1
|
Wang Z, Li X, Jiang Y, Wu T, Guo S, Li T. Preparation of hydrogel microsphere and its application in articular cartilage injury. Mater Today Bio 2025; 31:101641. [PMID: 40130039 PMCID: PMC11931253 DOI: 10.1016/j.mtbio.2025.101641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
In recent years, hydrogel microspheres have garnered significant attention due to their unique structure and functionality, demonstrating substantial potential in articular cartilage injury repair. This paper provides a comprehensive overview of current strategies for cartilage injury repair and summarizes the materials and preparation methods of hydrogel microspheres. Furthermore, it highlights the multiple roles of hydrogel microspheres in cartilage repair, including inflammation control, regulation of chondrocyte metabolism, drug and cell delivery, lubrication improvement, and recruitment of endogenous stem cells. Finally, the paper discusses the application prospects of hydrogel microspheres, identifies current limitations and challenges, and offers insights to guide future research and practical applications in cartilage injury repair.
Collapse
Affiliation(s)
- Zehua Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266000, China
| | - Yaping Jiang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Tingyu Wu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Sijia Guo
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Tao Li
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| |
Collapse
|
2
|
Ching PO, Chen FH, Lin IH, Tran DT, Tayo LL, Yeh ML. Evaluation of Articular Cartilage Regeneration Properties of Decellularized Cartilage Powder/Modified Hyaluronic Acid Hydrogel Scaffolds. ACS OMEGA 2024; 9:33629-33642. [PMID: 39130605 PMCID: PMC11307312 DOI: 10.1021/acsomega.4c01927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/20/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
The articular cartilage has poor intrinsic healing potential, hence, imposing a great challenge for articular cartilage regeneration in osteoarthritis. Tissue regeneration by scaffolds and bioactive materials has provided a healing potential for degenerated cartilage. In this study, decellularized cartilage powder (DCP) and hyaluronic acid hydrogel modified by aldehyde groups and methacrylate (AHAMA) were fabricated and evaluated in vitro for efficacy in articular cartilage regeneration. In vitro tests such as cell proliferation, cell viability, and cell migration showed that DCP/AHAMA has negligible cytotoxic effects. Furthermore, it could provide an enhanced microenvironment for infrapatellar fat pad stem cells (IFPSCs). Mechanical property tests of DCP/AHAMA showed suitable adhesive and compressive strength. IFPSCs under three-dimensional (3D) culture in DCP/AMAHA were used to assess their ability to proliferate and differentiate into chondrocytes using normal and chondroinductive media. Results exhibited increased gene expression of COL2 and ACN and decreased COL1 expression. DCP/AHAMA provides a microenvironment that recapitulates the biomechanical properties of the native cartilage, promotes chondrogenic differentiation, blocks hypertrophy, and demonstrates applicability for cartilage tissue engineering and the potential for clinical biomedical applications.
Collapse
Affiliation(s)
- Paula
Carmela O. Ching
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 701, Taiwan
- School
of Chemical, Biological, and Materials Engineering and Sciences, Mapua University, Manila 1002, Philippines
| | - Fang-Hsu Chen
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 701, Taiwan
| | - I-Hsuan Lin
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 701, Taiwan
| | - Duong-Thuy Tran
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 701, Taiwan
| | - Lemmuel L. Tayo
- School
of Chemical, Biological, and Materials Engineering and Sciences, Mapua University, Manila 1002, Philippines
- Department
of Biology, School of Medicine and Health Sciences, Mapua University, Makati 1205, Philippines
| | - Ming-Long Yeh
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 701, Taiwan
- Medical
Device Innovation Center, National Cheng
Kung University, Tainan 701, Taiwan
| |
Collapse
|
3
|
Shang J, Zhou C, Jiang C, Huang X, Liu Z, Zhang H, Zhao J, Liang W, Zeng B. Recent developments in nanomaterials for upgrading treatment of orthopedics diseases. Front Bioeng Biotechnol 2023; 11:1221365. [PMID: 37621999 PMCID: PMC10446844 DOI: 10.3389/fbioe.2023.1221365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/11/2023] [Indexed: 08/26/2023] Open
Abstract
Nanotechnology has changed science in the last three decades. Recent applications of nanotechnology in the disciplines of medicine and biology have enhanced medical diagnostics, manufacturing, and drug delivery. The latest studies have demonstrated this modern technology's potential for developing novel methods of disease detection and treatment, particularly in orthopedics. According to recent developments in bone tissue engineering, implantable substances, diagnostics and treatment, and surface adhesives, nanomedicine has revolutionized orthopedics. Numerous nanomaterials with distinctive chemical, physical, and biological properties have been engineered to generate innovative medication delivery methods for the local, sustained, and targeted delivery of drugs with enhanced therapeutic efficacy and minimal or no toxicity, indicating a very promising strategy for effectively controlling illnesses. Extensive study has been carried out on the applications of nanotechnology, particularly in orthopedics. Nanotechnology can revolutionize orthopedics cure, diagnosis, and research. Drug delivery precision employing nanotechnology using gold and liposome nanoparticles has shown especially encouraging results. Moreover, the delivery of drugs and biologics for osteosarcoma is actively investigated. Different kind of biosensors and nanoparticles has been used in the diagnosis of bone disorders, for example, renal osteodystrophy, Paget's disease, and osteoporosis. The major hurdles to the commercialization of nanotechnology-based composite are eventually examined, thus helping in eliminating the limits in connection to some pre-existing biomaterials for orthopedics, important variables like implant life, quality, cure cost, and pain and relief from pain. The potential for nanotechnology in orthopedics is tremendous, and most of it looks to remain unexplored, but not without challenges. This review aims to highlight the up tp date developments in nanotechnology for boosting the treatment modalities for orthopedic ailments. Moreover, we also highlighted unmet requirements and present barriers to the practical adoption of biomimetic nanotechnology-based orthopedic treatments.
Collapse
Affiliation(s)
- Jinxiang Shang
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Chanyi Jiang
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Zunyong Liu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengjian Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
4
|
Wang C, Liu A, Liao Q, Zhong D. Umbilical Cord Wharton’s Jelly Could be the Potential Precursor of Cartilage Tissue Engineering Complex. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We aimed to investigate the structure and composition of human umbilical cord Wharton’s jelly. Umbilical cord was obtained from the newborn in the operating room of our hospital. The transverse and longitudinal sections of umbilical cord were analyzed by hematoxylin-eosin (H&E)
staining. The ultrastructure of umbilical cord Wharton’s jelly was observed by scanning electron microscope (SEM). H&E stain and SEM observation indicate that the collagen fiber closing to the blood vessels is consistent with the direction of the blood vessels. At the peripheral
of the umbilical cord, the mainly direction of the collagen fiber surrounds vessels. At the same time, the density of collagen fiber including Collagen I, Collagen II, and Collagen III from outside to inside gradually becomes dense. Furthermore, Wharton’s jelly is enriched with Collagen
fiber, glycosaminoglycans (GAGs), water and cells. The mean density of cells in Wharton’s jelly was 2.04×106 cell/g, and the mean percentage of MSCs was 54.67% of all separated cells. The structure and composition of the Wharton’s jelly are similar with cartilage.
Therefore, Wharton’s jelly is supposed to be a suitable biological material for cartilage tissue engineering.
Collapse
Affiliation(s)
- Chenggong Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Ansong Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Qiande Liao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Da Zhong
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| |
Collapse
|
5
|
Qiao K, Xu L, Tang J, Wang Q, Lim KS, Hooper G, Woodfield TBF, Liu G, Tian K, Zhang W, Cui X. The advances in nanomedicine for bone and cartilage repair. J Nanobiotechnology 2022; 20:141. [PMID: 35303876 PMCID: PMC8932118 DOI: 10.1186/s12951-022-01342-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
With the gradual demographic shift toward an aging and obese society, an increasing number of patients are suffering from bone and cartilage injuries. However, conventional therapies are hindered by the defects of materials, failing to adequately stimulate the necessary cellular response to promote sufficient cartilage regeneration, bone remodeling and osseointegration. In recent years, the rapid development of nanomedicine has initiated a revolution in orthopedics, especially in tissue engineering and regenerative medicine, due to their capacity to effectively stimulate cellular responses on a nanoscale with enhanced drug loading efficiency, targeted capability, increased mechanical properties and improved uptake rate, resulting in an improved therapeutic effect. Therefore, a comprehensive review of advancements in nanomedicine for bone and cartilage diseases is timely and beneficial. This review firstly summarized the wide range of existing nanotechnology applications in the medical field. The progressive development of nano delivery systems in nanomedicine, including nanoparticles and biomimetic techniques, which are lacking in the current literature, is further described. More importantly, we also highlighted the research advancements of nanomedicine in bone and cartilage repair using the latest preclinical and clinical examples, and further discussed the research directions of nano-therapies in future clinical practice.
Collapse
Affiliation(s)
- Kai Qiao
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Lu Xu
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
- Department of Dermatology, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 61004, Sichuan, China
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Gary Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, Guangdong, China
| | - Kang Tian
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| | - Weiguo Zhang
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| | - Xiaolin Cui
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand.
| |
Collapse
|
6
|
Mechanical
and biological performance of rainbow trout collagen‐boron nitride nanocomposite scaffolds for soft tissue engineering. J Appl Polym Sci 2021. [DOI: 10.1002/app.50664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
De Angelis E, Saleri R, Martelli P, Elviri L, Bianchera A, Bergonzi C, Pirola M, Romeo R, Andrani M, Cavalli V, Conti V, Bettini R, Passeri B, Ravanetti F, Borghetti P. Cultured Horse Articular Chondrocytes in 3D-Printed Chitosan Scaffold With Hyaluronic Acid and Platelet Lysate. Front Vet Sci 2021; 8:671776. [PMID: 34322533 PMCID: PMC8311290 DOI: 10.3389/fvets.2021.671776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Three-dimensional (3D) printing has gained popularity in tissue engineering and in the field of cartilage regeneration. This is due to its potential to generate scaffolds with spatial variation of cell distribution or mechanical properties, built with a variety of materials that can mimic complex tissue architecture. In the present study, horse articular chondrocytes were cultured for 2 and 4 weeks in 3D-printed chitosan (CH)-based scaffolds prepared with or without hyaluronic acid and in the presence of fetal bovine serum (FBS) or platelet lysate (PL). These 3D culture systems were analyzed in terms of their capability to maintain chondrocyte differentiation in vitro. This was achieved by evaluating cell morphology, immunohistochemistry (IHC), gene expression of relevant cartilage markers (collagen type II, aggrecan, and Sox9), and specific markers of dedifferentiated phenotype (collagen type I, Runx2). The morphological, histochemical, immunohistochemical, and molecular results demonstrated that the 3D CH scaffold is sufficiently porous to be colonized by primary chondrocytes. Thereby, it provides an optimal environment for the colonization and synthetic activity of chondrocytes during a long culture period where a higher rate of dedifferentiation can be generally observed. Enrichment with hyaluronic acid provides an optimal microenvironment for a more stable maintenance of the chondrocyte phenotype. The use of 3D CH scaffolds causes a further increase in the gene expression of most relevant ECM components when PL is added as a substitute for FBS in the medium. This indicates that the latter system enables a better maintenance of the chondrocyte phenotype, thereby highlighting a fair balance between proliferation and differentiation.
Collapse
Affiliation(s)
- Elena De Angelis
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Roberta Saleri
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Paolo Martelli
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Lisa Elviri
- Food and Drug Department, University of Parma, Parma, Italy
| | | | - Carlo Bergonzi
- Food and Drug Department, University of Parma, Parma, Italy
| | - Marta Pirola
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Roberta Romeo
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Melania Andrani
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Valeria Cavalli
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Virna Conti
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | | | | | - Paolo Borghetti
- Department of Veterinary Science, University of Parma, Parma, Italy
| |
Collapse
|
8
|
Combination of chondrocytes and chondrons improves extracellular matrix production to promote the repairs of defective knee cartilage in rabbits. J Orthop Translat 2021; 28:47-54. [PMID: 33717981 PMCID: PMC7906883 DOI: 10.1016/j.jot.2021.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/12/2020] [Accepted: 01/13/2021] [Indexed: 12/02/2022] Open
Abstract
Background Chondrons are composed of chondrocytes and the surrounding pericellular matrix (PCM) and function to enhance chondrocyte-mediated cartilage tissue engineering. This study aimed at investigating the potential effect of combined chondrocytes with chondrons on the production of proteoglycan and collagen-II (Col-2) and the repair of defective knee cartilage in rabbits. Methods Chondrocytes and chondrons were isolated from the knee cartilage of rabbits, and cultured alone or co-cultured for varying periods in vitro. Their morphology was characterized by histology. The levels of aggrecan (AGG), Col-2 and glycosaminoglycan (GAG) expression were quantified by qRT-PCR, Alcian blue-based precipitation and ELISA. The effect of combined chondrocytes with chondrons in alginate spheres on the repair of defective knee cartilage was examined in rabbits. Results The isolated chondrocytes and chondrons displayed unique morphology and began to proliferate on day 3 and 6 post culture, respectively, accompanied by completely degenerated PCM on day 6 post culture. Evidently, chondrocytes had stronger proliferation capacity than chondrons. Longitudinal analyses indicated that culture of chondrons, but not chondrocytes, increased AGG mRNA transcripts and GAG levels with time and Col-2 mRNA transcripts only on day 3 post culture. Compared with chondrocytes or chondrons alone, co-culture of chondrocytes and chondrons significantly up-regulated AGG and Col-2 expression and GAG production, particularly at a ratio of 1:1. Implantation with chondrocytes and chondrons at 1:1 significantly promoted the repair of defective knee cartilage in rabbits, accompanied by reduced the Wakiteni scores with time. Conclusion Combined chondrons with chondrocytes promoted the production of extracellular matrix and the repair of defective knee cartilage in rabbits. The translational potential of this article This study explores that the combination of chondrons and chondrocytes may be new therapeutic strategy for cartilage tissue engineering and repair of defective cartilage.
Collapse
|
9
|
Han Y, Lian M, Sun B, Jia B, Wu Q, Qiao Z, Dai K. Preparation of high precision multilayer scaffolds based on Melt Electro-Writing to repair cartilage injury. Theranostics 2020; 10:10214-10230. [PMID: 32929344 PMCID: PMC7481411 DOI: 10.7150/thno.47909] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
Rationale: Articular cartilage injury is quite common. However, post-injury cartilage repair is challenging and often requires medical intervention, which can be aided by 3D printed tissue engineering scaffolds. Specifically, the high accuracy of Melt Electro-Writing (MEW) technology facilitates the printing of scaffolds that imitate the structure and composition of natural cartilage to promote repair. Methods: MEW and Inkjet printing technology was employed to manufacture a composite scaffold that was then implanted into a cartilage injury site through microfracture surgery. While printing polycaprolactone (PCL) or PCL/hydroxyapatite (HA) scaffolds, cytokine-containing microspheres were sprayed alternately to form multiple layers containing transforming growth factor-β1 and bone morphogenetic protein-7 (surface layer), insulin-like growth factor-1 (middle layer), and HA (deep layer). Results: The composite biological scaffold was conducive to adhesion, proliferation, and differentiation of mesenchymal stem cells recruited from the bone marrow and blood. Meanwhile, the environmental differences between the scaffold's layers contributed to the regional heterogeneity of chondrocytes and secreted proteins to promote functional cartilage regeneration. The biological effect of the composite scaffold was validated both in vitro and in vivo. Conclusion: A cartilage repair scaffold was established with high precision as well as promising mechanical and biological properties. This scaffold can promote the repair of cartilage injury by using, and inducing the differentiation and expression of, autologous bone marrow mesenchymal stem cells.
Collapse
|
10
|
Campos Y, Almirall A, Fuentes G, Bloem HL, Kaijzel EL, Cruz LJ. Tissue Engineering: An Alternative to Repair Cartilage. TISSUE ENGINEERING PART B-REVIEWS 2020; 25:357-373. [PMID: 30913997 DOI: 10.1089/ten.teb.2018.0330] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein we review the state-of-the-art in tissue engineering for repair of articular cartilage. First, we describe the molecular, cellular, and histologic structure and function of endogenous cartilage, focusing on chondrocytes, collagens, extracellular matrix, and proteoglycans. We then explore in vitro cell culture on scaffolds, discussing the difficulties involved in maintaining or obtaining a chondrocytic phenotype. Next, we discuss the diverse compounds and designs used for these scaffolds, including natural and synthetic biomaterials and porous, fibrous, and multilayer architectures. We then report on the mechanical properties of different cell-loaded scaffolds, and the success of these scaffolds following in vivo implantation in small animals, in terms of generating tissue that structurally and functionally resembles native tissue. Last, we highlight future trends in this field. We conclude that despite major technical advances made over the past 15 years, and continually improving results in cartilage repair experiments in animals, the development of clinically useful implants for regeneration of articular cartilage remains a challenge
Collapse
Affiliation(s)
- Yaima Campos
- 1Biomaterials Center, Havana University, LA Habana, Cuba.,2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Gastón Fuentes
- 1Biomaterials Center, Havana University, LA Habana, Cuba.,2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans L Bloem
- 2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric L Kaijzel
- 2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Luis J Cruz
- 2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Alkaya D, Gurcan C, Kilic P, Yilmazer A, Gurman G. Where is human-based cellular pharmaceutical R&D taking us in cartilage regeneration? 3 Biotech 2020; 10:161. [PMID: 32206495 DOI: 10.1007/s13205-020-2134-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Lately, cellular-based cartilage joint therapies have gradually gained more attention, which leads to next generation bioengineering approaches in the development of cell-based medicinal products for human use in cartilage repair. The greatest hurdles of chondrocyte-based cartilage bioengineering are: (i) preferring the cell source; (ii) differentiation and expansion processes; (iii) the time necessary for chondrocyte expansion pre-implantation; and (iv) fixing the chondrocyte count in accordance with the lesion surface area of the patient in question. The chondrocyte presents itself to be the focal starting material for research and development of bioengineered cartilage-based medicinal products which promise the regeneration and restoration of non-orthopedic cartilage joint defects. Even though chondrocytes seem to be the first choice, inevitable complications related to proliferation, dedifferentation and redifferentiation are probable. Detailed studies are a necessity to fully investigate detailed culturing conditions, the chondrogenic strains of well-defined phenotypes and evaluation of the methods to be used in biomaterial production. Despite a majority of the current methods which aid amelioration of joint functionality, they are insufficient in fully restoring the natural structure and composition of the joint cartilage. Hence current studies have trended towards gene therapy, mesenchymal stem cells and tissue engineering practices. There are many studies addressing the outcomes of chondrocytes in the clinical scene, and many vital biomaterials have been developed for structuring the bioengineered cartilage. This study aims to convey to the audience the practical significance of chondrocyte-based clinical applications.
Collapse
|
12
|
Lin L, Wang Y, Wang L, Pan J, Xu Y, Li S, Huang D, Chen J, Liang Z, Yin P, Li Y, Zhang H, Wu Y, Zeng C, Huang W. Injectable microfluidic hydrogel microspheres based on chitosan and poly(ethylene glycol) diacrylate (PEGDA) as chondrocyte carriers. RSC Adv 2020; 10:39662-39672. [PMID: 35515410 PMCID: PMC9057443 DOI: 10.1039/d0ra07318k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/14/2020] [Indexed: 11/21/2022] Open
Abstract
Chitosan/PEGDA double-network hydrogel microspheres prepared by microfluidic method as chondrocyte carriers for bottom-up cartilage tissue engineering.
Collapse
|
13
|
Żylińska B, Silmanowicz P, Sobczyńska-Rak A, Jarosz Ł, Szponder T. Treatment of Articular Cartilage Defects: Focus on Tissue Engineering. In Vivo 2019; 32:1289-1300. [PMID: 30348681 DOI: 10.21873/invivo.11379] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022]
Abstract
The treatment of articular cartilage defects seems to be one of the greatest challenges in modern orthopaedics. From a medical point of view there are 3 main goals to achieve for cartilage trauma treatment: restoration of the joints motion, pain relief and elimination/delay of the onset of osteoarthritis. Treatment can be divided into conservative (including pharmacotherapy, arthrocentesis and physiotherapy) and surgical. The last comprises reparative techniques, regenerative methods and symptomatic treatment. While both are focused on reconstruction of the damaged cartilage, the difference lies in the type of filling tissue. Reparative techniques include: drilling of the subchondral bone, spongiolisation, abrasion, mictrofracture, and autologous matrix induced chondrogenesis (AMIC). Regenerative methods contain: periosteal and perichondral grafts, mosaicplasty, autologous chondrocyte implantation and matrix-induced autologous chondrocyte implantation (MACI). Nowadays tissue engineering, including gene therapy, is emerging as one of the key approaches to cartilage treatment and holds promises for new achievements and better outcomes of many cartilage diseases and traumas.
Collapse
Affiliation(s)
- Beata Żylińska
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Piotr Silmanowicz
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Aleksandra Sobczyńska-Rak
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Łukasz Jarosz
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences in Lublin, Lublin, Poland
| | - Tomasz Szponder
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
14
|
Hanifi A, Palukuru U, McGoverin C, Shockley M, Frank E, Grodzinsky A, Spencer RG, Pleshko N. Near infrared spectroscopic assessment of developing engineered tissues: correlations with compositional and mechanical properties. Analyst 2018; 142:1320-1332. [PMID: 27975090 DOI: 10.1039/c6an02167k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Articular cartilage degeneration causes pain and reduces the mobility of millions of people annually. Regeneration of cartilage is challenging, due in part to its avascular nature, and thus tissue engineering approaches for cartilage repair have been studied extensively. Current techniques to assess the composition and integrity of engineered tissues, including histology, biochemical evaluation, and mechanical testing, are destructive, which limits real-time monitoring of engineered cartilage tissue development in vitro and in vivo. Near infrared spectroscopy (NIRS) has been proposed as a non-destructive technique to characterize cartilage. In the current study, we describe a non-destructive NIRS approach for assessment of engineered cartilage during development, and demonstrate correlation of these data to gold standard mid infrared spectroscopic measurements, and to mechanical properties of constructs. Cartilage constructs were generated using bovine chondrocyte culture on polyglycolic acid (PGA) scaffolds for six weeks. BMP-4 growth factor and ultrasound mechanical stimulation were used to provide a greater dynamic range of tissue properties and outcome variables. NIR spectra were collected daily using an infrared fiber optic probe in diffuse reflectance mode. Constructs were harvested after three and six weeks of culture and evaluated by the correlative modalities of mid infrared (MIR) spectroscopy, histology, and mechanical testing (equilibrium and dynamic stiffness). We found that specific NIR spectral absorbances correlated with MIR measurements of chemical composition, including relative amount of PGA (R = 0.86, p = 0.02), collagen (R = 0.88, p = 0.03), and proteoglycan (R = 0.83, p = 0.01). In addition, NIR-derived water content correlated with MIR-derived proteoglycan content (R = 0.76, p = 0.04). Both equilibrium and dynamic mechanical properties generally improved with cartilage growth from three to six weeks. In addition, significant correlations between NIRS-derived parameters and mechanical properties were found for constructs that were not treated with ultrasound (PGA (R = 0.71, p = 0.01), water (R = 0.74, p = 0.02), collagen (R = 0.69, p = 0.04), and proteoglycan (R = 0.62, p = 0.05)). These results lay the groundwork for extension to arthroscopic engineered cartilage assessment in clinical studies.
Collapse
Affiliation(s)
- Arash Hanifi
- Department of Bioengineering, Temple University, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Żylińska B, Stodolak-Zych E, Sobczyńska-Rak A, Szponder T, Silmanowicz P, Łańcut M, Jarosz Ł, Różański P, Polkowska I. Osteochondral Repair Using Porous Three-dimensional Nanocomposite Scaffolds in a Rabbit Model. ACTA ACUST UNITED AC 2018; 31:895-903. [PMID: 28882956 DOI: 10.21873/invivo.11144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 11/10/2022]
Abstract
AIM To evaluate the utility of a novel nanocomposite biomaterial consisting of poly-L/D-lactide, and hydroxyapatite bioceramics, enriched with sodium alginate in articular cartilage defect treatment. MATERIALS AND METHODS The biomaterial was prepared using the method of solvent casting and particle leaching. The study was conducted on 20 New Zealand White rabbits. Experimental osteochondral defects were created in the femoral trochlear grooves and filled with biomaterials. In control groups, the defects were left to spontaneously heal. The quality of newly-formed tissue was evaluated on the basis of macroscopic and histological assessment. Additionally the level of osteogenic and cartilage degradation markers were measured. RESULTS The majority of the defects from the treatment group were covered with tissue similar in structure and colour to healthy cartilage, whereas in the control group, tissue was uneven, and not integrated into the surrounding cartilage. CONCLUSION The results obtained validate the choice of biomaterial used in this study as well as the method of its application.
Collapse
Affiliation(s)
- Beata Żylińska
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Ewa Stodolak-Zych
- Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Cracow, Poland
| | - Aleksandra Sobczyńska-Rak
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Tomasz Szponder
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Piotr Silmanowicz
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Mirosław Łańcut
- Department of Histology and Embryology, Laboratory for Experimental Cytology, Medical University of Lublin, Lublin, Poland
| | - Łukasz Jarosz
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences in Lublin, Lublin, Poland
| | - Paweł Różański
- Department of Biology and Environmental Hygiene, University of Life Sciences in Lublin, Lublin, Poland
| | - Izabela Polkowska
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
16
|
Yuan Q, Arkudas A, Horch RE, Hammon M, Bleiziffer O, Uder M, Seuss H. Vascularization of the Arteriovenous Loop in a Rat Isolation Chamber Model—Quantification of Hypoxia and Evaluation of Its Effects. Tissue Eng Part A 2018; 24:719-728. [DOI: 10.1089/ten.tea.2017.0262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Quan Yuan
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University, Erlangen-Nuernberg (FAU), Erlangen, Germany
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University, Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Raymund E. Horch
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University, Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Matthias Hammon
- Department of Radiology, University Hospital Erlangen, Friedrich Alexander University, Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Oliver Bleiziffer
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University, Erlangen-Nuernberg (FAU), Erlangen, Germany
- Department of Plastic and Hand Surgery, Inselspital Bern, Universität Bern, Bern, Switzerland
| | - Michael Uder
- Department of Radiology, University Hospital Erlangen, Friedrich Alexander University, Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Hannes Seuss
- Department of Radiology, University Hospital Erlangen, Friedrich Alexander University, Erlangen-Nuernberg (FAU), Erlangen, Germany
| |
Collapse
|
17
|
Choi JR, Yong KW, Choi JY. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering. J Cell Physiol 2018; 233:1913-1928. [PMID: 28542924 DOI: 10.1002/jcp.26018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/18/2017] [Indexed: 12/22/2022]
Abstract
Today, articular cartilage damage is a major health problem, affecting people of all ages. The existing conventional articular cartilage repair techniques, such as autologous chondrocyte implantation (ACI), microfracture, and mosaicplasty, have many shortcomings which negatively affect their clinical outcomes. Therefore, it is essential to develop an alternative and efficient articular repair technique that can address those shortcomings. Cartilage tissue engineering, which aims to create a tissue-engineered cartilage derived from human mesenchymal stem cells (MSCs), shows great promise for improving articular cartilage defect therapy. However, the use of tissue-engineered cartilage for the clinical therapy of articular cartilage defect still remains challenging. Despite the importance of mechanical loading to create a functional cartilage has been well demonstrated, the specific type of mechanical loading and its optimal loading regime is still under investigation. This review summarizes the most recent advances in the effects of mechanical loading on human MSCs. First, the existing conventional articular repair techniques and their shortcomings are highlighted. The important parameters for the evaluation of the tissue-engineered cartilage, including chondrogenic and hypertrophic differentiation of human MSCs are briefly discussed. The influence of mechanical loading on human MSCs is subsequently reviewed and the possible mechanotransduction signaling is highlighted. The development of non-hypertrophic chondrogenesis in response to the changing mechanical microenvironment will aid in the establishment of a tissue-engineered cartilage for efficient articular cartilage repair.
Collapse
Affiliation(s)
- Jane Ru Choi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- UBC Engineering Lab, University of British Columbia, Vancouver, Canada
| | - Kar Wey Yong
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Canada
| | - Jean Yu Choi
- Faculty of Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
18
|
Pereira DR, Reis RL, Oliveira JM. Layered Scaffolds for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:193-218. [DOI: 10.1007/978-3-319-76711-6_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Tabatabaei FS, Ai J. Mesenchymal endometrial stem/stromal cells for hard tissue engineering: a review of in vitro and in vivo evidence. Regen Med 2017; 12:983-995. [PMID: 29215321 DOI: 10.2217/rme-2017-0029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hard tissues including teeth, bone and cartilage have inability or poor capacity to self-renew, especially in large defects. Therefore, repair of damages in these tissues represents a huge challenge in the medical field today. Hard tissue engineering commonly utilizes different stem cell sources as a promising strategy for treating bone, cartilages and tooth defects or disorders. Decades ago, researchers successfully isolated and identified endometrial mesenchymal stem/stromal cells (EnSCs) and discovered their multidifferentiation potential. Current studies suggest that EnSCs have significant advantages compared with stem cells derived from other tissues. In this review article, we summarize the current in vitro and in vivo studies that utilize EnSCs or menstrual blood-derived stem cells for differentiation to osteoblasts, odontoblasts or chondroblasts in an effort to realize the potential of these cells in hard tissues regeneration.
Collapse
Affiliation(s)
- Fahimeh S Tabatabaei
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering & Applied Cell Sciences, Faculty of Advance Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
do Nascimento MHM, Ferreira M, Malmonge SM, Lombello CB. Evaluation of cell interaction with polymeric biomaterials based on hyaluronic acid and chitosan. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:68. [PMID: 28357686 DOI: 10.1007/s10856-017-5875-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
Tissue engineering involves the development of new materials or devices capable of specific interactions with biological tissues, searching the use of biocompatible materials as scaffolds for in vitro cell growth, and functional tissue development, that is subsequently implanted into patient. The aim of the current study was to evaluate the initial aspects of cell interaction with the polymeric biomaterials blends based on hyaluronic acid with chitosan. The hypothesis approach involves synthesis and analysis of swelling and thermal degradation (thermal gravimetric analysis) of the polymer blend; and Vero cell interaction with the biomaterial, through analysis of cytotoxicity, adhesion and cell morphology. The blend resulted in a biomaterial with a high swelling ratio that can allow nutrient distribution and absorption. The thermal gravimetric analysis results showed that the blend had two stages of degradation at temperatures very close to those observed for pure polymers, confirming that the physical mixing of hydrogels occurred, resulting in the presence of both hyaluronic acid and chitosan in the blend. The evaluation of indirect cytotoxicity showed that the blend was non cytotoxic for Vero cells, and the quantitative analysis performed with the MTT could verify a cell viability of 98%. The cells cultured on the blend showed adhesion, spreading and proliferation on this biomaterial, distinguished from the pattern of the control cells. These results showed that the blends produced from hyaluronic acid and chitosan hydrogels are promising for applications in tissue engineering, aiming at future cartilaginous tissue.
Collapse
Affiliation(s)
| | - Mariselma Ferreira
- Human and Natural Sciences Center, ABC Federal University, Santo André, São Paulo, Brazil
| | - Sônia Maria Malmonge
- Engineering, Modelling and Applied Social Sciences Center, ABC Federal University, Santo André, São Paulo, Brazil
| | | |
Collapse
|
21
|
Kun L, Yanhong Z, Chen X, Lianyong W, Qiang Y, Hongfa L, Binhong T. [Development and characterization of oriented scaffolds derived from cartilage extracellular matrix]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:51-56. [PMID: 28326727 DOI: 10.7518/hxkq.2017.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study aimed to prepare oriented scaffolds derived from a cartilage extracellular matrix (CECM) and to investigate their physicochemical property and compatibility with adipose-derived stem cells (ADSCs). METHODS A fresh porcine articular cartilage was cut into pieces. Cartilage nanofibers with diameters of 50-500 nm were collected through homogenization and centrifugation. These nanofibers were then decellularized by using Triton X-100 to produce 6% CECM. The oriented scaffolds derived from the nanoscale CECM were fabricated through unidirectional solidification and lyophilization. Afterward, these scaffolds were crosslinked. The physical and chemical performances and cell compatibility of CECM-oriented scaffolds were evaluated. RESULTS The cross-sections of the scaffolds contained homogeneous reticular porous structures with nanofibers on the walls of the pores, and the longitudinal sections revealed vertical tubular structures. Hematoxylin-eosin staining revealed that the scaffolds were red without blue. Toluidine blue, safranin O, and Sirius red staining showed positive results. The porosity, water absorption rate, and vertical compressive elastic modulus of the scaffolds were 95.455%±0.910%, 95.889%±1.071%, and (40.208±5.097) kPa, respectively. CONCLUSIONS The components of the oriented scaffolds derived from CECM are similar to those of native cartilage with favorable biocompatibility. The porous structures and sizes of the scaffolds are suitable for the adhesion, proliferation, and infiltration of ADSCs. The oriented scaffolds derived from CECM are relatively optimal for cartilage tissue engineering.
.
Collapse
Affiliation(s)
- Li Kun
- Dept. of Orthodontics, Stomatological Hospital of Tianjin Medical University, Tianjin 300070, China;Dept. of Orthodontics, Yantai Stomatological Hospital, Yantai 264000, China
| | - Zhao Yanhong
- Dept. of Orthodontics, Stomatological Hospital of Tianjin Medical University, Tianjin 300070, China
| | - Xu Chen
- Dept. of Orthodontics, Stomatological Hospital of Tianjin Medical University, Tianjin 300070, China
| | - Wang Lianyong
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yang Qiang
- Dept. of Spine Surgery, Tianjin Hospital, Tianjin 300211, China
| | - Li Hongfa
- Dept. of Orthodontics, Stomatological Hospital of Tianjin Medical University, Tianjin 300070, China
| | - Teng Binhong
- Dept. of Orthodontics, Stomatological Hospital of Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
22
|
Donor Age and Cell Passage Affect Osteogenic Ability of Rat Bone Marrow Mesenchymal Stem Cells. Cell Biochem Biophys 2017; 72:543-9. [PMID: 25634304 DOI: 10.1007/s12013-014-0500-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Tissue engineering allows the restoration of pathologically damaged tissues such as cartilage and bone using bio-scaffolds containing functionally active cells. Bone-marrow-derived mesenchymal stem cells (BMSCs) are a promising source of cells for tissue engineering due to their multilineage differentiation potential. However, proliferative and osteogenic abilities of BMSCs, and quantity of stem cells decreases in the bone marrow in aged population. We cultured BMSCs isolated from rats of various ages and evaluated their morphology, activity, and differentiation potential. Cultured BMSCs formed monolayer of fibroblast-like cells and maintained their characteristic morphology for 7-10 generations. Flow cytometry showed that aging of the cultured cell population correlated with the decrease in the expression of mesenchymal and hematopoietic surface markers, such as CD44, CD45, CD90, and CD29. We detected strong correlation between the age of BMSC donor and ALP activity in BMSC culture induced with low doses of dexamethasone and vitamin C. Cells from 2- and 6-week-old donor SD rats exhibited markedly increased ALP activity that coincided with increased bone content and strong positive staining of mineralized nodules. In contrast, BMSCs isolated from 10-month-old donors showed the lowest ALP activity, and decreased bone content and mineralized nodules formation. Our results demonstrate that the increase in donor age negatively affects proliferation and differentiation capacity of BMSCs in culture.
Collapse
|
23
|
Nascimento MHMD, Lombello CB. Hidrogéis a base de ácido hialurônico e quitosana para engenharia de tecido cartilaginoso. POLIMEROS 2016. [DOI: 10.1590/0104-1428.1987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Resumo A Engenharia de Tecidos envolve o desenvolvimento de novos materiais ou dispositivos capazes de interações específicas com os tecidos biológicos, buscando a utilização de materiais biocompatíveis que devem servir como arcabouço para o crescimento de células in vitro, organizando e desenvolvendo o tecido que posteriormente será implantado no paciente. Uma variedade de arcabouços como hidrogéis poliméricos, sintéticos e naturais, têm sido investigados para a expansão de condrócitos in vitro, visando o reparo da cartilagem lesionada. Um hidrogel de interesse particular na regeneração de cartilagem é o ácido hialurónico (AH). Trata-se de um biopolímero atraente para a fabricação de arcabouços artificiais para Engenharia de Tecidos por ser biocompatível e biodegradável. A biocompatibilidade do AH deve-se ao fato de estar presente na matriz extracelular nativa, deste modo, cria-se um ambiente propício que facilita a adesão, proliferação e diferenciação celular, além da existência de sinalização celular específica, o que contribui para a regeneração do tecido. O uso de hidrogel composto de ácido hialurónico e quitosana (QUI) também tem sido investigado em aplicações de Engenharia de Tecidos de cartilagem, com resultados promissores. Baseando-se nestas informações, o objetivo este trabalho foi investigar as alternativas disponíveis para regeneração tecidual da cartilagem e conhecer mais detalhadamente as relações entre células e biomateriais.
Collapse
|
24
|
Moeinzadeh S, Pajoum Shariati SR, Jabbari E. Comparative effect of physicomechanical and biomolecular cues on zone-specific chondrogenic differentiation of mesenchymal stem cells. Biomaterials 2016; 92:57-70. [PMID: 27038568 DOI: 10.1016/j.biomaterials.2016.03.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/29/2016] [Accepted: 03/22/2016] [Indexed: 01/20/2023]
Abstract
Current tissue engineering approaches to regeneration of articular cartilage rarely restore the tissue to its normal state because the generated tissue lacks the intricate zonal organization of the native cartilage. Zonal regeneration of articular cartilage is hampered by the lack of knowledge for the relation between physical, mechanical, and biomolecular cues and zone-specific chondrogenic differentiation of progenitor cells. This work investigated in 3D the effect of TGF-β1, zone-specific growth factors, optimum matrix stiffness, and adding nanofibers on the expression of chondrogenic markers specific to the superficial, middle, and calcified zones of articular cartilage by the differentiating human mesenchymal stem cells (hMSCs). Growth factors included BMP-7, IGF-1, and hydroxyapatite (HA) for the superficial, middle, and calcified zones, respectively; optimum matrix stiffness was 80 kPa, 2.1 MPa, and 320 MPa; and nanofibers were aligned horizontal, random, and perpendicular to the gel surface. hMSCs with zone-specific cell densities were encapsulated in engineered hydrogels and cultured with or without TGF-β1, zone-specific growth factor, optimum matrix modulus, and fiber addition and cultured in basic chondrogenic medium. The expression of encapsulated cells was measured by mRNA, protein, and biochemical analysis. Results indicated that zone-specific matrix stiffness had a dominating effect on chondrogenic differentiation of hMSCs to the superficial and calcified zone phenotypes. Addition of aligned nanofibers parallel to the direction of gel surface significantly enhanced expression of Col II in the superficial zone chondrogenic differentiation of hMSCs. Conversely, biomolecular factor IGF-1 in combination with TGF-β1 had a dominating effect on the middle zone chondrogenic differentiation of hMSCs. Results of this work could potentially lead to the development of multilayer grafts mimicking the zonal organization of articular cartilage.
Collapse
Affiliation(s)
- Seyedsina Moeinzadeh
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Seyed Ramin Pajoum Shariati
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
25
|
Nondestructive Assessment of Engineered Cartilage Composition by Near Infrared Spectroscopy. Ann Biomed Eng 2016; 44:680-92. [PMID: 26817457 DOI: 10.1007/s10439-015-1536-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Tissue engineering presents a strategy to overcome the limitations of current tissue healing methods. Scaffolds, cells, external growth factors and mechanical input are combined in an effort to obtain constructs with properties that mimic native tissues. However, engineered constructs developed using similar culture environments can have very different matrix composition and biomechanical properties. Accordingly, a nondestructive technique to assess constructs during development such that appropriate compositional endpoints can be defined is desirable. Near infrared spectroscopy (NIRS) analysis is a modality being investigated to address the challenges associated with current evaluation techniques, which includes nondestructive compositional assessment. In the present study, cartilage tissue constructs were grown using chondrocytes seeded onto polyglycolic acid (PGA) scaffolds in similar environments in three separate tissue culture experiments and monitored using NIRS. Multivariate partial least squares (PLS) analysis models of NIR spectra were calculated and used to predict tissue composition, with biochemical assay information used as the reference data. Results showed that for combined data from all tissue culture experiments, PLS models were able to assess composition with significant correlations to reference values, including engineered cartilage water (at 5200 cm(-1), R = 0.68, p = 0.03), proteoglycan (at 4310 cm(-1), R = 0.82, p = 0.007), and collagen (at 4610 cm(-1), R = 0.84, p = 0.005). In addition, degradation of PGA was monitored using specific NIRS frequencies. These results demonstrate that NIR spectroscopy combined with multivariate analysis provides a nondestructive modality to assess engineered cartilage, which could provide information to determine the optimal time for tissue harvest for clinical applications.
Collapse
|
26
|
Cartilage Defect Treatments: With or without Cells? Mesenchymal Stem Cells or Chondrocytes? Traditional or Matrix-Assisted? A Systematic Review and Meta-Analyses. Stem Cells Int 2015; 2016:9201492. [PMID: 26839570 PMCID: PMC4709777 DOI: 10.1155/2016/9201492] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/01/2015] [Accepted: 10/08/2015] [Indexed: 01/26/2023] Open
Abstract
Articular cartilage defects have been addressed by using multiple strategies. In the last two decades, promising new strategies by using assorted scaffolds and cell sources to induce tissue regeneration have emerged, such as autologous chondrocyte implantation (ACI) and mesenchymal stem cell implantation (MSCI). However, it is still controversial in the clinical strategies when to choose these treatments. Thus, we conducted a systematic review and meta-analyses to compare the efficacy and safety of different cartilage treatments. In our study, 17 studies were selected to compare different treatments for cartilage defects. The results of meta-analyses indicated that cell-based cartilage treatments showed significant better efficacy than cell-free treatments did (OR: 4.27, 95% CI: 2.19–8.34; WMD: 10.11, 95% CI: 2.69–16.53). Another result indicated that MACT had significant better efficacy than traditional ACI did (OR: 0.49, 95% CI: 0.30–0.82). Besides, the incidence of graft hypertrophy of MACT was slightly lower than that of traditional ACI (OR: 2.43, 95% CI: 1.00–5.94). Current data showed that the cell-based treatments and MACT are better options for cartilage treatments, but more well-designed comparative studies are still needed to enhance our understanding of different treatments for cartilage defects.
Collapse
|
27
|
Yuan X, Zhou M, Gough J, Glidle A, Yin H. A novel culture system for modulating single cell geometry in 3D. Acta Biomater 2015; 24:228-240. [PMID: 26086694 DOI: 10.1016/j.actbio.2015.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 05/14/2015] [Accepted: 06/09/2015] [Indexed: 01/27/2023]
Abstract
Dedifferentiation of chondrocytes during in vitro expansion remains an unsolved challenge for repairing serious articular cartilage defects. In this study, a novel culture system was developed to modulate single cell geometry in 3D and investigate its effects on the chondrocyte phenotype. The approach uses 2D micropatterns followed by in situ hydrogel formation to constrain single cell shape and spreading. This enables independent control of cell geometry and extracellular matrix. Using collagen I matrix, we demonstrated the formation of a biomimetic collagenous "basket" enveloping individual chondrocytes cells. By quantitatively monitoring the production by single cells of chondrogenic matrix (e.g. collagen II and aggrecan) during 21-day cultures, we found that if the cell's volume decreases, then so does its cell resistance to dedifferentiation (even if the cells remain spherical). Conversely, if the volume of spherical cells remains constant (after an initial decrease), then not only do the cells retain their differentiated status, but previously de-differentiated redifferentiate and regain a chondrocyte phenotype. The approach described here can be readily applied to pluripotent cells, offering a versatile platform in the search for niches toward either self-renewal or targeted differentiation.
Collapse
|
28
|
Yoon HJ, Kim SB, Somaiya D, Noh MJ, Choi KB, Lim CL, Lee HY, Lee YJ, Yi Y, Lee KH. Type II collagen and glycosaminoglycan expression induction in primary human chondrocyte by TGF-β1. BMC Musculoskelet Disord 2015; 16:141. [PMID: 26059549 PMCID: PMC4460646 DOI: 10.1186/s12891-015-0599-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/27/2015] [Indexed: 12/13/2022] Open
Abstract
Background A localized non-surgical delivery of allogeneic human chondrocytes (hChonJ) with irradiated genetically modified chondrocytes (hChonJb#7) expressing transforming growth factor-β1 (TGF-β1) showed efficacy in regenerating cartilage tissue in our pre-clinical studies and human Phase I and II clinical trials. These previous observations led us to investigate the molecular mechanisms of the cartilage regeneration. Methods Genetically modified TGF-β1preprotein was evaluated by monitoring cell proliferation inhibition activity. The effect of modified TGF-β1 on chondrocytes was evaluated based on the type II collagen mRNA levels and the amount of glycosaminoclycan (GAG) formed around chondrocytes, which are indicative markers of redifferentiated chondrocytes. Among the cartilage matrix components produced by hChonJb#7 cells, type II collagen and proteoglycan, in addition to TGF-β1, were also tested to see if they could induce hChonJ redifferentiation. The ability of chondrocytes to attach to artificially induced defects in rabbit cartilage was tested using fluorescent markers. Results Throughout these experiments, the TGF-β1 produced from hChonJb#7 was shown to be equally as active as the recombinant human TGF-β1. Type II collagen and GAG production were induced in hChonJ cells by TGF-β1 secreted from the irradiated hChonJb#7 cells when the cells were co-cultured in micro-masses. Both hChonJ and hChonJb#7 cells could attach efficiently to the defect area in the rabbit cartilage. Conclusions This study suggests that the mixture (TG-C) of allogeneic human chondrocytes (hChonJ) and irradiated genetically modified human chondrocytes expressing TGF-β1 (hChonJb#7) attach to the damaged cartilage area to produce type II collagen-GAG matrices by providing a continuous supply of active TGF-β1.
Collapse
Affiliation(s)
- Hyun Joo Yoon
- TissueGene Inc., 9605 Medical Center Dr. Suite 200, Rockville, MD, 20850, USA.
| | - Suk Bum Kim
- Department of Rehabilitation and Personal training, Konyang University, 158, Gwanjeodong-ro, Daejeon, Seo-gu, Korea.
| | - Dhara Somaiya
- TissueGene Inc., 9605 Medical Center Dr. Suite 200, Rockville, MD, 20850, USA.
| | - Moon Jong Noh
- TissueGene Inc., 9605 Medical Center Dr. Suite 200, Rockville, MD, 20850, USA.
| | - Kyoung-Baek Choi
- Kolon Life Science, 13 Kolon-ro, Gwacheon-si, Gyeonggi-do, Korea.
| | - Chae-Lyul Lim
- Kolon Life Science, 13 Kolon-ro, Gwacheon-si, Gyeonggi-do, Korea.
| | - Hyeon-Youl Lee
- Kolon Life Science, 13 Kolon-ro, Gwacheon-si, Gyeonggi-do, Korea.
| | - Yeon-Ju Lee
- Kolon Life Science, 13 Kolon-ro, Gwacheon-si, Gyeonggi-do, Korea.
| | - Youngsuk Yi
- TissueGene Inc., 9605 Medical Center Dr. Suite 200, Rockville, MD, 20850, USA.
| | - Kwan Hee Lee
- TissueGene Inc., 9605 Medical Center Dr. Suite 200, Rockville, MD, 20850, USA.
| |
Collapse
|
29
|
Li JJ, Kaplan DL, Zreiqat H. Scaffold-based regeneration of skeletal tissues to meet clinical challenges. J Mater Chem B 2014; 2:7272-7306. [PMID: 32261954 DOI: 10.1039/c4tb01073f] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The management and reconstruction of damaged or diseased skeletal tissues have remained a significant global healthcare challenge. The limited efficacy of conventional treatment strategies for large bone, cartilage and osteochondral defects has inspired the development of scaffold-based tissue engineering solutions, with the aim of achieving complete biological and functional restoration of the affected tissue in the presence of a supporting matrix. Nevertheless, significant regulatory hurdles have rendered the clinical translation of novel scaffold designs to be an inefficient process, mainly due to the difficulties of arriving at a simple, reproducible and effective solution that does not rely on the incorporation of cells and/or bioactive molecules. In the context of the current clinical situation and recent research advances, this review will discuss scaffold-based strategies for the regeneration of skeletal tissues, with focus on the contribution of bioactive ceramic scaffolds and silk fibroin, and combinations thereof, towards the development of clinically viable solutions.
Collapse
Affiliation(s)
- Jiao Jiao Li
- Biomaterials and Tissue Engineering Research Unit, School of AMME, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
30
|
In vivo construction of tissue-engineered cartilage using adipose-derived stem cells and bioreactor technology. Cell Tissue Bank 2014; 16:123-33. [DOI: 10.1007/s10561-014-9448-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/10/2014] [Indexed: 01/22/2023]
|
31
|
Shen MR, Xiong SH, Yuan JM, Liu Z, Zhang YZ, Dang RS, Yang XQ, Zhang X, Zhang CS. Biocompatibility evaluation of tissue-engineered valved venous conduit by reseeding autologous bone marrow-derived endothelial progenitor cells and multipotent adult progenitor cells into heterogeneous decellularized venous matrix. J Tissue Eng Regen Med 2014; 10:982-988. [DOI: 10.1002/term.1877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/11/2013] [Accepted: 01/09/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Man-ru Shen
- Department of Anatomy; Second Military Medical University
- Department of Gastroenterology; Qingpu District Central Hospital; Shanghai China
| | - Shao-hu Xiong
- Department of Anatomy; Second Military Medical University
| | - Jian-ming Yuan
- Department of Anatomy; Second Military Medical University
| | - Zhen Liu
- Department of Anatomy; Second Military Medical University
| | | | - Rui-shan Dang
- Department of Anatomy; Second Military Medical University
| | - Xiang-qun Yang
- Department of Anatomy; Second Military Medical University
| | - Xi Zhang
- Department of Anatomy; Second Military Medical University
| | | |
Collapse
|
32
|
Fang X, Murakami H, Demura S, Hayashi K, Matsubara H, Kato S, Yoshioka K, Inoue K, Ota T, Shinmura K, Tsuchiya H. A novel method to apply osteogenic potential of adipose derived stem cells in orthopaedic surgery. PLoS One 2014; 9:e88874. [PMID: 24586422 PMCID: PMC3929506 DOI: 10.1371/journal.pone.0088874] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 01/16/2014] [Indexed: 01/22/2023] Open
Abstract
Background A number of publications have reported that adipose derived stem cells (ADSCs) have the capacity to be induced to differentiate into osteoblasts both in vitro and in vivo. However, it has been difficult to use separate ADSCs for cortical bone regeneration and bone reconstruction so far. Inspired by the research around stromal stem cells and cell sheets, we developed a new method to fabricate ADSCs sheets to accelerate and enhance the bone regeneration and bone reconstruction. Purpose To fabricate ADSCs sheets and evaluate their capacity to be induced to differentiate to osteoblasts in vitro. Methods Human adipose derived stem cells (hADSCs) were employed in this research. The fabricating medium containing 50 µM ascorbate-2-phosphate was used to enhance the secretion of collagen protein by the ADSCs and thus to make the cell sheets of ADSCs. As the separate ADSCs were divided into osteo-induction group and control group, the ADSCs sheets were also divided into two groups depending on induction by osteogenesis medium or no induction. The osteogenic capacity of each group was evaluated by ALP staining, Alizarin Red staining and ALP activity. Results The ADSCs sheets were fabricated after one-week culture in the fabricating medium. The ALP staining of ADSCs sheets showed positive results after 5 days osteo-induction and the Alizarin Red staining of ADSCs sheets showed positive results after 1 week osteo-induction. The ALP activity showed significant differences between these four groups. The ALP activity of ADSCs sheets groups showed higher value than that of separate ADSCs. Conclusion The experiments demonstrated that ADSCs sheets have better capacity than separate ADSCs to be induced to differentiate into osteoblasts. This indicates that it is possible to use the ADSCs sheets as a source of mesenchymal stem cells for bone regeneration and bone reconstruction.
Collapse
Affiliation(s)
- Xiang Fang
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hideki Murakami
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Satoru Demura
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | | | - Satoshi Kato
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | | | - Kei Inoue
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Takashi Ota
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kazuya Shinmura
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
- * E-mail:
| |
Collapse
|
33
|
Khan F, Ahmad SR. Biomimetic Polysaccharides and Derivatives for Cartilage Tissue Regeneration. Biomimetics (Basel) 2013. [DOI: 10.1002/9781118810408.ch1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
34
|
Choi JW, Choi BH, Park SH, Pai KS, Li TZ, Min BH, Park SR. Mechanical stimulation by ultrasound enhances chondrogenic differentiation of mesenchymal stem cells in a fibrin-hyaluronic acid hydrogel. Artif Organs 2013; 37:648-55. [PMID: 23495957 DOI: 10.1111/aor.12041] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chondrogenic differentiation and cartilage tissue formation derived from stem cells are highly dependent on both biological and mechanical factors. This study investigated whether or not fibrin-hyaluronic acid (HA) coupled with low-intensity ultrasound (LIUS), a mechanical stimulation, produces an additive or synergistic effect on the chondrogenesis of rabbit mesenchymal stem cells (MSCs) derived from bone marrow. For the purpose of comparison, rabbit MSCs were first cultured in fibrin-HA or alginate hydrogels, and then subjected to chondrogenic differentiation in chondrogenic-defined medium for 4 weeks in the presence of either transforming growth factor-beta3 (TGF-β3) (10 ng/mL) or LIUS treatment (1.0 MHz and 200 mW/cm(2) ). The resulting samples were evaluated at 1 and 4 weeks by histological observation, chemical assays, and mechanical analysis. The fibrin-HA hydrogel was found to be more efficient than alginate in promoting chondrogenesis of the MSCs by producing a larger amount of sulfated glycosaminoglycans (GAGs) and collagen, and engineered constructs made with the hydrogel demonstrated higher mechanical strength. At 4 weeks of tissue culture, the chondrogenesis of the MSCs in fibrin-HA were shown to be further enhanced by treatment with LIUS, as observed by analyses for the amounts of GAGs and collagen, and mechanical strength testing. In contrast, TGF-β3, a well-known chondrogenic inducer, showed a marginal additive effect in the amount of collagen only. These results revealed that LIUS further enhanced chondrogenesis of the MSCs cultured in fibrin-HA, in vitro, and suggested that the combination of fibrin-HA and LIUS is a useful tool in constructing high-quality cartilage tissues from MSCs.
Collapse
Affiliation(s)
- Jae Won Choi
- Department of Molecular Science & Technology, Ajou University, Suwon, Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
García Cruz DM, Sardinha V, Escobar Ivirico JL, Mano JF, Gómez Ribelles JL. Gelatin microparticles aggregates as three-dimensional scaffolding system in cartilage engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:503-513. [PMID: 23160914 DOI: 10.1007/s10856-012-4818-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 11/08/2012] [Indexed: 06/01/2023]
Abstract
A three-dimensional (3D) scaffolding system for chondrocytes culture has been produced by agglomeration of cells and gelatin microparticles with a mild centrifuging process. The diameter of the microparticles, around 10 μ, was selected to be in the order of magnitude of the chondrocytes. No gel was used to stabilize the construct that maintained consistency just because of cell and extracellular matrix (ECM) adhesion to the substrate. In one series of samples the microparticles were charged with transforming growth factor, TGF-β1. The kinetics of growth factor delivery was assessed. The initial delivery was approximately 48 % of the total amount delivered up to day 14. Chondrocytes that had been previously expanded in monolayer culture, and thus dedifferentiated, adopted in this 3D environment a round morphology, both with presence or absence of growth factor delivery, with production of ECM that intermingles with gelatin particles. The pellet was stable from the first day of culture. Cell viability was assessed by MTS assay, showing higher absorption values in the cell/unloaded gelatin microparticle pellets than in cell pellets up to day 7. Nevertheless the absorption drops in the following culture times. On the contrary the cell viability of cell/TGF-β1 loaded gelatin microparticle pellets was constant during the 21 days of culture. The formation of actin stress fibres in the cytoskeleton and type I collagen expression was significantly reduced in both cell/gelatin microparticle pellets (with and without TGF-β1) with respect to cell pellet controls. Total type II collagen and sulphated glycosaminoglycans quantification show an enhancement of the production of ECM when TGF-β1 is delivered, as expected because this growth factor stimulate the chondrocyte proliferation and improve the functionality of the tissue.
Collapse
Affiliation(s)
- D M García Cruz
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | | | | | | | | |
Collapse
|
36
|
Investigation of techniques for the measurement of articular cartilage surface roughness. Micron 2013; 44:179-84. [DOI: 10.1016/j.micron.2012.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 12/29/2022]
|
37
|
Subramanian A, Turner JA, Budhiraja G, Guha Thakurta S, Whitney NP, Nudurupati SS. Ultrasonic bioreactor as a platform for studying cellular response. Tissue Eng Part C Methods 2012; 19:244-55. [PMID: 22873765 DOI: 10.1089/ten.tec.2012.0199] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The need for tissue-engineered constructs as replacement tissue continues to grow as the average age of the world's population increases. However, additional research is required before the efficient production of laboratory-created tissue can be realized. The multitude of parameters that affect cell growth and proliferation is particularly daunting considering that optimized conditions are likely to change as a function of growth. Thus, a generalized research platform is needed in order for quantitative studies to be conducted. In this article, an ultrasonic bioreactor is described for use in studying the response of cells to ultrasonic stimulation. The work is focused on chondrocytes with a long-term view of generating tissue-engineered articular cartilage. Aspects of ultrasound (US) that would negatively affect cells, including temperature and cavitation, are shown to be insignificant for the US protocols used and which cover a wide range of frequencies and pressure amplitudes. The bioreactor is shown to have a positive influence on several factors, including cell proliferation, viability, and gene expression of select chondrocytic markers. Most importantly, we show that a total of 138 unique proteins are differentially expressed on exposure to ultrasonic stimulation, using mass-spectroscopy coupled proteomic analyses. We anticipate that this work will serve as the basis for additional research which will elucidate many of the mechanisms associated with cell response to ultrasonic stimulation.
Collapse
Affiliation(s)
- Anuradha Subramanian
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Fong EL, Watson BM, Kasper FK, Mikos AG. Building bridges: leveraging interdisciplinary collaborations in the development of biomaterials to meet clinical needs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:4995-5013. [PMID: 22821772 PMCID: PMC3706713 DOI: 10.1002/adma.201201762] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/28/2012] [Indexed: 05/22/2023]
Abstract
Our laboratory at Rice University has forged numerous collaborations with clinicians and basic scientists over the years to advance the development of novel biomaterials and the modification of existing materials to meet clinical needs. This review highlights collaborative advances in biomaterials research from our laboratory in the areas of scaffold development, drug delivery, and gene therapy, especially as related to applications in bone and cartilage tissue engineering.
Collapse
Affiliation(s)
| | | | - F. Kurtis Kasper
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77030, USA
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77030, USA
| |
Collapse
|
39
|
Scheller K, Dally I, Hartmann N, Münst B, Braspenning J, Walles H. Upcyte® microvascular endothelial cells repopulate decellularized scaffold. Tissue Eng Part C Methods 2012; 19:57-67. [PMID: 22799502 DOI: 10.1089/ten.tec.2011.0723] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A general problem in tissue engineering is the poor and insufficient blood supply to guarantee tissue cell survival as well as physiological tissue function. To address this limitation, we have developed an in vitro vascularization model in which a decellularized porcine small bowl segment, representing a capillary network within a collagen matrix (biological vascularized scaffold [BioVaSc]), is reseeded with microvascular endothelial cells (mvECs). However, since the supply of mvECs is limited, in general, and as these cells rapidly dedifferentiate, we have applied a novel technology, which allows the generation of large batches of quasi-primary cells with the ability to proliferate, whilst maintaining their differentiated functionality. These so called upcyte mvECs grew for an additional 15 population doublings (PDs) compared to primary cells. Upcyte mvECs retained endothelial characteristics, such as von Willebrandt Factor (vWF), CD31 and endothelial nitric oxide synthase (eNOS) expression, as well as positive Ulex europaeus agglutinin I staining. Upcyte mvECs also retained biological functionality such as tube formation, cell migration, and low density lipoprotein (LDL) uptake, which were still evident after PD27. Initial experiments using MTT and Live/Dead staining indicate that upcyte mvECs repopulate the BioVaSc Scaffold. As with conventional cultures, these cells also express key endothelial molecules (vWF, CD31, and eNOS) in a custom-made bioreactor system even after a prolonged period of 14 days. The combination of upcyte mvECs and the BioVaSc represents a novel and promising approach toward vascularizing bioreactor models which can better reflect organs, such as the liver.
Collapse
|
40
|
Rajagopal K, Dutt V, Manickam AS, Madhuri V. Chondrocyte source for cartilage regeneration in an immature animal: Is iliac apophysis a good alternative? Indian J Orthop 2012; 46:402-6. [PMID: 22912514 PMCID: PMC3421929 DOI: 10.4103/0019-5413.98828] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Autologous articular cartilage at present forms the main source of chondrocytes for cartilage tissue engineering. In children, iliac apophysis is a rich and readily accessible source of chondrocytes. This study compares the growth characteristics and phenotype maintenance of goat iliac apophysis growth plate chondrocytes with those sourced from goat articular cartilage, and thereby assesses their suitability for autologous chondrocyte transplantation in immature animals for growth plate and articular cartilage regeneration. MATERIALS AND METHODS Four sets of experiments were carried out. Cartilage samples were harvested under aseptic conditions from goat iliac apophysis and knee articular cartilage. The chondrocytes were isolated in each set and viable cells were counted and subsequently cultured as a monolayer in tissue culture flasks containing chondrogenic media at 2.5 × 10(3)cells/cm(2). The growth was periodically assessed with phase contrast microcopy and the cells were harvested on 8(th) and 15(th) days for morphology, cell yield, and phenotype assessment. Student's t-test was used for comparison of the means. RESULTS Confluence was reached in the iliac apophysis growth plate chondrocytes flasks on the 10(th) day and the articular cartilage chondrocytes flasks on the 14(th) day. Mean cell count of growth plate chondrocytes on the 8(th) day was 3.64 × 10(5) (SD = 0.601) and that of articular cartilage chondrocytes was 1.40 × 10(5) (SD = 0.758) per flask. The difference in the means was statistically significant (P = 0.003). On the 15(th) day, the mean cell number had increased to 1.35 × 10(6)(SD = 0.20) and 1.19 × 10(6) (SD = 0.064) per flask, respectively. This difference was not statistically significant (P = 0.26). The population doubling time on the 8(th) day of cell culture was 3.18 and 6.24 days respectively, for iliac apophyseal and articular cartilage chondrocytes, which was altered to 3.59 and 3.1 days, respectively, on the 15(th) day. The immunocytochemistry showed 100% retention of collagen 2 positive and collagen 1 negative cells in both sets of cultures in all samples. CONCLUSION Iliac apophysis is a rich source of chondrocytes with a high growth rate and ability to retain phenotype when compared to articular cartilage derived chondrocytes. Further in vivo studies may determine the efficacy of physeal and articular repair in children with apophyseal chondrocytes.
Collapse
Affiliation(s)
| | - Vivek Dutt
- Department of Orthopaedics, Christian Medical College, Vellore, Tamil Nadu, India
| | - A Soosai Manickam
- Department of Physiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Vrisha Madhuri
- Department of Orthopaedics, Christian Medical College, Vellore, Tamil Nadu, India,Address for correspondence: Prof. Vrisha Madhuri, Paediatric Orthopaedics Unit, Department of Orthopaedics, Christian Medical College Hospital, Ida Scudder Road, Vellore – 632004, Tamil Nadu, India. E-mail:
| |
Collapse
|