1
|
Liu X, Lin L, Hu G. Meta-analysis of the effect of curcumin supplementation on skeletal muscle damage status. PLoS One 2024; 19:e0299135. [PMID: 39008500 PMCID: PMC11249235 DOI: 10.1371/journal.pone.0299135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVES Meta-analysis was conducted to examine the effect of supplemental curcumin intake on skeletal muscle injury status and to propose an optimal intervention program. METHODS In accordance with the procedures specified in the PRISMA statement for systematic reviews and meta-analyses of randomized controlled trials, the Review Manager 5.3 was used to analyze the results of creatine kinase (CK), muscle soreness, interleukin-6 (IL-6), and range of motion (ROM) as outcome indicators in the 349 subjects included in the 14 articles. RESULTS The effect size of curcumin supplementation on muscle soreness, mean difference (MD) = -0.61; the relationship between curcumin supplementation and muscle soreness for time of measurement (I2 = 83.6%)、the relationship between curcumin supplementation and muscle soreness for period of intervention (I2 = 26.2%)、the relationship between whether one had been trained (I2 = 0%) and supplementation dose (I2 = 0%) were not heterogeneous for the relationship between curcumin supplementation and muscle soreness; The effect size on CK, MD = -137.32; the relationship between curcumin supplementation and CK (I2 = 79.7%)、intervention period (I2 = 91.9%)、whether or not trained (I2 = 90.7%)、and no heterogeneity in the relationship between curcumin supplementation and CK for the time of measurement (I2 = 0%); The effect size MD = 4.10 for the effect on ROM; The effect size for IL-6 was MD = -0.33. CONCLUSIONS This meta-analysis highlights that curcumin supplementation significantly mitigates skeletal muscle damage, with notable improvements in CK levels, muscle soreness, IL-6 levels, and ROM. The results highlight the importance of curcumin dosage and timing, revealing that prolonged supplementation yields the best results, especially for untrained individuals or those less exposed to muscle-damaging exercise. For muscle soreness and ROM enhancement, a pre-emptive, low-dose regimen is beneficial, while immediate post-exercise supplementation is most effective at reducing CK and IL-6 levels.
Collapse
Affiliation(s)
- Xiaoyang Liu
- College of Physical Education, Huaqiao University, Quanzhou, Fujian, China
| | - Lihan Lin
- College of Physical Education, Huaqiao University, Quanzhou, Fujian, China
| | - Guopeng Hu
- College of Physical Education, Huaqiao University, Quanzhou, Fujian, China
| |
Collapse
|
2
|
Yang CC, Lee IT, Lin YJ, Wu WB, Hsiao LD, Yang CM. Thrombin-Induced COX-2 Expression and PGE 2 Synthesis in Human Tracheal Smooth Muscle Cells: Role of PKCδ/Pyk2-Dependent AP-1 Pathway Modulation. Int J Mol Sci 2023; 24:15130. [PMID: 37894811 PMCID: PMC10606820 DOI: 10.3390/ijms242015130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, we confirmed that thrombin significantly increases the production of COX-2 and PGE2 in human tracheal smooth muscle cells (HTSMCs), leading to inflammation in the airways and lungs. These molecules are well-known contributors to various inflammatory diseases. Here, we investigated in detail the involved signaling pathways using specific inhibitors and small interfering RNAs (siRNAs). Our results demonstrated that inhibitors targeting proteins such as protein kinase C (PKC)δ, proline-rich tyrosine kinase 2 (Pyk2), c-Src, epidermal growth factor receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), or activator protein-1 (AP-1) effectively reduced thrombin-induced COX-2 and PGE2 production. Additionally, transfection with siRNAs against PKCδ, Pyk2, c-Src, EGFR, protein kinase B (Akt), or c-Jun mitigated these responses. Furthermore, our observations revealed that thrombin stimulated the phosphorylation of key components of the signaling cascade, including PKCδ, Pyk2, c-Src, EGFR, Akt, and c-Jun. Thrombin activated COX-2 promoter activity through AP-1 activation, a process that was disrupted by a point-mutated AP-1 site within the COX-2 promoter. Finally, resveratrol (one of the most researched natural polyphenols) was found to effectively inhibit thrombin-induced COX-2 expression and PGE2 release in HTSMCs through blocking the activation of Pyk2, c-Src, EGFR, Akt, and c-Jun. In summary, our findings demonstrate that thrombin-induced COX-2 and PGE2 generation involves a PKCδ/Pyk2/c-Src/EGFR/PI3K/Akt-dependent AP-1 activation pathway. This study also suggests the potential use of resveratrol as an intervention for managing airway inflammation.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Taoyuan, Taoyuan 333008, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Yan-Jyun Lin
- Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung 406040, Taiwan;
| | - Wen-Bin Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Li-Der Hsiao
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| |
Collapse
|
3
|
Hajleh MNA, Al-Dujaili EAS. Effects of Turmeric Concentrate on Cardiovascular Risk Factors and Exercise-Induced Oxidative Stress in Healthy Volunteers; an Exploratory Study. Adv Pharm Bull 2023; 13:601-610. [PMID: 37646063 PMCID: PMC10460800 DOI: 10.34172/apb.2023.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/04/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose Evidence suggests that turmeric intake can improve antioxidant defense, blood pressure (BP), ageing and gut microbiota. The effects of turmeric concentrate (curcumin) intake on cardiovascular risk factors and exercise induced oxidative stress were investigated. Methods A randomized placebo-controlled study was performed to assess the effects of turmeric extract in healthy volunteers before and after a 30 min exercise bout. Participants (n=22) were given either turmeric concentrate or placebo supplements. Anthropometry, BP, pulse wave velocity (PWV), biomarkers of oxidative stress, perceived exertion and lipid peroxidation were assessed. Results In the turmeric group, the expected BP response to exercise following turmeric was blunted and the increase was not significant compared to basal values followed by a decrease in final BP and PWV values. There were no significant differences in all baseline parameters between the placebo and the curcumin groups (P>0.05). A significant increase was observed in urinary antioxidant power (P=0.031) and total polyphenol levels (P=0.022) post turmeric intervention. The distance ran by the participants taking turmeric was significantly longer (P=0.005) compared to basal value. Those who took the placebo did not show significant changes. Conclusion Our study suggests that turmeric concentrate intake can reduce BP and improve antioxidant, anti-inflammatory status and arterial compliance. Turmeric may improve exercise performance and ameliorates oxidative stress. Larger studies are warranted to validate these findings and test more cardiovascular risk factors.
Collapse
Affiliation(s)
- Maha Noordin Abu Hajleh
- Department of Cosmetic Science, Pharmacological and Diagnostic Research Centre, Faculty of Allied Medical Sciences, AlAhliyya Amman University, Zip code (19328), Amman, Jordan
| | - Emad Abdol Sahib Al-Dujaili
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
4
|
Mehranfard N, Rezazadeh H, Soltani N, Dastgerdi AH, Ghanbari Rad M, Ghasemi M. Changes in Protease-Activated Receptor and Trypsin-1 Expression Are Involved in the Therapeutic Effect of Mg 2+ Supplementation in Type 2 Diabetes-Induced Gastric Injury in Male Adult Rats. Adv Pharmacol Pharm Sci 2023; 2023:5703718. [PMID: 37228689 PMCID: PMC10205415 DOI: 10.1155/2023/5703718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/17/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Purpose Gastric inflammation is common and usually severe in patients with type 2 diabetes mellitus (T2DM). Evidence suggests protease-activated receptors (PARs) are a link between inflammation and gastrointestinal dysfunction. Given that magnesium (Mg2+) deficiency is a highly prevalent condition in T2DM patients, we assessed the therapeutic role of Mg2+ on the factors involved in gastric inflammation in T2DM. Methods A rat model of T2DM gastropathy was established using a long-term high-fat diet + a low dose of streptozocin. Twenty-four rats were divided into control, T2DM , T2DM + insulin (positive control), and T2DM + Mg2+ groups. At the end of 2-month therapies, changes in the expression of gastric trypsin-1, PAR1, PAR2, PAR3, PI3K/Akt, and COX-2 proteins were measured by western blot. Hematoxylin and eosin and Masson's trichrome staining were used to detect gastric mucosal injury and fibrosis. Results The expression of trypsin-1, PAR1, PAR2, PAR3, and COX-2 increased in diabetes, and Mg2+/insulin treatment strongly decreased their expression. The PI3K/p-Akt significantly decreased in T2DM, and treatment with Mg2+/insulin improved PI3K in T2DM rats. Staining of the gastric antrum tissue of the insulin/Mg2+-treated T2DM rats showed a significantly minimal mucosal and fibrotic injury compared with those of rats from the T2DM group. Conclusion Mg2+ supplement, comparable to insulin, via decreasing PARs expression, mitigating COX-2 activity, and decreasing collagen deposition could exert a potent gastroprotective effect against inflammation, ulcer, and fibrotic development in T2DM patients.
Collapse
Affiliation(s)
- Nasrin Mehranfard
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Rezazadeh
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nepton Soltani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mahtab Ghanbari Rad
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Kuwabara Y, Hirose A, Lee H, Kakinuma T, Baba A, Takara T. Effects of Highly Bioavailable Curcumin Supplementation on Common Cold Symptoms and Immune and Inflammatory Functions in Healthy Japanese Subjects: A Randomized Controlled Study. J Diet Suppl 2023; 21:71-98. [PMID: 36927282 DOI: 10.1080/19390211.2023.2185723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
This study aimed to investigate the effects of 12-week consumption of highly bioavailable curcumin (150 mg/day of Theracurmin Super [TS-P1] or Theracurmin [CR-033P]) on common cold symptoms, immune function, and inflammatory markers. A randomized, double-blind, placebo-controlled study was conducted from November 2021 to May 2022 on 99 healthy Japanese adults. Using a computerized random number generator, each subject was randomly assigned to one of the following three groups: TS-P1, CR-033P, or placebo (n = 33 per group). For 12 weeks, each group consumed the four capsules that were given to them daily. The cumulative number of days for which common cold symptoms persisted was set as the primary outcome. Immunity parameters, inflammatory parameters, liver function parameters, and physical examination results were additional outcomes. A safety assessment was also performed. Ninety-four subjects completed the study, and the per protocol set included 30 subjects in the placebo group, 32 subjects in the TS-P1 group, and 33 subjects in the CR-033P group. The cumulative number of days for which common cold symptoms persisted was significantly lower in the TS-P1 and CR-033P groups than that in the placebo group. No adverse effects were observed. Consumption of highly bioavailable curcumin, TS-P1 or CR-033P (150 mg/day), for 12 weeks reduced the number of days for which common cold symptoms persisted in healthy Japanese adults.
Collapse
|
6
|
Phytocannabinoids Act Synergistically with Non-Steroidal Anti-Inflammatory Drugs Reducing Inflammation in 2D and 3D In Vitro Models. Pharmaceuticals (Basel) 2022; 15:ph15121559. [PMID: 36559009 PMCID: PMC9787964 DOI: 10.3390/ph15121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Lung inflammation is associated with elevated pro-inflammatory cytokines and chemokines. Treatment with FCBD:std (standard mix of cannabidiol [CBD], cannabigerol [CBG] and tetrahydrocannabivarin [THCV]) leads to a marked reduction in the inflammation of alveolar epithelial cells, but not in macrophages. In the present study, the combined anti-inflammatory effect of FCBD:std with two corticosteroids (dexamethasone and budesonide) and two non-steroidal anti-inflammatory drugs (NSAID; ibuprofen and diclofenac), was examined. Enzyme-linked immunosorbent assay (ELISA) was used to determine protein levels. Gene expression was determined by quantitative real-time PCR. Inhibition of cyclo-oxygenase (COX) activity was determined in vitro. FCBD:std and diclofenac act synergistically, reducing IL-8 levels in macrophages and lung epithelial cells. FCBD:std plus diclofenac also reduced IL-6, IL-8 and CCL2 expression levels in co-cultures of macrophages and lung epithelial cells, in 2D and 3D models. Treatment by FCBD:std and/or NSAID reduced COX-1 and COX-2 gene expression but not their enzymatic activity. FCBD:std and diclofenac exhibit synergistic anti-inflammatory effects on macrophages and lung epithelial cells, yet this combined activity needs to be examined in pre-clinical studies and clinical trials.
Collapse
|
7
|
Nanavati K, Rutherfurd-Markwick K, Lee SJ, Bishop NC, Ali A. Effect of curcumin supplementation on exercise-induced muscle damage: a narrative review. Eur J Nutr 2022; 61:3835-3855. [PMID: 35831667 PMCID: PMC9596560 DOI: 10.1007/s00394-022-02943-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
Abstract
Curcumin, a natural polyphenol extracted from turmeric, is a potent antioxidant and anti-inflammatory agent. In the past few decades, curcumin's ability to impact chronic inflammatory conditions such as metabolic syndrome, arthritis, and cancer has been widely researched, along with growing interest in understanding its role in exercise-induced muscle damage (EIMD). EIMD impacts individuals differently depending on the type (resistance exercise, high-intensity interval training, and running), intensity, and duration of the exercise. Exercise disrupts the muscles' ultrastructure, raises inflammatory cytokine levels, and can cause swelling in the affected limb, a reduction in range of motion (ROM), and a reduction in muscular force-producing capacity. This review focuses on the metabolism, pharmacokinetics of various brands of curcumin supplements, and the effect of curcumin supplementation on EIMD regarding muscle soreness, activity of creatine kinase (CK), and production of inflammatory markers. Curcumin supplementation in the dose range of 90-5000 mg/day can decrease the subjective perception of muscle pain intensity, increase antioxidant capacity, and reduce CK activity, which reduces muscle damage when consumed close to exercise. Consumption of curcumin also improves muscle performance and has an anti-inflammatory effect, downregulating the production of pro-inflammatory cytokines, including TNF-α, IL-6, and IL-8. Curcumin may also improve oxidative capacity without hampering training adaptations in untrained and recreationally active individuals. The optimal curcumin dose to ameliorate EIMD is challenging to assess as its effect depends on the curcumin concentration in the supplement and its bioavailability.
Collapse
Affiliation(s)
- K. Nanavati
- School of Sport, Exercise, and Nutrition, Massey University, Auckland, New Zealand
| | | | - S. J. Lee
- School of Food and Advanced Technology, Massey University, Auckland, New Zealand
| | - N. C. Bishop
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - A. Ali
- School of Sport, Exercise, and Nutrition, Massey University, Auckland, New Zealand
| |
Collapse
|
8
|
Effect of curcumin supplementation on muscle damage, antioxidant status and inflammatory factors after successive simulated taekwondo competitions. Sci Sports 2022. [DOI: 10.1016/j.scispo.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Dias KA, da Conceição AR, Oliveira LA, Pereira SMS, Paes SDS, Monte LF, Sarandy MM, Novaes RD, Gonçalves RV, Della Lucia CM. Effects of Curcumin Supplementation on Inflammatory Markers, Muscle Damage, and Sports Performance during Acute Physical Exercise in Sedentary Individuals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9264639. [PMID: 34659641 PMCID: PMC8516555 DOI: 10.1155/2021/9264639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022]
Abstract
Exhaustive and acute unusual physical exercise leads to muscle damage. Curcumin has been widely studied due to the variety of its biological activities, attributed to its antioxidant and anti-inflammatory properties. Furthermore, it has shown positive effects on physical exercise practitioners. However, there is no literature consensus on the beneficial effects of curcumin in acute physical activities performed by sedentary individuals. Therefore, we systematically reviewed evidence from clinical trials on the main effects of curcumin supplementation on inflammatory markers, sports performance, and muscle damage during acute physical exercises in these individuals. We searched PubMed/MEDLINE, Scopus, Web of Science, and Embase databases, and only original studies were analyzed according to the PRISMA guidelines. The included studies were limited to supplementation of curcumin during acute exercise. A total of 5 studies were selected. Methodological quality assessments were examined using the SYRCLE's risk-of-bias tool. Most studies have shown positive effects of curcumin supplementation in sedentary individuals undergoing acute physical exercise. Overall, participants supplemented with curcumin showed less muscle damage, reduced inflammation, and better muscle performance. The studies showed heterogeneous data and exhibited methodological limitations; therefore, further research is necessary to ensure curcumin supplementation benefits during acute and high-intensity physical exercises. Additionally, mechanistic and highly controlled studies are required to improve the quality of the evidence and to elucidate other possible mechanisms. This study is registered with Prospero number CRD42021262718.
Collapse
Affiliation(s)
- Kelly Aparecida Dias
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Lívya Alves Oliveira
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Stefany da Silva Paes
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Larissa Farias Monte
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Rômulo Dias Novaes
- Department of Structural Biology, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | | | - Ceres Mattos Della Lucia
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
10
|
Pawar KS, Mastud RN, Pawar SK, Pawar SS, Bhoite RR, Bhoite RR, Kulkarni MV, Deshpande AR. Oral Curcumin With Piperine as Adjuvant Therapy for the Treatment of COVID-19: A Randomized Clinical Trial. Front Pharmacol 2021; 12:669362. [PMID: 34122090 PMCID: PMC8193734 DOI: 10.3389/fphar.2021.669362] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Coronavirus disease-2019 (COVID-19) has a wide range of pathophysiological effects. Curcumin, an active constituent of Curcuma longa (turmeric), has several properties, including anti-inflammatory, antioxidant, antiviral, anti-thrombotic, and anti-proliferative effects, which make it a promising candidate for the symptomatic treatment of COVID-19. Objective: We aimed to determine the effects of curcumin administered with piperine (to optimize absorption) on symptoms in patients with COVID-19 in a double-blind, randomized, controlled trial at a 30-bed dedicated COVID Health Center (DCHC) in Maharashtra, India. Methods: In addition to conventional COVID-19 treatment, patients in the control group received a dose of probiotics twice a day, and patients in the study group received curcumin (525 mg) with piperine (2.5 mg) in tablet form twice a day. The effects of curcumin/piperine treatment on primary and secondary outcomes were assessed for the duration of hospitalization. Results: Patients with mild, moderate, and severe symptoms who received curcumin/piperine treatment showed early symptomatic recovery (fever, cough, sore throat, and breathlessness), less deterioration, fewer red flag signs, better ability to maintain oxygen saturation above 94% on room air, and better clinical outcomes compared to patients of the control group. Furthermore, curcumin/piperine treatment appeared to reduce the duration of hospitalization in patients with moderate to severe symptoms, and fewer deaths were observed in the curcumin/piperine treatment group. Conclusions: Administration of oral curcumin with piperine as an adjuvant symptomatic therapy in COVID-19 treatment could substantially reduce morbidity and mortality, and ease the logistical and supply-related burdens on the healthcare system. Curcumin could be a safe and natural therapeutic option to prevent Post-Covid thromboembolic events. Clinicaltrials.gov identifier:CTRI/2020/05/025482
Collapse
Affiliation(s)
- Kirti S Pawar
- Giriraj Hospital and Intensive Care unit, Baramati, India
| | - Rahul N Mastud
- Giriraj Hospital and Intensive Care unit, Baramati, India
| | | | - Samragni S Pawar
- HBT Medical College and Dr R N Cooper Municipal General Hospital, Mumbai, India
| | - Rahul R Bhoite
- Medstar Good Samaritan Hospital, Baltimore, MD, United States
| | | | - Meenal V Kulkarni
- Department of Preventive and Social Medicine, N K P Salve Medical College Nagpur, Nagpur, India
| | | |
Collapse
|
11
|
Wang Z, Zhang Q, Huang H, Liu Z. The efficacy and acceptability of curcumin for the treatment of depression or depressive symptoms: A systematic review and meta-analysis. J Affect Disord 2021; 282:242-251. [PMID: 33418373 DOI: 10.1016/j.jad.2020.12.158] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/11/2020] [Accepted: 12/23/2020] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Curcumin, a potential natural substance is a promising complementary and alternative therapeutic intervention for depression or depressive symptoms. We undertook a systematic review and meta-analysis to evaluate the efficacy and acceptability. METHODS PubMed, EMBASE, PsycInfo, Web of Science, Cochrane Library and ClinicalTrials.gov were searched from the inception up until March 4, 2020. The Outcomes were depressive symptoms, response rates, drop-out rates, and adverse effects. RESULTS A total of 594 patients from ten trials were subjected to meta-analysis. Three trials were judged to be at high risk of bias, four at unclear risk of bias and three at low risk of bias. Most of the domains for risk of bias were at low risk or unclear risks and three domains at high risks. The pooling results suggested a significant difference in depression or depressive symptoms(SMD= -0.32, 95% CI: -0.50 to -0.13, I2=15%, n=594) and response rates (OR=3.20, 95% CI: 1.28-7.99, I2=35%, n=271). However, there was no difference between drop-out rates (OR=1.06, 95% CI: 0.58-1.93, I2=0%, n=594), digestive symptoms (OR=1.27, 95% CI: 0.69-2.32, I2=0%, n=284) and neurological symptoms (OR=1.08, 95% CI: 0.49-2.36, I2=0%, n=284). Subgroup analysis showed depression was associated with a reduction(SMD= -0.35, 95% CI: -0.56 to -0.15, I2=7%, n=432) but depressive symptoms were not (SMD= -0.17, 95% CI: -0.61 to 0.26, I2=40%, n=162). CONCLUSIONS The evidence quality is low, indicating that there is great uncertainty about the efficacy and acceptability of curcumin for the treatment of depression or depressive symptoms.
Collapse
Affiliation(s)
- Zhe Wang
- The first hospital of China Medical University, 155 Nanjingbei Street, Shenyang, Liaoning, 110001, China.
| | - Qun Zhang
- The first hospital of China Medical University, 155 Nanjingbei Street, Shenyang, Liaoning, 110001, China.
| | - Hongfei Huang
- The first hospital of China Medical University, 155 Nanjingbei Street, Shenyang, Liaoning, 110001, China.
| | - Ziping Liu
- The first hospital of China Medical University, 155 Nanjingbei Street, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
12
|
Hillman AR, Gerchman A, O'Hora E. Ten Days of Curcumin Supplementation Attenuates Subjective Soreness and Maintains Muscular Power Following Plyometric Exercise. J Diet Suppl 2021; 19:303-317. [PMID: 33480271 DOI: 10.1080/19390211.2021.1875101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Curcumin has become a popular product used to decrease inflammation and enhance recovery from exercise. PURPOSE To determine the effects of curcumin supplementation on delayed onset muscle soreness and muscle power following plyometric exercise. METHODS Participants (n = 22; five females, 17 males) consumed either curcumin (500 mg) or placebo twice daily for 10 days (6 days pre, day of and 3 days post exercise). Participants completed 5 x 20 drop jumps on day 7. Blood sampling and recovery tests were assessed at pre-supplementation, 24-hours and immediately pre-exercise, and immediately post-, 24, 48 and 72-hours post-exercise. Blood markers included serum creatine kinase (CK) and erythrocyte sedimentation rate (ESR), while soreness was measured during a squat and post vertical jump. RESULTS Both groups experienced muscle damage post-exercise with elevated CK (403 ± 390 ul; p < 0.01), soreness with squatting (38 ± 29 mm; p < 0.01), and vertical jump (36 ± 30 mm; p < 0.01). Soreness was greater in placebo vs. curcumin 48 h and 72 h post-exercise (p < 0.01); however, CK was not significantly different between groups (p = 0.28) despite being >200 IU·L-1 greater 24 hr post exercise in placebo vs. curcumin. ESR was significantly greater immediately post-exercise (6.3 ± 5.6 vs. 3.4 ± 2.6 mm/hr; p = 0.03), however these were within the normal range for this test and not significantly different between groups (p = 0.25). Vertical jump decreased over time in the placebo, but not curcumin group (19.8 ± 4.8 vs. 21.4 ± 3.2 in; p = 0.01). CONCLUSION These data suggest curcumin reduces soreness and maintains muscular power following plyometric exercise.
Collapse
Affiliation(s)
- Angela R Hillman
- Athletic Training and Exercise Science, Marywood University, Scranton, PA, USA.,College of Health Sciences and Professions, School of Applied Health Science and Wellness, Division of Exercise Physiology, Ohio University, Athens, OH, USA
| | - Alexa Gerchman
- Athletic Training and Exercise Science, Marywood University, Scranton, PA, USA
| | - Erin O'Hora
- Nutrition and Dietetics, Marywood University, Scranton, PA, USA
| |
Collapse
|
13
|
Fang W, Nasir Y. The effect of curcumin supplementation on recovery following exercise-induced muscle damage and delayed-onset muscle soreness: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2020; 35:1768-1781. [PMID: 33174301 DOI: 10.1002/ptr.6912] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/21/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND curcumin consumption may have a protective effect against exercise-induced muscle damage (EIMD) through stabilization of the cell membrane via inhibition of free radical formation. Evidence supporting a protective role of curcumin after physical activity induced muscle injury in humans, however, it is inconsistent. METHODS Medline, Scopus, and Google scholar were systematically searched up to May 2020. The Cochrane Collaboration tool for assessing the risk of bias was used for assessing the quality of studies. Random effects model, weighted mean difference (WMD), and 95% confidence interval (CI) were used for estimating the overall effect. Between-study heterogeneity was assessed using the chi-squared and I2 statistic. RESULTS The results revealed a significant effect of curcumin supplementation on reducing creatine kinase (CK) (weighted mean difference [WMD] = -48.54 IU.L-1 ; 95% CI: -80.667, -16.420; p = .003) and muscle soreness index decrease (WMD = -0.476; 95% CI: -0.750, -0.202; p = .001). Moreover, a subgroup analysis resulted in a significant decrease in CK concentrations and muscle soreness index, according to follow-ups after exercise, dose of curcumin, duration of studies, exercise type, train status and study design. CONCLUSIONS The current evidence revealed a efficacy of curcumin in reducing CK serum levels and muscle soreness index among adults. Therefore, curcumin may be known as a priority EIMD recovery agent in interventions.
Collapse
Affiliation(s)
- Wang Fang
- Henan University of Technology Sports Institute, Zhengzhou, Henan, China
| | - Yasaman Nasir
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Katasonov AB. [Curcumin as an ajuvant treatment of depression: mechanisms of action and application prospects]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:125-131. [PMID: 32307422 DOI: 10.17116/jnevro2020120021125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Curcumin, a natural compound found in the rhizomes of turmeric, has a pronounced anti-inflammatory activity. Rodent models of depression show that this activity is similar to the effect of antidepressants (AD). Experimental data indicate that this activity may be related to the effect of curcumin on the monoamine cycle, oxidative and nitrosative stress, neurogenesis, hypothalamic-pituitary-adrenal, and immune systems. A number of meta-analyzes indicate the effectiveness of the combined use of curcumin with antidepressants in the treatment of depression. The mechanism of action of curcumin, as well as the prospects for its further use are considered.
Collapse
|
15
|
Mandal M, Jaiswal P, Mishra A. Role of curcumin and its nanoformulations in neurotherapeutics: A comprehensive review. J Biochem Mol Toxicol 2020; 34:e22478. [PMID: 32124518 DOI: 10.1002/jbt.22478] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/26/2019] [Accepted: 02/14/2020] [Indexed: 01/11/2023]
Abstract
Curcumin, a dietary polyphenol and major constituent of Curcuma longa (Zingiberaceae), is extensively used as a spice in Asian countries. For ages, turmeric has been used in traditional medicine systems to treat various diseases, which was possible because of its anti-inflammatory, antioxidant, anticancerous, antiepileptic, antidepressant, immunomodulatory, neuroprotective, antiapoptotic, and antiproliferative effects. Curcumin has potent antioxidant, anti-inflammatory, antiapoptotic, neurotrophic activities, which support its plausible neuroprotective effects in neurodegenerative disease. However, there is limited information available regarding the clinical efficacy of curcumin in neurodegenerative cases. The low oral bioavailability of curcumin may be speculated as a plausible factor that limits its effects in humans. Therefore, utilization of several approaches for the enhancement of bioavailability may improve clinical outcomes. Furthermore, the use of nanotechnology and a targeted drug delivery system may improve the bioavailability of curcumin. The present review is designed to summarize the molecular mechanisms pertaining to the neuroprotective effects of curcumin and its nanoformulations.
Collapse
Affiliation(s)
- Mukesh Mandal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, U.P., India
| | - Pawan Jaiswal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, U.P., India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, U.P., India
| |
Collapse
|
16
|
Fernández-Lázaro D, Mielgo-Ayuso J, Seco Calvo J, Córdova Martínez A, Caballero García A, Fernandez-Lazaro CI. Modulation of Exercise-Induced Muscle Damage, Inflammation, and Oxidative Markers by Curcumin Supplementation in a Physically Active Population: A Systematic Review. Nutrients 2020; 12:nu12020501. [PMID: 32075287 PMCID: PMC7071279 DOI: 10.3390/nu12020501] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022] Open
Abstract
Physical activity, particularly high-intensity eccentric muscle contractions, produces exercise-induced muscle damage (EIMD). The breakdown of muscle fibers and the consequent inflammatory responses derived from EIMD affect exercise performance. Curcumin, a natural polyphenol extracted from turmeric, has been shown to have mainly antioxidant and also anti-inflammatory properties. This effect of curcumin could improve EIMD and exercise performance. The main objective of this systematic review was to critically evaluate the effectiveness of curcumin supplementation on EIMD and inflammatory and oxidative markers in a physically active population. A structured search was carried out following Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines in the databases SCOPUS, Web of Science (WOS), and Medline (PubMed) from inception to October 2019. The search included original articles with randomized controlled crossover or parallel design in which the intake of curcumin administered before and/or after exercise was compared with an identical placebo situation. No filters were applied to the type of physical exercise performed, the sex or the age of the participants. Of the 301 articles identified in the search, 11 met the established criteria and were included in this systematic review. The methodological quality of the studies was assessed using the McMaster Critical Review Form. The use of curcumin reduces the subjective perception of the intensity of muscle pain; reduces muscle damage through the decrease of creatine kinase (CK); increases muscle performance; has an anti-inflammatory effect by modulating the pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-8; and may have a slight antioxidant effect. In summary, the administration of curcumin at a dose between 150–1500 mg/day before and during exercise, and up until 72 h’ post-exercise, improved performance by reducing EIMD and modulating the inflammation caused by physical activity. In addition, humans appear to be able to tolerate high doses of curcumin without significant side-effects.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42003 Soria, Spain;
- Correspondence: ; Tel.: +34-975-129-185
| | - Juan Mielgo-Ayuso
- Department of Biochemistry and Physiology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42003 Soria, Spain; (J.M.-A.); (A.C.M.)
| | - Jesús Seco Calvo
- Institute of Biomedicine (IBIOMED), Physiotherapy Department, University of Leon, Campus of Vegazana, 24071 Leon, Spain;
| | - Alfredo Córdova Martínez
- Department of Biochemistry and Physiology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42003 Soria, Spain; (J.M.-A.); (A.C.M.)
| | - Alberto Caballero García
- Department of Anatomy and Radiology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42003 Soria, Spain;
| | - Cesar I. Fernandez-Lazaro
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42003 Soria, Spain;
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, IdiSNA, 31008 Pamplona, Spain
| |
Collapse
|
17
|
Tanabe Y, Chino K, Ohnishi T, Ozawa H, Sagayama H, Maeda S, Takahashi H. Effects of oral curcumin ingested before or after eccentric exercise on markers of muscle damage and inflammation. Scand J Med Sci Sports 2019; 29:524-534. [DOI: 10.1111/sms.13373] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/23/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Yoko Tanabe
- Department of Sport Research; Japan Institute of Sports Sciences; Tokyo Japan
| | - Kentaro Chino
- Department of Sport Research; Japan Institute of Sports Sciences; Tokyo Japan
| | | | - Hitomi Ozawa
- Science Group; Theravalues Corporation; Tokyo Japan
| | | | - Seiji Maeda
- Faculty of Health and Sport Sciences; University of Tsukuba; Ibaraki Japan
| | - Hideyuki Takahashi
- Department of Sport Research; Japan Institute of Sports Sciences; Tokyo Japan
| |
Collapse
|
18
|
Glycyrrhizic Acid Attenuates Sepsis-Induced Acute Kidney Injury by Inhibiting NF-κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8219287. [PMID: 26904148 PMCID: PMC4745381 DOI: 10.1155/2016/8219287] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/05/2015] [Indexed: 12/22/2022]
Abstract
Glycyrrhizic acid (GA) is a major active ingredient in licorice. In our study, the effects of GA on acute kidney injury (AKI) in rats and its underlying molecular mechanisms were investigated. The sepsis model was produced by caecal ligation and puncture (CLP) in rats. The molecular and histological experiments were performed in the kidney tissues and serum samples of rats. According to the results obtained, GA alleviated sepsis-induced AKI by improving the pathological changes, decreasing the levels of blood urea nitrogen (BUN), creatinine (Cre), and increasing the survival rate of rats with AKI significantly. The production of inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, was markedly inhibited by GA. Moreover, treatment with GA inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2) and expression levels of induced nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in kidney tissues. Furtherly, the apoptosis in kidney tissue induced by AKI was suppressed by GA. Finally, GA could inhibit the activation of NF-κB signaling pathway. Our study suggests that GA alleviates sepsis-induced AKI by inhibiting the NF-κB signaling pathway, which provides a strong evidence for a new approach for treating sepsis-induced AKI.
Collapse
|
19
|
Liu Y, Liu J, Li M, Dai S, Liang J, Ji W. The effect of kinin B1 receptor on chronic itching sensitization. Mol Pain 2015; 11:70. [PMID: 26576537 PMCID: PMC4650839 DOI: 10.1186/s12990-015-0070-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/13/2015] [Indexed: 01/15/2023] Open
Abstract
Background Altered kallikrein-related peptidase activity and bradykinin are associated with skin disorders in humans and mice under chronic inflammation conditions. The bradykinin B1 receptor (B1R), also known as one of the G-protein-coupled receptor family and usually absent in intact tissues and upregulated during tissue injury, is responsible for vasodilation, capillary permeability, nociceptor sensitization, and pain; it is indispensable for physiopathological progress in chronic inflammation conditions, but its roles and effectors in the itching sensation of the allergic contact dermatitis model are poorly defined. Results We focused on incurable itching in a diphenylcyclopropenone (DCP) chronic inflammation experimental model. Preventive treatment with the B1R antagonist R892 significantly suppressed spontaneous scratching, while the B2R selective antagonist did not. B1R expression in the skin tissues of this model was detected using a quantitative, real-time polymerase chain reaction, Western blotting, and immunohistochemistry; B1R mRNA and protein levels were increased compared with a sham-treated control group. A higher B1R IHC staining signal was observed in the keratinocytes in DCP-treated mice compared with a vehicle-treated group, so we studied the B1R function when superimposed on a protease-activated receptor 2 (PAR2) background, establishing B1R as a pivotal mediator of PAR2 function in HaCaT cell lines. Conclusion Our data provide evidence that B1R facilitates the chronic itching sensation related to keratinocytes in a DCP-treated chronic inflammation experimental model.
Collapse
Affiliation(s)
- Yuying Liu
- Postgraduate Institute, Southern Medical University, Guangzhou, 510015, People's Republic of China. .,Department of Anesthesiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 96 DongChuan Road, Guangzhou, 510080, People's Republic of China.
| | - Jianhua Liu
- Postgraduate Institute, Southern Medical University, Guangzhou, 510015, People's Republic of China. .,Department of Anesthesiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 96 DongChuan Road, Guangzhou, 510080, People's Republic of China.
| | - Mengran Li
- Postgraduate Institute, Southern Medical University, Guangzhou, 510015, People's Republic of China. .,Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou, 510080, People's Republic of China.
| | - Sailin Dai
- Postgraduate Institute, Southern Medical University, Guangzhou, 510015, People's Republic of China. .,Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou, 510080, People's Republic of China.
| | - Jiexian Liang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou, 510080, People's Republic of China.
| | - Wenjin Ji
- Department of Anesthesiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 96 DongChuan Road, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
20
|
Khayat S, Fanaei H, Kheirkhah M, Moghadam ZB, Kasaeian A, Javadimehr M. Curcumin attenuates severity of premenstrual syndrome symptoms: A randomized, double-blind, placebo-controlled trial. Complement Ther Med 2015; 23:318-24. [PMID: 26051565 DOI: 10.1016/j.ctim.2015.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 11/16/2014] [Accepted: 04/01/2015] [Indexed: 02/07/2023] Open
|
21
|
Tanabe Y, Maeda S, Akazawa N, Zempo-Miyaki A, Choi Y, Ra SG, Imaizumi A, Otsuka Y, Nosaka K. Attenuation of indirect markers of eccentric exercise-induced muscle damage by curcumin. Eur J Appl Physiol 2015; 115:1949-57. [PMID: 25921600 PMCID: PMC4536282 DOI: 10.1007/s00421-015-3170-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 04/06/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE Polyphenolic curcumin is known to have potent anti-inflammatory effects; thus the present study investigated the hypothesis that curcumin ingestion would attenuate muscle damage after eccentric exercise. METHODS Fourteen untrained young men (24 ± 1 years) performed 50 maximal isokinetic (120°/s) eccentric contractions of the elbow flexors of one arm on an isokinetic dynamometer and the same exercise with the other arm 4 weeks later. They took 150 mg of curcumin (theracurmin) or placebo (starch) orally before and 12 h after each eccentric exercise bout in a randomised, crossover design. Maximal voluntary contraction (MVC) torque of the elbow flexors, range of motion of the elbow joint, upper-arm circumference, muscle soreness, serum creatine kinase (CK) activity, and plasma interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) concentration were measured before, immediately after, and 24, 48, 72 and 96 h after each eccentric exercise. Changes in these variables over time were compared between curcumin and placebo conditions by two-way repeated measures ANOVA. RESULTS MVC torque decreased smaller and recovered faster (e.g., 4 days post-exercise: -31 ± 13 % vs. -15 ± 15 %), and peak serum CK activity was smaller (peak: 7684 ± 8959 IU/L vs. 3398 ± 3562 IU/L) for curcumin than placebo condition (P < 0.05). However, no significant differences between conditions were evident for other variables, and no significant changes in IL-6 and TNF-α were evident after exercise. CONCLUSION It is concluded that theracurmin ingestion attenuates some aspects of muscle damage such as MVC loss and CK activity increase.
Collapse
Affiliation(s)
- Yoko Tanabe
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Seo HJ, Wang SM, Han C, Lee SJ, Patkar AA, Masand PS, Pae CU. Curcumin as a putative antidepressant. Expert Rev Neurother 2015; 15:269-80. [PMID: 25644944 DOI: 10.1586/14737175.2015.1008457] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Due to inadequate efficacy of antidepressants, various new chemical entities and agents of natural origin have been tested for therapeutic efficacy both alone and to augment existing antidepressants, producing varied clinical results. This article summarizes the basic properties of curcumin and its mechanisms of action, with specific emphasis on the etiopathogenesis of depression, preclinical and current clinical evidence, and future research directions, to better understand the possible role of curcumin in treating depression. Curcumin may have antidepressant activities with diverse mechanisms of action involving primarily neurotransmitters, transcription pathways, neurogenesis, the hypothalamic-pituitary-adrenal axis and inflammatory and immune pathways, as demonstrated in various animal and human studies. Current published randomized clinical trials suggest a small, non-significant benefit of curcumin for major depression. More adequately-powered and methodologically improved studies are mandatory.
Collapse
Affiliation(s)
- Ho-Jun Seo
- Department of Psychiatry, The Catholic University of Korea, College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Deng Y, Lu X, Wang L, Li T, Ding Y, Cao H, Zhang Y, Guo X, Yu G. Curcumin inhibits the AKT/NF-κB signaling via CpG demethylation of the promoter and restoration of NEP in the N2a cell line. AAPS JOURNAL 2014; 16:649-57. [PMID: 24756894 DOI: 10.1208/s12248-014-9605-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/01/2014] [Indexed: 01/01/2023]
Abstract
Curcumin (CUR), a non-toxic polyphenol from Curcuma longa, has been investigated as a potential therapy with anti-inflammatory and anti-oxidative effects for Alzheimer's disease (AD), which depicts features of chronic inflammatory environment resulting in cellular death. However, it remains largely unknown whether the anti-inflammatory effect of CUR in AD is associated with its property of CpG demethylation, which is another function of CUR with the most research interest during recent years. Neprilysin (NEP, EP24.11), a zinc-dependent metallopeptidase expressed relatively low in the brain, is emerging as a potent inhibitor of AKT/Protein Kinase B. In addition, hypermethylated promoter of NEP has been reported to be associated with decreases in NEP expression. In the present study, using bisulfite-sequencing PCR (BSP) assay, we showed that the CpG sites in NEP gene were hypermethylated both in wild-type mouse neuroblastoma N2a cells (N2a/wt) and N2a cells stably expressing human Swedish mutant amyloid precursor protein (APP) (N2a/APPswe) associated with familial early onset AD. CUR treatment induced restoration of NEP gene via CpG demethylation. This CUR-mediated upregulation of NEP expression was also concomitant with the inhibition of AKT, subsequent suppression of nuclear transcription factor-κB (NF-κB) and its downstream pro-inflammatory targets including COX-2, iNOS in N2a/APPswe cells. This study represents the first evidence on a link between CpG demethylation effect on NEP and anti-inflammation ability of CUR that may provide a novel mechanistic insight into the anti-inflammatory actions of CUR as well as new basis for using CUR as a therapeutic intervention for AD.
Collapse
Affiliation(s)
- Yushuang Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hann SS, Chen J, Wang Z, Wu J, Zheng F, Zhao S. Targeting EP4 by curcumin through cross talks of AMP-dependent kinase alpha and p38 mitogen-activated protein kinase signaling: The role of PGC-1α and Sp1. Cell Signal 2013; 25:2566-74. [DOI: 10.1016/j.cellsig.2013.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/11/2013] [Accepted: 08/13/2013] [Indexed: 11/25/2022]
|
25
|
Gieseler F, Ungefroren H, Settmacher U, Hollenberg MD, Kaufmann R. Proteinase-activated receptors (PARs) - focus on receptor-receptor-interactions and their physiological and pathophysiological impact. Cell Commun Signal 2013; 11:86. [PMID: 24215724 PMCID: PMC3842752 DOI: 10.1186/1478-811x-11-86] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/25/2013] [Indexed: 02/07/2023] Open
Abstract
Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease.
Collapse
Affiliation(s)
| | | | | | | | - Roland Kaufmann
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Drackendorfer Str, 1, D-07747, Jena, Germany.
| |
Collapse
|
26
|
Qiao Q, Jiang Y, Li G. Inhibition of the PI3K/AKT-NF-κB pathway with curcumin enhanced radiation-induced apoptosis in human Burkitt's lymphoma. J Pharmacol Sci 2013; 121:247-56. [PMID: 23603894 DOI: 10.1254/jphs.12149fp] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The phosphatidylinositol-3-kinase (PI3K) / protein kinase B (AKT) signal transduction pathway is commonly misregulated in lymphoma and associated with tumorigenesis and enhanced resistance to radiotherapy. Curcumin has been shown to inhibit the PI3K/AKT signal transduction pathway in several tumor models. In this study, we found that curcumin inhibits constitutive and radiation-induced expression of the PI3K/AKT pathway and its downstream regulator nuclear factor kappaB (NF-κB) in human Burkitt's lymphoma, a high-grade non-Hodgkin's lymphoma (NHL). We further demonstrated that the blockage of radiation-induced activation of the PI3K/AKT pathway and its downstream regulator NF-κB by either curcumin or specific PI3/AKT inhibitors (LY294002 for PI3K or SH-5 for AKT) enhance apoptosis in three human Burkitt's lymphoma cell lines (Namalwa, Ramos, and Raji) that were treated with ionizing radiation. However, no synergic effect on radiation-induced apoptosis was found in the cells co-pretreated with curcumin combined with LY294002 or curcumin combined with SH-5. The results from this study suggest that curcumin might play an important role in radiotherapy of high-grade NHL through inhibition of the PI3K/AKT-dependent NF-κB pathway.
Collapse
Affiliation(s)
- Qiao Qiao
- Department of Radiotherapy, the First Hospital of China Medical University, China
| | | | | |
Collapse
|
27
|
Lopresti AL, Hood SD, Drummond PD. Multiple antidepressant potential modes of action of curcumin: a review of its anti-inflammatory, monoaminergic, antioxidant, immune-modulating and neuroprotective effects. J Psychopharmacol 2012; 26:1512-24. [PMID: 23035031 DOI: 10.1177/0269881112458732] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Curcumin is the principal curcuminoid of the popular Indian spice turmeric and has attracted increasing attention for the treatment of a range of conditions. Research into its potential as a treatment for depression is still in its infancy, although several potential antidepressant mechanisms of action have been identified. Research completed to date on the multiple effects of curcumin is reviewed in this paper, with a specific emphasis on the biological systems that are compromised in depression. The antidepressant effects of curcumin in animal models of depression are summarised, and its influence on neurotransmitters such as serotonin and dopamine is detailed. The effects of curcumin in moderating hypothalamus-pituitary-adrenal disturbances, lowering inflammation and protecting against oxidative stress, mitochondrial damage, neuroprogression and intestinal hyperpermeability, all of which are compromised in major depressive disorder, are also summarised. With increasing interest in natural treatments for depression, and efforts to enhance current treatment outcomes, curcumin is presented as a promising novel, adjunctive or stand-alone natural antidepressant.
Collapse
|
28
|
Zhang Z, Niu X, Lu C, Jiang M, Xiao GG, Lu A. The effect of curcumin on human bronchial epithelial cells exposed to fine particulate matter: a predictive analysis. Molecules 2012; 17:12406-26. [PMID: 23090021 PMCID: PMC6268531 DOI: 10.3390/molecules171012406] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 12/03/2022] Open
Abstract
Fine particulate matter (PM2.5) has been associated in humans with inflammation, oxidative stress and cancer. Studies had shown that curcumin could potentially inhibit these effects; however, there had been no in vivo or in vitro reports about the effects of curcumin on organisms exposed to PM2.5. This predictive study explored the possible biological functions and pathways involved in the mechanism of curcumin inhibition of the hazardous effects of PM2.5. For predictive analysis, microarray data were used to investigate the effect of PM2.5 on human bronchial epithelial cells (HBEC), and human target proteins of curcumin were retrieved from PubChem. Two protein-protein interaction (PPI) networks were established based upon differential genes and target proteins, respectively, and the common network of these two networks was found. Functional and pathway analysis of the common network was performed using the Ingenuity Pathways Analysis (IPA) software. The results suggested that the predictive effects of curcumin on HBEC exposed to PM2.5 were involved in bio-functions, including inflammatory response of airway, cancerogenesis, and apoptosis, and in pathways such as cancer, glucocorticoid receptor signaling, and NF-kappaB signaling. This study predicted for the first time that curcumin could be a potential therapeutic agent for protecting the human airway from the hazardous effects of PM2.5.
Collapse
Affiliation(s)
- Zhiguo Zhang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei, Beijing 100700, China;
| | - Xuyan Niu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei, Beijing 100700, China; (X.N.); (C.L.); (M.J.)
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei, Beijing 100700, China; (X.N.); (C.L.); (M.J.)
| | - Miao Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei, Beijing 100700, China; (X.N.); (C.L.); (M.J.)
| | - Gary G. Xiao
- Functional Genomics & Proteomics Laboratory, Osteoporosis Research Center, Creighton University Medical Center, 601N 30th ST, Suite 6730, Omaha, NE 68131, USA
- Authors to whom correspondence should be addressed; (A.L.); (G.G.X.); Tel.: +86-10-6406-7611 (A.L.); Fax: +86-10-8403-2881 (A.L.); Tel.: +1-402-280-5911 (G.G.X.); Fax: +1-402-280-4284 (G.G.X.)
| | - Aiping Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei, Beijing 100700, China; (X.N.); (C.L.); (M.J.)
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
- Authors to whom correspondence should be addressed; (A.L.); (G.G.X.); Tel.: +86-10-6406-7611 (A.L.); Fax: +86-10-8403-2881 (A.L.); Tel.: +1-402-280-5911 (G.G.X.); Fax: +1-402-280-4284 (G.G.X.)
| |
Collapse
|
29
|
Xue M, Chan YKA, Shen K, Dervish S, March L, Sambrook PN, Jackson CJ. Protease-activated receptor 2, rather than protease-activated receptor 1, contributes to the aggressive properties of synovial fibroblasts in rheumatoid arthritis. ACTA ACUST UNITED AC 2011; 64:88-98. [DOI: 10.1002/art.33323] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|