | - Li-Wei Lo
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine and Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Feng Hu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine and Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jo-Nan Liao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine and Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yun-Yu Chen
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Jie Jhuo
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Sunu Budhi Raharjo
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yenn-Jiang Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine and Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (YJL); (SAC)
| | - Shih-Ann Chen
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine and Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (YJL); (SAC)
| |
Collapse
|
35
|
Lorenzon A, Calore M, Poloni G, De Windt LJ, Braghetta P, Rampazzo A. Wnt/β-catenin pathway in arrhythmogenic cardiomyopathy. Oncotarget 2017; 8:60640-60655. [PMID: 28948000 PMCID: PMC5601168 DOI: 10.18632/oncotarget.17457] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Wnt/β-catenin signaling pathway plays essential roles in heart development as well as cardiac tissue homoeostasis in adults. Abnormal regulation of this signaling pathway is linked to a variety of cardiac disease conditions, including hypertrophy, fibrosis, arrhythmias, and infarction. Recent studies on genetically modified cellular and animal models document a crucial role of Wnt/β-catenin signaling in the molecular pathogenesis of arrhythmogenic cardiomyopathy (AC), an inherited disease of intercalated discs, typically characterized by ventricular arrhythmias and progressive substitution of the myocardium with fibrofatty tissue. In this review, we summarize the conflicting published data regarding the Wnt/β-catenin signaling contribution to AC pathogenesis and we report the identification of a new potential therapeutic molecule that prevents myocyte injury and cardiac dysfunction due to desmosome mutations in vitro and in vivo by interfering in this signaling pathway. Finally, we underline the potential function of microRNAs, epigenetic regulatory RNA factors reported to participate in several pathological responses in heart tissue and in the Wnt signaling network, as important modulators of Wnt/β-catenin signaling transduction in AC. Elucidation of the precise regulatory mechanism of Wnt/β-catenin signaling in AC molecular pathogenesis could provide fundamental insights for new mechanism-based therapeutic strategy to delay the onset or progression of this cardiac disease.
Collapse
Affiliation(s)
| | - Martina Calore
- Maastricht University, Department of Cardiology, Maastricht, The Netherlands
| | - Giulia Poloni
- University of Padua, Department of Biology, Padua, Italy
| | - Leon J De Windt
- Maastricht University, Department of Cardiology, Maastricht, The Netherlands
| | - Paola Braghetta
- University of Padua, Department of Molecular Medicine, Padua, Italy
| | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW The article provides an overview of advances in the induced pluripotent stem cell field to model cardiomyopathies of inherited inborn errors of metabolism and acquired metabolic syndromes in vitro. RECENT FINDINGS Several inborn errors of metabolism have been studied using 'disease in a dish' models, including Pompe disease, Danon disease, Fabry disease, and Barth syndrome. Disease phenotypes of complex metabolic syndromes, such as diabetes mellitus and aldehyde dehydrogenase 2 deficiency, have also been observed. SUMMARY Differentiation of patient and disease-specific induced pluripotent stem cell-derived cardiomyocytes has provided the capacity to model deleterious cardiometabolic diseases to understand molecular mechanisms, perform drug screens, and identify novel drug targets.
Collapse
|
37
|
Ikeda K, Mizoro Y, Ameku T, Nomiya Y, Mae SI, Matsui S, Kuchitsu Y, Suzuki C, Hamaoka-Okamoto A, Yahata T, Sone M, Okita K, Watanabe A, Osafune K, Hamaoka K. Transcriptional Analysis of Intravenous Immunoglobulin Resistance in Kawasaki Disease Using an Induced Pluripotent Stem Cell Disease Model. Circ J 2016; 81:110-118. [PMID: 27867156 DOI: 10.1253/circj.cj-16-0541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Approximately 10-20% of Kawasaki disease (KD) patients are resistant to intravenous immunoglobulin (IVIG) treatment. Further, these patients are at a particularly high risk of having coronary artery abnormalities. The mechanisms of IVIG resistance in KD have been analyzed using patient leukocytes, but not patient vascular endothelial cells (ECs). The present study clarifies the mechanisms of IVIG resistance in KD using an induced pluripotent stem cell (iPSC) disease model. METHODS AND RESULTS Dermal fibroblasts or peripheral blood mononuclear cells from 2 IVIG-resistant and 2 IVIG-responsive KD patients were reprogrammed by the episomal vector-mediated transduction of 6 reprogramming factors. KD patient-derived iPSCs were differentiated into ECs (iPSC-ECs). The gene expression profiles of iPSC-ECs generated from IVIG-resistant and IVIG-responsive KD patients were compared by RNA-sequencing analyses. We found that the expression ofCXCL12was significantly upregulated in iPSC-ECs from IVIG-resistant KD patients. Additionally, Gene Set Enrichment Analysis (GSEA) revealed that gene sets involved in interleukin (IL)-6 signaling were also upregulated. CONCLUSIONS The first iPSC-based model for KD is reported here. Our mechanistic analyses suggest thatCXCL12, which plays a role in leukocyte transmigration, is a key molecule candidate for IVIG resistance and KD severity. They also indicate that an upregulation of IL-6-related genes may be involved in this pathogenesis.
Collapse
Affiliation(s)
- Kazuyuki Ikeda
- Department of Pediatric Cardiology and Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bezzerides VJ, Zhang D, Pu WT. Modeling Inherited Arrhythmia Disorders Using Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circ J 2016; 81:12-21. [PMID: 27916777 DOI: 10.1253/circj.cj-16-1113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inherited arrhythmia disorders (IADs) are a group of potentially lethal diseases that remain diagnostic and management challenges. Although the genetic basis for many of these disorders is well known, the pathogenicity of individual mutations and the resulting clinical outcomes are difficult to predict. Treatment options remain imperfect, and optimizing therapy for individual patients can be difficult. Recent advances in the derivation of induced pluripotent stem cells (iPSCs) from patients and creation of genetically engineered human models using CRISPR/Cas9 has the potential to dramatically advance translational arrhythmia research. In this review, we discuss the current state of modeling IADs using human iPSC-derived cardiomyocytes. We also discuss current limitations and areas for further study.
Collapse
|
39
|
Mungenast AE, Siegert S, Tsai LH. Modeling Alzheimer's disease with human induced pluripotent stem (iPS) cells. Mol Cell Neurosci 2016; 73:13-31. [PMID: 26657644 PMCID: PMC5930170 DOI: 10.1016/j.mcn.2015.11.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/05/2015] [Accepted: 11/25/2015] [Indexed: 02/08/2023] Open
Abstract
In the last decade, induced pluripotent stem (iPS) cells have revolutionized the utility of human in vitro models of neurological disease. The iPS-derived and differentiated cells allow researchers to study the impact of a distinct cell type in health and disease as well as performing therapeutic drug screens on a human genetic background. In particular, clinical trials for Alzheimer's disease (AD) have been failing. Two of the potential reasons are first, the species gap involved in proceeding from initial discoveries in rodent models to human studies, and second, an unsatisfying patient stratification, meaning subgrouping patients based on the disease severity due to the lack of phenotypic and genetic markers. iPS cells overcome this obstacles and will improve our understanding of disease subtypes in AD. They allow researchers conducting in depth characterization of neural cells from both familial and sporadic AD patients as well as preclinical screens on human cells. In this review, we briefly outline the status quo of iPS cell research in neurological diseases along with the general advantages and pitfalls of these models. We summarize how genome-editing techniques such as CRISPR/Cas9 will allow researchers to reduce the problem of genomic variability inherent to human studies, followed by recent iPS cell studies relevant to AD. We then focus on current techniques for the differentiation of iPS cells into neural cell types that are relevant to AD research. Finally, we discuss how the generation of three-dimensional cell culture systems will be important for understanding AD phenotypes in a complex cellular milieu, and how both two- and three-dimensional iPS cell models can provide platforms for drug discovery and translational studies into the treatment of AD.
Collapse
Affiliation(s)
- Alison E Mungenast
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Sandra Siegert
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| |
Collapse
|
40
|
Pilichou K, Thiene G, Bauce B, Rigato I, Lazzarini E, Migliore F, Perazzolo Marra M, Rizzo S, Zorzi A, Daliento L, Corrado D, Basso C. Arrhythmogenic cardiomyopathy. Orphanet J Rare Dis 2016; 11:33. [PMID: 27038780 PMCID: PMC4818879 DOI: 10.1186/s13023-016-0407-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/16/2016] [Indexed: 01/16/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a heart muscle disease clinically characterized by life-threatening ventricular arrhythmias and pathologically by an acquired and progressive dystrophy of the ventricular myocardium with fibro-fatty replacement. Due to an estimated prevalence of 1:2000-1:5000, AC is listed among rare diseases. A familial background consistent with an autosomal-dominant trait of inheritance is present in most of AC patients; recessive variants have also been reported, either or not associated with palmoplantar keratoderma and woolly hair. AC-causing genes mostly encode major components of the cardiac desmosome and up to 50 % of AC probands harbor mutations in one of them. Mutations in non-desmosomal genes have been also described in a minority of AC patients, predisposing to the same or an overlapping disease phenotype. Compound/digenic heterozygosity was identified in up to 25 % of AC-causing desmosomal gene mutation carriers, in part explaining the phenotypic variability. Abnormal trafficking of intercellular proteins to the intercalated discs of cardiomyocytes and Wnt/beta catenin and Hippo signaling pathways have been implicated in disease pathogenesis. AC is a major cause of sudden death in the young and in athletes. The clinical picture may include a sub-clinical phase; an overt electrical disorder; and right ventricular or biventricular pump failure. Ventricular fibrillation can occur at any stage. Genotype-phenotype correlation studies led to identify biventricular and dominant left ventricular variants, thus supporting the use of the broader term AC. Since there is no “gold standard” to reach the diagnosis of AC, multiple categories of diagnostic information have been combined and the criteria recently updated, to improve diagnostic sensitivity while maintaining specificity. Among diagnostic tools, contrast enhanced cardiac magnetic resonance is playing a major role in detecting left dominant forms of AC, even preceding morpho-functional abnormalities. The main differential diagnoses are idiopathic right ventricular outflow tract tachycardia, myocarditis, sarcoidosis, dilated cardiomyopathy, right ventricular infarction, congenital heart diseases with right ventricular overload and athlete heart. A positive genetic test in the affected AC proband allows early identification of asymptomatic carriers by cascade genetic screening of family members. Risk stratification remains a major clinical challenge and antiarrhythmic drugs, catheter ablation and implantable cardioverter defibrillator are the currently available therapeutic tools. Sport disqualification is life-saving, since effort is a major trigger not only of electrical instability but also of disease onset and progression. We review the current knowledge of this rare cardiomyopathy, suggesting a flowchart for primary care clinicians and geneticists.
Collapse
Affiliation(s)
- Kalliopi Pilichou
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Gaetano Thiene
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Ilaria Rigato
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Elisabetta Lazzarini
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Federico Migliore
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | | | - Stefania Rizzo
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Luciano Daliento
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
41
|
Gowran A, Rasponi M, Visone R, Nigro P, Perrucci GL, Righetti S, Zanobini M, Pompilio G. Young at Heart: Pioneering Approaches to Model Nonischaemic Cardiomyopathy with Induced Pluripotent Stem Cells. Stem Cells Int 2016; 2016:4287158. [PMID: 27110250 PMCID: PMC4823509 DOI: 10.1155/2016/4287158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/09/2016] [Indexed: 01/01/2023] Open
Abstract
A mere 9 years have passed since the revolutionary report describing the derivation of induced pluripotent stem cells from human fibroblasts and the first in-patient translational use of cells obtained from these stem cells has already been achieved. From the perspectives of clinicians and researchers alike, the promise of induced pluripotent stem cells is alluring if somewhat beguiling. It is now evident that this technology is nascent and many areas for refinement have been identified and need to be considered before induced pluripotent stem cells can be routinely used to stratify, treat and cure patients, and to faithfully model diseases for drug screening purposes. This review specifically addresses the pioneering approaches to improve induced pluripotent stem cell based models of nonischaemic cardiomyopathy.
Collapse
Affiliation(s)
- Aoife Gowran
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building No. 21, 20133 Milan, Italy
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building No. 21, 20133 Milan, Italy
| | - Patrizia Nigro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Gianluca L. Perrucci
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Stefano Righetti
- Cardiology Unit, San Gerardo Hospital, Via Giambattista Pergolesi 33, 20052 Monza, Italy
| | - Marco Zanobini
- Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
- Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| |
Collapse
|
42
|
Miura M, Nagano T, Murai N, Taguchi Y, Handoh T, Satoh M, Miyata S, Miller L, Shindoh C, Stuyvers BD. Effect of Carbenoxolone on Arrhythmogenesis in Rat Ventricular Muscle. Circ J 2016; 80:76-84. [DOI: 10.1253/circj.cj-15-0401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Masahito Miura
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| | - Tsuyoshi Nagano
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| | - Naomi Murai
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| | - Yuhto Taguchi
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| | - Tetsuya Handoh
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| | - Minami Satoh
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| | - Satoshi Miyata
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Lawson Miller
- Faculty of Medicine, Biomedical Sciences, Memorial University
| | - Chiyohiko Shindoh
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| | | |
Collapse
|
43
|
Denning C, Borgdorff V, Crutchley J, Firth KSA, George V, Kalra S, Kondrashov A, Hoang MD, Mosqueira D, Patel A, Prodanov L, Rajamohan D, Skarnes WC, Smith JGW, Young LE. Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1728-48. [PMID: 26524115 PMCID: PMC5221745 DOI: 10.1016/j.bbamcr.2015.10.014] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/12/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022]
Abstract
Cardiomyocytes from human pluripotent stem cells (hPSCs-CMs) could revolutionise biomedicine. Global burden of heart failure will soon reach USD $90bn, while unexpected cardiotoxicity underlies 28% of drug withdrawals. Advances in hPSC isolation, Cas9/CRISPR genome engineering and hPSC-CM differentiation have improved patient care, progressed drugs to clinic and opened a new era in safety pharmacology. Nevertheless, predictive cardiotoxicity using hPSC-CMs contrasts from failure to almost total success. Since this likely relates to cell immaturity, efforts are underway to use biochemical and biophysical cues to improve many of the ~30 structural and functional properties of hPSC-CMs towards those seen in adult CMs. Other developments needed for widespread hPSC-CM utility include subtype specification, cost reduction of large scale differentiation and elimination of the phenotyping bottleneck. This review will consider these factors in the evolution of hPSC-CM technologies, as well as their integration into high content industrial platforms that assess structure, mitochondrial function, electrophysiology, calcium transients and contractility. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Chris Denning
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom.
| | - Viola Borgdorff
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - James Crutchley
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Karl S A Firth
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Vinoj George
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Spandan Kalra
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Alexander Kondrashov
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Minh Duc Hoang
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Diogo Mosqueira
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Asha Patel
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Ljupcho Prodanov
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Divya Rajamohan
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - William C Skarnes
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - James G W Smith
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Lorraine E Young
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
44
|
Kane C, Couch L, Terracciano CMN. Excitation-contraction coupling of human induced pluripotent stem cell-derived cardiomyocytes. Front Cell Dev Biol 2015; 3:59. [PMID: 26484342 PMCID: PMC4586503 DOI: 10.3389/fcell.2015.00059] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/11/2015] [Indexed: 01/17/2023] Open
Abstract
Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold enormous potential in many fields of cardiovascular research. Overcoming many of the limitations of their embryonic counterparts, the application of iPSC-CMs ranges from facilitating investigation of familial cardiac disease and pharmacological toxicity screening to personalized medicine and autologous cardiac cell therapies. The main factor preventing the full realization of this potential is the limited maturity of iPSC-CMs, which display a number of substantial differences in comparison to adult cardiomyocytes. Excitation–contraction (EC) coupling, a fundamental property of cardiomyocytes, is often described in iPSC-CMs as being more analogous to neonatal than adult cardiomyocytes. With Ca2+ handling linked, directly or indirectly, to almost all other properties of cardiomyocytes, a solid understanding of this process will be crucial to fully realizing the potential of this technology. Here, we discuss the implications of differences in EC coupling when considering the potential applications of human iPSC-CMs in a number of areas as well as detailing the current understanding of this fundamental process in these cells.
Collapse
Affiliation(s)
- Christopher Kane
- Laboratory of Cell Electrophysiology, National Heart and Lung Institute, Imperial College London London, UK
| | - Liam Couch
- Laboratory of Cell Electrophysiology, National Heart and Lung Institute, Imperial College London London, UK
| | - Cesare M N Terracciano
- Laboratory of Cell Electrophysiology, National Heart and Lung Institute, Imperial College London London, UK
| |
Collapse
|