1
|
Mullis DM, Padilla-Lopez A, Wang H, Zhu Y, Elde S, Bonham SA, Yajima S, Kocher ON, Krieger M, Woo YJ. Stromal cell-derived factor-1 alpha improves cardiac function in a novel diet-induced coronary atherosclerosis model, the SR-B1ΔCT/LDLR KO mouse. Atherosclerosis 2024; 395:117518. [PMID: 38627162 PMCID: PMC11254567 DOI: 10.1016/j.atherosclerosis.2024.117518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND AND AIMS There are a limited number of pharmacologic therapies for coronary artery disease, and few rodent models of occlusive coronary atherosclerosis and consequent myocardial infarction with which one can rapidly test new therapeutic approaches. Here, we characterize a novel, fertile, and easy-to-use HDL receptor (SR-B1)-based model of atherogenic diet-inducible, fatal coronary atherosclerosis, the SR-B1ΔCT/LDLR KO mouse. Additionally, we test intramyocardial injection of Stromal Cell-Derived Factor-1 alpha (SDF-1α), a potent angiogenic cytokine, as a possible therapy to rescue cardiac function in this mouse. METHODS SR-B1ΔCT/LDLR KO mice were fed the Paigen diet or standard chow diet, and we determined the effects of the diets on cardiac function, histology, and survival. After two weeks of feeding either the Paigen diet (n = 24) or standard chow diet (n = 20), the mice received an intramyocardial injection of either SDF-1α or phosphate buffered saline (PBS). Cardiac function and angiogenesis were assessed two weeks later. RESULTS When six-week-old mice were fed the Paigen diet, they began to die as early as 19 days later and 50% had died by 38 days. None of the mice maintained on the standard chow diet died by day 72. Hearts from mice on the Paigen diet showed evidence of cardiomegaly, myocardial infarction, and occlusive coronary artery disease. For the five mice that survived until day 28 that underwent an intramyocardial injection of PBS on day 15, the average ejection fraction (EF) decreased significantly from day 14 (the day before injection, 52.1 ± 4.3%) to day 28 (13 days after the injection, 30.6 ± 6.8%) (paired t-test, n = 5, p = 0.0008). Of the 11 mice fed the Paigen diet and injected with SDF-1α on day 15, 8 (72.7%) survived to day 28. The average EF for these 8 mice increased significantly from 48.2 ± 7.2% on day 14 to63.6 ± 6.9% on day 28 (Paired t-test, n = 8, p = 0.003). CONCLUSIONS This new mouse model and treatment with the promising angiogenic cytokine SDF-1α may lead to new therapeutic approaches for ischemic heart disease.
Collapse
MESH Headings
- Animals
- Chemokine CXCL12/metabolism
- Chemokine CXCL12/genetics
- Disease Models, Animal
- Mice, Knockout
- Coronary Artery Disease
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Scavenger Receptors, Class B/genetics
- Male
- Neovascularization, Physiologic/drug effects
- Mice, Inbred C57BL
- Diet, Atherogenic
- Mice
- Ventricular Function, Left
- Myocardium/pathology
- Myocardium/metabolism
- Diet, High-Fat
Collapse
Affiliation(s)
- Danielle M Mullis
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | | | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Stefan Elde
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Spencer A Bonham
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Shin Yajima
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Olivier N Kocher
- Department of Pathology, Beth Israel Hospital, Harvard Medical School, Boston, MA, USA
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, MA, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Guo W, Feng W, Huang J, Zhang J, Fan X, Ma S, Li M, Zhan J, Cai Y, Chen M. Supramolecular Self-Assembled Nanofibers Efficiently Activate the Precursor of Hepatocyte Growth Factor for Angiogenesis in Myocardial Infarction Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22131-22141. [PMID: 33957750 DOI: 10.1021/acsami.0c23153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The reconstruction of blood perfusion is a crucial therapeutic method to save and protect cardiac function after acute myocardial infarction (AMI). The activation of the hepatocyte growth factor precursor (pro-HGF) has a significant effect on promoting angiogenesis and antiapoptosis. The oxygen/glucose deprivation (OGD) caused by AMI could induce vascular adventitia fibroblasts to differentiate into myofibroblasts and secrete the pro-HGF. Meanwhile, the specific Met receptor of the hepatocyte growth factor (HGF) is upregulated in endothelial cells during AMI. However, the poor prognosis of AMI suggests that the pro-HGF is not effectively activated. Improving the activation efficiency of the pro-HGF may play a positive role in the treatment of AMI. Herein, we designed supramolecular nanofibers self-assembled by compound 1 (Comp.1, Nap-FFEG-IVGGYPWWMDV), which can strongly activate the pro-HGF and initiate HGF-Met signaling. Studies have proven that Comp.1 possesses a better ability to activate the pro-HGF to perform antiapoptosis and pro-angiogenesis. In vivo results have confirmed that the retention time of Comp.1 and its accumulation in the infarct area of the heart are promoted. Moreover, Comp.1 plays an effective role in promoting angiogenesis in the marginal area of AMI, reducing myocardial fibrosis, and protecting cardiac function. Herein, we will optimize the structure of bioactive peptides through supramolecular self-assembly and amplify their therapeutic effect by improving their efficiency, providing a new strategy for the therapy of AMI.
Collapse
Affiliation(s)
- Wenjie Guo
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Weijing Feng
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jing Huang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jianwu Zhang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xianglin Fan
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shaodan Ma
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Minghui Li
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jie Zhan
- Shunde Hospital, Southern Medical University, the First People's Hospital of Shunde, Foshan 528300, China
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Minsheng Chen
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
3
|
Liu B, Cheng Y, Tian J, Zhang L, Cui X. Upregulated lncRNA Pvt1 may be important for cardiac remodeling at the infarct border zone. Mol Med Rep 2020; 22:2605-2616. [PMID: 32945428 PMCID: PMC7453657 DOI: 10.3892/mmr.2020.11371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/21/2020] [Indexed: 12/31/2022] Open
Abstract
Myocardial infarction (MI) is a leading cause of mortality due to progression to ventricular arrhythmias (VAs) or heart failure (HF). Cardiac remodeling at the infarct border zone (IBZ) is the primary contributor for VAs or HF. Therefore, genes involved in IBZ remodeling may be potential targets for the treatment of MI, but the mechanism remains unclear. The present study aimed to explain the molecular mechanisms of IBZ remodeling based on the roles of long non-coding RNAs (lncRNAs). After downloading miRNA (GSE76592) and mRNA/lncRNA (GSE52313) datasets from the Gene Expression Omnibus database, 23 differentially expressed miRNAs (DEMs), 2,563 genes (DEGs) and 168 lncRNAs (DELs) were identified between IBZ samples of MI mice and sham controls. A total of 483 DEGs were predicted to be regulated by 23 DEMs, among which Itgam, Met and TNF belonged to hub genes after five topological parameters were calculated for genes in the protein-protein interaction network. These hub genes-associated DEMs (mmu-miR-181a, mmu-miR-762) can also interact with six DELs (Gm15832, Gas5, Gm6634, Pvt1, Gm14636 and A330023F24Rik) to constitute the competing endogenous RNA (ceRNA) axes. Furthermore, a co-expression network was constructed based on the co-expression pairs between 44 DELs and 297 DEGs, in which Pvt1 and Bst1 were overlapped with the ceRNA network. Thus, Bst1-associated ceRNA (Pvt1-mmu-miR-181a-Bst1) and co-expression (Pvt-Bst1) axes were also pivotal for MI. Accordingly, Pvt1 may be a crucial lncRNA for modification of cardiac remodeling in the IBZ after MI and may function by acting as a ceRNA for miR-181a to regulate TNF/Met/Itgam/Bst1 or by co-expressing with Bst1.
Collapse
Affiliation(s)
- Baihui Liu
- Department of Emergency Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yuanjuan Cheng
- Department of Nursing, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jiakun Tian
- Department of Emergency Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Li Zhang
- Department of Emergency Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xiaoqian Cui
- Department of Emergency Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
4
|
Aljakna A, Fracasso T, Sabatasso S. Molecular tissue changes in early myocardial ischemia: from pathophysiology to the identification of new diagnostic markers. Int J Legal Med 2018; 132:425-438. [DOI: 10.1007/s00414-017-1750-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023]
|
5
|
Madonna R, Bolli R, Rokosh G, De Caterina R. Targeting phosphatidylinositol 3-kinase-Akt through hepatocyte growth factor for cardioprotection. J Cardiovasc Med (Hagerstown) 2013; 14:249-53. [DOI: 10.2459/jcm.0b013e3283542017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin Sci (Lond) 2013; 124:165-76. [PMID: 22876972 DOI: 10.1042/cs20120226] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bone-marrow-derived human MSCs (mesenchymal stem cells) support repair when administered to animals with TBI (traumatic brain injury) in large part through secreted trophic factors. We directly tested the ability of the culture medium (or secretome) collected from human MSCs under normoxic or hypoxic conditions to protect neurons in a rat model of TBI. Concentrated conditioned medium from cultured human MSCs or control medium was infused through the tail vein of rats subjected to TBI. We have demonstrated that MSCs cultured in hypoxia were superior to those cultured in normoxia in inducing expression of both HGF (hepatocyte growth factor) and VEGF (vascular endothelial growth factor) in the cultured medium. We showed further that rats treated with the secretome from both normoxic- and hypoxic-preconditioned MSCs performed significantly better than the controls in both motor and cognitive functional test. Subsequent post-mortem evaluation of brain damage at the 4-day time point confirmed that both normoxic- and hypoxic-preconditioned MSC secretome-treated rats had significantly greater numbers of newly forming neurons, but significantly less than the controls in brain damaged volume and apoptosis. The TBI rats treated with hypoxic-preconditioned MSC secretome performed significantly better in both motor and cognitive function tests and neurogenesis, and had significantly less brain damage than the TBI rats treated with the normoxic-preconditioned MSC secretome. Collectively, these findings suggest that MSCs secrete bioactive factors, including HGF and VEGF, that stimulate neurogenesis and improve outcomes of TBI in a rat model. Hypoxic preconditioning enhances the secretion of these bioactive factors from the MSCs and the therapeutic potential of the cultured MSC secretome in experimental TBI.
Collapse
|
7
|
Wen Q, Zhou L, Zhou C, Zhou M, Luo W, Ma L. Change in hepatocyte growth factor concentration promote mesenchymal stem cell-mediated osteogenic regeneration. J Cell Mol Med 2012; 16:1260-73. [PMID: 21831134 PMCID: PMC3823079 DOI: 10.1111/j.1582-4934.2011.01407.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play a crucial role in tissue repair by secretion of tissue nutrient factors such as hepatocyte growth factor (HGF). However, studies examining the effects of HGF on the proliferation and differentiation of MSCs used different concentrations of HGF and reported conflicting conclusions. This study aimed to determine the mechanisms by which different concentrations of HGF regulate MSC proliferation and osteogenic differentiation, and validate the mechanism in an animal model of early stage avascular necrosis of femoral head (ANFH). Our results demonstrate that a low concentration of HGF (20 ng/ml) preferentially promotes MSC osteogenic differentiation through increased c-Met expression and phosphorylation, Akt pathway activation, and increased expression of p27, Runx2 and Osterix. In contrast, a high concentration of HGF (100 ng/ml) strongly induced proliferation by inducing strong activation of the ERK1/2 signalling pathway. As validated by animal experiments, high localized expression of HGF achieved by transplantation of HGF transgenic MSCs into ANFH rabbits increased the number of MSCs. Subsequently, 2 weeks after transplantation, HGF levels decreased and MSCs differentiated into osteoblasts and resulted in efficient tissue repair. Our results demonstrate that sequential concentration changes in HGF control the proliferation and osteogenic differentiation of MSCs in vivo. This phenomenon can be exploited therapeutically to induce bone regeneration and, in turn, improve the efficacy of pharmacological intervention for ANFH treatment.
Collapse
Affiliation(s)
- Qian Wen
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
8
|
Rosová I, Link D, Nolta JA. shRNA-mediated decreases in c-Met levels affect the differentiation potential of human mesenchymal stem cells and reduce their capacity for tissue repair. Tissue Eng Part A 2011; 16:2627-39. [PMID: 20367286 DOI: 10.1089/ten.tea.2009.0363] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells/marrow stromal cells (MSC) are adult multipotent cells that can augment tissue repair. We previously demonstrated that culturing MSC in hypoxic conditions causes upregulation of the hepatocyte growth factor (HGF) receptor c-Met, allowing them to respond more robustly to HGF. MSC preconditioned in hypoxic environments contributed to restoration of blood flow after an ischemic injury more rapidly than MSC cultured in normoxic conditions. We now investigated the specific role of HGF/c-Met signaling in MSC function. An shRNA-mediated knockdown (KD) of c-Met in MSC did not alter their phenotypic profile, proliferation, or viability in vitro. However, we determined that while HGF/c-Met signaling does not play a role in the adipogenic differentiation of the cells, the disruption of this signaling pathway inhibited the ability of MSC to differentiate into the osteogenic and chondrogenic lineages. We next assessed the impact of c-Met KD on human MSC function in a xenogeneic hindlimb ischemia injury model. A 70% KD of c-Met in MSC resulted in a significant decrease in their capacity to regenerate blood flow to the ischemic limb, as compared to the MSC transduced with control shRNA. MSC with only a 60% KD of c-Met exhibited an intermediate capacity to restore blood flow, suggesting that MSC function is sensitive to the dosage of c-Met signaling. The current study highlights the significance of HGF/c-Met signaling in the capacity of MSC to restore blood flow after an ischemic injury and in their ability to differentiate into the osteogenic and chondrogenic lineages.
Collapse
Affiliation(s)
- Ivana Rosová
- Division of Oncology, Stem Cell Biology Program, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
9
|
Zhou P, Wirthlin L, McGee J, Annett G, Nolta J. Contribution of human hematopoietic stem cells to liver repair. Semin Immunopathol 2009; 31:411-9. [PMID: 19533133 PMCID: PMC2758169 DOI: 10.1007/s00281-009-0166-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 05/26/2009] [Indexed: 12/21/2022]
Abstract
Immune-deficient mouse models of liver damage allow examination of human stem cell migration to sites of damage and subsequent contribution to repair and survival. In our studies, in the absence of a selective advantage, transplanted human stem cells from adult sources did not robustly become hepatocytes, although some level of fusion or hepatic differentiation was documented. However, injected stem cells did home to the injured liver tissue and release paracrine factors that hastened endogenous repair and enhanced survival. There were significantly higher levels of survival in mice with a toxic liver insult that had been transplanted with human stem cells but not in those transplanted with committed progenitors. Transplantation of autologous adult stem cells without conditioning is a relatively safe therapy. Adult stem cells are known to secrete bioactive factors that suppress the local immune system, inhibit fibrosis (scar formation) and apoptosis, enhance angiogenesis, and stimulate recruitment, retention, mitosis, and differentiation of tissue-residing stem cells. These paracrine effects are distinct from the direct differentiation of stem cells to repair tissue. In patients at high risk while waiting for a liver transplant, autologous stem cell therapy could be considered, as it could delay the decline in liver function.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Internal Medicine, Division of Hematology/Oncology, Stem Cell Program, University of California, Sacramento, CA, USA
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Rosová I, Dao M, Capoccia B, Link D, Nolta JA. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 2008; 26:2173-82. [PMID: 18511601 DOI: 10.1634/stemcells.2007-1104] [Citation(s) in RCA: 533] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mesenchymal stem cells (MSC) are adult multipotent cells found in bone marrow, adipose tissue, and other adult tissues. MSC have been shown to improve regeneration of injured tissues in vivo, but the mechanisms remain unclear. Typically, MSC are cultured under ambient, or normoxic, conditions (21% oxygen). However, the physiological niches for MSC in the bone marrow and other sites have much lower oxygen tension. When used as a therapeutic tool to repair tissue injuries, MSC cultured in standard conditions must adapt from 21% oxygen in culture to less than 1% oxygen in the ischemic tissue. We therefore examined the effects of preculturing human bone marrow-derived MSC in hypoxic conditions (1%-3% oxygen) to elucidate the best conditions that enhance their tissue regenerative potential. We demonstrated that MSC cultured in hypoxia activate the Akt signaling pathway while maintaining their viability and cell cycle rates. We also showed that MSC cultured in hypoxia induced expression of cMet, the major receptor for hepatocyte growth factor (HGF), and enhanced cMet signaling. MSC cultured in hypoxic conditions increased their migration rates. Since migration and HGF responsiveness are thought to be key mediators of MSC recruitment and/or activation in vivo, we next examined the tissue regenerative potential of MSC cultured under hypoxic conditions, using a murine hind limb ischemia model. We showed that local expression of HGF is increased in ischemic muscle in this model. Intra-arterial injection of MSC cultured in either normoxic or hypoxic conditions 24 hours after surgical induction of hind limb ischemia enhanced revascularization compared with saline controls. However, restoration of blood flow was observed significantly earlier in mice that had been injected with hypoxic preconditioned MSC. Collectively, these data suggest that preculturing MSC under hypoxic conditions prior to transplantation improves their tissue regenerative potential. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Ivana Rosová
- Stem Cell Program, University of California at Davis, Room 653, 2425 Stockton Boulevard, Sacramento, California 95817, USA
| | | | | | | | | |
Collapse
|
12
|
Gude NA, Emmanuel G, Wu W, Cottage CT, Fischer K, Quijada P, Muraski JA, Alvarez R, Rubio M, Schaefer E, Sussman MA. Activation of Notch-mediated protective signaling in the myocardium. Circ Res 2008; 102:1025-35. [PMID: 18369158 DOI: 10.1161/circresaha.107.164749] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Notch network regulates multiple cellular processes, including cell fate determination, development, differentiation, proliferation, apoptosis, and regeneration. These processes are regulated via Notch-mediated activity that involves hepatocyte growth factor (HGF)/c-Met receptor and phosphatidylinositol 3-kinase/Akt signaling cascades. The impact of HGF on Notch signaling was assessed following myocardial infarction as well as in cultured cardiomyocytes. Notch1 is activated in border zone cardiomyocytes coincident with nuclear c-Met following infarction. Intramyocardial injection of HGF enhances Notch1 and Akt activation in adult mouse myocardium. Corroborating evidence in cultured cardiomyocytes shows treatment with HGF or insulin increases levels of Notch effector Hes1 in immunoblots, whereas overexpression of activated Notch intracellular domain prompts a 3-fold increase in phosphorylated Akt. Infarcted hearts injected with adenoviral vector expressing Notch intracellular domain treatment exhibit improved hemodynamic function in comparison with control mice after 4 weeks, implicating Notch signaling in a cardioprotective role following cardiac injury. These results indicate Notch activation in cardiomyocytes is mediated through c-Met and Akt survival signaling pathways, and Notch1 signaling in turn enhances Akt activity. This mutually supportive crosstalk suggests a positive survival feedback mechanism between Notch and Akt signaling in adult myocardium following injury.
Collapse
Affiliation(s)
- Natalie A Gude
- San Diego State University Heart Institute, Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jayasankar V, Woo YJ, Bish LT, Pirolli TJ, Chatterjee S, Berry MF, Burdick J, Gardner TJ, Sweeney HL. Gene transfer of hepatocyte growth factor attenuates postinfarction heart failure. Circulation 2003; 108 Suppl 1:II230-6. [PMID: 12970238 DOI: 10.1161/01.cir.0000087444.53354.66] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Despite advances in surgical and percutaneous coronary revascularization, ongoing ischemia that is not amenable to standard revascularization techniques is a major cause of morbidity and mortality. Hepatocyte Growth Factor (HGF) has potent angiogenic and anti-apoptotic activities, and this study evaluated the functional and biochemical effects of HGF gene transfer in a rat model of postinfarction heart failure. METHODS AND RESULTS Lewis rats underwent ligation of the left anterior descending coronary artery with direct intramyocardial injection of replication-deficient recombinant adenovirus encoding HGF (n=10) or empty null virus as control (n=9), and animals were analyzed after six weeks. Pressure-volume conductance catheter measurements demonstrated significantly preserved contractile function in the HGF group compared with Null control animals as measured by maximum developed LV pressure (79+/-5 versus 56+/-4 mm Hg, P<0.001) and maximum dP/dt (2890+/-326 versus 1622+/-159 mm Hg/sec, P<0.01). Significant preservation of LV geometry was associated with HGF treatment (LV Diameter HGF 13.1+/-0.54 versus Null 14.4+/-0.15 mm P<0.01; LV wall thickness 1.73+/-0.10 versus 1.28+/-0.07 mm P<0.01). Angiogenesis was significantly enhanced in HGF treated animals as measured by both Von Willebrand's Factor immunohistochemical staining and a microsphere assay. TUNEL analysis revealed a significant reduction in apoptosis in the HGF group (3.42+/-0.83% versus 8.36+/-1.16%, P<0.01), which correlated with increased Bcl-2 and Bcl-xL expression in the HGF animals. CONCLUSIONS Hepatocyte Growth Factor gene transfer following a large myocardial infarction results in significantly preserved myocardial function and geometry, and is associated with significant angiogenesis and a reduction in apoptosis. This therapy may be useful as an adjunct or alternative to standard revascularization techniques in patients with ischemic heart failure.
Collapse
Affiliation(s)
- Vasant Jayasankar
- Department of Cardiothoracic Surgery, University of Pennsylvania School of Medicine, Pliladelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sato T, Tani Y, Murao S, Fujieda H, Sato H, Matsumoto M, Takeuchi T, Ohtsuki Y. Focal enhancement of expression of c-Met/hepatocyte growth factor receptor in the myocardium in human myocardial infarction. Cardiovasc Pathol 2001; 10:235-40. [PMID: 11673062 DOI: 10.1016/s1054-8807(01)00079-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
To determine the distribution and expression level of hepatocyte growth factor (HGF) specific receptor, c-Met, in human myocardial infarction. Autopsies of 13 patients who died without heart diseases (control) and 13 patients with a history of myocardial infarction (2 h to 10 years before death). The harvested myocardial tissues were stained with hematoxylin-eosin (H&E) and immunohistochemically stained for c-Met expression by the avidin-biotin-horseradish peroxidase complex method using an antibody to c-Met. C-Met expression was only slightly increased in control subjects and in noninfarcted myocardium of the test group. In contrast, high expression was noted in the peripheral region of the myocardial infarction and in some hypertrophic myocardial cells. C-Met was not expressed in the infarcted myocardium, but overexpression was noted in the surrounding myocardial cells of blood vessels and in the subendocardium and subepicardium in a band-like pattern. The expression level of c-Met was most enhanced at the time of appearance of coagulative necrosis and least in the myocardium of subjects with old infarcts. Our results indicate that HGF preferentially reaches the ischemic regions of the myocardium and has local and direct effects on the myocardium in patients with myocardial infarction.
Collapse
Affiliation(s)
- T Sato
- Cath Lab, Page 12, Department of Cardiology, Royal Prince Alfred Hospital, Missenden Road, NSW 2050, Camperdown, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Xin X, Yang S, Ingle G, Zlot C, Rangell L, Kowalski J, Schwall R, Ferrara N, Gerritsen ME. Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1111-20. [PMID: 11238059 PMCID: PMC1850376 DOI: 10.1016/s0002-9440(10)64058-8] [Citation(s) in RCA: 293] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vascular endothelial growth factor (VEGF) is an important mediator of angiogenesis in both physiological and pathological processes. Hepatocyte growth factor (HGF) is a mesenchyme-derived mitogen that also stimulates cell migration, and branching and/or tubular morphogenesis of epithelial and endothelial cells. In the present study, we tested the hypothesis that simultaneous administration of HGF and VEGF would synergistically promote new blood vessel formation. HGF acted in concert with VEGF to promote human endothelial cell survival and tubulogenesis in 3-D type I collagen gels, a response that did not occur with either growth factor alone. The synergistic effects of VEGF and HGF on endothelial survival correlated with greatly augmented mRNA levels for the anti-apoptotic genes Bcl-2 and A1. Co-culture experiments with human neonatal dermal fibroblasts and human umbilical vein endothelial cells demonstrated that neonatal dermal fibroblasts, in combination with VEGF, stimulated human umbilical vein endothelial cells tubulogenesis through the paracrine secretion of HGF. Finally, in vivo experiments demonstrated that the combination of HGF and VEGF increased neovascularization in the rat corneal assay greater than either growth factor alone. We suggest that combination therapy using HGF and VEGF co-administration may provide a more effective strategy to achieve therapeutic angiogenesis.
Collapse
Affiliation(s)
- X Xin
- Department of Cardiovascular Research, Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sato T, Yoshinouchi T, Sugimoto T, Sakamoto T, Fujieda H, Murao S, Sato H, Ohe T. Prognostic value of serum hepatocyte growth factor in patients with acute coronary syndromes. JAPANESE CIRCULATION JOURNAL 1999; 63:583-8. [PMID: 10478806 DOI: 10.1253/jcj.63.583] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present study examined whether or not hepatocyte growth factor (HGF), an endothelium-specific growth factor that stimulates regeneration of the endothelium, is increased or has a prognostic significance in patients with acute coronary syndromes. HGF was measured in 106 patients with coronary artery disease (20 stable effort angina, 12 unstable angina without adverse events, 24 unstable angina with adverse events and 50 acute myocardial infarction) on admission and 21 normal volunteers. The measurements in all patients were recorded before administration of heparin, and in acute myocardial infarction patients they were recorded from days 2 to 6 after heparin discontinuation on day 1. HGF levels (ng/ml) were 0.30+/-0.06 for the controls, 0.31+/-0.08 for stable effort angina patients, 0.31+/-0.08 for unstable angina patients without adverse events, 0.40+/-0.20 for unstable angina patients with adverse events and in acute myocardial infarction patients they were 0.45+/-0.18 on day 0, 0.57+/-0.45 on day 2, 0.50+/-0.35 on day 3, 0.48+/-0.32 on day 4, 0.44+/-0.20 on day 5, and 0.38+/-0.14 on day 6. HGF plays a crucial role in the restoration of injured endothelial cells and is a predictor of adverse events in patients with acute coronary syndromes.
Collapse
Affiliation(s)
- T Sato
- Department of Cardiovascular Medicine, Matsuyama Shimin Hospital, Matsuyama City, Ehime Pref., Japan.
| | | | | | | | | | | | | | | |
Collapse
|