1
|
Bailly C. Benzoxanthenone Lignans Related to Carpanone, Polemanone, and Sauchinone: Natural Origin, Chemical Syntheses, and Pharmacological Properties. Molecules 2025; 30:1696. [PMID: 40333626 PMCID: PMC12029563 DOI: 10.3390/molecules30081696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Medicinal plants from the genus Saururus are commonly used to treat inflammatory pathologies. They contain numerous bioactive compounds, notably the polycyclic lignan sauchinone from the species Saururus chinensis. An in-depth analysis of benzoxanthenone lignans related to sauchinone, and the analogous products carpanone and polemannones, has been carried out. The review reports the product's isolation, biosynthetic pathway, and chemical strategies to synthesize benzoxanthenones via liquid- and solid-phase syntheses. The metabolic and pharmacokinetic properties of sauchinone are discussed. At the pharmacological level, sauchinone is a potent blocker of the production of pro-inflammatory mediators, such as nitric oxide and prostaglandin E2, and an efficient antioxidant agent. The properties of sauchinone can be exploited to combat multiple pathologies, such as liver injuries, renal dysfunction, osteoarthritis, inflammatory bowel disease, ulcerative colitis, and cancers. The capacity of the natural product to inhibit tumor cell proliferation and to reduce migration/invasion of cancer cells and the development of metastases is underlined, together with the regulation of the epithelial-mesenchymal transition and immune checkpoints. Altogether, the review offers a complete survey of the chemical and biochemical properties of sauchinone-type benzoxanthenones.
Collapse
Affiliation(s)
- Christian Bailly
- UMR9020-U1277-CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, CHU Lille, CNRS, Inserm, OncoLille Institut, University of Lille, 59000 Lille, France;
- Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, 59006 Lille, France
- OncoWitan, Scientific Consulting Office, 59290 Lille, France
| |
Collapse
|
2
|
Chen L, Ru Q, Xiong Q, Zhou M, Yue K, Wu Y. The Role of Chinese Herbal Therapy in Methamphetamine Abuse and its Induced Psychiatric Symptoms. Front Pharmacol 2021; 12:679905. [PMID: 34040537 PMCID: PMC8143530 DOI: 10.3389/fphar.2021.679905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023] Open
Abstract
Repeated intake of methamphetamine (METH) leads to drug addiction, the inability to control intake, and strong drug cravings. It is also likely to cause psychiatric impairments, such as cognitive impairment, depression, and anxiety. Because the specific neurobiological mechanisms involved are complex and have not been fully and systematically elucidated, there is no established pharmacotherapy for METH abuse. Studies have found that a variety of Chinese herbal medicines have significant therapeutic effects on neuropsychiatric symptoms and have the advantage of multitarget comprehensive treatment. We conducted a systematic review, from neurobiological mechanisms to candidate Chinese herbal medicines, hoping to provide new perspectives and ideas for the prevention and treatment of METH abuse.
Collapse
Affiliation(s)
- Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Qin Ru
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Qi Xiong
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Mei Zhou
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Kai Yue
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan, China
| |
Collapse
|
3
|
Sauchinone Blocks Ethanol Withdrawal-Induced Anxiety but Spares Locomotor Sensitization: Involvement of Nitric Oxide in the Bed Nucleus of the Stria Terminalis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6670212. [PMID: 34035825 PMCID: PMC8116157 DOI: 10.1155/2021/6670212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022]
Abstract
Both the positive (manifested by locomotor sensitization) and negative (withdrawal symptoms) reinforcing effects of ethanol (EtOH) involve central nitric oxide (NO) signaling. Sauchinone (a bioactive lignan in Saururus chinensis) has been shown to improve methamphetamine-induced behavioral and neurochemical changes via the NO signaling pathway. Thus, this study evaluated the effects of sauchinone on locomotor sensitization and anxiety during EtOH withdrawal (EtOHW). Male adult Sprague-Dawley rats were treated with 1.5 g/kg/day of EtOH (20%, vol/vol) via intraperitoneal injection for 28 days, followed by a 3-day withdrawal. During withdrawal, the rats were given intragastric sauchinone (2.5, 7.5, or 25 mg/kg/day) once a day. EtOH locomotor sensitization was determined by challenging EtOHW rats with 0.75 g/kg EtOH, while EtOHW-induced anxiety was assessed using the elevated plus maze (EPM). None of the three doses of sauchinone affected EtOH locomotor sensitization. However, in the EPM, treatment of EtOHW rats with sauchinone at 7.5 or 25 mg/kg/day increased both the number of entries into and the time spent in the open arms. Moreover, the two doses of sauchinone inhibited the oversecretion of plasma corticosterone during EtOHW. In the bed nucleus of the stria terminalis (BNST), EtOHW increased NO production, enhanced gene and protein expression of both inducible nitric oxide synthase (iNOS) and neuronal NOS (nNOS), and also elevated protein levels of corticotropin-releasing factor, which were all inhibited by 25 mg/kg/day sauchinone. In an in vitro experiment, sauchinone (3, 10, and 30 μM) inhibited H2O2-stimulated nNOS protein expression in neuronal PC12 cells. Finally, intra-BNST infusion of sodium nitroprusside, a NO donor, after sauchinone (25 mg/kg/day) administration, abolished its expected anxiolytic effect. Taken together, these results indicate that sauchinone attenuates anxiety-like behavior in rats during EtOHW but spares EtOH locomotor sensitization, and the anxiolytic effect is mediated via the NO signaling pathway in the BNST.
Collapse
|
4
|
Liu G, Zhao Z, Shen M, Zhao X, Xie J, He X, Li C. A Review of Traditional Uses, Phytochemistry, and Pharmacological Properties of the Genus Saururus. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:47-76. [PMID: 31964158 DOI: 10.1142/s0192415x20500032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The genus Saururus, belonging to Saururaceae, contains two species, S. cernuus L. and S. chinensis (Lour) Baill. with common utilization in traditional medicine from Asia to North America for the treatment of edema, beriberi, jaundice, leucorrhea, urinary tract infections, hypertension, hepatitis diseases, and tumors. An extensive review of literature was made on traditional uses, phytochemistry, and ethnopharmacology of Saururus using ethno-botanical books, published articles, and electronic databases. The 147 of chemical constituents have been isolated and identified from S. cernuus and S. chinensis, and lignans, flavonoids, alkaloids, anthraquinones, saponins, and phenols are the major constituents. Various pharmacological investigations in many in vitro and in vivo models have revealed the potential of the genus Saururus with anti-inflammatory, antitumor, anti-oxidant, hepatoprotective, antimelanogenic, lipid-lowering, and bone protective activities, supporting the rationale behind numerous of its traditional uses. Due to the noteworthy pharmacological properties, Saururus can be a better option for new drug discovery. Data regarding many aspects of this plant such as toxicology, pharmacokinetics, quality-control measures, and the clinical value of the active compounds is still limited which call for additional studies.
Collapse
Affiliation(s)
- Guangxin Liu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource, Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Zefeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, Shaanxi 710069, P. R. China
| | - Meilun Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource, Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Xue Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, Shaanxi 710069, P. R. China
| | - Jing Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, Shaanxi 710069, P. R. China
| | - Xirui He
- Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Road, Xi'an, Shaanxi 710054, P. R. China
| | - Cuiqin Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource, Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| |
Collapse
|
5
|
Yoshioka Y, Sugino Y, Tozawa A, Yamamuro A, Kasai A, Ishimaru Y, Maeda S. Dopamine inhibits lipopolysaccharide-induced nitric oxide production through the formation of dopamine quinone in murine microglia BV-2 cells. J Pharmacol Sci 2015; 130:51-9. [PMID: 26908040 DOI: 10.1016/j.jphs.2015.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/30/2015] [Accepted: 11/01/2015] [Indexed: 10/22/2022] Open
Abstract
Dopamine (DA) has been suggested to modulate functions of glial cells including microglial cells. To reveal the regulatory role of DA in microglial function, in the present study, we investigated the effect of DA on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in murine microglial cell line BV-2. Pretreatment with DA for 24 h concentration-dependently attenuated LPS-induced NO production in BV-2 cells. The inhibitory effect of DA on LPS-induced NO production was not inhibited by SCH-23390 and sulpiride, D1-like and D2-like DA receptor antagonists, respectively. In addition, pretreatment with (-)-(6aR,12bR)-4,6,6a,7,8,12b-Hexahydro-7-methylindolo[4,3-a]phenanthridin (CY 208-243) and bromocriptine, D1-like and D2-like DA receptor agonists, respectively, did not affect the LPS-induced NO production. N-Acetylcysteine, which inhibits DA oxidation, completely inhibited the effect of DA. Tyrosinase, which catalyzes the oxidation of DA to DA quionone (DAQ), accelerated the inhibitory effect of DA on LPS-induced NO production. These results suggest that DA attenuates LPS-induced NO production through the formation of DAQ in BV-2 cells.
Collapse
Affiliation(s)
- Yasuhiro Yoshioka
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | - Yuta Sugino
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Azusa Tozawa
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Akiko Yamamuro
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Atsushi Kasai
- Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, and Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuki Ishimaru
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Sadaaki Maeda
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
6
|
Lee JH, Jang EJ, Seo HL, Ku SK, Lee JR, Shin SS, Park SD, Kim SC, Kim YW. Sauchinone attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway. Chem Biol Interact 2014; 224:58-67. [PMID: 25451574 DOI: 10.1016/j.cbi.2014.10.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/11/2014] [Accepted: 10/06/2014] [Indexed: 12/28/2022]
Abstract
Hepatic stellate cells (HSCs) are key mediators of fibrogenesis, and the regulation of their activation is now viewed as an attractive target for the treatment of liver fibrosis. Here, the authors investigated the ability of sauchinone, an active lignan found in Saururus chinensis, to regulate the activation of HSCs, to prevent liver fibrosis, and to inhibit oxidative stress in vivo and in vitro. Blood biochemistry and histopathology were assessed in CCl4-induced mouse model of liver fibrosis to investigate the effects of sauchinone. In addition, transforming growth factor-β1 (TGF-β1)-activated LX-2 cells (a human HSC line) were used to investigate the in vitro effects of sauchinone. Sauchinone significantly inhibited liver fibrosis, as indicated by decreases in regions of hepatic degeneration, inflammatory cell infiltration, and the intensity of α-smooth muscle actin staining in mice. Sauchinone blocked the TGF-β1-induced phosphorylation of Smad 2/3 and the transcript levels of plasminogen activator inhibitor-1 and matrix metalloproteinase-2 as well as autophagy in HSCs. Furthermore, sauchinone inhibited oxidative stress, as assessed by stainings of 4-hydroxynonenal and nitrotyrosine: these events may have a role in its inhibitory effects on HSCs activation. Sauchinone attenuated CCl4-induced liver fibrosis and TGF-β1-induced HSCs activation, which might be, at least in part, mediated by suppressing autophagy and oxidative stress in HSCs.
Collapse
Affiliation(s)
- Ju-Hee Lee
- College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Republic of Korea
| | - Eun Jeong Jang
- College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Republic of Korea
| | - Hye Lim Seo
- College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Republic of Korea
| | - Sae Kwang Ku
- College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Republic of Korea
| | - Jong Rok Lee
- College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Republic of Korea
| | - Soon Shik Shin
- College of Oriental Medicine, Dongeui University, Busan 614-851, Republic of Korea
| | - Sun-Dong Park
- College of Oriental Medicine, Dongguk University, Gyeongju, Gyeongbuk 780-714, Republic of Korea
| | - Sang Chan Kim
- College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Republic of Korea
| | - Young Woo Kim
- College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Republic of Korea.
| |
Collapse
|
7
|
Kita T, Asanuma M, Miyazaki I, Takeshima M. Protective effects of phytochemical antioxidants against neurotoxin-induced degeneration of dopaminergic neurons. J Pharmacol Sci 2014; 124:313-9. [PMID: 24599140 DOI: 10.1254/jphs.13r19cp] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The specific toxicity to dopaminergic neurons of psychostimulants and neurotoxins has been extensively studied in vivo and in vitro, and findings have been used to establish animal models of amphetamine psychosis or Parkinson's disease. The multiple mechanisms of neurotoxicity operating in these disorders are known to involve oxidative stress or neuroinflammation, producing the characteristic behavioral and neuropathlogical changes arising from injured dopaminergic neurons and glial cells. A number of studies have shown that glia-targeting antioxidants play important roles in protecting against the neurotoxicity caused by psychostimulants or neurotoxins. Phytochemicals, which are non-nutritive plant chemicals, protect dopaminergic neurons and glial cells from damage caused by psychostimulants or neurotoxins. The objective of this review was to evaluate the involvement of glial cells in dopaminergic neuron-specific toxicity and to explore the neuroprotective activity of phytochemicals in terms of anti-inflammatory and antioxidant action.
Collapse
Affiliation(s)
- Taizo Kita
- Laboratory of Pharmacology, Kyushu Nutrition Welfare University, School of Health Science, Japan
| | | | | | | |
Collapse
|
8
|
Kim DH, Yang CH, Hwang M. Sauchinone blocks methamphetamine-induced hyperlocomotion and place preference in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:1071-1075. [PMID: 23809251 DOI: 10.1016/j.phymed.2013.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/15/2013] [Accepted: 04/19/2013] [Indexed: 06/02/2023]
Abstract
Sauchinone is a phytochemical known as a nitric oxide (NO) inhibitor. NO is a kind of neurotransmitter and involved in psychotic effect of abuse drug. In present, we carried out a study on the effect of sauchinone on methamphetamine-induced alteration of behavior in mice. Locomotory activity and conditioned place preference (CPP) were used to evaluate behavioral changes. As a result, sauchinone inhibited the methamphetamine-induced hyperlocomotion in dose-dependent manner, whereas sauchinone had no effect on normal locomotory activity. The inhibitory effect of sauchinone on methamphetamine-induced hyperlocomotion was reversed by treatment of molsidomine, a NO donor. Sauchinone also significantly blocked the acquisition and expression of CPP induced by methamphetamine in mouse. However, it did not produce place preference or place aversion, when it was treated alone in animals. Taken together, sauchinone blocked drug reward-related behavior as well as acute hyperlocomotion induced by methamphetamine treatment.
Collapse
Affiliation(s)
- Dahn Hyo Kim
- Department of Oriental Medicine, College of Oriental Medicine, Daegu Haany University, Daegu 706-060, South Korea
| | | | | |
Collapse
|
9
|
Osada N, Kosuge Y, Ishige K, Ito Y. Mithramycin, an agent for developing new therapeutic drugs for neurodegenerative diseases. J Pharmacol Sci 2013; 122:251-6. [PMID: 23902990 DOI: 10.1254/jphs.13r02cp] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Mithramycin A (MTM) has been shown to inhibit cancer growth by blocking the binding of Sp-family transcription factors to gene regulatory elements and is used for the treatment of leukemia and testicular cancer in the United States. In contrast, MTM has also been shown to exert neuroprotective effects in normal cells. An earlier study showed that MTM protected primary cortical neurons against oxidative stress-induced cell death. Recently, we demonstrated that MTM suppressed endoplasmic reticulum (ER) stress-induced neuronal death in organotypic hippocampal slice cultures and cultured hippocampal cells through attenuation of ER stress-associated signal proteins. We also found that MTM decreased neuronal death in area CA1 of the hippocampus after transient global ischemia/reperfusion in mice and restored the ischemia/reperfusion-induced impairment of long-term potentiation in this area. MTM has been shown to prolong the survival of Huntington's disease model mice and to attenuate dopaminergic neurotoxicity in mice after repeated administration of methamphetamine. In this review, we provide an up to date overview of neuroprotective effects of MTM and less toxic MTM analogs, MTM SK and MTM SDK, on some of the neurodegenerative diseases and discuss the promise of MTM as an agent for developing new therapeutic drugs for such diseases.
Collapse
Affiliation(s)
- Nobuhiro Osada
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, Japan
| | | | | | | |
Collapse
|