1
|
Fujii H, Ito M, Nishioka K, Nishino K, Otsuka T, Irie K, Tanaka T, Nagao M. Isolation of Allosteric Tryptase Inhibitor from Methanol Extract of Rhubarb and Enhancement of Its Tryptase Inhibitory Activity by Compounds That Were Screened by In Silico Screening. Molecules 2025; 30:1341. [PMID: 40142115 PMCID: PMC11944477 DOI: 10.3390/molecules30061341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Tryptase, which is abundant in human mast cells and is involved in allergic inflammations such as asthma, is a serine protease. We isolated a tryptase inhibitor, procyanidin B8 3,3'-di-O-gallate (PB8GG'), a tannin, from the methanol extract of rhubarb (RHEI RHIDOMA), which is a traditional Chinese medicine (Kampo medicine in Japan). Since it did not inhibit another serine protease trypsin, PB8GG' specifically inhibited tryptase. A standard kinetic analysis of the inhibitory fashion of PB8GG' against tryptase suggested that PB8GG' inhibited tryptase in an allosteric manner. We searched for other tannins like PB8GG' expected to bind tryptase using AutoDock vina. Two ellagitannins, carpinins B and E, isolated from young leaves of Carpinus japonica were selected as candidates of tryptase inhibitors. Carpinins B and E themselves had almost no inhibitory activity against tryptase but enhanced the inhibitory activity of PB8GG' against tryptase. This is an example that shows that a combination of an allosteric inhibitor with other compounds that bind but have no inhibitory activity can be used to develop a clinically useful combinatorial enzyme inhibitor.
Collapse
Affiliation(s)
- Hidetoshi Fujii
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (M.I.)
| | - Moeno Ito
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (M.I.)
| | - Kentaro Nishioka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (M.I.)
| | - Katsutoshi Nishino
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (M.I.)
| | - Takanao Otsuka
- Department of Applied Chemistry and Biotechnology, Okayama University of Science, Okayama 700-0005, Japan
| | - Kazuhiro Irie
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan;
| | - Takashi Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan;
| | - Masaya Nagao
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (M.I.)
| |
Collapse
|
2
|
Zhigulin AS, Dron MY, Barygin OI, Tikhonov DB. The diversity of AMPA receptor inhibition mechanisms among amidine-containing compounds. Front Pharmacol 2024; 15:1467266. [PMID: 39444609 PMCID: PMC11496081 DOI: 10.3389/fphar.2024.1467266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Amidine-containing compounds are primarily known as antiprotozoal agents (pentamidine, diminazene, furamidine) or as serine protease inhibitors (nafamostat, sepimostat, camostat, gabexate). DAPI is widely recognized as a fluorescent DNA stain. Recently, it has been shown that these compounds also act as NMDA receptor inhibitors. In this study, we examined the activity of these compounds and analyzed the mechanisms of action in relation to another important class of ionotropic glutamate receptors-calcium-permeable AMPA receptors (CP-AMPARs) and calcium-impermeable AMPA receptors (CI-AMPARs) - using the whole-cell patch-clamp method on isolated male Wistar rat brain neurons. Gabexate and camostat were found to be inactive. Other compounds preferentially inhibited calcium-permeable AMPA receptors with IC50 values of 30-60 µM. DAPI and furamidine were also active against CI-AMPARs with IC50s of 50-60 μM, while others showed poor activity. All active compounds acted as channel blockers, which are able for permeating into the cytoplasm on both CP- and CI-AMPARs. Specifically, sepimostat showed trapping in the closed CP-AMPAR channel. Furamidine and DAPI demonstrated a voltage-independent action on CI-AMPARs, indicating binding to an additional superficial site. While the majority of compounds inhibited glutamate-activated steady-state currents as well as kainate-activated currents on CI-AMPARs, pentamidine significantly potentiated glutamate-induced steady-state responses. The potentiating effect of pentamidine resembles the action of the positive allosteric modulator cyclothiazide although the exact binding site remains unclear. Thus, this study, together with our previous research on NMDA receptors, provides a comprehensive overview of this novel group of ionotropic glutamate receptors inhibitors with a complex pharmacological profile, remarkable diversity of effects and mechanisms of action.
Collapse
Affiliation(s)
- Arseniy S. Zhigulin
- Laboratory for the Research of the Mechanisms of Regulation and Compensation of Nervous System Excitability Pathologies, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia
| | | | | | | |
Collapse
|
3
|
He Q, Wei Y, Qian Y, Zhong M. Pathophysiological dynamics in the contact, coagulation, and complement systems during sepsis: Potential targets for nafamostat mesilate. JOURNAL OF INTENSIVE MEDICINE 2024; 4:453-467. [PMID: 39310056 PMCID: PMC11411436 DOI: 10.1016/j.jointm.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 09/25/2024]
Abstract
Sepsis is a life-threatening syndrome resulting from a dysregulated host response to infection. It is the primary cause of death in the intensive care unit, posing a substantial challenge to human health and medical resource allocation. The pathogenesis and pathophysiology of sepsis are complex. During its onset, pro-inflammatory and anti-inflammatory mechanisms engage in intricate interactions, possibly leading to hyperinflammation, immunosuppression, and long-term immune disease. Of all critical outcomes, hyperinflammation is the main cause of early death among patients with sepsis. Therefore, early suppression of hyperinflammation may improve the prognosis of these patients. Nafamostat mesilate is a serine protease inhibitor, which can inhibit the activation of the complement system, coagulation system, and contact system. In this review, we discuss the pathophysiological changes occurring in these systems during sepsis, and describe the possible targets of the serine protease inhibitor nafamostat mesilate in the treatment of this condition.
Collapse
Affiliation(s)
- Qiaolan He
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yilin Wei
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiqi Qian
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Kim T, Kim DE, Jo EM, Lee Y, Kim DW, Kim HJ, Seong EY, Song SH, Rhee H. The role of nafamostat mesylate anticoagulation in continuous kidney replacement therapy for critically ill patients with bleeding tendencies: a retrospective study on patient outcomes and safety. Kidney Res Clin Pract 2024; 43:469-479. [PMID: 38934038 PMCID: PMC11237322 DOI: 10.23876/j.krcp.23.310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/23/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Continuous kidney replacement therapy (CKRT) is crucial in the management of acute kidney injury in intensive care units (ICUs). Nonetheless, the optimal anticoagulation strategy for patients with bleeding tendencies remains debated. This study aimed to evaluate patient outcomes and safety of nafamostat mesylate (NM) compared with no anticoagulation (NA) in critically ill patients with bleeding tendencies who were undergoing CKRT. METHODS This retrospective study enrolled 2,313 patients who underwent CKRT between March 2013 and December 2022 at the third affiliated hospital in South Korea. After applying the exclusion criteria, 490 patients were included in the final analysis, with 245 patients in the NM and NA groups each, following 1:1 propensity score matching. Subsequently, in-hospital mortality, incidence of bleeding complications, agranulocytosis, hyperkalemia, and length of hospital stay were assessed. RESULTS No significant differences were observed between the groups regarding the lengths of hospital and ICU stays or the incidence of agranulocytosis and hyperkalemia. The NM group showed a smaller decrease in hemoglobin levels during CKRT (-1.90 g/dL vs. -2.39 g/dL) and less need for blood product transfusions than the NA group. Furthermore, the NM group exhibited a survival benefit in patients who required transfusion of all three blood products. CONCLUSION NM is an effective and safe anticoagulant for CKRT in critically ill patients, especially those requiring transfusion of all three blood products. Although these findings are promising, further multicenter studies are needed to validate them and explore the mechanisms underlying the observed benefits.
Collapse
Affiliation(s)
- Taeil Kim
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Dong Eon Kim
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Eun Mi Jo
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Yeji Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Da Woon Kim
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Hyo Jin Kim
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Eun Young Seong
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Sang Heon Song
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Harin Rhee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| |
Collapse
|
5
|
Horváth IL, Kleiner D, Nagy R, Fehérvári P, Hankó B, Hegyi P, Csupor D. Nafamostat Reduces the Incidence of post-ERCP Pancreatitis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin Pharmacol Ther 2024; 115:206-212. [PMID: 38032816 DOI: 10.1002/cpt.3118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Pancreatitis is the most common complication of endoscopic retrograde cholangiopancreatography (ERCP). As the management of pancreatitis is limited, clinical approaches focus on the prevention of post-ERCP pancreatitis (PEP). In theory, the serine protease inhibitor nafamostat can reduce circulating inflammatory mediators in pancreatitis. We aimed to investigate the effect of nafamostat in the prevention of PEP in this systematic review and meta-analysis. The protocol for this review was registered in PROSPERO (CRD42022367988). We systematically searched 5 databases without any filters on September 26, 2022. The eligible population was adult patients undergoing ERCP. We compared the PEP preventive effect of nafamostat to placebo. The main outcome was the occurrence of PEP. We calculated the pooled odds ratios (ORs), mean differences, and corresponding 95% confidence intervals (95% CIs) and multilevel model. The risk of bias was assessed using the Rob2 tool. Seven randomized controlled trials involving 2,962 patients were eligible for inclusion. Nafamostat reduced the overall incidence rate of PEP (20 mg, OR: 0.50, 95% CI: 0.30-0.82 and 50 mg, OR: 0.48, 95% CI: 0.24-0.96). However, the occurrence of mild PEP was significantly reduced only in the subgroup receiving 20 mg nafamostat (OR, 0.49, 95% CI: 0.31-0.77). Overall, nafamostat therapy reduced moderate PEP in high-risk patients (OR: 0.18, 95% CI: 0.0.4-0.84) and mild PEP in low-risk patients (OR: 0.32, 95% CI: 0.17-0.61). Nafamostat is an effective therapy in the prevention of mild post-ERCP pancreatitis. Further research is required to determine the cost-effectiveness of this therapy.
Collapse
Affiliation(s)
- István László Horváth
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- University Pharmacy, Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| | - Dénes Kleiner
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- University Pharmacy, Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| | - Rita Nagy
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Heim Pál National Pediatric Institute, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Fehérvári
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Biostatistics, University of Veterinary Medicine, Budapest, Hungary
| | - Balázs Hankó
- University Pharmacy, Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Dezső Csupor
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Institute of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| |
Collapse
|
6
|
Zhigulin AS, Barygin OI. Mechanisms of NMDA Receptor Inhibition by Sepimostat-Comparison with Nafamostat and Diarylamidine Compounds. Int J Mol Sci 2023; 24:15685. [PMID: 37958669 PMCID: PMC10649274 DOI: 10.3390/ijms242115685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors are inhibited by many amidine and guanidine compounds. In this work, we studied the mechanisms of their inhibition by sepimostat-an amidine-containing serine protease inhibitor with neuroprotective properties. Sepimostat inhibited native NMDA receptors in rat hippocampal CA1 pyramidal neurons with IC50 of 3.5 ± 0.3 µM at -80 mV holding voltage. It demonstrated complex voltage dependence with voltage-independent and voltage-dependent components, suggesting the presence of shallow and deep binding sites. At -80 mV holding voltage, the voltage-dependent component dominates, and we observed pronounced tail currents and overshoots evidencing a "foot-in-the-door" open channel block. At depolarized voltages, the voltage-independent inhibition by sepimostat was significantly attenuated by the increase of agonist concentration. However, the voltage-independent inhibition was non-competitive. We further compared the mechanisms of the action of sepimostat with those of structurally-related amidine and guanidine compounds-nafamostat, gabexate, furamidine, pentamidine, diminazene, and DAPI-investigated previously. The action of all these compounds can be described by the two-component mechanism. All compounds demonstrated similar affinity to the shallow site, which is responsible for the voltage-independent inhibition, with binding constants in the range of 3-30 µM. In contrast, affinities to the deep site differed dramatically, with nafamostat, furamidine, and pentamidine being much more active.
Collapse
Affiliation(s)
| | - Oleg I. Barygin
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 44, Toreza Prospekt, 194223 Saint Petersburg, Russia;
| |
Collapse
|
7
|
Xie Y, Cheng Z, Deng C, Deng M, Zhang H. Nafamostat mesilate for prevention of post-endoscopic retrograde cholangiopancreatography pancreatitis: A systematic review and meta-analysis based on prospective, randomized, and controlled trials. Medicine (Baltimore) 2023; 102:e35174. [PMID: 37832051 PMCID: PMC10578773 DOI: 10.1097/md.0000000000035174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVES To evaluate the efficacy of nafamostat mesilate in the prevention of post-endoscopic retrograde cholangiopancreatography pancreatitis (PEP) by conduct a systematic review and meta-analysis. METHOD We retrieved for all randomized controlled trials (RCTs) about compare nafamostat mesilate with placebo in preventing PEP published before August 23, 2022, in 5 major electronic databases. The primary outcome was PEP rate, and the secondary outcome was post-ERCP hyperamylasemia (PEHA) rate. Subgroup analyses were performed to reveal the factors that may affect the preventive effect of nafamostat. Assessment of the quality of evidence was conducted based on Grading of Recommendations, Assessment, Development and Evaluations (GRADE) system. RESULTS According to the search strategy and criteria of inclusion and exclusion, 8 articles with a number of 3210 patients were included. The PEP incidence of the nafamostat group was inferior compared with the placebo group (4.6% vs 8.5%, RR = 0.50, 95% CI: 0.38-0.66). Subgroup analyses revealed that nafamostat had a preventive effect on patients with different risk stratification (High-risk: RR = 0.61, 95% CI: 0.43-0.86, Low-risk: RR = 0.28; 95% CI: 0.17-0.47). Different doses (20 mg: RR = 0.50, 95% CI: 0.36-0.69, 50 mg: RR = 0.45, 95% CI: 0.27-0.74) and duration (<12 hour: RR = 0.55, 95% CI: 0.37-0.81, ≥12 h: RR = 0.44, 95% CI: 0.29-0.66) of administration of nafamostat are adequate for the prevention of PEP, but postoperative administration may not help (preoperative: RR = 0.52, 95% CI: 0.39-0.69, postoperative: RR = 0.54, 95% CI: 0.23-1.23). Nafamostat may not efficacious in preventing severe PEP (Mild: RR = 0.49, 95% CI, 0.35-0.68, Moderate: RR = 0.47, 95% CI: 0.25-0.86, Severe: RR = 0.91, 95% CI, 0.25-3.29) or in low-quality studies (Low-quality: RR = 0.69, 95% CI: 0.13-3.60, High-quality: RR = 0.49, 95% CI: 0.37-0.65). CONCLUSION Preoperative use of nafamostat can effectively prevent PEP in patients with various risk stratification. Nafamostat can prevent mild and moderate PEP, but may not prevent severe PEP and PEHA. There should be more high-quality RCTs in future to strengthen the evidence of nafamostat in preventing PEP.
Collapse
Affiliation(s)
- Yu Xie
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ziyao Cheng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cunliang Deng
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mingming Deng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hailong Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Raghav PK, Mann Z, Ahluwalia SK, Rajalingam R. Potential treatments of COVID-19: Drug repurposing and therapeutic interventions. J Pharmacol Sci 2023; 152:1-21. [PMID: 37059487 PMCID: PMC9930377 DOI: 10.1016/j.jphs.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The infection is caused when Spike-protein (S-protein) present on the surface of SARS-CoV-2 interacts with human cell surface receptor, Angiotensin-converting enzyme 2 (ACE2). This binding facilitates SARS-CoV-2 genome entry into the human cells, which in turn causes infection. Since the beginning of the pandemic, many different therapies have been developed to combat COVID-19, including treatment and prevention. This review is focused on the currently adapted and certain other potential therapies for COVID-19 treatment, which include drug repurposing, vaccines and drug-free therapies. The efficacy of various treatment options is constantly being tested through clinical trials and in vivo studies before they are made medically available to the public.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
| | | | - Simran Kaur Ahluwalia
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh, India
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Zhou Y, Yu S, Chen D, Li H, Xu P, Yuan C, Jiang L, Huang M. Nafamostat Mesylate in Combination with the Mouse Amino-Terminal Fragment of Urokinase-Human Serum Albumin Improves the Treatment Outcome of Triple-Negative Breast Cancer Therapy. Mol Pharm 2023; 20:905-917. [PMID: 36463525 DOI: 10.1021/acs.molpharmaceut.2c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Triple-negative breast cancer (TNBC) is highly aggressive and causes a higher proportion of metastatic cases. However, therapies directed to specific molecular targets have rarely achieved clinically meaningful improvements in the outcome of TNBC therapy. A urokinase-type plasminogen activator (uPA), one of the best-validated biomarkers of breast cancer, is an extracellular proteolytic serine protease involved in many pathological and physiological processes, including tumor cell invasion and metastasis. Nafamostat mesylate (NM) is a synthetic compound that inhibits various serine proteases and has been used as a therapeutic agent for the treatment of TNBC. Nevertheless, NM has poor specificity for serine proteases and is easy be hydrolyzed; moreover, the inhibitory mechanism of TNBC therapy is unclear. In this study, we combine NM with a macromolecular drug delivery vehicle, mouse amino-terminal fragment of urokinase-human serum albumin (mATF-HSA), to form a complex (mATF-HSA:NM) using the dilution-incubation-purification method. mATF specifically targets uPAR overexpressed on the surface of TNBC cells; moreover, HSA prevents NM from being hydrolyzed by numerous serine proteases. mATF-HSA:NM showed stronger inhibitory effects on the proliferation and metastasis of TNBC in vitro and in vivo without significant cytotoxicity on normal cells and tissues. In addition, we demonstrated that NM mediates metastasis of TNBC cells through inhibition of uPA using a stable uPA knockdown cell line (MDA-MB231 shuPA). Overall, we have developed a macromolecular complex targeted to treat high uPAR-expressing tumor types, and mATF-HSA can potentially be used to load other types of drugs with tumor-targeting specificity for mouse tumor models and is a promising tool to study tumor biology in mouse tumor models.
Collapse
Affiliation(s)
- Yang Zhou
- College of Chemistry, Fuzhou University, Fuzhou, Fujian350116, P.R. China
| | - Shujuan Yu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian350116, P.R. China
| | - Dan Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian350116, P.R. China
| | - Hanlin Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian350116, P.R. China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian350116, P.R. China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian350116, P.R. China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian350116, P.R. China.,Fujian Key Lab Moratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian350116, P.R. China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian350116, P.R. China
| |
Collapse
|
10
|
Zhigulin AS, Tikhonov DB, Barygin OI. Mechanisms of acid-sensing ion channels inhibition by nafamostat, sepimostat and diminazene. Eur J Pharmacol 2022; 938:175394. [PMID: 36403685 DOI: 10.1016/j.ejphar.2022.175394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Acid-sensing ion channels (ASICs) are blocked by many cationic compounds. Mechanisms of action, which may include pore block, modulation of activation and desensitization, need systematic analysis to allow predictable design of new potent and selective drugs. In this work, we studied the action of the serine protease inhibitors nafamostat, sepimostat, gabexate and camostat, on native ASICs in rat giant striatal interneurons and recombinant ASIC1a and ASIC2a channels, and compared it to that of well-known small molecule ASIC blocker diminazene. All these compounds have positively charged amidine and/or guanidine groups in their structure. Nafamostat, sepimostat and diminazene inhibited pH 6.5-induced currents in rat striatal interneurons at -80 mV holding voltage with IC50 values of 0.78 ± 0.12 μM, 2.4 ± 0.3 μM and 0.40 ± 0.09 μM, respectively, whereas camostat and gabexate were practically ineffective. The inhibition by nafamostat, sepimostat and diminazene was voltage-dependent evidencing binding in the channel pore. They were not trapped in the closed channels, suggesting "foot-in-the-door" mechanism of action. The inhibitory activity of nafamostat, sepimostat and diminazene was similar in experiments on native ASICs and recombinant ASIC1a channels, while all of them were drastically less active against ASIC2a channels. According to our molecular modeling, three active compounds bind in the channel pore between Glu 433 and Ala 444 in a similar way. In view of the relative safety of nafamostat for clinical use in humans, it can be considered as a potential candidate for the treatment of pathophysiological conditions linked to ASICs disfunction, including inflammatory pain and ischemic stroke.
Collapse
Affiliation(s)
- Arseniy S Zhigulin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia
| | - Denis B Tikhonov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia
| | - Oleg I Barygin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia.
| |
Collapse
|
11
|
Cryo-EM structures reveal the activation and substrate recognition mechanism of human enteropeptidase. Nat Commun 2022; 13:6955. [PMID: 36376282 PMCID: PMC9663175 DOI: 10.1038/s41467-022-34364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Enteropeptidase (EP) initiates intestinal digestion by proteolytically processing trypsinogen, generating catalytically active trypsin. EP dysfunction causes a series of pancreatic diseases including acute necrotizing pancreatitis. However, the molecular mechanisms of EP activation and substrate recognition remain elusive, due to the lack of structural information on the EP heavy chain. Here, we report cryo-EM structures of human EP in inactive, active, and substrate-bound states at resolutions from 2.7 to 4.9 Å. The EP heavy chain was observed to clamp the light chain with CUB2 domain for substrate recognition. The EP light chain N-terminus induced a rearrangement of surface-loops from inactive to active conformations, resulting in activated EP. The heavy chain then served as a hinge for light-chain conformational changes to recruit and subsequently cleave substrate. Our study provides structural insights into rearrangements of EP surface-loops and heavy chain dynamics in the EP catalytic cycle, advancing our understanding of EP-associated pancreatitis.
Collapse
|
12
|
Zhou Y, Wu J, Xue G, Li J, Jiang L, Huang M. Structural study of the uPA-nafamostat complex reveals a covalent inhibitory mechanism of nafamostat. Biophys J 2022; 121:3940-3949. [PMID: 36039386 PMCID: PMC9674978 DOI: 10.1016/j.bpj.2022.08.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Nafamostat mesylate (NM) is a synthetic compound that inhibits various serine proteases produced during the coagulation cascade and inflammation. Previous studies showed that NM was a highly safe drug for the treatment of different cancers, but the precise functions and mechanisms of NM are not clear. In this study, we determined a series of crystal structures of NM and its hydrolysates in complex with a serine protease (urokinase-type plasminogen activator [uPA]). These structures reveal that NM was cleaved by uPA and that a hydrolyzed product (4-guanidinobenzoic acid [GBA]) remained covalently linked to Ser195 of uPA, and the other hydrolyzed product (6-amidino-2-naphthol [6A2N]) released from uPA. Strikingly, in the inactive uPA (uPA-S195A):NM structure, the 6A2N side of intact NM binds to the specific pocket of uPA. Molecular dynamics simulations and end-point binding free-energy calculations show that the conf1 of NM (6A2N as P1 group) in the uPA-S195A:NM complex may be more stable than conf2 of NM (GBA as P1 group). Moreover, in the structure of uPA:NM complex, the imidazole group of His57 flips further away from Ser195 and disrupts the stable canonical catalytic triad conformation. These results not only reveal the inhibitory mechanism of NM as an efficient serine protease inhibitor but also might provide the structural basis for the further development of serine protease inhibitors.
Collapse
Affiliation(s)
- Yang Zhou
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, P.R. China
| | - Juhong Wu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, P.R. China
| | - Guangpu Xue
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, P.R. China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, P.R. China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, P.R. China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian, P.R. China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, P.R. China.
| |
Collapse
|
13
|
Karimian A, Behjati M, Karimian M. Molecular mechanisms involved in anosmia induced by SARS-CoV-2, with a focus on the transmembrane serine protease TMPRSS2. Arch Virol 2022; 167:1931-1946. [PMID: 35939103 PMCID: PMC9358639 DOI: 10.1007/s00705-022-05545-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022]
Abstract
Since 2020, SARS-CoV-2 has caused a pandemic virus that has posed many challenges worldwide. Infection with this virus can result in a number of symptoms, one of which is anosmia. Olfactory dysfunction can be a temporary or long-term viral complication caused by a disorder of the olfactory neuroepithelium. Processes such as inflammation, apoptosis, and neuronal damage are involved in the development of SARS-CoV-2-induced anosmia. One of the receptors that play a key role in the entry of SARS-CoV-2 into the host cell is the transmembrane serine protease TMPRSS2, which facilitates this process by cleaving the viral S protein. The gene encoding TMPRSS2 is located on chromosome 21. It contains 15 exons and has many genetic variations, some of which increase the risk of disease. Delta strains have been shown to be more dependent on TMPRSS2 for cell entry than Omicron strains. Blockade of this receptor by serine protease inhibitors such as camostat and nafamostat can be helpful for treating SARS-CoV-2 symptoms, including anosmia. Proper understanding of the different functional aspects of this serine protease can help to overcome the therapeutic challenges of SARS-CoV-2 symptoms, including anosmia. In this review, we describe the cellular and molecular events involved in anosmia induced by SARS-CoV-2 with a focus on the function of the TMPRSS2 receptor.
Collapse
Affiliation(s)
- Ali Karimian
- Department of Otorhinolaryngology, School of Medicine, Kashan University of Medical Science, Kashan, Iran
| | - Mohaddeseh Behjati
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| |
Collapse
|
14
|
The effect of nafamostat mesilate infusion after ERCP for post-ERCP pancreatitis. BMC Gastroenterol 2022; 22:271. [PMID: 35641898 PMCID: PMC9153157 DOI: 10.1186/s12876-022-02345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 05/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background Nafamostat mesilate decreases the incidence of pancreatitis after endoscopic retrograde cholangiopancreatography (ERCP). However, no studies have administered nafamostat mesilate after ERCP. So we investigated if the infusion of nafamostat mesilate after ERCP can affect the post-ERCP pancreatitis (PEP) in high-risk patients.
Methods In a tertiary hospital, 350 high-risk patients of PEP were reviewed retrospectively. Among them, 201 patients received nafamostat mesilate after ERCP. Patient-related and procedure-related risk factors for PEP were collected. We performed a propensity score matching to adjust for the significant different baseline characteristics. The incidence and severity of PEP were evaluated according to the infusion of nafamostat mesilate. The risk factors of PEP were also analyzed by multivariate logistic regression.
Results The baseline characteristics were not different after the matching. The PEP rate (17.4% vs. 10.3%, P = 0.141) was insignificant. Among the PEP patients, mild PEP was significantly higher in the nafamostat mesilate group (85.7% vs. 45.5%, P = 0.021). Only one patient in the nafamostat mesilate group developed severe PEP. Although young age (odds ratio [OR] 3.60, 95% CI 1.09–11.85, P = 0.035) was a risk factor, nafamostat mesilate (odds ratio [OR] 0.30, 95% CI 0.09–0.98, P = 0.047) was a protective factor for moderate to severe PEP. Conclusions The administration of nafamostat mesilate after ERCP in high-risk patients was not effective in preventing PEP, but may attenuate the severity of PEP. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02345-3.
Collapse
|
15
|
Zhigulin AS, Barygin OI. Mechanisms of NMDA receptor inhibition by nafamostat, gabexate and furamidine. Eur J Pharmacol 2022; 919:174795. [PMID: 35122868 DOI: 10.1016/j.ejphar.2022.174795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/03/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors are affected by many pharmaceuticals. In this work, we studied the action of the serine protease inhibitors nafamostat, gabexate and camostat, and an antiprotozoal compound, furamidine, on native NMDA receptors in rat hippocampal pyramidal neurons. Nafamostat, furamidine and gabexate inhibited these receptors with IC50 values of 0.20 ± 0.04, 0.64 ± 0.13 and 16 ± 3 μM, respectively, whereas camostat was ineffective. Nafamostat and furamidine showed voltage-dependent inhibition, while gabexate showed practically voltage-independent inhibition. Nafamostat and furamidine demonstrated tail currents, implying a 'foot-in-the-door' mechanism of action; gabexate did not demonstrate any signs of 'foot-in-the-door' or trapping channel block. Gabexate action was also not competitive, suggesting allosteric inhibition of NMDA receptors. Furamidine and nafamostat are structurally similar to the previously studied diminazene and all three demonstrated a 'foot-in-the-door' mechanism. They have a rather rigid, elongated structures and cannot fold into more compact forms. By contrast, the gabexate molecule can fold, but its folded structure differs drastically from that of typical NMDA receptor blockers, in agreement with its voltage-independent inhibition. These findings provide a better understanding of the structural determinants of NMDA receptor antagonism, while also supporting the potential clinical repurposing of these drugs as neuroprotectors for glaucoma and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Arseniy S Zhigulin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia
| | - Oleg I Barygin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia.
| |
Collapse
|
16
|
Extensive improvement of oral bioavailability of mebendazole, a brick dust, by polymer-containing SNEDDS preparation: Disruption of high crystallinity by utilizing its counter ion. Eur J Pharm Biopharm 2022; 172:213-227. [DOI: 10.1016/j.ejpb.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022]
|
17
|
Nafamostat mesilate, a nuclear factor kappa B inhibitor, enhances the antitumor action of radiotherapy on gallbladder cancer cells. PLoS One 2021; 16:e0257019. [PMID: 34473771 PMCID: PMC8412321 DOI: 10.1371/journal.pone.0257019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 08/22/2021] [Indexed: 11/18/2022] Open
Abstract
Nuclear factor kappa B (NF-κB) is a transcriptional factor that can be activated by radiotherapy and chemotherapy. The synthetic protease inhibitor nafamostat mesilate (NM) inhibits NF-κB activity and exerts antitumor actions in various types of cancer. In the present study, we hypothesized that NM might enhance the antitumor action of radiotherapy on gallbladder cancer (GBC) cells by inhibiting radiation-induced NF-κB activity. Thus, we investigated the correlation between radiotherapy and NF-κB activity in GBC cells. We assessed the in vitro effects of radiotherapy with or without NM on NF-κB activity, apoptosis of GBC cells (NOZ and OCUG-1), induction of apoptotic cascade, cell cycle progression, and viability of GBC cells using four treatment groups: 1) radiation (5 Gy) alone; 2) NM (80 μg/mL and 40 μg/mL, respectively) alone; 3) combination (radiation and NM); and 4) vehicle (control). The same experiments were performed in vivo using a xenograft GBC mouse model. In vitro, NM inhibited radiation-induced NF-κB activity. Combination treatment significantly attenuated cell viability and increased cell apoptosis and G2/M phase cell cycle arrest compared with those in the other groups for NOZ and OCUG-1 cells. Moreover, combination treatment upregulated the expression of apoptotic proteins compared with that after the other treatments. In vivo, NM improved the antitumor action of radiation and increased the population of Ki-67-positive cells. Overall, NM enhanced the antitumor action of radiotherapy on GBC cells by suppressing radiation-induced NF-κB activity. Thus, the combination of radiotherapy and NM may be useful for the treatment of locally advanced unresectable GBC.
Collapse
|
18
|
Mahmoud IS, Jarrar YB. Targeting the intestinal TMPRSS2 protease to prevent SARS-CoV-2 entry into enterocytes-prospects and challenges. Mol Biol Rep 2021; 48:4667-4675. [PMID: 34023987 PMCID: PMC8140747 DOI: 10.1007/s11033-021-06390-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023]
Abstract
The transmembrane protease serine 2 (TMPRSS2) is a membrane anchored protease that primarily expressed by epithelial cells of respiratory and gastrointestinal systems and has been linked to multiple pathological processes in humans including tumor growth, metastasis and viral infections. Recent studies have shown that TMPRSS2 expressed on cell surface of host cells could play a crucial role in activation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein which facilitates the rapid early entry of the virus into host cells. In addition, direct suppression of TMPRSS2 using small drug inhibitors has been demonstrated to be effective in decreasing SARS-CoV-2 infection in vitro, which presents TMPRSS2 protease as a potential therapeutic strategy for SARS-CoV-2 infection. Recently, SARS-CoV-2 has been shown to be capable of infecting gastrointestinal enterocytes and to provoke gastrointestinal disorders in patients with COVID-19 disease, which is considered as a new transmission route and target organ of SARS-CoV-2. In this review, we highlight the biochemical properties of TMPRSS2 protease and discuss the potential targeting of TMPRSS2 by inhibitors to prevent the SARS-CoV-2 spreading through gastro-intestinal tract system as well as the hurdles that need to be overcome.
Collapse
Affiliation(s)
- Ismail Sami Mahmoud
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, The Hashemite University, Zarqa, 13133, Jordan.
| | | |
Collapse
|
19
|
Bhowmik D, Sharma RD, Prakash A, Kumar D. "Identification of Nafamostat and VR23 as COVID-19 drug candidates by targeting 3CL pro and PL pro.". J Mol Struct 2021; 1233:130094. [PMID: 33612858 PMCID: PMC7884051 DOI: 10.1016/j.molstruc.2021.130094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/08/2023]
Abstract
The sudden increase in the COVID-19 epidemic affected by novel coronavirus 2019 has jeopardized public health worldwide. Hence the necessities of a drug or therapeutic agent that heal SARS-CoV-2 infections are essential requirements. The viral genome encodes a large Polyprotein, further processed by the main protease/ 3C-like protease (3CLpro) and papain-like proteases (PLpro) into 16 nonstructural proteins to form a viral replication complex. These essential functions of 3CLpro and PLpro in virus duplication make these proteases a promising target for discovering potential therapeutic candidates and possible treatment for SARS-CoV-2 infection. This study aimed to screen a unique set of protease inhibitors library against 3CLpro and PLpro of the SARS-CoV-2. A molecular docking study was performed using PyRx to reveal the binding affinity of the selected ligands and molecular dynamic simulations were executed to assess the three-dimensional stability of protein-ligand complexes. The pharmacodynamics parameters of the inhibitors were predicted using admetSAR. The top two ligands (Nafamostat and VR23) based on docking scores were selected for further studies. Selected ligands showed excellent pharmacokinetic properties with proper absorption, bioavailability and minimal toxicity. Due to the emerging and efficiency of remdesivir and dexamethasone in healing COVID-19 patients, ADMET properties of the selected ligands were thus compared with it. MD Simulation studies up to 100 ns revealed the ligands' stability at the target proteins' binding site residues. Therefore, Nafamostat and VR23 may provide potential treatment options against SARS-CoV-2 infections by potentially inhibiting virus duplication though more research is warranted.
Collapse
Affiliation(s)
- Deep Bhowmik
- Department of Microbiology, Assam University, Silchar-788011, Assam, India
| | - Ravi Datta Sharma
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon-122413, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon-122413, India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar-788011, Assam, India
| |
Collapse
|
20
|
Pagliano P, Scarpati G, Sellitto C, Conti V, Spera AM, Ascione T, Piazza O, Filippelli A. Experimental Pharmacotherapy for COVID-19: The Latest Advances. J Exp Pharmacol 2021; 13:1-13. [PMID: 33442304 PMCID: PMC7800714 DOI: 10.2147/jep.s255209] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/12/2020] [Indexed: 12/17/2022] Open
Abstract
The coronavirus infectious disease-2019 (COVID-19) has overwhelmed like a shock wave in a completely unprepared world. Despite coronavirus infections were involved in previous epidemic outbreaks, no antiviral agent was developed for specific treatment. As a consequence, since the beginning of this pandemic, both repositioned and experimental drugs were used to treat the infected patients without evidence of clinical efficacy. Just based on experience coming from the use of antiviral agents to treat other viruses (eg, lopinavir/ritonavir, remdesivir) and supposed antiviral or immunomodulatory activities of drugs with no approved antiviral indications (eg hydroxychloroquine, tocilizumab), clinicians have faced the ongoing pandemic. Currently, after about 9 months from the COVID-19 spread, there is still no antiviral agent capable of ensuring the cure of this syndrome. Clinical trials are beginning to confirm the benefits of some drugs, while for other compounds, efficacy and safety have not yet been confirmed. Randomized clinical trials (RCT) have denied or downsized the beneficial effects attributed to certain molecules, such as aminoquinolines, largely used in clinical practice at the beginning of COVID-19 spread. Conversely, at the same time, they have provided evidence for unexpected effectiveness of other agents that have been underutilized, such as steroids, which were not used in SARS treatment because of the threatened effect on viral replication. Evidence deriving from pathologic studies have demonstrated that the prothrombotic effects of SARS-CoV-2 can be prevented by heparin prophylaxis, underlining the need for personalized treatment for patients with severe disease. The main aim of this review is to synthesize the available information and evidence on both repositioned and experimental drugs for the treatment of COVID-19, focusing on the need to exercise caution on the use of unproven medical therapies.
Collapse
Affiliation(s)
- Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Infectious Diseases, University of Salerno, Baronissi, Italy
| | - Giuliana Scarpati
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Anesthesiology, University of Salerno, Baronissi, Italy
| | - Carmine Sellitto
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Pharmacology, University of Salerno, Baronissi, Italy
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Pharmacology, University of Salerno, Baronissi, Italy
| | - Anna Maria Spera
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Infectious Diseases, University of Salerno, Baronissi, Italy
| | - Tiziana Ascione
- Department of Medicine, Service of Infectious Diseases, Cardarelli Hospital, Naples, Italy
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Anesthesiology, University of Salerno, Baronissi, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Pharmacology, University of Salerno, Baronissi, Italy
| |
Collapse
|
21
|
Pillaiyar T, Manickam M, Meenakshisundaram S, Benjamine AJ. Candidate Drugs for the Potential Treatment of Coronavirus Diseases. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2021:85-114. [DOI: 10.1007/7653_2020_67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
22
|
Medina-Enríquez MM, Lopez-León S, Carlos-Escalante JA, Aponte-Torres Z, Cuapio A, Wegman-Ostrosky T. ACE2: the molecular doorway to SARS-CoV-2. Cell Biosci 2020; 10:148. [PMID: 33380340 PMCID: PMC7772801 DOI: 10.1186/s13578-020-00519-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022] Open
Abstract
The angiotensin-converting enzyme 2 (ACE2) is the host functional receptor for the new virus SARS-CoV-2 causing Coronavirus Disease 2019. ACE2 is expressed in 72 different cell types. Some factors that can affect the expression of the ACE2 are: sex, environment, comorbidities, medications (e.g. anti-hypertensives) and its interaction with other genes of the renin-angiotensin system and other pathways. Different factors can affect the risk of infection of SARS-CoV-2 and determine the severity of the symptoms. The ACE2 enzyme is a negative regulator of RAS expressed in various organ systems. It is with immunity, inflammation, increased coagulopathy, and cardiovascular disease. In this review, we describe the genetic and molecular functions of the ACE2 receptor and its relation with the physiological and pathological conditions to better understand how this receptor is involved in the pathogenesis of COVID-19. In addition, it reviews the different comorbidities that interact with SARS-CoV-2 in which also ACE2 plays an important role. It also describes the different factors that interact with the virus that have an influence in the expression and functional activities of the receptor. The goal is to provide the reader with an understanding of the complexity and importance of this receptor.
Collapse
Affiliation(s)
| | - Sandra Lopez-León
- Global Drug Development, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA.
| | | | | | - Angelica Cuapio
- Center of Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Talia Wegman-Ostrosky
- Department of Basic Research, Instituto Nacional de Cancerología, 22 San Fernando Avenue, Belisario Domínguez Sección XVI, 14080, Mexico City, Mexico.
| |
Collapse
|
23
|
Sternberg A, McKee DL, Naujokat C. Novel Drugs Targeting the SARS-CoV-2/COVID-19 Machinery. Curr Top Med Chem 2020; 20:1423-1433. [PMID: 32416679 DOI: 10.2174/1568026620999200517043137] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/13/2022]
Abstract
Like other human pathogenic viruses, coronavirus SARS-CoV-2 employs sophisticated macromolecular machines for viral host cell entry, genome replication and protein processing. Such machinery encompasses SARS-CoV-2 envelope spike (S) glycoprotein required for host cell entry by binding to the ACE2 receptor, viral RNA-dependent RNA polymerase (RdRp) and 3-chymotrypsin-like main protease (3Clpro/Mpro). Under the pressure of the accelerating COVID-19 pandemic caused by the outbreak of SARS-CoV-2 in Wuhan, China in December 2019, novel and repurposed drugs were recently designed and identified for targeting the SARS-CoV-2 reproduction machinery, with the aim to limit the spread of SARS-CoV-2 and morbidity and mortality due to the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ariane Sternberg
- Center and Network for Targeted Oncology, Muehlackerweg 8, D-69239 Heidelberg, Germany
| | | | - Cord Naujokat
- Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg, Germany
| |
Collapse
|
24
|
Zhand S, Saghaeian Jazi M, Mohammadi S, Tarighati Rasekhi R, Rostamian G, Kalani MR, Rostamian A, George J, Douglas MW. COVID-19: The Immune Responses and Clinical Therapy Candidates. Int J Mol Sci 2020; 21:5559. [PMID: 32756480 PMCID: PMC7432271 DOI: 10.3390/ijms21155559] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19), with rising numbers of patients worldwide, presents an urgent need for effective treatments. To date, there are no therapies or vaccines that are proven to be effective against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several potential candidates or repurposed drugs are under investigation, including drugs that inhibit SARS-CoV-2 replication and block infection. The most promising therapy to date is remdesivir, which is US Food and Drug Administration (FDA) approved for emergency use in adults and children hospitalized with severe suspected or laboratory-confirmed COVID-19. Herein we summarize the general features of SARS-CoV-2's molecular and immune pathogenesis and discuss available pharmacological strategies, based on our present understanding of SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) infections. Finally, we outline clinical trials currently in progress to investigate the efficacy of potential therapies for COVID-19.
Collapse
Affiliation(s)
- Sareh Zhand
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia;
- Department of Microbiology, Faculty of Biological Sciences and technology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Marie Saghaeian Jazi
- Metabolic Disorders Research Center, Golestan University of Medcial Sciences, Gorgan 4934174515, Iran;
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan 4934174515, Iran;
| | - Saeed Mohammadi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan 4934174515, Iran;
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan 4934174515, Iran
| | - Roozbeh Tarighati Rasekhi
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | | | - Mohammad Reza Kalani
- Medical Cellular and Molecular Research Centre, Golestan University of Medical Sciences, Gorgan 4934174515, Iran;
| | - Aida Rostamian
- Department of Clinical Sciences, Faculty of Veterinary Science, Islamic Azad University of Karaj, Alborz 3149968111, Iran;
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW 2145, Australia
| | - Mark W Douglas
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW 2145, Australia
- Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Sydney, NSW 2145, Australia
| |
Collapse
|
25
|
Chakraborti S, Bheemireddy S, Srinivasan N. Repurposing drugs against the main protease of SARS-CoV-2: mechanism-based insights supported by available laboratory and clinical data. Mol Omics 2020; 16:474-491. [PMID: 32696772 DOI: 10.1039/d0mo00057d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ongoing global pandemic of COVID-19 has brought life to almost a standstill with the implementation of lockdowns and social distancing as some of the preventive measures in the absence of any approved specific therapeutic interventions. To combat this crisis, research communities worldwide are falling back on the existing repertoire of approved/investigational drugs to probe into their anti-coronavirus properties. In this report, we describe our unique efforts in identifying potential drugs that could be repurposed against the main protease of SARS-CoV-2 (SARS-CoV-2 Mpro). To achieve this goal, we have primarily exploited the principles of 'neighbourhood behaviour' in the protein 3D (workflow-I) and chemical 2D structural space (workflow-II) coupled with docking simulations and insights into the possible modes of action of the selected candidates from the available literature. This integrative approach culminated in prioritizing 29 potential repurpose-able agents (20 approved drugs and 9 investigational molecules) against SARS-CoV-2 Mpro. Apart from the approved/investigational anti-viral drugs, other notable hits include anti-bacterial, anti-inflammatory, anti-cancer and anti-coagulant drugs. Our analysis suggests that some of these drugs have the potential to simultaneously modulate the functions of viral proteins and the host response system. Interestingly, many of these identified candidates (12 molecules from workflow-I and several molecules, belonging to the chemical classes of alkaloids, tetracyclines, peptidomimetics, from workflow-II) are suggested to possess anti-viral properties, which is supported by laboratory and clinical data. Furthermore, this work opens a new avenue of research to probe into the molecular mechanism of action of many drugs, which are known to demonstrate anti-viral activity but are so far not known to target viral proteases.
Collapse
Affiliation(s)
- Sohini Chakraborti
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India.
| | | | | |
Collapse
|
26
|
Benani A, Ben Mkaddem S. Mechanisms Underlying Potential Therapeutic Approaches for COVID-19. Front Immunol 2020; 11:1841. [PMID: 32793246 PMCID: PMC7385230 DOI: 10.3389/fimmu.2020.01841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is a betacoronavirus, and is associated with cytokine storm inflammation and lung injury, leading to respiratory distress. The transmission of the virus is mediated by human contact. To control and prevent the spread of this virus, the majority of people worldwide are facing quarantine; patients are being subjected to non-specific treatments under isolation. To prevent and stop the COVID-19 pandemic, several clinical trials are in the pipeline. The current clinical trials either target the intracellular replication and spread of the virus or the cytokine storm inflammation seen in COVID-19 cases during the later stages of the disease. Since both targeting strategies are different, the window drug administration plays a crucial role in the efficacy of the treatment. Here, we review the mechanism underlying SARS-CoV-2 cell infection and potential future therapeutic approaches.
Collapse
Affiliation(s)
- Abdelouaheb Benani
- Unité de Biologie Moléculaire, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Sanae Ben Mkaddem
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,UFR SMBH, Université Sorbonne Paris Nord, Bobigny, France
| |
Collapse
|
27
|
McKee DL, Sternberg A, Stange U, Laufer S, Naujokat C. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol Res 2020; 157:104859. [PMID: 32360480 PMCID: PMC7189851 DOI: 10.1016/j.phrs.2020.104859] [Citation(s) in RCA: 347] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
Outbreak and pandemic of coronavirus SARS-CoV-2 in 2019/2020 will challenge global health for the future. Because a vaccine against the virus will not be available in the near future, we herein try to offer a pharmacological strategy to combat the virus. There exists a number of candidate drugs that may inhibit infection with and replication of SARS-CoV-2. Such drugs comprise inhibitors of TMPRSS2 serine protease and inhibitors of angiotensin-converting enzyme 2 (ACE2). Blockade of ACE2, the host cell receptor for the S protein of SARS-CoV-2 and inhibition of TMPRSS2, which is required for S protein priming may prevent cell entry of SARS-CoV-2. Further, chloroquine and hydroxychloroquine, and off-label antiviral drugs, such as the nucleotide analogue remdesivir, HIV protease inhibitors lopinavir and ritonavir, broad-spectrum antiviral drugs arbidol and favipiravir as well as antiviral phytochemicals available to date may limit spread of SARS-CoV-2 and morbidity and mortality of COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Ariane Sternberg
- Center and Network for Targeted Oncology, Muehlackerweg 8, D-69239, Heidelberg, Germany
| | - Ulrike Stange
- Center and Network for Targeted Oncology, Muehlackerweg 8, D-69239, Heidelberg, Germany
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität, Tübingen and Tuebingen Center for Academic Drug Discovery, Auf Der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Cord Naujokat
- Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120, Heidelberg, Germany.
| |
Collapse
|
28
|
Elhusseiny KM, Abd-Elhay FAE, Kamel MG. Possible therapeutic agents for COVID-19: a comprehensive review. Expert Rev Anti Infect Ther 2020; 18:1005-1020. [PMID: 32538209 DOI: 10.1080/14787210.2020.1782742] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has emerged in China. There are no available vaccines or antiviral drugs for COVID-19 patients. Herein, we represented possible therapeutic agents that may stand as a potential therapy against COVID-19. AREAS COVERED We searched PubMed, Google Scholar, and clinicaltrials.gov for relevant papers. We showed some agents with potentially favorable efficacy, acceptable safety as well as good pharmacokinetic profiles. Several therapies are under assessment to evaluate their efficacy and safety for COVID-19. However, some drugs were withdrawn due to their side effects after demonstrating some clinical efficacy. Indeed, the most effective therapies could be organ function support, convalescent plasma, anticoagulants, and immune as well as antiviral therapies, especially anti-influenza drugs due to the similarities between respiratory viruses regarding viral entry, uncoating, and replication. We encourage giving more attention to favipiravir, remdesivir, and measles vaccine. EXPERT OPINION A combination, at least dual or even triple therapy, of the aforementioned efficacious and safe therapies is greatly recommended for COVID-19. Further, patients should have a routine assessment for their coagulation and bleeding profiles as well as their inflammatory and cytokine concentrations.
Collapse
Affiliation(s)
- Khaled Mosaad Elhusseiny
- Faculty of Medicine, Al-Azhar University , Cairo, Egypt.,Sayed Galal University Hospital , Cairo, Egypt.,Egyptian Collaborative Research Team , Egypt
| | | | | |
Collapse
|
29
|
Ghali GZ, Ghali MGZ. Nafamostat mesylate attenuates the pathophysiologic sequelae of neurovascular ischemia. Neural Regen Res 2020; 15:2217-2234. [PMID: 32594033 PMCID: PMC7749469 DOI: 10.4103/1673-5374.284981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nafamostat mesylate, an apparent soi-disant panacea of sorts, is widely used to anticoagulate patients undergoing hemodialysis or cardiopulmonary bypass, mitigate the inflammatory response in patients diagnosed with acute pancreatitis, and reverse the coagulopathy of patients experiencing the commonly preterminal disseminated intravascular coagulation in the Far East. The serine protease inhibitor nafamostat mesylate exhibits significant neuroprotective effects in the setting of neurovascular ischemia. Nafamostat mesylate generates neuroprotective effects by attenuating the enzymatic activity of serine proteases, neuroinflammatory signaling cascades, and the endoplasmic reticulum stress responses, downregulating excitotoxic transient receptor membrane channel subfamily 7 cationic currents, modulating the activity of intracellular signal transduction pathways, and supporting neuronal survival (brain-derived neurotrophic factor/TrkB/ERK1/2/CREB, nuclear factor kappa B. The effects collectively reduce neuronal necrosis and apoptosis and prevent ischemia mediated disruption of blood-brain barrier microarchitecture. Investigational clinical applications of these compounds may mitigate ischemic reperfusion injury in patients undergoing cardiac, hepatic, renal, or intestinal transplant, preventing allograft rejection, and treating solid organ malignancies. Neuroprotective effects mediated by nafamostat mesylate support the wise conduct of randomized prospective controlled trials in Western countries to evaluate the clinical utility of this compound.
Collapse
Affiliation(s)
- George Zaki Ghali
- United States Environmental Protection Agency, Arlington, VA; Department of Toxicology, Purdue University, West Lafayette, IN, USA
| | - Michael George Zaki Ghali
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
30
|
Chen X, Xu Z, Zeng S, Wang X, Liu W, Qian L, Wei J, Yang X, Shen Q, Gong Z, Yan Y. The Molecular Aspect of Antitumor Effects of Protease Inhibitor Nafamostat Mesylate and Its Role in Potential Clinical Applications. Front Oncol 2019; 9:852. [PMID: 31552177 PMCID: PMC6733886 DOI: 10.3389/fonc.2019.00852] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/19/2019] [Indexed: 02/05/2023] Open
Abstract
Nafamostat mesylate (NM), a synthetic serine protease inhibitor first placed on the market by Japan Tobacco in 1986, has been approved to treat inflammatory-related diseases, such as pancreatitis. Recently, an increasing number of studies have highlighted the promising effects of NM in inhibiting cancer progression. Alone or in combination treatments, studies have shown that NM attenuates various malignant tumors, including pancreatic, colorectal, gastric, gallbladder, and hepatocellular cancers. In this review, based on several activating pathways, including the canonical Nuclear factor-κB (NF-κB) signaling pathway, tumor necrosis factor receptor-1 (TNFR1) signaling pathway, and tumorigenesis-related tryptase secreted by mast cells, we summarize the anticancer properties of NM in existing studies both in vitro and in vivo. In addition, the efficacy and side effects of NM in cancer patients are summarized in detail. To further clarify NM's antitumor activities, clinical trials devoted to validating the clinical applications and underlying mechanisms are needed in the future.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wanli Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xue Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuying Shen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Park JS, Jeong S, Kim JM, Lee DH. Preventative Effect of Nafamostat Mesilate Infusion into the Main Pancreatic Duct on Post-ERCP Pancreatitis in a Porcine Model: Initial Pilot Study. J INVEST SURG 2019; 33:325-331. [PMID: 30884994 DOI: 10.1080/08941939.2018.1511015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background and Aim: Post endoscopic retrograde cholangiopancreatography (post-ERCP) pancreatitis is not an uncommon adverse event but may not be avoidable. Various pharmacological and endoscopic techniques have been used to prevent post-ERCP pancreatitis (PEP), but most have been ineffective. The aim of this study was to evaluate the preventative effect of an intrapancreatic duct injection of nafamostat mesilate (NM) on PEP. Methods: This experimental study was conducted on 8 mini pigs. Animals were randomly allocated to a control group (n = 4) and or a NM group (n = 4). Pancreatitis was induced by infusing contrast medium into the main pancreatic duct by ERCP in all animals. After contrast medium injection, NM (50 mg/5 cc) was infused in the NM group and the same amount of 5% dextrose solution was infused in the control group. Twenty-four hours after endoscopic procedures, pancreatic inflammation, edema, vacuolization, necrosis and hemorrhage were evaluated histologically. Results: All animals survived until the end of the experiment. No peri-procedural technical difficulty or adverse event was encountered. Histologic examinations confirmed acute pancreatitis in all animals. In histologic acute pancreatitis scoring, no significant intergroup differences were observed between edema (P = 0.134), leukocyte infiltration (P = 0.356), vacuolization (P = 1.000), or hemorrhage (P = 0.071) scores. However, mean necrosis score was significantly lower in the NM group (1.0) than in controls (1.75, P = 0.024). Conclusion: NM injection into the intrapancreatic duct produced promising results with respect to the prevention of PEP development, especially regarding the prevention of necrosis.
Collapse
Affiliation(s)
- Jin-Seok Park
- Digestive Disease Center, Department of Internal Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Seok Jeong
- Digestive Disease Center, Department of Internal Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Joon Mee Kim
- Department of Pathology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Don Haeng Lee
- Digestive Disease Center, Department of Internal Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| |
Collapse
|
32
|
Comparison of gabexate mesilate and nafamostat mesilate for disseminated intravascular coagulation associated with hematological malignancies. Int J Hematol 2018; 109:141-146. [PMID: 30536180 DOI: 10.1007/s12185-018-02567-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
We evaluated clinical outcomes of disseminated intravascular coagulation (DIC) in patients with hematological malignancies treated with synthetic protease inhibitors (SPIs) and compared the effects of gabexate mesilate (FOY) and nafamostat mesilate (FUT). We retrospectively examined 127 patients [acute myeloid leukemia (n = 48), acute lymphoblastic leukemia (n = 25), and non-Hodgkin lymphoma (n = 54)] with DIC, who were diagnosed according to Japanese Ministry of Health, Labour and Welfare criteria and treated with SPIs [FOY (n = 55) and FUT (n = 72)] at our hospital from 2006 to 2015. The DIC resolution rates on days 7 and 14 were 42.6% and 62.4%, respectively. No significant differences were observed in DIC resolution rates between the FUT and FOY groups [40.3% vs. 45.5% (day 7), P = 0.586; 56.3% vs. 69.8% (day 14), P = 0.179, respectively]. Multivariate analysis revealed that response to chemotherapy was the only independent predictor of DIC resolution on days 7 and 14 (ORR 2.81, 95% CI 1.32-5.98, P = 0.007; ORR 2.51, 95% CI 1.12-5.65, P = 0.026). Resolution of DIC was correlated with improvement of background hematological malignancies, and no significant differences were observed between the two SPIs.
Collapse
|
33
|
Sugano H, Shirai Y, Horiuchi T, Saito N, Shimada Y, Eto K, Uwagawa T, Ohashi T, Yanaga K. Nafamostat Mesilate Enhances the Radiosensitivity and Reduces the Radiation-Induced Invasive Ability of Colorectal Cancer Cells. Cancers (Basel) 2018; 10:E386. [PMID: 30336548 PMCID: PMC6210678 DOI: 10.3390/cancers10100386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022] Open
Abstract
Neoadjuvant chemoradiotherapy followed by radical surgery is the standard treatment for patients with locally advanced low rectal cancer. However, several studies have reported that ionizing radiation (IR) activates nuclear factor kappa B (NF-κB) that causes radioresistance and induces matrix metalloproteinase (MMP)-2/-9, which promote tumor migration and invasion. Nafamostat mesilate (FUT175), a synthetic serine protease inhibitor, enhances the chemosensitivity to cytotoxic agents in digestive system cancer cells by inhibiting NF-κB activation. Therefore, we evaluated the combined effect of IR and FUT175 on cell proliferation, migration and invasion of colorectal cancer (CRC) cells. IR-induced upregulation of intranuclear NF-κB, FUT175 counteracted this effect. Moreover, the combination treatment suppressed cell viability and induced apoptosis. Similar effects were also observed in xenograft tumors. In addition, FUT175 prevented the migration and invasion of cancer cells caused by IR by downregulating the enzymatic activity of MMP-2/-9. In conclusion, FUT175 enhances the anti-tumor effect of radiotherapy through downregulation of NF-κB and reduces IR-induced tumor invasiveness by directly inhibiting MMP-2/-9 in CRC cells. Therefore, the use of FUT175 during radiotherapy might improve the efficacy of radiotherapy in patients with CRC.
Collapse
Affiliation(s)
- Hiroshi Sugano
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Yoshihiro Shirai
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Takashi Horiuchi
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Nobuhiro Saito
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Yohta Shimada
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Ken Eto
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Tadashi Uwagawa
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
- Division of Medical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Toya Ohashi
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Katsuhiko Yanaga
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| |
Collapse
|
34
|
Nafamostat mesilate negatively regulates the metastasis of triple-negative breast cancer cells. Arch Pharm Res 2017; 41:229-242. [PMID: 29196918 DOI: 10.1007/s12272-017-0996-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/26/2017] [Indexed: 12/11/2022]
Abstract
Triple-negative breast cancer (TNBC) lacking of oestrogen receptor, progesterone receptor, and epidermal growth factor receptor type 2 is a highly malignant disease which results in a poor prognosis and rare treatment options. Despite the use of conventional chemotherapy for TNBC tumours, resistance and short duration responses limit the treatment efficacy. Therefore, a need exists to develop a new chemotherapy for TNBC. The aim of this study was to examine the anti-cancer effects of nafamostat mesilate (NM), a previously known serine protease inhibitor and highly safe drug on breast cancer cells. Here, we showed that NM significantly inhibits proliferation, migration, and invasion in MDA-MB231 cells, induces G2/M phase cell-cycle arrest, and inhibits the expression of cyclin-dependent kinase 1 (CDK1). Exposure of MDA-MB231 cells to NM also resulted in decreased transcription factor activities accompanied by the regulated phosphorylation of signalling molecules and a decrease in metalloproteinases, the principal modulators of the extracellular environment during cancer progression. Especially, inhibition of TGFβ-stimulated Smad2 phosphorylation and subsequent metastasis-related gene expression, and downregulation of ERK activity may be pivotal mechanisms underlying inhibitory effects of NM on NM inhibits lung metastasis of breast cancer cells and growth of colonized tumours in mice. Taken together, our data revealed that NM inhibits cell growth and metastasis of TNBC cells and indicated that NM is a multi-targeted drug that could be an adjunct therapy for TNBC treatment.
Collapse
|
35
|
Na KR, Choi H, Jeong JY, Lee KW, Chang YK, Choi DE. Nafamostat Mesilate Attenuates Ischemia-Reperfusion-Induced Renal Injury. Transplant Proc 2017; 48:2192-9. [PMID: 27569970 DOI: 10.1016/j.transproceed.2016.03.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/02/2016] [Accepted: 03/23/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND It has been reported that nafamostat mesilate (NM) inhibits inflammatory injury via inhibition of complement activation in ischemic heart, liver, and intestine. However, it is unclear if NM also inhibits apoptosis in ischemia-reperfusion (IR)-injured kidney. We therefore investigated whether NM attenuates IR renal injury that involves inhibition of apoptosis. METHODS HK-2 cells and male C57BL/6 mice were used for this study. C57Bl/6 mice were divided into 4 groups: sham, NM (2 mg/kg) + sham, IR injury (IR injury; reperfusion 27 minutes after clamping of both the renal artery and vein), and NM + IR injury. Kidneys were harvested 24 hours after IR injury, and functional and molecular parameters were evaluated. For in vitro studies, HK-2 cells were incubated for 6 hours with mineral paraffin oil to induce hypoxic injury, and then treated with various doses of NM to evaluate the antiapoptotic effects. RESULTS Blood urea nitrogen, serum creatinine levels, and renal tissue injury scores in NM + IR-injured mice were significantly lower than those of control IR mice (all P < .01). NM significantly improved cell survival in hypoxic HK-2 cells (P < .01), significantly decreased renal Bax expression (P < .05), and increased renal Bcl-2 protein levels in IR kidneys and hypoxic HK-2 cells compared with those of the sham and control groups. The numbers of terminal deoxynucleotide transferase-mediated dUTP nick-end labeling- and 8-oxo-2'-deoxyguanosine-positive cells were significantly lower in NM + IR-injured kidneys compared with those in control IR-injured mice (P < .05); NM treatment decreased the expression of inducible and endothelial nitric oxide synthase in IR-injured mice (P < .05). CONCLUSIONS NM ameliorates IR renal injury via inhibition of apoptosis by, at least in part, lowering nitric oxide overproduction, reducing Bax, and increasing Bcl-2.
Collapse
Affiliation(s)
- K-R Na
- Department of Nephrology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - H Choi
- Clinical Research Institute, Daejeon St Mary Hospital, Daejeon, Korea
| | - J Y Jeong
- Department of Nephrology, School of Medicine, Chungnam National University, Daejeon, Korea; Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea
| | - K W Lee
- Department of Nephrology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Y-K Chang
- Department of Nephrology, College of Medicine, The Catholic University of Korea, Seoul, Korea; Department of Nephrology, Daejeon St Mary Hospital, Daejeon, Korea.
| | - D E Choi
- Department of Nephrology, School of Medicine, Chungnam National University, Daejeon, Korea.
| |
Collapse
|
36
|
Radical Resection of a Primarily Unresectable Pancreatic Cancer After Neoadjuvant Chemotherapy Using Gemcitabine, TS-1, and Nafamostat Mesilate; Report of a Case. Int Surg 2016; 100:287-91. [PMID: 25692432 DOI: 10.9738/intsurg-d-13-00193.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A 58-year-old male visited his primary physician for epigastric and back pain. Abdominal-enhanced computed tomography (CT) revealed a hypovascular pancreatic tumor measuring 17 × 11 mm in the uncinate process of the pancreas extending into the superior mesenteric plexus for greater than 180°. With a diagnosis of unresectable pancreatic cancer, the patient received gemcitabine and TS-1 with arterial infusion of nafamostat mesilate. After 3 courses of chemotherapy, enhanced CT revealed a decrease in size of the pancreatic tumor with no lymph node and distant metastasis and improved invasion of the superior mesenteric plexus down to 120°. The patient underwent R0 pancreaticoduodenectomy. The patient made a satisfactory recovery without complications and was discharged on postoperative day 10. We herein report the first curative resected case of a primarily unresectable pancreatic cancer after neoadjuvant chemotherapy using gemcitabine, TS-1, and nafamostat mesilate.
Collapse
|
37
|
Lu YX, Ju HQ, Wang F, Chen LZ, Wu QN, Sheng H, Mo HY, Pan ZZ, Xie D, Kang TB, Chen G, Yun JP, Zeng ZL, Xu RH. Inhibition of the NF-κB pathway by nafamostat mesilate suppresses colorectal cancer growth and metastasis. Cancer Lett 2016; 380:87-97. [PMID: 27322737 DOI: 10.1016/j.canlet.2016.06.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 12/25/2022]
Abstract
Nafamostat mesilate is an anti-inflammatory drug that is usually used to treat pancreatitis. Recent studies show that it can suppress pancreatic cancer via inhibition of the nuclear factor κB (NF-κB) pathway. However, whether it has anti-tumor activity in some other cancer, including colorectal cancer (CRC), has not been investigated and remained unclear. Here, our study showed that nafamostat mesilate abrogated the constitutive NF-κB activation in CRC cells, which is mediated through inhibition of phosphorylation of IκBα and nuclear translocation of p65. Also, we found that nafamostat mesilate inhibited phosphorylation of Erk in CRC cells. Consistently, our study demonstrated that nafamostat mesilate inhibited the CRC cell proliferation, invasion and migration and induced mitochondria-dependent apoptosis. Furthermore, nafamostat mesilate could reverse oxaliplatin induced NF-κB and Erk activation in CRC cells, and enhance the sensitivity of CRC cells to oxaliplatin. Nafamostat mesilate combined with oxaliplatin repressed subcutaneous tumor growth and hepatic metastasis in vivo. Overall, our data suggest that nafamostat mesilate, a relatively non-toxic drug that targets NF-κB and Erk, may, in combination with oxaliplatin, represent a novel therapeutic strategy for CRC treatment.
Collapse
Affiliation(s)
- Yun-Xin Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Feng Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Le-Zong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi-Nian Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui Sheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hai-Yu Mo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhi-Zhong Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Tie-Bang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Gong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing-Ping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhao-Lei Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
38
|
A Randomized Comparative Study of 24- and 6-Hour Infusion of Nafamostat Mesilate for the Prevention of Post-Endoscopic Retrograde Cholangiopancreatography Pancreatitis: A Prospective Randomized Comparison Trial. Pancreas 2016; 45:1179-83. [PMID: 27253231 DOI: 10.1097/mpa.0000000000000625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Although prolonged intravenous infusion (24 hours) of nafamostat mesilate is effective for the prevention of post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis, it requires hospitalization and is expensive. The aim of this study was to compare the efficacy of 24- versus 6-hour intravenous infusion of 20 mg nafamostat mesilate for the prevention of post-ERCP pancreatitis (PEP). METHODS A total of 382 patients who underwent ERCP were randomly assigned into 2 groups: 24 hours or 6 hours. In both groups, nafamostat mesilate (20 mg) infusion was initiated up to an hour before ERCP and continued for either 24 or 6 hours. RESULTS The overall incidence of pancreatitis was 2.4% (9/371). The rates of PEP following 24- and 6-hour infusion were 2.8% (5/179) and 2.1% (4/192), respectively (P = 0.744). No significant difference was observed in the severity of pancreatitis between the groups. On multivariate analysis, increasing pancreatic duct cannulations (odds ratio, 1.685; 95% confidence interval, 1.036-2.741; P = 0.036) was identified as a statistically significant risk factor of PEP. CONCLUSIONS No difference was found in the incidence of PEP regardless of the duration of nafamostat mesilate infusion. Therefore, 6-hour infusion of 20 mg nafamostat mesilate may be useful for the prevention of PEP in an outpatient setting.
Collapse
|
39
|
Choi S, Kwon HJ, Song HJ, Choi SW, Nagar H, Piao S, Jung SB, Jeon BH, Kim DW, Kim CS. Nafamostat mesilate promotes endothelium-dependent vasorelaxation via the Akt-eNOS dependent pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:539-45. [PMID: 27610041 PMCID: PMC5015001 DOI: 10.4196/kjpp.2016.20.5.539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 11/15/2022]
Abstract
Nafamostat mesilate (NM), a synthetic serine protease inhibitor, has anticoagulant and anti-inflammatory properties. The intracellular mediator and external anti-inflammatory external signal in the vascular wall have been reported to protect endothelial cells, in part due to nitric oxide (NO) production. This study was designed to examine whether NM exhibit endothelium dependent vascular relaxation through Akt/endothelial nitric oxide synthase (eNOS) activation and generation of NO. NM enhanced Akt/eNOS phosphorylation and NO production in a dose- and time-dependent manner in human umbilical vein endothelial cells (HUVECs) and aorta tissues obtained from rats treated with various concentrations of NM. NM concomitantly decreased arginase activity, which could increase the available arginine substrate for NO production. Moreover, we investigated whether NM increased NO bioavailability and decreased aortic relaxation response to an eNOS inhibitor in the aorta. These results suggest that NM increases NO generation via the Akt/eNOS signaling pathway, leading to endothelium-dependent vascular relaxation. Therefore, the vasorelaxing action of NM may contribute to the regulation of cardiovascular function.
Collapse
Affiliation(s)
- Sujeong Choi
- Department of physiology & BK21Plus CNU Integrative Biomedical Education Initiative, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Hyon-Jo Kwon
- Department of Neurosurgery, Regional Cerebrovascular Center, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Hee-Jung Song
- Department of Neurology, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Si Wan Choi
- Division of Cardiology, Internal Medicine, School of Medicine, Chungnam National University, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Harsha Nagar
- Department of physiology & BK21Plus CNU Integrative Biomedical Education Initiative, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Shuyu Piao
- Department of physiology & BK21Plus CNU Integrative Biomedical Education Initiative, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Saet-Byel Jung
- Department of Endocrinology, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Byeong Hwa Jeon
- Department of physiology & BK21Plus CNU Integrative Biomedical Education Initiative, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Dong Woon Kim
- Department of Anatomy & BK21Plus CNU Integrative Biomedical Education Initiative, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Cuk-Seong Kim
- Department of physiology & BK21Plus CNU Integrative Biomedical Education Initiative, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
40
|
Someya A, Tanaka N, Okuyama A. Inhibition of Influenza Virus A/WSN Replication by Serine Protease Inhibitors and anti-Protease Antibodies. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029400500308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The serine protease inhibitors, aprotinin and 6-amidino-2-naphthyl-p-guanidinobenzoate (Futhan), showed striking antiviral activity in the plaque assay of the canine kidney (MDCK) cell-WSN strain system. Anti-cathepsin B IgG antibody/showed the greatest inhibitory effect on plaque formation, followed by anti-factor X antibody and then anti-plasminogen antibody. Anti-cathepsin B antibody inhibited the proteolytic cleavage of haemagglutinin (HA). These results suggest that a serine protease-like enzyme and the other protein that binds to anti-cathepsin B antibody may be involved in the process of WSN HA cleavage on the membrane surface of MDCK cells.
Collapse
Affiliation(s)
- A. Someya
- Applied Enzymology, Molecular Biology Research Laboratories, Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd, Tsukuba Techno-park Oho Okubo 3, Tsukuba 300-33 Japan
| | - N. Tanaka
- Applied Enzymology, Molecular Biology Research Laboratories, Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd, Tsukuba Techno-park Oho Okubo 3, Tsukuba 300-33 Japan
| | - A. Okuyama
- Applied Enzymology, Molecular Biology Research Laboratories, Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd, Tsukuba Techno-park Oho Okubo 3, Tsukuba 300-33 Japan
| |
Collapse
|
41
|
Yamamoto T, Yamamura H, Yamamoto H, Mizobata Y. Comparison of the efficacy of continuous i.v. infusion versus continuous regional arterial infusion of nafamostat mesylate for severe acute pancreatitis. Acute Med Surg 2016; 3:237-243. [PMID: 29123791 DOI: 10.1002/ams2.173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 09/07/2015] [Indexed: 02/06/2023] Open
Abstract
Aim Continuous regional arterial infusion (CRAI) of protease inhibitors may be effective in the treatment of severe acute pancreatitis (SAP), but it is more invasive than i.v. infusion. The purpose of this study was to examine the effectiveness of continuous i.v. infusion (CIVI) for SAP compared with CRAI by unifying the dose and the administration period of nafamostat mesylate. Methods This study comprised 32 patients with SAP who were divided into two groups: the CRAI group and the CIVI group. The protease inhibitor, nafamostat mesylate, was continuously infused at a rate of 200 mg/day for 5 days in both groups. Clinical outcomes including in-hospital mortality were examined. Results There were no significant between-group differences in in-hospital mortality and 90-day mortality. The duration from admission to treatment was significantly shorter in the CIVI group (median, 7 h vs. 2 h, P = 0.0001; CRAI group vs. CIVI group). The rate of mechanical ventilation was significantly less in the CIVI group than in the CRAI group (93% vs. 47%, P = 0.007). The CIVI group showed a tendency toward decreased length of intensive care unit stay (median, 13 days vs. 4 days, P = 0.085) and hospital stay (median, 19 days vs. 11 days, P = 0.072). Total costs during hospitalization were significantly lower in the CIVI group (median, $18,320 vs. $11,641, P = 0.049). Conclusion The effectiveness of CIVI with early nafamostat mesylate treatment after the development of SAP could be equivalent to, or better than, that of CRAI.
Collapse
Affiliation(s)
- Tomonori Yamamoto
- Department of Trauma and Critical Care Medicine Osaka City University Osaka Japan
| | - Hitoshi Yamamura
- Department of Disaster and Critical Care Medicine Hirosaki University Osaka Japan
| | - Hiromasa Yamamoto
- Department of Trauma and Critical Care Medicine Osaka City University Osaka Japan
| | - Yasumitsu Mizobata
- Department of Trauma and Critical Care Medicine Osaka City University Osaka Japan
| |
Collapse
|
42
|
Kwon SK, Ahn M, Song HJ, Kang SK, Jung SB, Harsha N, Jee S, Moon JY, Suh KS, Lee SD, Jeon BH, Kim DW, Kim CS. Nafamostat mesilate attenuates transient focal ischemia/reperfusion-induced brain injury via the inhibition of endoplasmic reticulum stress. Brain Res 2015; 1627:12-20. [PMID: 26390938 DOI: 10.1016/j.brainres.2015.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 08/18/2015] [Accepted: 09/10/2015] [Indexed: 01/22/2023]
Abstract
Nafamostat mesilate (NM), a serine protease inhibitor, has a broad range of clinical applications that include use as an anticoagulant during hemodialysis in cerebral hemorrhage patients, as a hemoperfusion anticoagulant for patients with intravascular coagulation, hemorrhagic lesions, and hemorrhagic tendencies, and for the improvement of acute pancreatitis. However, the effects of NM on acute cerebral ischemia have yet to be investigated. Thus, the present study utilized a rat model in which transient middle cerebral artery occlusion (MCAO) was used to induce ischemic injury to investigate the effects of NM on infarct volume and histological and biological changes. NM (1mg/kg) was intravenously administered prior to and after the MCAO procedure. Compared to control rats, the administration of NM significantly decreased infarct size and the extent of brain edema after the induction of focal ischemia via MCAO. Additionally, NM treatment attenuated MCAO-induced neuronal degeneration and activation of microglia and astrocytes. NM treatment also inhibited the MCAO-induced expression levels of glucose-regulated protein 78 (GRP78), CATT/EBP homologous protein (CHOP), and p-eukaryotic initiation factor 2α (eIF2α), which are endoplasmic reticulum (ER) stress markers, in the cerebral cortex. The present findings demonstrate that NM exerts neuroprotective effects in the brain following focal ischemia via, at least in part, the inhibition of ER stress.
Collapse
Affiliation(s)
- Sun Kwan Kwon
- Department of physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Moonsang Ahn
- Department of Surgery, School of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Hee-Jung Song
- Department of Neurology, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea
| | - Shin Kwang Kang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Saet-Byel Jung
- Department of Endocrinology, School of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Nagar Harsha
- Department of physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Sungju Jee
- Department of Rehabilitation Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea
| | - Jae Young Moon
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea
| | - Kwang-Sun Suh
- Department of Pathology, School of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Sang Do Lee
- Department of physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Byeong Hwa Jeon
- Department of physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Dong Woon Kim
- Department of Anatomy, School of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea.
| | - Cuk-Seong Kim
- Department of physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea.
| |
Collapse
|
43
|
Kang MW, Song HJ, Kang SK, Kim Y, Jung SB, Jee S, Moon JY, Suh KS, Lee SD, Jeon BH, Kim CS. Nafamostat Mesilate Inhibits TNF-α-Induced Vascular Endothelial Cell Dysfunction by Inhibiting Reactive Oxygen Species Production. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:229-34. [PMID: 25954127 PMCID: PMC4422962 DOI: 10.4196/kjpp.2015.19.3.229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 12/16/2015] [Accepted: 02/22/2015] [Indexed: 11/15/2022]
Abstract
Nafamostat mesilate (NM) is a serine protease inhibitor with anticoagulant and anti-inflammatory effects. NM has been used in Asia for anticoagulation during extracorporeal circulation in patients undergoing continuous renal replacement therapy and extra corporeal membrane oxygenation. Oxidative stress is an independent risk factor for atherosclerotic vascular disease and is associated with vascular endothelial function. We investigated whether NM could inhibit endothelial dysfunction induced by tumor necrosis factor-α (TNF-α). Human umbilical vein endothelial cells (HUVECs) were treated with TNF-α for 24 h. The effects of NM on monocyte adhesion, vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1) protein expression, p38 mitogen-activated protein kinase (MAPK) activation, and intracellular superoxide production were then examined. NM (0.01~100 µg/mL) did not affect HUVEC viability; however, it inhibited the increases in reactive oxygen species (ROS) production and p66shc expression elicited by TNF-α (3 ng/mL), and it dose dependently prevented the TNF-α-induced upregulation of endothelial VCAM-1 and ICAM-1. In addition, it mitigated TNF-α-induced p38 MAPK phosphorylation and the adhesion of U937 monocytes. These data suggest that NM mitigates TNF-α-induced monocyte adhesion and the expression of endothelial cell adhesion molecules, and that the anti-adhesive effect of NM is mediated through the inhibition of p66shc, ROS production, and p38 MAPK activation.
Collapse
Affiliation(s)
- Min-Woong Kang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Chungnam National University, Daejeon 301-721, Korea
| | - Hee-Jung Song
- Department of Neurology, School of Medicine, Chungnam National University, Daejeon 301-721, Korea
| | - Shin Kwang Kang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Chungnam National University, Daejeon 301-721, Korea
| | - Yonghwan Kim
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Chungnam National University, Daejeon 301-721, Korea
| | - Saet-Byel Jung
- Department of Endocrinology, School of Medicine, Chungnam National University, Daejeon 301-721, Korea
| | - Sungju Jee
- Department of Rehabilitation Medicine, School of Medicine, Chungnam National University, Daejeon 301-721, Korea
| | - Jae Young Moon
- Department of Internal Medicine, School of Medicine, Chungnam National University, Daejeon 301-721, Korea
| | - Kwang-Sun Suh
- Department of Pathology, School of Medicine, Chungnam National University, Daejeon 301-721, Korea
| | - Sang Do Lee
- Department of physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Byeong Hwa Jeon
- Department of physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Cuk-Seong Kim
- Department of physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| |
Collapse
|
44
|
Randomized controlled trial for efficacy of nafamostat mesilate in preventing post-endoscopic retrograde cholangiopancreatography pancreatitis. Pancreas 2015; 44:415-21. [PMID: 25479585 DOI: 10.1097/mpa.0000000000000278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The objective of this study was to investigate whether prophylactic administration of nafamostat mesilate reduces the incidence of post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis (PEP), its efficacy, and risk factors for PEP. METHODS Potential subjects comprised 876 patients who underwent ERCP between September 2008 and February 2011. Of these, 58 patients were excluded after meeting exclusion criteria, and 818 patients were randomized. Patients in the nafamostat mesilate group were administered 20 mg of nafamostat mesilate dissolved in 500 mL of 5% glucose solution, whereas the control group received 500 mL of 5% glucose solution alone, over 2 hours from the start of ERCP. RESULTS Post-ERCP pancreatitis occurred in 5.1% (41 patients) overall, with a significantly lower frequency in the nafamostat mesilate group (3.5%) than in the control group (6.7%; P = 0.0349). Analysis of the 322 patients who had undergone ERCP for the first time (n = 158 in the nafamostat mesilate group; n = 164 in the control group) found that PEP again significantly less frequently occurred in the nafamostat mesilate group (5.7%) than in the control group (13.4%; P = 0.0172). CONCLUSIONS Our randomized controlled study suggested that short-term administration of nafamostat mesilate 20 mg may reduce the incidence of PEP.
Collapse
|
45
|
Yuhara H, Ogawa M, Kawaguchi Y, Igarashi M, Shimosegawa T, Mine T. Pharmacologic prophylaxis of post-endoscopic retrograde cholangiopancreatography pancreatitis: protease inhibitors and NSAIDs in a meta-analysis. J Gastroenterol 2014; 49:388-99. [PMID: 23720090 DOI: 10.1007/s00535-013-0834-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/09/2013] [Indexed: 02/04/2023]
Abstract
Post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis is the most frequent complication of ERCP. Several meta-analyses have examined the effects of protease inhibitors (gabexate mesilate, ulinastatin, and nafamostat mesilate) and non-steroidal anti-inflammatory drugs (NSAIDs) on post-ERCP pancreatitis, but the results have been confusing. Since the previous meta-analysis, several new studies have been published on this topic. To provide an updated quantitative assessment of the effectiveness of protease inhibitors and NSAIDs in preventing post-ERCP pancreatitis, we conducted a meta-analysis of randomized trials for patients at risk of post-ERCP pancreatitis. Twenty-six articles were included in this meta-analysis. Nafamostat mesilate (summary RR = 0.41; 95 %CI 0.28-0.59; n = 4 studies) and NSAIDs (summary RR = 0.58; 95 %CI = 0.44-0.76; n = 7 studies) were associated with decreased risk of post-ERCP pancreatitis in the high-quality studies. However, gabexate mesilate (summary RR = 0.64; 95 %CI = 0.36-1.13; n = 6 studies) and ulinastatin (summary RR = 0.65; 95 %CI = 0.33-1.30; n = 2 studies) were not associated with decreased risk of post-ERCP pancreatitis in the high-quality studies. This is the first meta-analysis to compare the effects of three protease inhibitors. Solid evidence supports the use of nafamostat mesilate and NSAIDs for preventing post-ERCP pancreatitis.
Collapse
Affiliation(s)
- Hiroki Yuhara
- Department of Gastroenterology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Yoon YS, Oh H, Kim Y, Lim SP, Kim CS, Kang MW. Nafamostat mesilate: can it be used as a conduit preserving agent in coronary artery bypass surgery? THE KOREAN JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2013; 46:413-25. [PMID: 24368967 PMCID: PMC3868688 DOI: 10.5090/kjtcs.2013.46.6.413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/05/2013] [Accepted: 08/05/2013] [Indexed: 12/04/2022]
Abstract
Background Graft vessel preservation solution in coronary artery bypass surgery is used to maintain the graft conduit in optimal condition during the perioperative period. Nafamostat mesilate (NM) has anticoagulation and anti-inflammatory properties. Therefore, we investigated NM as a conduit preservative agent and compared it to papaverine. Methods Sprague-Dawley (SD) rat thoracic aortas were examined for their contraction-relaxation ability using phenylephrine (PE) and acetylcholine (ACh) following preincubation with papaverine and NM in standard classical organ baths. Human umbilical vein endothelial cells (HUVECs) were cultured to check for the endothelial cell viability. Histopathological examination and terminal deoxynucleotidyl transferase dUTP nick end labeling assay were performed on the thoracic aortas of SD rats. Results The anti-contraction effects of papaverine were superior to those of NM at PE (p<0.05). The relaxation effect of NM on ACh-induced vasodilatation was not statistically different from that of papaverine. Viability assays using HUVECs showed endothelial cell survival rates of >90% in various concentrations of both NM and papaverine. A histopathological study showed a protective effect against necrosis and apoptosis (p<0.05) in the NM group. Conclusion NM exhibited good vascular relaxation and a reasonable anti-vasocontraction effect with a better cell protecting effect than papaverine; therefore, we concluded that NM is a good potential conduit preserving agent.
Collapse
Affiliation(s)
- Yoo Sang Yoon
- Department of Thoracic Surgery, Dongnam Institute of Radiological and Medical Science, Korea
| | - Hyunkong Oh
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University School of Medicine, Korea
| | - Yonghwan Kim
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University School of Medicine, Korea
| | - Seung Pyung Lim
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University School of Medicine, Korea
| | - Cuk-Seong Kim
- Department of Physiology, Chungnam National University School of Medicine. Korea
| | - Min-Woong Kang
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University School of Medicine, Korea
| |
Collapse
|
47
|
Haruki K, Shiba H, Fujiwara Y, Furukawa K, Iwase R, Uwagawa T, Misawa T, Ohashi T, Yanaga K. Inhibition of nuclear factor-κB enhances the antitumor effect of tumor necrosis factor-α gene therapy for hepatocellular carcinoma in mice. Surgery 2013; 154:468-78. [PMID: 23972653 DOI: 10.1016/j.surg.2013.05.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 05/28/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is often resistant to chemotherapy. Gene therapy using an adenoviral vector-expressing tumor necrosis factor (TNF)-α is a new therapeutic approach for chemoresistant malignancies. The efficacy of TNF-α, however, is limited, because it leads to the activation of nuclear factor (NF)-κB. We hypothesized that the NF-κB inhibitor nafamostat mesilate would enhance the antitumor effect of adenovirus vector-mediated TNF-α gene therapy for HCC. METHODS In vitro, we assessed the inhibitory effect of nafamostat mesilate on TNF-α-induced NF-κB activation and enhanced apoptosis in human HCC cell lines (Huh-7 and Hep3B). In vivo, we established a xenograft HCC model in mice by subcutaneous injection of Huh-7 and Hep3B cells. The animals received intraperitoneal (IP) injections of nafamostat mesilate 3 times a week (nafamostat mesilate group), intratumoral (IT) injections of the human TNF-α-expressing adenoviral vector (AxCAhTNF-α) once a week (TNF-α group), IT injections of AxCAhTNF-α once a week, or IP injections of nafamostat mesilate 3 times a week (combination group). RESULTS In the combination group, TNF-α-induced NF-κB activation was inhibited and TNF-α-induced apoptosis was enhanced in comparison with the other groups both in vitro and in vivo. In the combination group, tumor growth was significantly slower and the apoptotic cell numbers were significantly greater than those of the TNF-α group. CONCLUSION Inhibition of NF-κB by nafamostat mesilate enhances the antitumor effect of adenoviral vector-mediated TNF-α gene therapy for HCC in mice.
Collapse
Affiliation(s)
- Koichiro Haruki
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Combination chemotherapy of nafamostat mesylate with gemcitabine for gallbladder cancer targeting nuclear factor-κB activation. J Surg Res 2013; 184:605-12. [DOI: 10.1016/j.jss.2013.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/21/2013] [Accepted: 06/04/2013] [Indexed: 01/30/2023]
|
49
|
Tsuda Y, Nakahara T, Ueda K, Mori A, Sakamoto K, Ishii K. Effect of nafamostat on N-methyl-D-aspartate-induced retinal neuronal and capillary degeneration in rats. Biol Pharm Bull 2013. [PMID: 23207773 DOI: 10.1248/bpb.b12-00644] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effects of the serine protease inhibitor nafamostat mesilate on neuronal and vascular injury in rat retinas treated with N-methyl-D-aspartate (NMDA). The degree of neuronal degeneration was assessed by measuring the number of cells in the ganglion cell layer and the thickness of the inner plexiform layer. The degree of capillary degeneration was assessed by measuring the number of empty basement membrane sleeves that were left as remnants of the vessels. Significant neuronal and capillary degeneration was observed 7 d after a single intravitreal injection of NMDA into the eye. Both forms of degeneration were significantly prevented by simultaneous injection of nafamostat mesilate with NMDA. These results indicate that nafamostat mesilate affords protection against the neuro/vascular injury seen in NMDA-treated retinas. Nafamostat mesilate may be considered as a candidate for neuro/vascular protective interventions in retinal diseases associated with glutamate-induced excitotoxicity, such as glaucoma and diabetic retinopathy.
Collapse
Affiliation(s)
- Yo Tsuda
- Department of Molecular Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5–9–1 Shirokane, Minato-ku, Tokyo 108–8641, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Fujiwara Y, Shiba H, Iwase R, Haruki K, Furukawa K, Uwagawa T, Misawa T, Ohashi T, Yanaga K. Inhibition of Nuclear Factor Kappa-B Enhances the Antitumor Effect of Combination Treatment with Tumor Necrosis Factor-Alpha Gene Therapy and Gemcitabine for Pancreatic Cancer in Mice. J Am Coll Surg 2013; 216:320-32.e3. [DOI: 10.1016/j.jamcollsurg.2012.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/03/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
|