1
|
Liu H, Wang H, Lin X, Xu M, Lan W, Wang J. Harnessing natural saponins: Advancements in mitochondrial dysfunction and therapeutic applications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156383. [PMID: 39848019 DOI: 10.1016/j.phymed.2025.156383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Mitochondrial dysfunction plays a crucial role in the development of a variety of diseases, notably neurodegenerative disorders, cardiovascular diseases, metabolic syndrome, and cancer. Natural saponins, which are intricate glycosides characterized by steroidal or triterpenoid structures, have attracted interest due to their diverse pharmacological benefits, including anti-inflammatory, antiviral, and anti-aging effects. PURPOSE This review synthesizes recent advancements in understanding mitochondrial dysfunction and explores how saponins can modulate mitochondrial function. It focuses on their potential applications in neuroprotection, cardiovascular health, and oncology. STUDY DESIGN The review incorporates a comprehensive literature analysis, highlighting the interplay between saponins and mitochondrial signaling pathways. Specific attention is given to the effects of saponins like ginsenoside Rg2 and 20(S)-protopanaxatriol on mitophagy and their neuroprotective, anti-aging, and synergistic therapeutic effects when combined. METHODS We conducted a comprehensive review of current research and clinical trials using PubMed, Google Scholar, and SciFinder databases. The search focused on saponins' role in mitochondrial function and their therapeutic effects, including "saponins", "mitochondria" and "mitochondrial function". The analysis primarily focused on articles published between 2011 and 2024. RESULTS The findings indicate that certain saponins can enhance mitophagy and modulate mitochondrial signaling pathways, showing promise in neuroprotection and anti-aging. Additionally, combinations of saponins have demonstrated synergistic effects in myocardial protection and cancer therapy, potentially improving therapeutic outcomes. CONCLUSION Although saponins exhibit significant potential in modulating mitochondrial functions and developing innovative therapeutic strategies, their clinical applications are constrained by low bioavailability. Rigorous clinical trials are essential to translate these findings into effective clinical therapies, ultimately improving patient outcomes through a deeper understanding of saponins' impact on mitochondrial function.
Collapse
Affiliation(s)
- Hongmei Liu
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Department of pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610000, China
| | - Huan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyu Lin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Min Xu
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Department of pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610000, China
| | - Wenying Lan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinlian Wang
- Traditional Chinese Medicine Hospital of Meishan, Meishan 620010, China.
| |
Collapse
|
2
|
Ramadhan Marviano F, Santoso P, Rahayu R. Neuroprotective Effect of Colocasia esculenta Var. Mentawai Corm Flour High-Fat Diet Fed Mice. JOURNAL OF CELLULAR NEUROSCIENCE AND OXIDATIVE STRESS 2024; 16:1173-1182. [DOI: 10.37212/jcnos.1470198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The transformation of our era, resulting in a change in dietary habits towards a higher intake of fatty foods, presents a worldwide health issue. Among these challenges is neurodegeneration, which leads to cognitive impairment. It is imperative to seek alternative solutions rooted in nature to address the limitations associated with non-natural treatment methods. This entails harnessing the properties of secondary metabolite compounds found in plants, such as Colocasia esculenta Var. Mentawai. This research aims to assess the efficacy of C. esculenta Var. Mentawai corm as neuroprotective agents in mitigating CNS damage and preventing cognitive decline associated with neurodegeneration. Daily administration of a high-fat diet and a mixture of taro flour is conducted on young adult male mice for a duration of 60 days. Furthermore, analysis of the neurocognitive ability of mice, determination of malondialdehyde levels, and observation of histopathological structures on brain tissue were carried out. The results showed that the group of mice fed with taro flour mixture effectively showed a positive impact on maintaining neurocognitive abilities and histopathological structure of brain tissue against neurodegeneration (p
Collapse
|
3
|
Zheng Q, Wang F, Nie C, Zhang K, Sun Y, Al-Ansi W, Wu Q, Wang L, Du J, Li Y. Elevating the significance of legume intake: A novel strategy to counter aging-related mitochondrial dysfunction and physical decline. Compr Rev Food Sci Food Saf 2024; 23:e13342. [PMID: 38634173 DOI: 10.1111/1541-4337.13342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Mitochondrial dysfunction increasingly becomes a target for promoting healthy aging and longevity. The dysfunction of mitochondria with age ultimately leads to a decline in physical functions. Among them, biogenesis dysfunction and the imbalances in the metabolism of reactive oxygen species and mitochondria as signaling organelles in the aging process have aroused our attention. Dietary intervention in mitochondrial dysfunction and physical decline during aging processes is essential, and greater attention should be directed toward healthful legume intake. Legumes are constantly under investigation for their nutritional and bioactive properties, and their consumption may yield antiaging and mitochondria-protecting benefits. This review summarizes mitochondrial dysfunction with age, discusses the benefits of legumes on mitochondrial function, and introduces the potential role of legumes in managing aging-related physical decline. Additionally, it reveals the benefits of legume intake for the elderly and offers a viable approach to developing legume-based functional food.
Collapse
Affiliation(s)
- Qingwei Zheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Feijie Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Kuiliang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Waleed Al-Ansi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Huang J, Liang X, Zhao M, Zhang Y, Chen Z. Metabolomics and network pharmacology reveal the mechanism of antithrombotic effect of Asperosaponin VI. Biomed Pharmacother 2024; 173:116355. [PMID: 38493592 DOI: 10.1016/j.biopha.2024.116355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
Dipsaci Radix may possess antithrombotic properties, and one of its primary active ingredients is Asperosaponin VI. However, the antithrombotic effects and pharmacological mechanisms of Asperosaponin VI remain unclear. An in vivo experimental study has demonstrated the antithrombotic activity of Asperosaponin VI. Asperosaponin VI also exhibits anticoagulant properties. Asperosaponin VI significantly hindered collagen adrenergic-induced acute pulmonary thrombosis in mice and enhanced their survival rate. This hinders the formation of acute pulmonary embolisms induced by adenosine diphosphate (ADP) and decreases recovery time. A comprehensive strategy that combines metabolomics, network pharmacology, molecular docking, and experimental validation has the potential to reveal the antithrombotic mechanisms of Asperosaponin VI. Metabolomic evidence suggests that Asperosaponin VI may influence platelet aggregation and the production of anti-inflammatory metabolites through the regulation of pathways such as phenylalanine and arachidonic acid metabolism, thereby inhibiting thrombosis. Network pharmacology identified the pharmacological targets of Asperosaponin VI and indicated that it treats thrombi by partially regulating the signaling pathways related to inflammation and platelet aggregation. Asperosaponin VI showed strong binding affinity for F2, PTPRC, JUN, STAT3, SRC, AKT1. The antiplatelet aggregation activity of Asperosaponin VI was validated based on the metabolomic and network pharmacology results. Asperosaponin VI inhibits platelet aggregation induced by ADP, AA, and collagen. Therefore, Asperosaponin VI exerts antithrombotic effects through antiplatelet aggregation. Therefore, Asperosaponin VI is a promising antithrombotic agent.
Collapse
Affiliation(s)
- Jin Huang
- Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen 518001, China
| | - Xuewen Liang
- Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen 518001, China
| | - Minrui Zhao
- Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen 518001, China
| | - Yue Zhang
- Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen 518001, China.
| | - Ziyang Chen
- Huizhou first Maternal and Child Health Care Hospital, Huizhou 516000, China.
| |
Collapse
|
5
|
Skała E, Szopa A. Dipsacus and Scabiosa Species-The Source of Specialized Metabolites with High Biological Relevance: A Review. Molecules 2023; 28:molecules28093754. [PMID: 37175164 PMCID: PMC10180103 DOI: 10.3390/molecules28093754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The genera Dipsacus L. and Scabiosa L. of the Caprifoliaceae family are widely distributed in Europe, Asia, and Africa. This work reviews the available literature on the phytochemical profiles, ethnomedicinal uses, and biological activities of the most popular species. These plants are rich sources of many valuable specialized metabolites with beneficial medicinal properties, such as triterpenoid derivatives, iridoids, phenolic acids, and flavonoids. They are also sources of essential oils. The genus Dipsacus has been used for centuries in Chinese and Korean folk medicines to treat bone (osteoporosis) and joint problems (rheumatic arthritis). The Korean Herbal Pharmacopoeia and Chinese Pharmacopoeia include Dipsaci radix, the dried roots of D. asperoides C.Y.Cheng & T.M.Ai. In addition, S. comosa Fisch. ex Roem & Schult. and S. tschiliiensis Grunning are used in traditional Mongolian medicine to treat liver diseases. The current scientific literature data indicate that these plants and their constituents have various biological properties, including inter alia antiarthritic, anti-neurodegenerative, anti-inflammatory, antioxidant, anticancer, and antimicrobial activities; they have also been found to strengthen tendon and bone tissue and protect the liver, heart, and kidney. The essential oils possess antibacterial, antifungal, and insecticidal properties. This paper reviews the key biological values of Dipsacus and Scabiosa species, as identified by in vitro and in vivo studies, and presents their potential pharmacological applications.
Collapse
Affiliation(s)
- Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
6
|
Li P, Peng J, Li Y, Gong L, Lv Y, Liu H, Zhang T, Yang S, Liu H, Li J, Liu L. Pharmacokinetics, Bioavailability, Excretion and Metabolism Studies of Akebia Saponin D in Rats: Causes of the Ultra-Low Oral Bioavailability and Metabolic Pathway. Front Pharmacol 2021; 12:621003. [PMID: 33935711 PMCID: PMC8082176 DOI: 10.3389/fphar.2021.621003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/15/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Akebia saponin D (ASD) has a variety of biological activities and great medicinal potential, but its oral bioavailability is so low as to limit its development. Its pharmacokinetic profiles and excretion and metabolism in vivo have not been fully elucidated. This study was an attempt in this area. Methods: A simple LC-MS/MS method to simultaneously quantify ASD and its metabolites M1∼M5 in rat plasma, feces, urine and bile was established with a negative ESI model using dexketoprofen as the internal standard. Meanwhile, the UPLC-HR/MS system was used to screen all possible metabolites in the urine, feces and bile of rats, as compared with blank samples collected before administration. Absolute quantitative analysis was for M0, M3, M4, and M5, while semi-quantitative analysis was for M1, M2, and Orbitrap data. Results: The AUC0-t values after intravenous administration of 10 mg/kg and intragastrical administration of 100 mg/kg ASD were 19.05 ± 8.64 and 0.047 ± 0.030 h*μg/ml respectively. The oral bioavailability was determined to be extremely low (0.025%) in rats. The exposure of M4 and M5 in the oral group was higher than that of M0 in the terminal phase of the plasma concentration time profile, and ASD was stable in the liver microsome incubation system of rats, but metabolism was relatively rapid during anaerobic incubation of intestinal contents of rats, suggesting that the low bioavailability of ASD might have been attributed to the poor gastrointestinal permeability and extensive pre-absorption degradation rather than to the potent first pass metabolism. This assertion was further verified by a series of intervention studies, where improvement of lipid solubility and intestinal permeability as well as inhibition of intestinal flora increased the relative bioavailability to different extents without being changed by P-gp inhibition. After intravenous administration, the cumulative excretion rates of ASD in the urine and bile were 14.79 ± 1.87%, and 21.76 ± 17.61% respectively, but only 0.011% in feces, suggesting that the urine and bile were the main excretion pathways and that there was a large amount of biotransformation in the gastrointestinal tract. Fifteen possible metabolites were observed in the urine, feces and bile. The main metabolites were ASD deglycosylation, demethylation, dehydroxylation, decarbonylation, decarboxylation, hydroxylation, hydroxymethylation, hydroxyethylation and hydrolysis. Conclusion: The pharmacokinetics, bioavailability, metabolism and excretion of ASD in rats were systematically evaluated for the first time in this study. It has been confirmed that the ultra-low oral bioavailability is due to poor gastrointestinal permeability, extensive pre-absorption degradation and biotransformation. ASD after iv administration is not only excreted by the urine and bile, but possibly undergoes complex metabolic elimination.
Collapse
Affiliation(s)
- Pengfei Li
- Pharmacy Department of Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jun Peng
- Guollence Pharmaceutical Technology Co., Ltd., Beijing, China
| | - Yuexin Li
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi City, China
| | - Lili Gong
- Pharmacy Department of Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yali Lv
- Pharmacy Department of Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - He Liu
- Pharmacy Department of Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Tianhong Zhang
- Guollence Pharmaceutical Technology Co., Ltd., Beijing, China
| | - Song Yang
- Pharmacy Department of Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hongchuan Liu
- Pharmacy Department of Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jinglai Li
- Guollence Pharmaceutical Technology Co., Ltd., Beijing, China
| | - Lihong Liu
- Pharmacy Department of Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Tao Y, Chen L, Yan J. Traditional uses, processing methods, phytochemistry, pharmacology and quality control of Dipsacus asper Wall. ex C.B. Clarke: A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112912. [PMID: 32348843 DOI: 10.1016/j.jep.2020.112912] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/05/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dipsacus asper Wall. ex C.B. Clarke, a traditional Chinese herbal medicine, has long been used in China for the therapy of bone diseases (e.g. bone fracture, osteoporosis, rheumatic arthritis), traumatic hematoma, uterine bleeding and those caused by the deficiency of liver and kidney. AIM OF THE STUDY This work aims to evaluate current research progress on chemical constituents, pharmacological activities, quality control, and pharmacokinetic of Dipsacus asper Wall. ex C.B. Clarke, pinpoint the shortcomings of existing studies, and provide meaningful guidelines for our future investigations. METHODS Extensive database retrieval, such as PubMed, SciFinder and CNKI, was carried out by using keywords such as "Dipsacus asper", "Radix Dipsaci", and "Xuduan". Furthermore, relevant textbooks, patents, reviews, and digital documents were consulted to collate all available scientific literature and to provide a complete science-based survey of the topic. RESULTS More than 100 compounds have been isolated and identified from Dipsacus asper Wall. ex C.B. Clarke, a substantial proportion of which were reported to be triterpenoids and iridoids. Biological effects such as protective effects against bone fracture, anti-osteoporosis, neuroprotective, cardioprotective, anti-aging and protection of reproductive system activities were also evaluated in vitro and in vivo. CONCLUSIONS Diaphoretic processing resulted in the drop in the content of asperosaponin VI, which was highly associated with bone protective effect of DA. Therefore, diaphoretic processing was not a suitable processing method for DA. Although Dipsacus asper Wall. ex C.B. Clarke was traditionally used for therapy of osteoarthritis, the in-depth study of the underlying mechanism was very rare. Much endeavor had been made on the effect of DA on bone fracture. Notably, high-dose of Dipsacus asper administration may cause adverse impacts in maternal healthy and embryo-fetal development. It's not suitable for further development in those bioactivities, such as anti-inflammatory and free radical scavenging, which are shared in many other plant species. Pharmacological effects of individual component of DA is not equivalent to its traditional usage. Attention should be paid to the traditional effect of extract of DA.
Collapse
Affiliation(s)
- Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Lin Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Jizhong Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
8
|
Wang X, Yu N, Peng H, Hu Z, Sun Y, Zhu X, Jiang L, Xiong H. The profiling of bioactives in Akebia trifoliata pericarp and metabolites, bioavailability and in vivo anti-inflammatory activities in DSS-induced colitis mice. Food Funct 2019; 10:3977-3991. [PMID: 31204754 DOI: 10.1039/c9fo00393b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The fruit of Akebia trifoliata is popular in Asia, but researches concerning the phytochemicals of A. trifoliate pericarp extract (APE) and their metabolites, bioavailability, metabolism and anti-inflammatory activity in vivo are less known. In the present study, the chemical constituents of APE and their metabolites of rats after oral administration were identified using UPLC-LTQ-Orbitrap-MS/MS. A total of 18 compounds were tentatively characterized in APE, while 8 original compounds and 8 metabolites were observed in plasma, and 10 original compounds and 39 metabolites were detected in urine. Deglycosylation, glucuronidation, methylation and sulfation were the reactions that mainly occurred in the metabolism in vivo. Meanwhile, APE supplementation decreased dextran sulphate sodium (DSS)-induced colitis in mice, ameliorating epithelial barrier disruption, suppressing the proliferation and infiltration of immune cells, modulating the secretion of nitric oxide (NO) and prostaglandin E2 (PGE2), decreasing the expression of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as regulating oxidative stress in vivo. The results suggested that APE triterpenoids and their metabolites as major contributors to anti-inflammatory activities, providing a scientific basis for the use of APE as a functional food to ameliorate colon health in humans.
Collapse
Affiliation(s)
- Xiaoya Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Ningxiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Hailong Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Zhenying Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Xuemei Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Li Jiang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| |
Collapse
|
9
|
Gong LL, Yang S, Liu H, Zhang W, Ren LL, Han FF, Lv YL, Wan ZR, Liu LH. Anti-nociceptive and anti-inflammatory potentials of Akebia saponin D. Eur J Pharmacol 2018; 845:85-90. [PMID: 30508505 DOI: 10.1016/j.ejphar.2018.11.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 11/24/2022]
Abstract
Akebia saponin D, which is originates from Dipsacus asper Wall, has been used as a tonic, an analgesic and anti-inflammatory agent for the therapy of low back pain, rheumatic arthritis, traumatic hematoma, habitual abortion and bone fractures in traditional Chinese medicine. However, the anti-nociceptive and anti-inflammatory activity and mechanism of Akebia saponin D has been rarely reported. The aim of this study was to investigate the anti-nociceptive and anti-inflammatory activity of Akebia saponin D and to assess its possible mechanism. The anti-nociceptive effect was measured by formalin test, hot plate, and acetic acid-induced writhing in mice while the anti-inflammatory effect was measured by carrageenan induced paw edema test, xylene-induced ear swelling and acetic acid-induced vascular permeability in mice and rats. Furthermore, anti-inflammatory effect was also measured in vitro using LPS-induced RAW 264.7 cells. Our results demonstrated that Akebia saponin D dose-dependently decreased the licking time in the formalin test, delayed the reaction time of mice to the hot plate, and inhibited acetic acid-induced writhing. Treatment of Akebia saponin D attenuated the carrageenan induced paw edema in rats, inhibited the mouse ear swelling, and decreased Evans blue concentration in acetic acid induced vascular permeability test, revealing its strong anti-inflammatory effect. Akebia saponin D significantly decreased NO production and iNOS expression. Our results indicate that Akebia saponin D has anti-nociceptive and anti-inflammatory effects. It will provide experimental evidences for the use of Akebia saponin D and can be used to develop a therapeutic drug against pain and inflammation related diseases.
Collapse
Affiliation(s)
- Li-Li Gong
- Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, China
| | - Song Yang
- Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, China
| | - He Liu
- Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, China
| | - Wen Zhang
- Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, China
| | - Lu-Lu Ren
- Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, China
| | - Fei-Fei Han
- Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, China
| | - Ya-Li Lv
- Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, China
| | - Zi-Rui Wan
- Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, China
| | - Li-Hong Liu
- Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Wang Y, Shen J, Yang X, Jin Y, Yang Z, Wang R, Zhang F, Linhardt RJ. Mechanism of enhanced oral absorption of akebia saponin D by a self-nanoemulsifying drug delivery system loaded with phospholipid complex. Drug Dev Ind Pharm 2018; 45:124-129. [DOI: 10.1080/03639045.2018.1526183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Yuhui Wang
- Department of Pharmacology, Guilin Medical University, Guilin, China
| | - Jinyang Shen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaolin Yang
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Ye Jin
- Pharmacy Department, Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou, China
| | - Zhonglin Yang
- State Key laboratory of natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Rufeng Wang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Material Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J. Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Chemistry, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Departments of Biology, Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
11
|
Xu GB, Xiao YH, Zhang QY, Zhou M, Liao SG. Hepatoprotective natural triterpenoids. Eur J Med Chem 2018; 145:691-716. [PMID: 29353722 DOI: 10.1016/j.ejmech.2018.01.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
Liver diseases are one of the leading causes of death in the world. In spite of tremendous advances in modern drug research, effective and safe hepatoprotective agents are still in urgent demand. Natural products are undoubtedly valuable sources for drug leads. A number of natural triterpenoids were reported to possess pronounced hepatoprotective effects, and triterpenoids have become one of the most important classes of natural products for hepatoprotective agents. However, the significance of natural triterpenoids has been underestimated in the hepatoprotective drug discovery, with only very limited triterpenoids being covered in the reviews of hepatoprotective natural products. In this paper, ca 350 natural triterpenoids with reported hepatoprotective effects in ca 120 references between 1975 and 2016 will be reviewed, and the structure-activity relationships of certain types of natural triterpenoids, if available, will be discussed. Patents are not included.
Collapse
Affiliation(s)
- Guo-Bo Xu
- School of Pharmacy/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China; Key Laboratory of Optimal Utilization of Natural Medicinal Resources, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Yao-Hua Xiao
- School of Pharmacy/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Qing-Yan Zhang
- School of Pharmacy/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; Key Laboratory of Optimal Utilization of Natural Medicinal Resources, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Meng Zhou
- School of Pharmacy/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang 550004, Guizhou, China
| | - Shang-Gao Liao
- School of Pharmacy/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China; Key Laboratory of Optimal Utilization of Natural Medicinal Resources, Guizhou Medical University, Guian New District, 550025, Guizhou, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang 550004, Guizhou, China.
| |
Collapse
|
12
|
Gong LL, Yang S, Zhang W, Han FF, Lv YL, Wan ZR, Liu H, Jia YJ, Xuan LL, Liu LH. Akebia saponin D alleviates hepatic steatosis through BNip3 induced mitophagy. J Pharmacol Sci 2017; 136:189-195. [PMID: 29609842 DOI: 10.1016/j.jphs.2017.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/08/2017] [Accepted: 11/17/2017] [Indexed: 02/05/2023] Open
Abstract
Akebia Saponin D (ASD) is the most abundant constituent of the rhizome of Dipsacus asper Wall. The prior studies have shown that ASD alleviates hepatic steatosis targeted at the modulation of autophagy and exerts hepatoprotective effects through mitochondria. However, it is still unclear which signal transduction pathway that ASD increase autophagy and protect the mitochondria. The purpose of this paper was to explore the mechanisms through which ASD alleviates hepatic steatosis. ASD significantly reduced lipid accumulation in BRL cells. Furthermore, ASD significantly increased the mitophagy acting as increase the colocalization between mitochondria and punctate EGFP-LC3. ASD treatment increased the expression of BNip3, phospho-AMPK, prevented oleic acid (OA) induced LC3-II and phospho-mTOR expression. These effects were similar to the effects cotreatment with rapamycin. ASD treatment could not attenuate the expression of BNip3 blocked by chloroquine (CQ) or siRNA-mediated knockdown of BNip3. These results suggest that Akebia saponin D alleviates hepatic steatosis targeted at BNip3 mediated mitophagy. Activation of BNip3 via ASD may offer a new strategy for treating NAFLD.
Collapse
Affiliation(s)
- Li-Li Gong
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Song Yang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wen Zhang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Fei-Fei Han
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ya-Li Lv
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zi-Rui Wan
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - He Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yang-Jie Jia
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ling-Ling Xuan
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Li-Hong Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
CoQ10 Deficiency May Indicate Mitochondrial Dysfunction in Cr(VI) Toxicity. Int J Mol Sci 2017; 18:ijms18040816. [PMID: 28441753 PMCID: PMC5412400 DOI: 10.3390/ijms18040816] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/03/2017] [Accepted: 04/07/2017] [Indexed: 01/18/2023] Open
Abstract
To investigate the toxic mechanism of hexavalent chromium Cr(VI) and search for an antidote for Cr(VI)-induced cytotoxicity, a study of mitochondrial dysfunction induced by Cr(VI) and cell survival by recovering mitochondrial function was performed. In the present study, we found that the gene expression of electron transfer flavoprotein dehydrogenase (ETFDH) was strongly downregulated by Cr(VI) exposure. The levels of coenzyme 10 (CoQ10) and mitochondrial biogenesis presented by mitochondrial mass and mitochondrial DNA copy number were also significantly reduced after Cr(VI) exposure. The subsequent, Cr(VI)-induced mitochondrial damage and apoptosis were characterized by reactive oxygen species (ROS) accumulation, caspase-3 and caspase-9 activation, decreased superoxide dismutase (SOD) and ATP production, increased methane dicarboxylic aldehyde (MDA) content, mitochondrial membrane depolarization and mitochondrial permeability transition pore (MPTP) opening, increased Ca2+ levels, Cyt c release, decreased Bcl-2 expression, and significantly elevated Bax expression. The Cr(VI)-induced deleterious changes were attenuated by pretreatment with CoQ10 in L-02 hepatocytes. These data suggest that Cr(VI) induces CoQ10 deficiency in L-02 hepatocytes, indicating that this deficiency may be a biomarker of mitochondrial dysfunction in Cr(VI) poisoning and that exogenous administration of CoQ10 may restore mitochondrial function and protect the liver from Cr(VI) exposure.
Collapse
|
14
|
Gong LL, Li GR, Zhang W, Liu H, Lv YL, Han FF, Wan ZR, Shi MB, Liu LH. Akebia Saponin D Decreases Hepatic Steatosis through Autophagy Modulation. J Pharmacol Exp Ther 2016; 359:392-400. [PMID: 27672081 DOI: 10.1124/jpet.116.236562] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered to be a hepatic manifestation of the metabolic syndrome, and the incidence of NAFLD is increasing rapidly. However, appropriate drugs for treatment of NAFLD are lacking. This study aimed to elucidate the protective effects and mechanisms of Akebia saponin D (ASD) against NAFLD in ob/ob mice and Buffalo rat liver cells. ASD significantly decreased hepatic steatosis and hepatocyte apoptosis in ob/ob mice. ASD also significantly activated autophagic flux, as assessed by the decreased expression of light chain 3 (LC3)-II and P62 accumulation of autophagosomes. In Buffalo rat liver cells, ASD prevented oleic acid (OA)-induced lipid droplets and increased autophagic flux acting as increase the number of autolysosomes than autophagosomes in mTagRFP-mWasabi-LC3. ASD treatment also prevented OA-induced expression of LC3-II, P62, Beclin, and phospho-mammalian target of rapamycin. These effects were similar to those of cotreatment with rapamycin. ASD treatment could not prevent OA-increased, autophagy-related protein expression after treatment with chloroquine or small interfering RNA-mediated knockdown of atg7. These results suggest that ASD alleviates hepatic steatosis targeted at the fusion of autophagosomes to lysosomes, and autophagy modulation via ASD may offer a new strategy for treating NAFLD.
Collapse
Affiliation(s)
- Li-Li Gong
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Guang-Run Li
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wen Zhang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - He Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ya-Li Lv
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Fei-Fei Han
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zi-Rui Wan
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ming-Biao Shi
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Li-Hong Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Shen J, Bi J, Tian H, Jin Y, Wang Y, Yang X, Yang Z, Kou J, Li F. Preparation and evaluation of a self-nanoemulsifying drug delivery system loaded with Akebia saponin D-phospholipid complex. Int J Nanomedicine 2016; 11:4919-4929. [PMID: 27713630 PMCID: PMC5045231 DOI: 10.2147/ijn.s108765] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Akebia saponin D (ASD) exerts various pharmacological activities but with poor oral bioavailability. In this study, a self-nanoemulsifying drug delivery system (SNEDDS) based on the drug-phospholipid complex technique was developed to improve the oral absorption of ASD. METHODS ASD-phospholipid complex (APC) was prepared using a solvent-evaporation method and characterized by infrared spectroscopy, differential scanning calorimetry, morphology observation, and solubility test. Oil and cosurfactant were selected according to their ability to dissolve APC, while surfactant was chosen based on its emulsification efficiency in SNEDDS. Pseudoternary phase diagrams were constructed to determine the optimized APC-SNEDDS formulation, which was characterized by droplet size determination, zeta potential determination, and morphology observation. Robustness to dilution and thermodynamic stability of optimized formulation were also evaluated. Subsequently, pharmacokinetic parameters and oral bioavailability of ASD, APC, and APC-SNEDDS were investigated in rats. RESULTS The liposolubility significantly increased 11.4-fold after formation of APC, which was verified by the solubility test in n-octanol. Peceol (Glyceryl monooleate [type 40]), Cremophor® EL (Polyoxyl 35 castor oil), and Transcutol HP (Diethylene glycol monoethyl ether) were selected as oil, surfactant, and cosurfactant, respectively. The optimal formulation was composed of Glyceryl monooleate (type 40), Polyoxyl 35 castor oil, Diethylene glycol monoethyl ether, and APC (1:4.5:4.5:1.74, w/w/w/w), which showed a particle size of 148.0±2.7 nm and a zeta potential of -13.7±0.92 mV after dilution with distilled water at a ratio of 1:100 (w/w) and good colloidal stability. Pharmacokinetic studies showed that APC-SNEDDS exhibited a significantly greater Cmax1 (733.4±203.8 ng/mL) than ASD (437.2±174.2 ng/mL), and a greater Cmax2 (985.8±366.6 ng/mL) than ASD (180.5±75.1 ng/mL) and APC (549.7±113.5 ng/mL). Compared with ASD, Tmax1 and Tmax2 were both remarkably shortened by APC-SNEDDS. The oral bioavailability in rats was enhanced significantly to 183.8% and 431.8% by APC and APC-SNEDDS, respectively. CONCLUSION These results indicated that APC-SNEDDS was a promising drug delivery system to enhance the oral bioavailability of ASD.
Collapse
Affiliation(s)
- Jinyang Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing
| | - Jianping Bi
- Shandong Provincial Traditional Chinese Medical Hospital & Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan
| | - Hongli Tian
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing
| | - Ye Jin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing
| | - Yuan Wang
- Traditional Chinese Medical Hospital of Pukou District
| | - Xiaolin Yang
- Key Laboratory of Pharmaceutical and Biological Marine Resources Research and Development of Jiangsu Province, Nanjing University of Chinese Medicine
| | - Zhonglin Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing
| |
Collapse
|
16
|
Shen J, Jin Y, Tian H, Wang Y, Yang X, Yang Z, Guo C, Li F. Enhancement of oral bioavailability of akebia saponin D by destroying self-micelles and inhibiting multidrug resistance-associated protein mediated efflux. RSC Adv 2016. [DOI: 10.1039/c6ra14427f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Akebia saponin D (ASD), a triterpenoid saponin with numerous pharmacological activities, is isolated from the rhizome of Dipsacus asper Wall.
Collapse
Affiliation(s)
- Jinyang Shen
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Ye Jin
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Hongli Tian
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Yuan Wang
- Traditional Chinese Medical Hospital of Pukou District
- Nanjing 211899
- People's Republic of China
| | - Xiaolin Yang
- Key Laboratory of Pharmaceutical and Biological Marine Resources Research and Development of Jiangsu Province
- Nanjing University of Chinese Medicine
- Nanjing 210023
- People's Republic of China
| | - Zhonglin Yang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Changrun Guo
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Fei Li
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| |
Collapse
|