1
|
Yu D, Luo L, Wang H, Shyh-Chang N. Pregnancy-induced metabolic reprogramming and regenerative responses to pro-aging stresses. Trends Endocrinol Metab 2025; 36:482-494. [PMID: 39122601 DOI: 10.1016/j.tem.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Pregnancy is associated with physiological adaptations that affect virtually all organs, enabling the mother to support the growing fetus and placenta while withstanding the demands of pregnancy. As a result, mammalian pregnancy is a unique state that exerts paradoxical effects on maternal health. On one hand, the metabolic stress induced by pregnancy can accelerate aging and functional decline in organs. On the other hand, pregnancy activates metabolic programming and tissue regenerative responses that can reverse age-related impairments. In this sense, the oocyte-to-blastocyst transition is not the only physiological reprogramming event in the mammalian body, as pregnancy-induced regeneration could constitute a second physiological reprogramming event. Here, we review findings on how pregnancy dualistically leads to aging and rejuvenation in the maternal body.
Collapse
Affiliation(s)
- Dainan Yu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Lanfang Luo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Hongmei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ng Shyh-Chang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Wilsterman K, Bautista AI, Butler CE, Juergens MY, Larson AM. Evolution of Litter Size: Proximate and Ultimate Mechanisms. Integr Comp Biol 2024; 64:1643-1660. [PMID: 38802126 PMCID: PMC11659681 DOI: 10.1093/icb/icae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Relative reproductive success and failure are the ultimate determinants of Darwinian fitness. As such, reproductive traits and variations therein have an immediate and considerable impact on the evolutionary trajectory of lineages. Historically, significant attention has been paid to the ecological and evolutionary processes (ultimate factors) that shape the diversity and canalization of reproductive traits within groups to better our understanding of organismal diversity and population or species resilience. In contrast, the physiological systems that mediate variation within and among species (i.e., the proximate factors) in reproductive traits remain a significant black box. To date, there is comparatively little information about how proximate mechanisms constrain or promote evolutionary potential in reproductive traits. In this mini-review, we focus on litter size in Eutherian mammals as a trait with relatively well-defined diversity (litter sizes are well-described both within and across species) and for which some genetic determinants have been identified. We discuss both the ultimate and potential proximate determinants of litter size with special attention to the breadth of physiological traits that may act as "toggle" switches for evolution of litter size. We close with a brief discussion of the role that physiological plasticity may play in the evolution of litter size and lay out several forward-looking areas for future research.
Collapse
Affiliation(s)
- Kathryn Wilsterman
- Department of Biology, Colorado State University, Fort Collins, CO, 80521, USA
| | | | - Chloe E Butler
- Department of Biology, Colorado State University, Fort Collins, CO, 80521, USA
| | - Makenna Y Juergens
- Department of Biology, Colorado State University, Fort Collins, CO, 80521, USA
| | - Ashley M Larson
- Department of Biology, Colorado State University, Fort Collins, CO, 80521, USA
| |
Collapse
|
3
|
Sekimoto A, Takaso Y, Saruyama H, Ookawa M, Yamamoto M, Toyohara T, Saigusa D, Fukuuchi T, Otsuka M, Fushiki Y, Yamakoshi S, Tanaka K, Ikeda T, Tanaka T, Takahashi N, Mishima E, Sato E. Impacts of low birthweight on kidney development and intergenerational growth of the offspring. iScience 2024; 27:111159. [PMID: 39524353 PMCID: PMC11546680 DOI: 10.1016/j.isci.2024.111159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/10/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Low birthweight (LBW) increases the risk of adult-onset diseases, including kidney diseases, with intergenerational consequences; however, the underlying mechanisms and effective interventions are unclear. To examine the cross-generational effects of LBW, we established an LBW mouse model through reduced uterine perfusion pressure (RUPP) and investigated the therapeutic potential of tadalafil, a phosphodiesterase 5 inhibitor, on LBW-associated consequences. RUPP-pups (R1) had lower fetal and birth weights, delayed renal development, and fewer glomeruli than Sham-pups. In adulthood, R1 mice exhibited persistently fewer glomeruli and elevated blood pressure, while Tadalafil-R1 mice showed reduced hypertension in both sexes and improved renal pathological changes in males. Additionally, pregnant R1 mice displayed inadequate gestational liver hypertrophy, impaired hepatic purine metabolism, and diminished placental angiogenesis, resulting in fetal growth restriction in the subsequent generation. These findings underscore the lasting impact of LBW on adult health and future generations and suggest tadalafil's potential to mitigate LBW-associated risks.
Collapse
Affiliation(s)
- Akiyo Sekimoto
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
- Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoko Takaso
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Haruka Saruyama
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Masataka Ookawa
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Mari Yamamoto
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Takafumi Toyohara
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai 983-8536, Japan
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo 173-8605, Japan
| | - Tomoko Fukuuchi
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo 173-8605, Japan
| | - Mayu Otsuka
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo 173-8605, Japan
| | - Yui Fushiki
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Seiko Yamakoshi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Kayo Tanaka
- Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Tetsuhiro Tanaka
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai 983-8536, Japan
| | - Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai 983-8536, Japan
| | - Eikan Mishima
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai 983-8536, Japan
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Emiko Sato
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai 983-8536, Japan
| |
Collapse
|
4
|
Sousa D, Magalhães C, Matafome P, Pereira S. Adipose tissue-liver cross-talk: a route to hepatic dysfunction in pregnant women with obesity. Biosci Rep 2024; 44:BSR20231679. [PMID: 39083072 PMCID: PMC11327218 DOI: 10.1042/bsr20231679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/24/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Obesity during pregnancy has been escalating, becoming a huge problem that poses consequences not only for the health of the offspring but also for the maternal well-being. Women's adipose and hepatic tissue metabolism undergoes significant changes during the gestational period. During pregnancy, obesity is a primary instigator of steatosis, increasing the risk of non-alcholic fatty liver disease (NAFLD), now recognized under the updated nomenclature metabolic dysfunction-associated steatotic liver disease (MASLD). Pregnant women with obesity present higher levels of free fatty acids and glucose, reduction in insulin sensitivity, and adipose tissue endocrine dysregulation. Furthermore, obesity-induced modifications in clock genes and lipid-associated gene expression within adipose tissue disrupt crucial metabolic adaptations, potentially culminating in adipose tissue dysfunction. Thus, the liver experiences increased exposure to free fatty acids through the portal vein. Higher uptake of free fatty acids into the liver disrupts hepatic lipid oxidation while enhances lipogenesis, thereby predisposing to ectopic fat deposition within the liver. This review focuses on the obesity-induced changes during pregnancy in both liver and adipose tissue metabolism, elucidating how the metabolic crosstalk between these two organs can be dysregulated in pregnant women living with obesity.
Collapse
Affiliation(s)
- Diana Sousa
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Carina C. Magalhães
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Paulo Matafome
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Polytechnic University of Coimbra, Coimbra Health School, Rua 5 de Outubro—S. Martinho do Bispo, 3046-854 Coimbra, Portugal
| | - Susana P. Pereira
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra,3004-504 Coimbra, Portugal
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra; 3004-517 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory of for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
5
|
Yu D, Wan H, Tong C, Guang L, Chen G, Su J, Zhang L, Wang Y, Xiao Z, Zhai J, Yan L, Ma W, Liang K, Liu T, Wang Y, Peng Z, Luo L, Yu R, Li W, Qi H, Wang H, Shyh-Chang N. A multi-tissue metabolome atlas of primate pregnancy. Cell 2024; 187:764-781.e14. [PMID: 38306985 DOI: 10.1016/j.cell.2023.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 08/08/2023] [Accepted: 11/29/2023] [Indexed: 02/04/2024]
Abstract
Pregnancy induces dramatic metabolic changes in females; yet, the intricacies of this metabolic reprogramming remain poorly understood, especially in primates. Using cynomolgus monkeys, we constructed a comprehensive multi-tissue metabolome atlas, analyzing 273 samples from 23 maternal tissues during pregnancy. We discovered a decline in metabolic coupling between tissues as pregnancy progressed. Core metabolic pathways that were rewired during primate pregnancy included steroidogenesis, fatty acid metabolism, and arachidonic acid metabolism. Our atlas revealed 91 pregnancy-adaptive metabolites changing consistently across 23 tissues, whose roles we verified in human cell models and patient samples. Corticosterone and palmitoyl-carnitine regulated placental maturation and maternal tissue progenitors, respectively, with implications for maternal preeclampsia, diabetes, cardiac hypertrophy, and muscle and liver regeneration. Moreover, we found that corticosterone deficiency induced preeclampsia-like inflammation, indicating the atlas's potential clinical value. Overall, our multi-tissue metabolome atlas serves as a framework for elucidating the role of metabolic regulation in female health during pregnancy.
Collapse
Affiliation(s)
- Dainan Yu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Haifeng Wan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chao Tong
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lu Guang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Gang Chen
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jiali Su
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Lan Zhang
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zhenyu Xiao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jinglei Zhai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Long Yan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wenwu Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Kun Liang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Taoyan Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yuefan Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zehang Peng
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Lanfang Luo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Ruoxuan Yu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wei Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Hongmei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Ng Shyh-Chang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
6
|
Alves-Silva T, Húngaro TG, Freitas-Lima LC, de Melo Arthur G, Arruda AC, Santos RB, Oyama LM, Mori MA, Bader M, Araujo RC. Kinin B1 receptor controls maternal adiponectin levels and influences offspring weight gain. iScience 2023; 26:108409. [PMID: 38058311 PMCID: PMC10696114 DOI: 10.1016/j.isci.2023.108409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/16/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023] Open
Abstract
Given the importance of the kinin B1 receptor in insulin and leptin hormonal regulation, which in turn is crucial in maternal adaptations to ensure nutrient supply to the fetus, we investigated the role of this receptor in maternal metabolism and fetoplacental development. Wild-type and kinin B1 receptor-deficient (B1KO) female mice were mated with male mice of the opposite genotype. Consequently, the entire litter was heterozygous for kinin B1 receptor, ensuring that there would be no influence of offspring genotype on the maternal phenotype. Maternal kinin B1 receptor blockade reduces adiponectin secretion by adipose tissue ex vivo, consistent with lower adiponectin levels in pregnant B1KO mice. Furthermore, fasting insulinemia also increased, which was associated with placental insulin resistance, reduced placental glycogen accumulation, and heavier offspring. Therefore, we propose the combination of chronic hyperinsulinemia and reduced adiponectin secretion in B1KO female mice create a maternal obesogenic environment that results in heavier pups.
Collapse
Affiliation(s)
- Thaís Alves-Silva
- Laboratory of Genetics and Exercise Metabolism, Molecular Biology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
- Max-Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, 13125 Berlin, Germany
| | - Talita G.R. Húngaro
- Laboratory of Genetics and Exercise Metabolism, Nephrology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Leandro C. Freitas-Lima
- Laboratory of Genetics and Exercise Metabolism, Molecular Biology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Gabriel de Melo Arthur
- Laboratory of Genetics and Exercise Metabolism, Molecular Biology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Adriano C. Arruda
- Laboratory of Genetics and Exercise Metabolism, Nephrology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Raisa B. Santos
- Laboratory of Genetics and Exercise Metabolism, Nephrology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Lila M. Oyama
- Laboratory of Nutrition and Endocrine Physiology, Physiology Department, Federal University of São Paulo (UNIFESP), São Paulo 04023-901, Brazil
| | - Marcelo A.S. Mori
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo 13083-862, Brazil
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
- Charité University Medicine Berlin, Berlin, Germany
| | - Ronaldo C. Araujo
- Laboratory of Genetics and Exercise Metabolism, Molecular Biology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
- Laboratory of Genetics and Exercise Metabolism, Nephrology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| |
Collapse
|
7
|
Kozuki S, Kabata M, Sakurai S, Iwaisako K, Nishimura T, Toi M, Yamamoto T, Toyoshima F. Periportal hepatocyte proliferation at midgestation governs maternal glucose homeostasis in mice. Commun Biol 2023; 6:1226. [PMID: 38049528 PMCID: PMC10695921 DOI: 10.1038/s42003-023-05614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
The maternal liver is challenged by metabolic demands throughout pregnancy. However, hepatocyte dynamics and their physiological significance in pregnancy remain unclear. Here, we show in mice that hepatocyte proliferation is spatiotemporally regulated in each liver lobular zone during pregnancy, with transient proliferation of periportal and pericentral hepatocytes during mid and late gestation, respectively. Using adeno-associated virus (AAV)-8-mediated expression of the cell cycle inhibitor p21 in hepatocytes, we show that inhibition of hepatocyte proliferation during mid, but not late, gestation impairs liver growth. Transcriptionally, genes involved in glucose/glycogen metabolism are downregulated in late pregnancy when midgestational hepatocyte proliferation is attenuated. In addition, hepatic glycogen storage is abolished, with concomitant elevated blood glucose concentrations, glucose intolerance, placental glycogen deposition, and fetal overgrowth. Laser capture microdissection and RNA-seq analysis of each liver lobular zone show zone-specific changes in the transcriptome during pregnancy and identify genes that are periportally expressed at midgestation, including the hyaluronan-mediated motility receptor (Hmmr). Knockdown of Hmmr in hepatocytes by AAV8-shHmmr suppresses periportal hepatocyte proliferation at midgestation and induces impaired hepatic glycogen storage, glucose intolerance, placental glycogen deposition and fetal overgrowth. Our results suggest that periportal hepatocyte proliferation during midgestation is critical for maternal glycogen metabolism and fetal size.
Collapse
Affiliation(s)
- Satoshi Kozuki
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
- Department of Mammalian and Regulatory Networks, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Mio Kabata
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Satoko Sakurai
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Keiko Iwaisako
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
- Department of Target Therapy Oncology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Tomomi Nishimura
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Medical Risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, 606-8507, Japan
| | - Fumiko Toyoshima
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.
- Department of Mammalian and Regulatory Networks, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
- Department of Homeostatic Medicine, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Yushima Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
8
|
He S, Guo Z, Zhou M, Wang H, Zhang Z, Shi M, Li X, Yang X, He L. Spatial-temporal proliferation of hepatocytes during pregnancy revealed by genetic lineage tracing. Cell Stem Cell 2023; 30:1549-1558.e5. [PMID: 37794588 DOI: 10.1016/j.stem.2023.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 08/04/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023]
Abstract
The maternal liver undergoes dramatic enlargement to adapt to the increased metabolic demands during pregnancy. However, the cellular sources for liver growth during pregnancy remain largely elusive. Here, we employed a proliferation recording system, ProTracer, to examine the spatial-temporal proliferation of hepatocytes during pregnancy. We discovered that during early to late pregnancy, hepatocyte proliferation initiated from zone 1, to zone 2, and lastly to zone 3, with the majority of new hepatocytes being generated in zone 2. Additionally, using single-cell RNA sequencing, we observed that Ccnd1 was highly enriched in zone 2 hepatocytes. We further applied dual-recombinase-mediated genetic lineage tracing to reveal that Ccnd1+ hepatocytes expanded preferentially during pregnancy. Moreover, we demonstrated that estrogen induces liver enlargement during pregnancy, which was abolished in Ccnd1 knockout mice. Our work revealed a unique spatial-temporal hepatocyte proliferation pattern during pregnancy, with Ccnd1+ hepatocytes in zone 2 serving as the major cellular source for hepatic enlargement.
Collapse
Affiliation(s)
- Shun He
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou 310030, Zhejiang, China; Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang, China
| | - Zhihou Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou 310030, Zhejiang, China; Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang, China
| | - Mingshan Zhou
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou 310030, Zhejiang, China; Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang, China
| | - Haichang Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou 310030, Zhejiang, China; Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang, China
| | - Zhuonan Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou 310030, Zhejiang, China; Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang, China
| | - Mengyang Shi
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Xufeng Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
| | - Xueying Yang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
| | - Lingjuan He
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou 310030, Zhejiang, China; Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang, China.
| |
Collapse
|
9
|
Teeple K, Rajput P, Scinto S, Schoonmaker J, Davis C, Dinn M, McIntosh M, Krishnamurthy S, Plaut K, Casey T. Impact of high-fat diet and exposure to constant light on reproductive competence of female ICR mice. Biol Open 2023; 12:bio060088. [PMID: 37843404 PMCID: PMC10602010 DOI: 10.1242/bio.060088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/19/2023] [Indexed: 10/17/2023] Open
Abstract
Obesity and exposure to light at night are prevalent in modern society and associated with changes in physiology and behavior that can affect a female's ability to support offspring growth during pregnancy and lactation. A 2X3 factor study of ICR mice was conducted to determine the effect of diet [control (CON; 10% fat) or high fat (HF; 60% fat)] and exposure to regular 12 h light:dark cycles (LD) or continuous low (L5) or high (L100) lux of light on gestation length, birth litter size, milk composition and litter growth to lactation day 12. HF diet reduced birth litter size, but increased postnatal d 12 litter weight (P<0.05), whereas constant light tended to increase litter weight (P=0.07). Continuous light increased gestation length, altered dam feed intake, increased serum prolactin and increased final dam and mammary gland weight (P<0.05), while decreasing mammary ATP content and milk lactose (P<0.05). Correlation analysis indicated a positive relationship between final litter weight and mammary size, metabolic stores (e.g. maternal fat pad weight), kcal of feed intake, and gestation length (P<0.05). Although CON mice spent more time eating than HF dams, the calorically dense HF diet was related to greater rates of litter growth to peak lactation. Constant light circadian disrupting effects appear to be confounded by a potential long day photoperiod response exemplified by higher circulating levels of prolactin and increased body and mammary weight of females exposed to these conditions. Other model systems may be better to study the interacting effects of obesity and circadian disruption on reproductive competence.
Collapse
Affiliation(s)
- Kelsey Teeple
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Prabha Rajput
- Neurotherapeutics Lab, Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP 221005, India
| | - Sara Scinto
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Jenna Schoonmaker
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Corrin Davis
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Michayla Dinn
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Mackenzie McIntosh
- Histology Core, College of Veterinary Medicine, Purdue University West Lafayette, IN 47907, USA
| | - Sairam Krishnamurthy
- Neurotherapeutics Lab, Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP 221005, India
| | - Karen Plaut
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Theresa Casey
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
Marinello WP, Gillera SEA, Han Y, Richardson JR, St Armour G, Horman BM, Patisaul HB. Gestational exposure to FireMaster® 550 (FM 550) disrupts the placenta-brain axis in a socially monogamous rodent species, the prairie vole (Microtus ochrogaster). Mol Cell Endocrinol 2023; 576:112041. [PMID: 37562579 PMCID: PMC10795011 DOI: 10.1016/j.mce.2023.112041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Gestational flame retardant (FR) exposure has been linked to heightened risk of neurodevelopmental disorders, but the mechanisms remain largely unknown. Historically, toxicologists have relied on traditional, inbred rodent models, yet those do not always best model human vulnerability or biological systems, especially social systems. Here we used prairie voles (Microtus ochrogaster), a monogamous and bi-parental rodent, leveraged for decades to decipher the underpinnings of social behaviors, to examine the impact of fetal FR exposure on gene targets in the mid-gestational placenta and fetal brain. We previously established gestational exposure to the commercial mixture Firemaster 550 (FM 550) impairs sociality, particularly in males. FM 550 exposure disrupted placental monoamine production, particularly serotonin, and genes required for axon guidance and cellular respiration in the fetal brains. Effects were dose and sex specific. These data provide insights on the mechanisms by which FRs impair neurodevelopment and later in life social behaviors.
Collapse
Affiliation(s)
- William P Marinello
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, USA
| | | | - Yoonhee Han
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jason R Richardson
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Genevieve St Armour
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, USA
| | - Brian M Horman
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, USA
| | - Heather B Patisaul
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, USA; Center for Human Health and the Environment, NC State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
11
|
Yang L, Meng Y, Shi Y, Fang H, Zhang L. Maternal hepatic immunology during pregnancy. Front Immunol 2023; 14:1220323. [PMID: 37457700 PMCID: PMC10348424 DOI: 10.3389/fimmu.2023.1220323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
The liver plays pivotal roles in immunologic responses, and correct hepatic adaptations in maternal immunology are required during pregnancy. In this review, we focus on anatomical and immunological maternal hepatic adaptations during pregnancy, including our recent reports in this area. Moreover, we summarize maternal pregnancy-associated liver diseases, including hyperemesis gravidarum; intrahepatic cholestasis of pregnancy; preeclampsia, specifically hemolysis, elevated liver enzymes, and low platelet count syndrome; and acute fatty liver of pregnancy. In addition, the latest information about the factors that regulate hepatic immunology during pregnancy are reviewed for the first time, including human chorionic gonadotropin, estrogen, progesterone, growth hormone, insulin like growth factor 1, oxytocin, adrenocorticotropic hormone, adrenal hormone, prolactin, melatonin and prostaglandins. In summary, the latest progress on maternal hepatic anatomy and immunological adaptations, maternal pregnancy-associated diseases and the factors that regulate hepatic immunology during pregnancy are discussed, which may be used to prevent embryo loss and abortion, as well as pregnancy-associated liver diseases.
Collapse
|
12
|
Lin YH, Wei Y, Zeng Q, Wang Y, Pagani CA, Li L, Zhu M, Wang Z, Hsieh MH, Corbitt N, Zhang Y, Sharma T, Wang T, Zhu H. IGFBP2 expressing midlobular hepatocytes preferentially contribute to liver homeostasis and regeneration. Cell Stem Cell 2023; 30:665-676.e4. [PMID: 37146585 PMCID: PMC10580294 DOI: 10.1016/j.stem.2023.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 05/07/2023]
Abstract
Although midlobular hepatocytes in zone 2 are a recently identified cellular source for liver homeostasis and regeneration, these cells have not been exclusively fate mapped. We generated an Igfbp2-CreER knockin strain that specifically labels midlobular hepatocytes. During homeostasis over 1 year, zone 2 hepatocytes increased in abundance from occupying 21%-41% of the lobular area. After either pericentral injury with carbon tetrachloride or periportal injury with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), IGFBP2+ cells replenished lost hepatocytes in zones 3 and 1, respectively. IGFBP2+ cells also preferentially contributed to regeneration after 70% partial hepatectomy, as well as liver growth during pregnancy. Because IGFBP2 labeling increased substantially with fasting, we used single nuclear transcriptomics to explore zonation as a function of nutrition, revealing that the zonal division of labor shifts dramatically with fasting. These studies demonstrate the contribution of IGFBP2-labeled zone 2 hepatocytes to liver homeostasis and regeneration.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yonglong Wei
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qiyu Zeng
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yunguan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chase A Pagani
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Li
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zixi Wang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meng-Hsiung Hsieh
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Natasha Corbitt
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu Zhang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tripti Sharma
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
13
|
Nambiar SM, Lee J, Yanum JA, Garcia V, Jiang H, Dai G. Maternal hepatocytes heterogeneously and dynamically exhibit developmental phenotypes partially via yes-associated protein 1 during pregnancy. Am J Physiol Gastrointest Liver Physiol 2023; 324:G38-G50. [PMID: 36283963 PMCID: PMC9799147 DOI: 10.1152/ajpgi.00197.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 02/08/2023]
Abstract
Pregnancy induces reprogramming of maternal physiology to support fetal development and growth. Maternal hepatocytes undergo hypertrophy and hyperplasia to drive maternal liver growth and alter their gene expression profiles simultaneously. This study aimed to further understand maternal hepatocyte adaptation to pregnancy. Timed pregnancies were generated in mice. In a nonpregnant state, most hepatocytes expressed Cd133, α-fetal protein (Afp) and epithelial cell adhesion molecule (Epcam) mRNAs, whereas overall, at the protein level, they exhibited a CD133-/AFP- phenotype; however, pericentral hepatocytes were EpCAM+. As pregnancy advanced, although most maternal hepatocytes retained Cd133, Afp, and Epcam mRNA expression, they generally displayed a phenotype of CD133+/AFP+, and EpCAM protein expression was switched from pericentral to periportal maternal hepatocytes. In addition, we found that the Hippo/yes-associated protein (YAP) pathway does not respond to pregnancy. Yap1 gene deletion specifically in maternal hepatocytes did not affect maternal liver growth or metabolic zonation. However, the absence of Yap1 gene eliminated CD133 protein expression without interfering with Cd133 transcript expression in maternal livers. We demonstrated that maternal hepatocytes acquire heterogeneous and dynamic developmental phenotypes, resembling fetal hepatocytes, partially via YAP1 through a posttranscriptional mechanism. Moreover, maternal liver is a new source of AFP. In addition, maternal liver grows and maintains its metabolic zonation independent of the Hippo/YAP1 pathway. Our findings revealed a novel and gestation-dependent phenotypic plasticity in adult hepatocytes.NEW & NOTEWORTHY We found that maternal hepatocytes exhibit developmental phenotypes in a temporal and spatial manner, similarly to fetal hepatocytes. They acquire this new property partially via yes-associated protein 1.
Collapse
Affiliation(s)
- Shashank Manohar Nambiar
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Joonyong Lee
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Jennifer Abla Yanum
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Veronica Garcia
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Huaizhou Jiang
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Guoli Dai
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
14
|
Gomes-Carneiro MR, de Carvalho RR, do Amaral TF, Xavier De-Oliveira ACA, Paumgartten FJR. Evaluation of the maternal and developmental toxicity of 6-methylmercaptopurine riboside in rats. Reprod Toxicol 2022; 111:158-165. [PMID: 35662571 DOI: 10.1016/j.reprotox.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
Thiopurine prodrugs (azathioprine, AZA, and 6-mercaptopurine, 6MP) are embryotoxic to rodents and rabbits. Little is known about the developmental toxicity of 6-methylmercaptopurine riboside (6MMPr), a thiopurine drug metabolite that is thought to mediate its liver toxicity. A limb bud assay found that 6MMPr impairs the in vitro morphogenetic differentiation of mouse limb extremities, being more potent than 6MP in the assay. This study evaluated the embryotoxicity of 6MMPr (0, 7.5, 15, 30mg/kg bw sc) in rats after single-dose exposure in mid organogenesis (GD10). One group of pregnant rats was similarly treated with 6MP (15mg/kg bw sc). After C-section (GD21), fetuses were weighed, and examined for external abnormalities. One third of each litter was examined for soft-tissue abnormalities while the remaining fetuses were cleared and stained for skeleton evaluation. 6MMPr caused a dose-dependent maternal weight loss followed by recovery before term pregnancy. Except for a nonsignificant increase in embryolethality and slight reduction in fetal weight at 30mg/kg bw, no indication of embryotoxicity was noted at this dose or at lower doses of 6MMPr. In contrast, 6MP led to nearly 98% of post-implantation losses in the presence of slight-to-mild maternal toxicity. These results are consistent with the notion that maternal treatment with 6MMPr affects embryo development, causing a nonsignificant increase in embryolethality and a slight reduction in fetal weight at 30mg/kg bw. However, there was no increase in abnormalities at this dose, which was severely toxic to the dams, as reflected in the maternal weight gain data.
Collapse
Affiliation(s)
- Maria Regina Gomes-Carneiro
- Laboratory of Environmental Toxicology, National School of Public Health,Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Rosângela Ribeiro de Carvalho
- Laboratory of Environmental Toxicology, National School of Public Health,Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Thamyris Figueiredo do Amaral
- Laboratory of Environmental Toxicology, National School of Public Health,Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-361, Brazil
| | | | - Francisco José Roma Paumgartten
- Laboratory of Environmental Toxicology, National School of Public Health,Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-361, Brazil.
| |
Collapse
|
15
|
Kozuki S, Sakurai S, Suzuki A, Yamamoto T, Toyoshima F. Delineation of biliary epithelial cell dynamics in maternal liver during pregnancy. Genes Cells 2021; 27:192-201. [PMID: 34967957 DOI: 10.1111/gtc.12918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022]
Abstract
In pregnant mice, the maternal liver expands drastically during gestation, which is believed to be essential to accommodate various metabolic demands caused by physiological changes and fetal growth. Although hepatocyte proliferation and hypertrophy have been reported, little is known about the dynamics of biliary epithelial cells (BECs), which comprise the bile duct epithelium in the liver. Here, we show that BECs transiently proliferate during the early stage of gestation. Lineage tracing revealed that BEC progeny were retained in the bile duct epithelium and did not differentiate into hepatocytes, indicating BEC self-replication during pregnancy. RNA-sequencing analysis of BECs identified their early pregnancy-signature transcriptomes, which highlighted Yes-associated protein (YAP) signaling-related genes. Nuclear accumulation of YAP was enhanced in BECs during pregnancy but was barely detectable in hepatocytes. In addition, the pharmacological inhibition of YAP attenuated BEC proliferation and liver weight gain during pregnancy. Our results delineate the proliferation and transcriptomic dynamics of BECs during pregnancy and suggest the relevance of YAP-mediated signals.
Collapse
Affiliation(s)
- Satoshi Kozuki
- Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,Department of Mammalian and Regulatory Networks, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Satoko Sakurai
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Medical Risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, 606-8507, Japan
| | - Fumiko Toyoshima
- Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,Department of Mammalian and Regulatory Networks, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
16
|
Pregnancy and weaning regulate human maternal liver size and function. Proc Natl Acad Sci U S A 2021; 118:2107269118. [PMID: 34815335 PMCID: PMC8640831 DOI: 10.1073/pnas.2107269118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2021] [Indexed: 12/19/2022] Open
Abstract
During pregnancy, the rodent liver undergoes hepatocyte proliferation and increases in size, followed by weaning-induced involution via hepatocyte cell death and stromal remodeling, creating a prometastatic niche. These data suggest a mechanism for increased liver metastasis in breast cancer patients with recent childbirth. It is unknown whether the human liver changes in size and function during pregnancy and weaning. In this study, abdominal imaging was obtained in healthy women at early and late pregnancy and postwean. During pregnancy time points, glucose production and utilization and circulating bile acids were measured. Independently of weight gain, most women's livers increased in size with pregnancy, then returned to baseline postwean. Putative roles for bile acids in liver growth and regression were observed. Together, the data support the hypothesis that the human liver is regulated by reproductive state with growth during pregnancy and volume loss postwean. These findings have implications for sex-specific liver diseases and for breast cancer outcomes.
Collapse
|
17
|
Lee J, Garcia V, Nambiar SM, Jiang H, Dai G. Activation of Proneuronal Transcription Factor Ascl1 in Maternal Liver Ensures a Healthy Pregnancy. Cell Mol Gastroenterol Hepatol 2021; 13:35-55. [PMID: 34438112 PMCID: PMC8600092 DOI: 10.1016/j.jcmgh.2021.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Maternal liver shows robust adaptations to pregnancy to accommodate the metabolic needs of the developing and growing placenta and fetus by largely unknown mechanisms. We found that Ascl1, a gene encoding a basic helix-loop-helix transcription factor essential for neuronal development, is highly activated in maternal hepatocytes during the second half of gestation in mice. METHODS To investigate whether and how Ascl1 plays a pregnancy-dependent role, we deleted the Ascl1 gene specifically in maternal hepatocytes from midgestation until term. RESULTS As a result, we identified multiple Ascl1-dependent phenotypes. Maternal livers lacking Ascl1 showed aberrant hepatocyte structure, increased hepatocyte proliferation, enlarged hepatocyte size, reduced albumin production, and increased release of liver enzymes, indicating maternal liver dysfunction. Simultaneously, maternal pancreas and spleen and the placenta showed marked overgrowth; and the maternal ceca microbiome showed alterations in relative abundance of several bacterial subpopulations. Moreover, litters born from maternal hepatic Ascl1-deficient dams experienced abnormal postnatal growth after weaning, implying an adverse pregnancy outcome. Mechanistically, we found that maternal hepatocytes deficient for Ascl1 showed robust activation of insulin-like growth factor 2 expression, which may contribute to the Ascl1-dependent phenotypes widespread in maternal and uteroplacental compartments. CONCLUSIONS In summary, we show that maternal liver, via activating Ascl1 expression, modulates the adaptations of maternal organs and the growth of the placenta to maintain a healthy pregnancy. Our studies show that Ascl1 is a novel and critical regulator of the physiology of pregnancy.
Collapse
Affiliation(s)
- Joonyong Lee
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Veronica Garcia
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Shashank M Nambiar
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Huaizhou Jiang
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana; School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Guoli Dai
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana.
| |
Collapse
|
18
|
Bartlett AQ, Pennock ND, Klug A, Schedin P. Immune Milieu Established by Postpartum Liver Involution Promotes Breast Cancer Liver Metastasis. Cancers (Basel) 2021; 13:1698. [PMID: 33916683 PMCID: PMC8038410 DOI: 10.3390/cancers13071698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
In rodents, we identified a physiologic process within the normal liver that creates a pre-metastatic niche. This physiology is weaning-induced liver involution, characterized by hepatocyte cell death, immune influx, and extracellular matrix remodeling. Here, using weaning-induced liver involution as a model of a physiologically regulated pro-metastatic niche, we investigate how liver involution supports breast cancer metastasis. Liver metastases were induced in BALB/c immune competent hosts by portal vein injection of D2OR (low metastatic) or D2A1 (high metastatic) mouse mammary tumor cells. Tumor incidence and multiplicity increased in involution hosts with no evidence of a proliferation advantage. D2OR tumor cell extravasation, seeding, and early survival were not enhanced in the involuting group compared to the nulliparous group. Rather, the involution metastatic advantage was observed at 14 days post tumor cell injection. This metastatic advantage associated with induction of immune tolerance in the involution host liver, reproductive state dependent intra-tumoral immune composition, and CD8-dependent suppression of metastases in nulliparous hosts. Our findings suggest that the normal postpartum liver is in an immune suppressed state, which can provide a pro-metastatic advantage to circulating breast cancer cells. Potential relevance to women is suggested as a postpartum diagnosis of breast cancer is an independent predictor of liver metastasis.
Collapse
Affiliation(s)
- Alexandra Q. Bartlett
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; (A.Q.B.); (N.D.P.); (A.K.)
| | - Nathan D. Pennock
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; (A.Q.B.); (N.D.P.); (A.K.)
| | - Alex Klug
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; (A.Q.B.); (N.D.P.); (A.K.)
| | - Pepper Schedin
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; (A.Q.B.); (N.D.P.); (A.K.)
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
19
|
Garczyńska K, Tzschätzsch H, Kühl AA, Morr AS, Lilaj L, Häckel A, Schellenberger E, Berndt N, Holzhütter HG, Braun J, Sack I, Guo J. Changes in Liver Mechanical Properties and Water Diffusivity During Normal Pregnancy Are Driven by Cellular Hypertrophy. Front Physiol 2020; 11:605205. [PMID: 33329058 PMCID: PMC7719759 DOI: 10.3389/fphys.2020.605205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
During pregnancy, the body’s hyperestrogenic state alters hepatic metabolism and synthesis. While biochemical changes related to liver function during normal pregnancy are well understood, pregnancy-associated alterations in biophysical properties of the liver remain elusive. In this study, we investigated 26 ex vivo fresh liver specimens harvested from pregnant and non-pregnant rats by diffusion-weighted imaging (DWI) and magnetic resonance elastography (MRE) in a 0.5-Tesla compact magnetic resonance imaging (MRI) scanner. Water diffusivity and viscoelastic parameters were compared with histological data and blood markers. We found livers from pregnant rats to have (i) significantly enlarged hepatocytes (26 ± 15%, p < 0.001), (ii) increased liver stiffness (12 ± 15%, p = 0.012), (iii) decreased viscosity (−23 ± 14%, p < 0.001), and (iv) increased water diffusivity (12 ± 11%, p < 0.001). In conclusion, increased stiffness and reduced viscosity of the liver during pregnancy are mainly attributable to hepatocyte enlargement. Hypertrophy of liver cells imposes fewer restrictions on intracellular water mobility, resulting in a higher hepatic water diffusion coefficient. Collectively, MRE and DWI have the potential to inform on structural liver changes associated with pregnancy in a clinical context.
Collapse
Affiliation(s)
- Karolina Garczyńska
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Heiko Tzschätzsch
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anja A Kühl
- iPATH.Berlin Core Unit, Charitá - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anna Sophie Morr
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ledia Lilaj
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Akvile Häckel
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eyk Schellenberger
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nikolaus Berndt
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Computational Systems Biochemistry Group, Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hermann-Georg Holzhütter
- Computational Systems Biochemistry Group, Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jing Guo
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
20
|
Betts CB, Quackenbush A, Anderson W, Marshall NE, Schedin PJ. Mucosal Immunity and Liver Metabolism in the Complex Condition of Lactation Insufficiency. J Hum Lact 2020; 36:582-590. [PMID: 32795211 DOI: 10.1177/0890334420947656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lactation insufficiency is variously defined and includes the inability to produce milk, not producing enough milk to exclusively meet infant growth requirements, and pathological interruption of lactation (e.g., mastitis). Of women with intent-to-breastfeed, lactation insufficiency has been estimated to affect 38%-44% of newly postpartum women, likely contributing to the nearly 60% of infants that are not breastfed according to the World Health Organization's guidelines. To date, research and clinical practice aimed at improving feeding outcomes have focused on hospital lactation support and education, with laudable results. However, researchers' reports of recent rodent studies concerning fundamental lactation biology have suggested that the underlying pathologies of lactation insufficiency may be more nuanced than is currently appreciated. In this article, we identify mucosal biology of the breast and lactation-specific liver biology as two under-researched aspects of lactation physiology. Specifically, we argue that further scientific inquiry into reproductive state-dependent regulation of immunity in the human breast will reveal insights into novel immune based requirements for healthy lactation. Additionally, our synthesis of the literature supports the hypothesis that the liver is an essential player in lactation-highlighting the potential that pathologies of the liver may also be associated with lactation insufficiency. More research into these biologic underpinnings of lactation is anticipated to provide new avenues to understand and treat lactation insufficiency.
Collapse
Affiliation(s)
- Courtney B Betts
- 89020 Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Alexandra Quackenbush
- 89020 Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Weston Anderson
- 89020 Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Nicole E Marshall
- Obstetrics and Gynecology, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Pepper J Schedin
- 89020 Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA.,University of Colorado Cancer Center, Aurora, CO, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
21
|
Lee J, Garcia V, Nambiar SM, Jiang H, Dai G. Pregnancy facilitates maternal liver regeneration after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol 2020; 318:G772-G780. [PMID: 32003603 PMCID: PMC7191459 DOI: 10.1152/ajpgi.00125.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Liver resection induces robust liver regrowth or regeneration to compensate for the lost tissue mass. In a clinical setting, pregnant women may need liver resection without terminating pregnancy in some cases. However, how pregnancy affects maternal liver regeneration remains elusive. We performed 70% partial hepatectomy (PH) in nonpregnant mice and gestation day 14 mice, and histologically and molecularly compared their liver regrowth during the next 4 days. We found that compared with the nonpregnant state, pregnancy altered the molecular programs driving hepatocyte replication, indicated by enhanced activities of epidermal growth factor receptor and STAT5A, reduced activities of cMet and p70S6K, decreased production of IL-6, TNFα, and hepatocyte growth factor, suppressed cyclin D1 expression, increased cyclin A1 expression, and early activated cyclin A2 expression. As a result, pregnancy allowed the remnant hepatocytes to enter the cell cycle at least 12 h earlier, increased hepatic fat accumulation, and enhanced hepatocyte mitosis. Consequently, pregnancy ameliorated maternal liver regeneration following PH. In addition, a report showed that maternal liver regrowth after PH is driven mainly by hepatocyte hypertrophy rather than hyperplasia during the second half of gestation in young adult mice. In contrast, we demonstrate that maternal liver relies mainly on hepatocyte hyperplasia instead of hypertrophy to restore the lost mass after PH. Overall, we demonstrate that pregnancy facilitates maternal liver regeneration likely via triggering an early onset of hepatocyte replication, accumulating excessive liver fat, and promoting hepatocyte mitosis. The results from our current studies enable us to gain more insights into how maternal liver regeneration progresses during gestation.NEW & NOTEWORTHY We demonstrate that pregnancy may generate positive effects on maternal liver regeneration following partial hepatectomy, which are manifested by early entry of the cell cycle of remnant hepatocytes, increased hepatic fat accumulation, enhanced hepatocyte mitosis, and overall accelerated liver regrowth.
Collapse
Affiliation(s)
- Joonyong Lee
- 1Department of Biology, Center for Developmental and Regenerative Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Veronica Garcia
- 1Department of Biology, Center for Developmental and Regenerative Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Shashank Manohar Nambiar
- 1Department of Biology, Center for Developmental and Regenerative Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Huaizhou Jiang
- 1Department of Biology, Center for Developmental and Regenerative Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana,2School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Anhui, China
| | - Guoli Dai
- 1Department of Biology, Center for Developmental and Regenerative Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
22
|
Yang L, Bai J, Zhao Z, Li N, Wang Y, Zhang L. Differential expression of T helper cytokines in the liver during early pregnancy in sheep. Anim Reprod 2019; 16:332-339. [PMID: 33224295 PMCID: PMC7673597 DOI: 10.21451/1984-3143-ar2018-0141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Liver plays important roles in the innate and adaptive immunity, and contributes to the maternal immune adjustments during pregnancy in mice and rats. T helper 1 (Th1) and Th2 cytokines are related to immune response. However, expression of Th1 and Th2 cytokines in maternal livers is unclear during early pregnancy in sheep. In this study, livers were collected on day 16 of the estrous cycle and on days 13, 16 and 25 of pregnancy (n = 6 for each group) in ewes, and qRT-PCR, western blot and immunohistochemistry were used to analyze the expression of Th1 and Th2 cytokines in the livers. Our results showed that interferon-gamma (IFN-γ), interleukin (IL)-2, IL-4, IL-6 and IL-10 were downregulated, and IL-5 was upregulated in the livers during early pregnancy. Furthermore, there was no effect for early pregnancy on expression of TNF-β in the livers, and the IFN-γ protein was limited to the endothelial cells of the proper hepatic arteries and portal veins. In conclusion, early pregnancy exerted its effect on the liver to regulate the Th cytokines expression, but there was no evident shift from Th1 to Th2 cytokines, which may be necessary for the maternal hepatic immune adjustments during early pregnancy in sheep.
Collapse
Affiliation(s)
- Ling Yang
- Department of Animal Science, College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Jiachen Bai
- Department of Animal Science, College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Zimo Zhao
- Department of Animal Science, College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ning Li
- Department of Animal Science, College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yujiao Wang
- Department of Animal Science, College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Leying Zhang
- Department of Animal Science, College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
23
|
Chaturantabut S, Shwartz A, Evason KJ, Cox AG, Labella K, Schepers AG, Yang S, Aravena M, Houvras Y, Mancio-Silva L, Romano S, Gorelick DA, Cohen DE, Zon LI, Bhatia SN, North TE, Goessling W. Estrogen Activation of G-Protein-Coupled Estrogen Receptor 1 Regulates Phosphoinositide 3-Kinase and mTOR Signaling to Promote Liver Growth in Zebrafish and Proliferation of Human Hepatocytes. Gastroenterology 2019; 156:1788-1804.e13. [PMID: 30641053 PMCID: PMC6532055 DOI: 10.1053/j.gastro.2019.01.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Patients with cirrhosis are at high risk for hepatocellular carcinoma (HCC) and often have increased serum levels of estrogen. It is not clear how estrogen promotes hepatic growth. We investigated the effects of estrogen on hepatocyte proliferation during zebrafish development, liver regeneration, and carcinogenesis. We also studied human hepatocytes and liver tissues. METHODS Zebrafish were exposed to selective modifiers of estrogen signaling at larval and adult stages. Liver growth was assessed by gene expression, fluorescent imaging, and histologic analyses. We monitored liver regeneration after hepatocyte ablation and HCC development after administration of chemical carcinogens (dimethylbenzanthrazene). Proliferation of human hepatocytes was measured in a coculture system. We measured levels of G-protein-coupled estrogen receptor (GPER1) in HCC and nontumor liver tissues from 68 patients by immunohistochemistry. RESULTS Exposure to 17β-estradiol (E2) increased proliferation of hepatocytes and liver volume and mass in larval and adult zebrafish. Chemical genetic and epistasis experiments showed that GPER1 mediates the effects of E2 via the phosphoinositide 3-kinase-protein kinase B-mechanistic target of rapamycin pathway: gper1-knockout and mtor-knockout zebrafish did not increase liver growth in response to E2. HCC samples from patients had increased levels of GPER1 compared with nontumor tissue samples; estrogen promoted proliferation of human primary hepatocytes. Estrogen accelerated hepatocarcinogenesis specifically in male zebrafish. Chemical inhibition or genetic loss of GPER1 significantly reduced tumor development in the zebrafish. CONCLUSIONS In an analysis of zebrafish and human liver cells and tissues, we found GPER1 to be a hepatic estrogen sensor that regulates liver growth during development, regeneration, and tumorigenesis. Inhibitors of GPER1 might be developed for liver cancer prevention or treatment. TRANSCRIPT PROFILING The accession number in the Gene Expression Omnibus is GSE92544.
Collapse
Affiliation(s)
- Saireudee Chaturantabut
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Arkadi Shwartz
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Andrew G. Cox
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts;,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kyle Labella
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Arnout G. Schepers
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Song Yang
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
| | - Marianna Aravena
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York
| | - Yariv Houvras
- Departments of Surgery and Medicine, Weill Cornell Medical College, New York, New York
| | - Liliana Mancio-Silva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Shannon Romano
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel A. Gorelick
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - David E. Cohen
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York
| | - Leonard I. Zon
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts;,Howard Hughes Medical Institute, Chevy Chase, Maryland;,Harvard Stem Cell Institute, Cambridge, Massachusetts;,Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts;,Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts;,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Trista E. North
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts;,Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - Wolfram Goessling
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Harvard Stem Cell Institute, Cambridge, Massachusetts; Dana-Farber Cancer Institute, Boston, Massachusetts; Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Divison of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
24
|
Quinn MA, McCalla A, He B, Xu X, Cidlowski JA. Silencing of maternal hepatic glucocorticoid receptor is essential for normal fetal development in mice. Commun Biol 2019; 2:104. [PMID: 30911679 PMCID: PMC6420645 DOI: 10.1038/s42003-019-0344-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/17/2019] [Indexed: 12/19/2022] Open
Abstract
Excessive or chronic stress can lead to a variety of diseases due to aberrant activation of the glucocorticoid receptor (GR), a ligand activated transcription factor. Pregnancy represents a particular window of sensitivity in which excessive stress can have adverse outcomes, particularly on the developing fetus. Here we show maternal hepatic stress hormone responsiveness is diminished via epigenetic silencing of the glucocorticoid receptor during pregnancy. Provocatively, reinstallation of GR to hepatocytes during pregnancy by adeno-associated viral transduction dysregulates genes involved in proliferation, resulting in impaired pregnancy-induced hepatomegaly. Disruption of the maternal hepatic adaptation to pregnancy results in in utero growth restriction (IUGR). These data demonstrate pregnancy antagonizes the liver-specific effects of stress hormone signaling in the maternal compartment to ultimately support the healthy development of embryos.
Collapse
Affiliation(s)
- Matthew A. Quinn
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27517 USA
| | - Amy McCalla
- Signal Transduction Laboratory, Research Triangle Park, North Carolina USA
| | - Bo He
- Signal Transduction Laboratory, Research Triangle Park, North Carolina USA
| | - Xiaojiang Xu
- Laboratory of Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709 USA
| | - John A. Cidlowski
- Signal Transduction Laboratory, Research Triangle Park, North Carolina USA
| |
Collapse
|
25
|
DNA methylation in mice is influenced by genetics as well as sex and life experience. Nat Commun 2019; 10:305. [PMID: 30659182 PMCID: PMC6338756 DOI: 10.1038/s41467-018-08067-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 11/15/2018] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is an essential epigenetic process in mammals, intimately involved in gene regulation. Here we address the extent to which genetics, sex, and pregnancy influence genomic DNA methylation by intercrossing 2 inbred mouse strains, C57BL/6N and C3H/HeN, and analyzing DNA methylation in parents and offspring using whole-genome bisulfite sequencing. Differential methylation across genotype is detected at thousands of loci and is preserved on parental alleles in offspring. In comparison of autosomal DNA methylation patterns across sex, hundreds of differentially methylated regions are detected. Comparison of animals with different histories of pregnancy within our study reveals a CpG methylation pattern that is restricted to female animals that had borne offspring. Collectively, our results demonstrate the stability of CpG methylation across generations, clarify the interplay of epigenetics with genetics and sex, and suggest that CpG methylation may serve as an epigenetic record of life events in somatic tissues at loci whose expression is linked to the relevant biology. DNA methylation is an epigenetic mark involved in gene regulation. Here the authors investigate the extent to which genetics, sex and pregnancy influence genomic DNA methylation in mice, providing evidence of the stability of CpG methylation across generation and suggest that CpG methylation may serve as an epigenetic record of life events in somatic tissues at loci whose expression is linked to the relevant biology.
Collapse
|
26
|
Price LR, Lillycrop KA, Irvine NA, Hanson MA, Burdge GC. Transcriptome-wide analysis suggests that temporal changes in the relative contributions of hyperplasia, hypertrophy and apoptosis underlie liver growth in pregnant mice. Biol Reprod 2018; 97:762-771. [PMID: 29091992 DOI: 10.1093/biolre/iox136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/27/2017] [Indexed: 12/18/2022] Open
Abstract
Maternal liver undergoes structural and metabolic changes during pregnancy to meet the demands of the developing fetus. In rodents, this involves increased liver weight, but the mechanism remains unclear. To address this, we analyzed the histology, gene expression, and DNA methylation of livers of nonpregnant and pregnant C57/BL6 mice. Gestational liver growth in pregnant mice was accompanied by increased hepatocyte area and lower cell density (days 14 and 18). Expression of cell proliferation markers was increased on days 14 and 18. A total of 115 genes were differentially expressed on day 14 and 123 genes on day 18 (79 on both days). Pathway analysis indicated that pregnancy involves progressive increase in cell proliferation and decreased apoptosis. This was confirmed using archived data from the FVB wild-type mouse liver transcriptome. Four differentially DNA methylated and two differentially DNA hydroxymethylated regions identified on days 14 and 18 by methylome-wide analysis, but were not associated with altered gene expression. Long interspersed nuclear element-1 hypomethylation on days 14 and 18 was accompanied by increased ten-eleven translocase-2 and decreased DNA methyltransferase 3a and 3b expression. These findings suggest that gestational liver growth involves increased mitosis and hypertrophy, and decreased apoptosis contingent on pregnancy stage. Such changes may involve repetitive sequence, but not gene specific, DNA methylation.
Collapse
Affiliation(s)
- Leonie R Price
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Karen A Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - Nicola A Irvine
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mark A Hanson
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Graham C Burdge
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
27
|
Moreno-Carranza B, Bravo-Manríquez M, Baez A, Ledesma-Colunga MG, Ruiz-Herrera X, Reyes-Ortega P, de los Ríos EA, Macotela Y, Martínez de la Escalera G, Clapp C. Prolactin regulates liver growth during postnatal development in mice. Am J Physiol Regul Integr Comp Physiol 2018; 314:R902-R908. [DOI: 10.1152/ajpregu.00003.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The liver grows during the early postnatal period first at slower and then at faster rates than the body to achieve the adult liver-to-body weight ratio (LBW), a constant reflecting liver health. The hormone prolactin (PRL) stimulates adult liver growth and regeneration, and its levels are high in the circulation of newborn infants, but whether PRL plays a role in neonatal liver growth is unknown. Here, we show that the liver produces PRL and upregulates the PRL receptor in mice during the first 2 wk after birth, when liver growth lags behind body growth. At postnatal week 4, the production of PRL by the liver ceases coinciding with the elevation of circulating PRL and the faster liver growth that catches up with body growth. PRL receptor null mice ( Prlr−/−) show a significant decrease in the LBW at 1, 4, 6, and 10 postnatal weeks and reduced liver expression of proliferation [cyclin D1 ( Ccnd1)] and angiogenesis [platelet/endothelial cell adhesion molecule 1 ( Pecam1)] markers relative to Prlr+/+ mice. However, the LBW increases in Prlr−/− mice at postnatal week 2 concurring with the enhanced liver expression of Igf-1 and the liver upregulation and downregulation of suppressor of cytokine signaling 2 ( Socs2) and Socs3, respectively. These findings indicate that PRL acts locally and systemically to restrict and stimulate postnatal liver growth. PRL inhibits liver and body growth by attenuating growth hormone-induced Igf-1 liver expression via Socs2 and Socs3-related mechanisms.
Collapse
Affiliation(s)
- Bibiana Moreno-Carranza
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro City, Querétaro, México
| | - Marco Bravo-Manríquez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro City, Querétaro, México
| | - Arelí Baez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro City, Querétaro, México
| | - Maria G. Ledesma-Colunga
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro City, Querétaro, México
| | - Xarubet Ruiz-Herrera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro City, Querétaro, México
| | - Pamela Reyes-Ortega
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro City, Querétaro, México
| | - Ericka A. de los Ríos
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro City, Querétaro, México
| | - Yazmín Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro City, Querétaro, México
| | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro City, Querétaro, México
| |
Collapse
|
28
|
Dallmann A, Ince I, Meyer M, Willmann S, Eissing T, Hempel G. Gestation-Specific Changes in the Anatomy and Physiology of Healthy Pregnant Women: An Extended Repository of Model Parameters for Physiologically Based Pharmacokinetic Modeling in Pregnancy. Clin Pharmacokinet 2018; 56:1303-1330. [PMID: 28401479 DOI: 10.1007/s40262-017-0539-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND In the past years, several repositories for anatomical and physiological parameters required for physiologically based pharmacokinetic modeling in pregnant women have been published. While providing a good basis, some important aspects can be further detailed. For example, they did not account for the variability associated with parameters or were lacking key parameters necessary for developing more detailed mechanistic pregnancy physiologically based pharmacokinetic models, such as the composition of pregnancy-specific tissues. OBJECTIVES The aim of this meta-analysis was to provide an updated and extended database of anatomical and physiological parameters in healthy pregnant women that also accounts for changes in the variability of a parameter throughout gestation and for the composition of pregnancy-specific tissues. METHODS A systematic literature search was carried out to collect study data on pregnancy-related changes of anatomical and physiological parameters. For each parameter, a set of mathematical functions was fitted to the data and to the standard deviation observed among the data. The best performing functions were selected based on numerical and visual diagnostics as well as based on physiological plausibility. RESULTS The literature search yielded 473 studies, 302 of which met the criteria to be further analyzed and compiled in a database. In total, the database encompassed 7729 data. Although the availability of quantitative data for some parameters remained limited, mathematical functions could be generated for many important parameters. Gaps were filled based on qualitative knowledge and based on physiologically plausible assumptions. CONCLUSION The presented results facilitate the integration of pregnancy-dependent changes in anatomy and physiology into mechanistic population physiologically based pharmacokinetic models. Such models can ultimately provide a valuable tool to investigate the pharmacokinetics during pregnancy in silico and support informed decision making regarding optimal dosing regimens in this vulnerable special population.
Collapse
Affiliation(s)
- André Dallmann
- Department of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, Westfälische Wilhelm-University Münster, Münster, Germany
| | - Ibrahim Ince
- ET-TD-ET Systems Pharmacology CV, Bayer AG, Leverkusen, Germany.
| | - Michaela Meyer
- DD-CS Clinical Pharmacometrics, Bayer AG, Wuppertal, Germany
| | - Stefan Willmann
- DD-CS Clinical Pharmacometrics, Bayer AG, Wuppertal, Germany
| | - Thomas Eissing
- ET-TD-ET Systems Pharmacology CV, Bayer AG, Leverkusen, Germany
| | - Georg Hempel
- Department of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, Westfälische Wilhelm-University Münster, Münster, Germany
| |
Collapse
|
29
|
Bright AS, Herrera-Garcia G, Moscovitz JE, You D, Guo GL, Aleksunes LM. Regulation of Drug Disposition Gene Expression in Pregnant Mice with Car Receptor Activation. NUCLEAR RECEPTOR RESEARCH 2016; 3. [PMID: 27818994 DOI: 10.11131/2016/101193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
More than half of pregnant women use prescription medications in order to maintain both maternal and fetal health. The constitutive androstane receptor (Car) critically affects the disposition of chemicals by regulating the transcription of genes encoding metabolic enzymes and transporters. However, the effects of Car activation on chemical disposition during pregnancy are unclear. This study aims to determine the degree to which pregnancy alters the expression of drug metabolizing enzymes and transporters in response to the pharmacological activation of Car. To test this, pregnant C57BL/6 mice were administered IP doses of vehicle, or a potent Car agonist, TCPOBOP, on gestation days 14, 15 and 16. Hepatic mRNA and protein expression of Car target genes (phase I, II and transporters) were quantified on gestation day 17. Pregnancy-related changes, such as induction of Cyp2b10, Ugt1a1 and Sult1a1 and repression of Ugt1a6, Gsta1, Gsta2 and Mrp6, were observed. Interestingly, the induction of Cyp2b10, Gsta1, Gsta2 and Mrp2-4 mRNAs by TCPOBOP was attenuated in maternal livers suggesting that Car activation is impeded by the biochemical and/or physiological changes that occur during gestation. Taken together, these findings suggest that pregnancy and pharmacological activation of Car can differentially regulate the expression of drug metabolism and transport genes.
Collapse
Affiliation(s)
- Amanda S Bright
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Guadalupe Herrera-Garcia
- Department of Obstetrics and Gynecology, Rutgers-Robert Wood Johnson Medical School, 1 Robert Wood Johnson Place, New Brunswick, NJ 08901, USA
| | - Jamie E Moscovitz
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Dahea You
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|
30
|
Abstract
Neither the mechanisms of parturition nor the pathogenesis of preterm birth are well understood. Poor nutritional status has been suspected as a major causal factor, since vitamin A concentrations are low in preterm infants. However, even large enteral doses of vitamin A from birth fail to increase plasma concentrations of vitamin A or improve outcomes in preterm and/or extremely low birthweight infants. These findings suggest an underlying impairment in the secretion of vitamin A from the liver, where about 80% of the vitamin is stored. Vitamin A accumulates in the liver and breast during pregnancy in preparation for lactation. While essential in low concentration for multiple biological functions, vitamin A in higher concentration can be pro-oxidant, mutagenic, teratogenic and cytotoxic, acting as a highly surface-active, membrane-seeking and destabilizing compound. Regarding the mechanism of parturition, it is conjectured that by nine months of gestation the hepatic accumulation of vitamin A (retinol) from the liver is such that mobilization and secretion are impaired to the point where stored vitamin A compounds in the form of retinyl esters and retinoic acid begin to spill or leak into the circulation, resulting in amniotic membrane destabilization and the initiation of parturition. If, however, the accumulation and spillage of stored retinoids reaches a critical threshold prior to nine months, e.g., due to cholestatic liver disease, which is common in mothers of preterm infants, the increased retinyl esters and/or retinoic acid rupture the fetal membranes, inducing preterm birth and its complications, including retinopathy, necrotizing enterocolitis and bronchopulmonary dysplasia. Subject to testing, the model suggests that measures taken prior to and during pregnancy to improve liver function could reduce the risk of adverse birth outcomes, including preterm birth.
Collapse
Affiliation(s)
- Anthony R Mawson
- Interim Chair, Department of Epidemiology & Biostatistics, School of Public Health, Jackson State University, 350 West Woodrow Wilson Avenue, Room 229, Jackson, MS 39213, 601-991-3811
| |
Collapse
|
31
|
Natural fertility and longevity. Fertil Steril 2015; 103:1109-16. [PMID: 25934597 DOI: 10.1016/j.fertnstert.2015.03.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/25/2022]
Abstract
Much empirical work suggests an association between fertility patterns and longevity. I review this association, focusing on natural fertility populations and emphasizing the role of both the timing and the intensity of fertility. Overall, it appears that although age at last reproduction routinely correlates with post-reproductive longevity, suggesting a slower rate of senescence among late fertile women, the same is not true for age at first reproduction and parity. I discuss some of the conceptual and methodologic issues, as well as the sources of the biases, that have been a persistent feature of this body of research. I conclude by suggesting avenues of research that could be initiated or pursued in the area.
Collapse
|
32
|
Mi Y, Lin A, Fiete D, Steirer L, Baenziger JU. Modulation of mannose and asialoglycoprotein receptor expression determines glycoprotein hormone half-life at critical points in the reproductive cycle. J Biol Chem 2014; 289:12157-12167. [PMID: 24619407 DOI: 10.1074/jbc.m113.544973] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rate at which glycoproteins are cleared from the circulation has a critical impact on their biologic activity in vivo. We have shown that clearance rates for glycoproteins such as luteinizing hormone (LH) that undergo regulated release into the circulation determine their potency. Two highly abundant, carbohydrate-specific, endocytic receptors, the asialoglycoprotein receptor (ASGR) and the mannose receptor (ManR) are expressed in the liver by parenchymal and sinusoidal endothelial cells, respectively. We demonstrate that the ManR mediates the clearance of glycoproteins such as LH that bear N-linked glycans terminating with β1,4-linked GalNAc-4-SO4, as well as glycoproteins bearing glycans that terminate with Man. Steady state levels of mRNA encoding the ASGR and the ManR are regulated by progesterone in pregnant mice, reaching maximal levels on day 12.5 of pregnancy. Protein expression and glycan-specific binding activity also increase in the livers of pregnant mice. In contrast, ManR mRNA, but not ASGR mRNA, decreases in male mice at the time of sexual maturation. We show that levels of ManR and ASGR expression control the clearance rate for glycoproteins bearing recognized glycans. Thus, reduced expression of the ManR at the time of sexual maturation will increase the potency of LH in vivo, whereas increased expression during pregnancy will reduce LH potency until progesterone and receptor levels fall prior to parturition.
Collapse
Affiliation(s)
- Yiling Mi
- Department of Pathology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Angela Lin
- Department of Pathology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Dorothy Fiete
- Department of Pathology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Lindsay Steirer
- Department of Pathology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Jacques U Baenziger
- Department of Pathology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110.
| |
Collapse
|
33
|
Yuzhik EI, Proskurnyak LP, Nazarova GG. Dynamics of morphophysiological charateristics in female water voles (Arvicola amphibius L.) during pregnancy. J EVOL BIOCHEM PHYS+ 2013. [DOI: 10.1134/s0022093013040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Moreno-Carranza B, Goya-Arce M, Vega C, Adán N, Triebel J, López-Barrera F, Quintanar-Stéphano A, Binart N, Martínez de la Escalera G, Clapp C. Prolactin promotes normal liver growth, survival, and regeneration in rodents: effects on hepatic IL-6, suppressor of cytokine signaling-3, and angiogenesis. Am J Physiol Regul Integr Comp Physiol 2013; 305:R720-6. [DOI: 10.1152/ajpregu.00282.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Prolactin (PRL) is a potent liver mitogen and proangiogenic hormone. Here, we used hyperprolactinemic rats and PRL receptor-null mice (PRLR−/−) to study the effect of PRL on liver growth and angiogenesis before and after partial hepatectomy (PH). Liver-to-body weight ratio (LBW), hepatocyte and sinusoidal endothelial cell (SEC) proliferation, and hepatic expression of VEGF were measured before and after PH in hyperprolactinemic rats, generated by placing two anterior pituitary glands (AP) under the kidney capsule. Also, LBW and hepatic expression of IL-6, as well as suppressor of cytokine signaling-3 (SOCS-3), were evaluated in wild-type and PRLR−/−mice before and after PH. Hyperprolactinemia increased the LBW, the proliferation of hepatocytes and SECs, and VEGF hepatic expression. Also, liver regeneration was increased in AP-grafted rats and was accompanied by elevated hepatocyte and SEC proliferation, and VEGF expression compared with nongrafted controls. Lowering circulating PRL levels with CB-154, an inhibitor of AP PRL secretion, prevented AP-induced stimulation of liver growth. Relative to wild-type animals, PRLR−/−mice had smaller livers, and soon after PH, they displayed an approximately twofold increased mortality and elevated and reduced hepatic IL-6 and SOCS-3 expression, respectively. However, liver regeneration was improved in surviving PRLR−/−mice. PRL stimulates normal liver growth, promotes survival, and regulates liver regeneration by mechanisms that may include hepatic downregulation of IL-6 and upregulation of SOCS-3, increased hepatocyte proliferation, and angiogenesis. PRL contributes to physiological liver growth and has potential clinical utility for ensuring survival and regulating liver mass in diseases, injuries, or surgery of the liver.
Collapse
Affiliation(s)
| | - Maite Goya-Arce
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Claudia Vega
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Norma Adán
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Jakob Triebel
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | | | - Andrés Quintanar-Stéphano
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México; and
| | - Nadine Binart
- Institut National de la Santé et de la Recherche Médicale, U693, Université Paris-Sud, Le Kremlin-Bicêtre, France
| | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
35
|
Zou Y, Hu M, Bao Q, Chan JY, Dai G. Nrf2 participates in regulating maternal hepatic adaptations to pregnancy. J Cell Sci 2013; 126:1618-25. [PMID: 23418358 DOI: 10.1242/jcs.118109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pregnancy induces widespread adaptive responses in maternal organ systems including the liver. The maternal liver exhibits significant growth by increasing the number and size of hepatocytes, by largely unknown mechanisms. Nrf2 mediates cellular defense against oxidative stress and inflammation and also regulates liver regeneration. To determine whether Nrf2 is involved in the regulation of maternal hepatic adaptations to pregnancy, we assessed the proliferation and size of maternal hepatocytes and the associated molecular events in wild-type and Nrf2-null mice at various stages of gestation. We found that wild-type maternal hepatocytes underwent proliferation and size reduction during the first half, and size increase without overt replication during the second half, of pregnancy. Although pregnancy decreased Nrf2 activity in the maternal liver, Nrf2 deficiency caused a delay in maternal hepatocyte proliferation, concomitant with dysregulation of the activation of Cyclin D1, E1, and, more significantly, A2. Remarkably, as a result of Nrf2 absence, the maternal hepatocytes were largely prevented from reducing their sizes during the first half of pregnancy, which was associated with an increase in mTOR activation. During the second half of pregnancy, maternal hepatocytes of both genotypes showed continuous volume increase accompanied by persistent activation of mTOR. However, the lack of Nrf2 resulted in dysregulation of the activation of the mTOR upstream regulator AKT1 and the mTOR target p70SK6 and thus disruption of the AKT1/mTOR/p70S6K pathway, which is known to control cell size. This suggests an mTOR-dependent and AKT1- and p70S6K-independent compensatory mechanism when Nrf2 is deficient. In summary, our study demonstrates that Nrf2 is required for normal maternal hepatic adjustments to pregnancy by ensuring proper regulation of the number and size of maternal hepatocytes.
Collapse
Affiliation(s)
- Yuhong Zou
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
36
|
Topletz AR, Le HN, Lee N, Chapman JD, Kelly EJ, Wang J, Isoherranen N. Hepatic Cyp2d and Cyp26a1 mRNAs and activities are increased during mouse pregnancy. Drug Metab Dispos 2013; 41:312-9. [PMID: 23150428 PMCID: PMC3558865 DOI: 10.1124/dmd.112.049379] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/13/2012] [Indexed: 11/22/2022] Open
Abstract
There is considerable evidence that drug disposition is altered during human pregnancy and based on probe drug studies, CYP2D6 activity increases during human pregnancy. The aim of this study was to determine whether the changes of CYP2D6 activity observed during human pregnancy could be replicated in the mouse, and explore possible mechanisms of increased CYP2D6 activity during pregnancy. Cyp2d11, Cyp2d22, Cyp2d26 and Cyp2d40 mRNA was increased (P < 0.05) on gestational days (GD) 15 and 19 compared with the non-pregnant controls. There was no change (P > 0.05) in Cyp2d9 and Cyp2d10 mRNA. In agreement with the increased Cyp2d mRNA, Cyp2d-mediated dextrorphan formation from dextromethorphan was increased 2.7-fold (P < 0.05) on GD19 (56.8±39.4 pmol/min/mg protein) when compared with the non-pregnant controls (20.8±11.2 pmol/min/mg protein). An increase in Cyp26a1 mRNA (10-fold) and retinoic acid receptor (Rar)β mRNA (2.8-fold) was also observed during pregnancy. The increase in Cyp26a1 and Rarβ mRNA during pregnancy indicates increased retinoic acid signaling in the liver during pregnancy. A putative retinoic acid response element was identified within the Cyp2d40 promoter and the mRNA of Cyp2d40 correlated (P < 0.05) with Cyp26a1 and Rarβ. These results show that Cyp2d mRNA is increased during mouse pregnancy the and mouse may provide a suitable model to investigate the mechanisms underlying the increased clearance of CYP2D6 probes observed during human pregnancy. Our findings also suggest that retinoic acid signaling in the liver is increased during pregnancy, which may have broader implications to energy homeostasis in the liver during pregnancy.
Collapse
Affiliation(s)
- Ariel R Topletz
- School of Pharmacy, Department of Pharmaceutics, University of Washington, Seattle, WA 98195-7610, USA
| | | | | | | | | | | | | |
Collapse
|