1
|
Ha JY, Choi SY, Kim SJ, Seog KJ, Hong SH, Lee HJ. Transcriptome Analysis of HNSCC by Aggregatibacter actinomycetemcomitans Extracellular Vesicles. Oral Dis 2025; 31:1165-1177. [PMID: 39568274 DOI: 10.1111/odi.15204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/07/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024]
Abstract
OBJECTIVES The role of extracellular vesicles (EVs), also known as outer membrane vesicles (OMVs), secreted by oral bacteria in the progression of head and neck squamous cell carcinomas (HNSCCs), is largely unexplored. This study aimed to investigate the influence of bacterial EVs, specifically those derived from Aggregatibacter actinomycetemcomitans (Aa), on the progression of HNSCC. MATERIALS AND METHODS FaDu and UMSCC1 cell lines were treated with Aa-derived EVs, and oncogenic activities were assessed. Comprehensive cellular and RNA-sequencing transcriptome analyses were conducted to assess the impact of these EVs on cell cycle progression and gene expression. RESULTS Our findings reveal that Aa-derived EVs accelerate cell cycle progression through the S and G2 phases and enhance invasion in HNSCC cell lines. RNA-sequencing analysis showed that Aa-derived EVs exert a more significant effect on general transcript expression than on microRNA profiles, except for miR-146a, which is recognized as a key factor in both carcinogenesis and immune modulation. CONCLUSIONS Bacterial EVs, particularly from periodontal pathogens like Aa, are significant modulators within the oral cancer environment, potentially affecting cellular behavior and gene expression profiles. This study highlights the complex relationship between periodontal health and oral carcinogenesis, emphasizing the significant role of bacterial EVs in HNSCC progression.
Collapse
Affiliation(s)
- Jae Yeong Ha
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
| | - Song-Yi Choi
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
| | - Suk-Jeong Kim
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
| | - Kristen Jin Seog
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Su-Hyung Hong
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Heon-Jin Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
| |
Collapse
|
2
|
Usul G, Kelten Talu EC, Yılmaz İ, Issın GN, Bektaş S, Can Trabulus D. The Association of Neuroendocrine Differentiation with MicroRNA 21 and MicroRNA let7f Expression and the Clinicopathological Parameters in Primary Invasive Breast Carcinomas with Neuroendocrine Features. Diagnostics (Basel) 2024; 14:2211. [PMID: 39410615 PMCID: PMC11475674 DOI: 10.3390/diagnostics14192211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
MiRNAs have been reported as biomarkers with diagnostic, prognostic, and predictive value for many different diseases. Therapeutic agents targeting some miRNAs are currently being developed. We aimed to compare BC-NEFs (carcinoma of the breast with neuroendocrine features) with IDC (invasive ductal carcinoma) cases without neuroendocrine features in terms of the level of miRNA expression known to show the oncogenic (miR-21) and tumor-suppressor effects (miR-let7f) and the clinicopathological features. A total of 29 patients with a diagnosis of BC-NEFs (15 cases with neuroendocrine differentiation >50% of the whole section of tumor and 14 cases with neuroendocrine differentiation 10-50% of the tumor) and 30 patients with a diagnosis of IDC (no neuroendocrine differentiation) were retrospectively re-evaluated. Expression levels of miR-21 and miR-let7f were determined by the qRT-PCR method in paraffin tissue blocks. MiR-21 expression was significantly higher in the IDC group than in the group with BC-NEFs. miR-let7f expression was significantly lower in the group with BC-NEFs compared to the IDC group. A high expression level of miR-21 was found to be associated with progesterone receptor (PR) negativity. Our findings show that the presence of NEFs in breast carcinomas makes a significant difference in the expression levels of the investigated oncogenic (miR-21) and tumor-suppressor (miR-let7f) miRNAs. These findings suggest that miRNAs may be a potential biomarker in BC-NEFs and would benefit from targeted therapy.
Collapse
Affiliation(s)
- Gamze Usul
- Department of Pathology, Istanbul Training and Research Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul 34098, Türkiye
| | - Esra Canan Kelten Talu
- Department of Pathology, Istanbul Training and Research Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul 34098, Türkiye
- Department of Molecular Pathology, Faculty of Medicine, Institute of Health Sciences, Dokuz Eylul University, İzmir 35410, Türkiye
| | - İsmail Yılmaz
- Department of Pathology, Sultan Abdülhamid Han Training and Research Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul 34668, Türkiye
| | - Gizem Narlı Issın
- Mengücek Gazi Education and Research Hospital, Faculty of Medicine, Binali Yıldırım University, Erzincan 24180, Türkiye
| | - Sibel Bektaş
- Department of Pathology, Gaziosmanpaşa Training and Research Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul 34255, Türkiye
| | - Didem Can Trabulus
- Department of General Surgery, Istanbul Training and Research Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul 34098, Türkiye
| |
Collapse
|
3
|
Zhang WH, Jiang L, Li M, Liu J. MicroRNA‑124: an emerging therapeutic target in central nervous system disorders. Exp Brain Res 2023; 241:1215-1226. [PMID: 36961552 PMCID: PMC10129929 DOI: 10.1007/s00221-022-06524-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/31/2022] [Indexed: 03/25/2023]
Abstract
The central nervous system (CNS) consists of neuron and non-neuron cells including neural stem/precursor cells (NSPCs), neuroblasts, glia cells (mainly astrocyte, oligodendroglia and microglia), which thereby form a precise and complicated network and exert diverse functions through interactions of numerous bioactive ingredients. MicroRNAs (miRNAs), with small size approximately ~ 21nt and as well-documented post-transcriptional key regulators of gene expression, are a cluster of evolutionarily conserved endogenous non-coding RNAs. More than 2000 different miRNAs has been discovered till now. MicroRNA-124(miR-124), the most brain-rich microRNA, has been validated to possess important functions in the central nervous system, including neural stem cell proliferation and differentiation, cell fate determination, neuron migration, synapse plasticity and cognition, cell apoptosis etc. According to recent studies, herein, we provide a review of this conversant miR-124 to further understand the potential functions and therapeutic and clinical value in brain diseases.
Collapse
Affiliation(s)
- Wen-Hao Zhang
- Department of Pediatrics, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100095, China
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Lian Jiang
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Mei Li
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Jing Liu
- Department of Pediatrics, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100095, China.
- Department of Neonatology, Maternal and Child Health Hospital of Chaoyang District, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
4
|
Genetic polymorphisms of MiR-499a (rs3746444) and MiR-196a2 (rs11614913) in ischemic stroke and correlation with risk factors. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Kim SI, Ha JY, Choi SY, Hong SH, Lee HJ. Use of Bacterial Extracellular Vesicles for Gene Delivery to Host Cells. Biomolecules 2022; 12:biom12091171. [PMID: 36139009 PMCID: PMC9496234 DOI: 10.3390/biom12091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Extracellular vesicles (EVs), which are nanosized membranous particles secreted from both prokaryotic and eukaryotic cells, can deliver various biological molecules, such as nucleic acids, proteins, and lipids, into recipient cells. However, contrary to what is known about eukaryotic EVs, whether bacterial EVs (bEVs) can be used as transporters for bioactive molecules is becoming a hot area of research. In this study, we electroporated enhanced green fluorescent protein (EGFP) genes and precursor microRNA of Cel-miR-39 (pre-Cel-miR-39) from isolated bEVs of Escherichia coli and Lactobacillus reuteri. The EGFP plasmid, synthetic EGFP RNA, and pre-Cel-miR-39 were successfully delivered into the murine microglial BV2 cells via bEVs. PCR and confocal microscopy analysis confirmed the transfer of the EGFP plasmid and RNA. The bEV-delivered exogenous pre-Cel-miR-39 was further processed into the mature form of Cel-miR-39; its incorporation into Ago2—a major component of the RNA-induced silencing complex—was assessed using RNA-immunoprecipitation–PCR. Taken together, bEVs can be used as vehicles to deliver genetic materials and for novel biotechnological applications, such as gene transfer and mRNA vaccines.
Collapse
Affiliation(s)
- Su-Im Kim
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Jae Yeong Ha
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu 41940, Korea
| | - Song-Yi Choi
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu 41940, Korea
| | - Su-Hyung Hong
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Heon-Jin Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu 41940, Korea
- Correspondence:
| |
Collapse
|
6
|
Choi SY, Hong SH, Lee HJ. Differential expression and sorting of exosomal microRNAs upon activation of the human monocyte-like cell line U937. Biochem Biophys Res Commun 2022; 610:147-153. [DOI: 10.1016/j.bbrc.2022.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022]
|
7
|
Gong S, Ying L, Fan Y, Sun Z. Fentanyl Inhibits Lung Cancer Viability and Invasion via Upregulation of miR-331-3p and Repression of HDAC5. Onco Targets Ther 2020; 13:13131-13141. [PMID: 33380803 PMCID: PMC7767728 DOI: 10.2147/ott.s281095] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Non-small cell lung cancer (NSCLC) accounts for more than 80% of lung cancer cases and remains the primary cause of cancer-related deaths worldwide. Fentanyl is a commonly utilized anesthetic during the process of tumor resection, and exhibits inhibitory effects on the progression of numerous cancer types, including pancreatic cancer, colorectal cancer and gastric cancer. However, the effects of fentanyl on the cell viability and invasion of NSCLC has not been investigated. Current study aimed to investigate the effects and the mechanisms underlying the effects of fentanyl on NSCLC. Methods The expression of μ-opioid receptor (MOR) was proved by flow cytometry. The expression of microRNA-331-3p (miR-331-3p) and histone deacetylase 5 (HDAC5) in NSCLC tissues and cell lines are evaluated by reverse transcription-quantitative PCR (RT-qPCR) and Western blot, respectively. Cell viability and invasion are measured by cell counting kit-8 (CCK-8) assay and transwell assay, respectively. The interaction between miR-331-3p and 3ʹ-untranslated region (UTR) of HDAC5 is predicted by TargetScan 7.1 (http://www.targetscan.org/vert_71/), validated by dual luciferase assay, RT-qPCR and Western blot. Results There was lower miR-331-3p expression and higher HDAC5 expression in NSCLC cell lines A549 and CALU-1 compared with BEAS-2B, which was reversed by fentanyl administration. miR-331-3p targeted 3ʹ-UTR of HDAC5 in NSCLC cell lines A549 and CALU-1. miR-331-3p inhibitor partially abrogated the inhibitory effects of fentanyl on NSCLC cell viability and invasion by targeting HDAC5. In addition, there was higher HDAC5 expression and lower miR-331-3p expression in tumor tissues which were isolated from patients with NSCLC compared to the adjacent normal tissues, and miR-331-3p was negatively correlated with HDAC5 in NSCLC tumor tissues. Conclusion Fentanyl inhibits the viability and invasion of NSCLC cells by induction of miR-331-3p and reduction of HDAC5.
Collapse
Affiliation(s)
- Shengkai Gong
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Liang Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University Medical College, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Yu'ning Fan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Zhentao Sun
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| |
Collapse
|
8
|
Choi SY, Han EC, Hong SH, Kwon TG, Lee Y, Lee HJ. Regulating Osteogenic Differentiation by Suppression of Exosomal MicroRNAs. Tissue Eng Part A 2020; 25:1146-1154. [PMID: 30520703 DOI: 10.1089/ten.tea.2018.0257] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT We investigated the role of exosomes in osteogenesis and the use of miRNA inhibitor-transfected exosomes to control osteogenic differentiation. RNA-sequencing (RNA-seq) of exosomal miRNAs revealed that growth condition of milieu of preosteoblast exosomes harbors high levels of let-7, which plays a critical role in osteogenesis regulation. We modified exosomes by transfecting let-7 inhibitor into exosomes under growth condition in MC3T3-E1 cells and revealed that exosomes whose let-7 was inactivated by engineering lost the ability to recover osteogenic differentiation. Genetically modified exosomes may serve as powerful biomaterials for developmental control, including of osteogenesis regulation.
Collapse
Affiliation(s)
- Song-Yi Choi
- 1Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Eun-Chong Han
- 1Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Su-Hyung Hong
- 1Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Tae-Geon Kwon
- 2Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Youngkyun Lee
- 3Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Heon-Jin Lee
- 1Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea.,4Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| |
Collapse
|
9
|
Behrouzi A, Ashrafian F, Mazaheri H, Lari A, Nouri M, Riazi Rad F, Hoseini Tavassol Z, Siadat SD. The importance of interaction between MicroRNAs and gut microbiota in several pathways. Microb Pathog 2020; 144:104200. [PMID: 32289465 DOI: 10.1016/j.micpath.2020.104200] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
The human gut harbors diverse microbes that play a fundamental role in the well-being of their host. Microbiota disruption affects the immune function, metabolism, and causes several diseases. Therefore, understanding how the microbiome is adjusted, and identifying methods for manipulating it is critical. Studies have found that there is an inverse association between MicroRNAs (miRNAs) abundance and microbe abundance. miRNAs are known to be engaged in post-transcription regulation of cell-autonomous gene expression. Recently, they have gained great attention for their proposed roles in cell-to-cell communication, and as biomarkers for human disease. Here, we review recent studies on the role of miRNAs as a component of outer membrane vesicles (OMVs) in the composition of gut microbiota and their significance in the human situation of health and diseases and discuss their effect on inflammatory responses and dysbiosis. Further, we explain how probiotics exert influence on the expression of miRNAs.
Collapse
Affiliation(s)
- Ava Behrouzi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Ashrafian
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Hoora Mazaheri
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Arezou Lari
- Systems Biomedicine Unit, Pasteur Institute of Iran, Tehran, Iran
| | - Matineh Nouri
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Farhad Riazi Rad
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Hoseini Tavassol
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Hu J, Qin L, Liu Z, Liu P, Wei H, Wang H, Zhao C, Ge Z. miR‐15a regulates oxygen glucose deprivation/reperfusion (OGD/R)‐induced neuronal injury by targeting BDNF. Kaohsiung J Med Sci 2019; 36:27-34. [PMID: 31631531 DOI: 10.1002/kjm2.12136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/15/2019] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jie‐Jie Hu
- Department of neurologyLanzhou University Second Hospital Lanzhou China
| | - Li‐Jun Qin
- Department of cardiologyLanzhou University Second Hospital Lanzhou China
| | - Zhi‐Yan Liu
- Department of neurologyLanzhou University Second Hospital Lanzhou China
| | - Pei Liu
- Department of neurologyLanzhou University Second Hospital Lanzhou China
| | - Hai‐Ping Wei
- Department of neurologyLanzhou University Second Hospital Lanzhou China
| | - Hao‐Yue Wang
- Department of neurologyLanzhou University Second Hospital Lanzhou China
| | - Chong‐Chong Zhao
- Department of neurologyLanzhou University Second Hospital Lanzhou China
| | - Zhao‐Ming Ge
- Department of neurologyLanzhou University Second Hospital Lanzhou China
| |
Collapse
|
11
|
Skullcapflavone I suppresses proliferation of human lung cancer cells via down-regulating microRNA-21. Exp Mol Pathol 2019; 110:104285. [DOI: 10.1016/j.yexmp.2019.104285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/01/2019] [Accepted: 07/10/2019] [Indexed: 11/19/2022]
|
12
|
Han EC, Choi SY, Lee Y, Park JW, Hong SH, Lee HJ. Extracellular RNAs in periodontopathogenic outer membrane vesicles promote TNF-α production in human macrophages and cross the blood-brain barrier in mice. FASEB J 2019; 33:13412-13422. [PMID: 31545910 DOI: 10.1096/fj.201901575r] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Among the main bacteria implicated in the pathology of periodontal disease, Aggregatibacter actinomycetemcomitans (Aa) is well known for causing loss of periodontal attachment and systemic disease. Recent studies have suggested that secreted extracellular RNAs (exRNAs) from several bacteria may be important in periodontitis, although their role is unclear. Emerging evidence indicates that exRNAs circulate in nanosized bilayered and membranous extracellular vesicles (EVs) known as outer membrane vesicles (OMVs) in gram-negative bacteria. In this study, we analyzed the small RNA expression profiles in activated human macrophage-like cells (U937) infected with OMVs from Aa and investigated whether these cells can harbor exRNAs of bacterial origin that have been loaded into the host RNA-induced silencing complex, thus regulating host target transcripts. Our results provide evidence for the cytoplasmic delivery and activity of microbial EV-derived small exRNAs in host gene regulation. The production of TNF-α was promoted by exRNAs via the TLR-8 and NF-κB signaling pathways. Numerous studies have linked periodontal disease to neuroinflammatory diseases but without elucidating specific mechanisms for the connection. We show here that intracardiac injection of Aa OMVs in mice showed successful delivery to the brain after crossing the blood-brain barrier, the exRNA cargos increasing expression of TNF-α in the mouse brain. The current study indicates that host gene regulation by microRNAs originating from OMVs of the periodontal pathogen Aa is a novel mechanism for host gene regulation and that the transfer of OMV exRNAs to the brain may cause neuroinflammatory diseases like Alzheimer's.-Han, E.-C., Choi, S.-Y., Lee, Y., Park, J.-W., Hong, S.-H., Lee, H.-J. Extracellular RNAs in periodontopathogenic outer membrane vesicles promote TNF-α production in human macrophages and cross the blood-brain barrier in mice.
Collapse
Affiliation(s)
- Eun-Chong Han
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Song-Yi Choi
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Su-Hyung Hong
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Heon-Jin Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
13
|
Lee SY, Yang J, Park JH, Shin HK, Kim WJ, Kim SY, Lee EJ, Hwang I, Lee CS, Lee J, Kim HS. The MicroRNA-92a/Sp1/MyoD Axis Regulates Hypoxic Stimulation of Myogenic Lineage Differentiation in Mouse Embryonic Stem Cells. Mol Ther 2019; 28:142-156. [PMID: 31606324 DOI: 10.1016/j.ymthe.2019.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 01/07/2023] Open
Abstract
Hypoxic microenvironments exist in developing embryonic tissues and determine stem cell fate. We previously demonstrated that hypoxic priming plays roles in lineage commitment of embryonic stem cells. In the present study, we found that hypoxia-primed embryoid bodies (Hyp-EBs) efficiently differentiate into the myogenic lineage, resulting in the induction of the myogenic marker MyoD, which was not mediated by hypoxia-inducible factor 1α (HIF1α) or HIF2α, but rather by Sp1 induction and binding to the MyoD promoter. Knockdown of Sp1 in Hyp-EBs abrogated hypoxia-induced MyoD expression and myogenic differentiation. Importantly, in the cardiotoxin-muscle injury mice model, Hyp-EB transplantation facilitated muscle regeneration in vivo, whereas transplantation of Sp1-knockdown Hyp-EBs failed to do. Moreover, we compared microRNA (miRNA) expression profiles between EBs under normoxia versus hypoxia and found that hypoxia-mediated Sp1 induction was mediated by the suppression of miRNA-92a, which directly targeted the 3' untranslated region (3' UTR) of Sp1. Further, the inhibitory effect of miRNA-92a on Sp1 in luciferase assay was abolished by a point mutation in specific sequence in the Sp1 3' UTR that is required for the binding of miRNA-92a. Collectively, these results suggest that hypoxic priming enhances EB commitment to the myogenic lineage through miR-92a/Sp1/MyoD regulatory axis, suggesting a new pathway that promotes myogenic-lineage differentiation.
Collapse
Affiliation(s)
- Seo-Yeon Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Korean Medical Science Research Center for Healthy-Aging, Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Republic of Korea
| | - Jimin Yang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung Hwa Park
- Korean Medical Science Research Center for Healthy-Aging, Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- Korean Medical Science Research Center for Healthy-Aging, Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Republic of Korea
| | - Woo Jean Kim
- Department of Anatomy, College of Medicine, Kosin University, Busan 49267, Republic of Korea
| | - Su-Yeon Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun Ju Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Injoo Hwang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Choon-Soo Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jaewon Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyo-Soo Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Molecular Medicine & Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Microbe-Host Communication by Small RNAs in Extracellular Vesicles: Vehicles for Transkingdom RNA Transportation. Int J Mol Sci 2019; 20:ijms20061487. [PMID: 30934547 PMCID: PMC6472211 DOI: 10.3390/ijms20061487] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) are evolutionary well-conserved nano-sized membranous vesicles that are secreted by both prokaryotic and eukaryotic cells. Recently, they have gained great attention for their proposed roles in cell-to-cell communication, and as biomarkers for human disease. In particular, small RNAs (sRNAs) contained within EVs have been considered as candidate interspecies-communication molecules, due to their demonstrated capacity to modulate gene expression in multiple cell types and species. While research into this field is in its infancy, elucidating the mechanisms that underlie host–microbe interactions and communications promises to impact many fields of biological research, including human health and medicine. Thus, this review discussed the results of recent studies that have examined the ways in which EVs and sRNAs mediate ‘microbe–host’ and ‘host–microbe’ interspecies communication.
Collapse
|
15
|
Sun H, Gao D. Propofol suppresses growth, migration and invasion of A549 cells by down-regulation of miR-372. BMC Cancer 2018; 18:1252. [PMID: 30547768 PMCID: PMC6295097 DOI: 10.1186/s12885-018-5175-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/03/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Propofol, a commonly used intravenous anesthetic during cancer resection surgery, has been found to exhibit tumor inhibitory effects in vitro and in vivo. The role of propofol in lung cancer has been previously reported, whereas its action mechanism remains unclear. This study further investigated the effects of propofol on lung cancer A549 cell growth, migration and invasion, as well as the underlying mechanisms. METHODS Cell viability, proliferation, migration, invasion and apoptosis were assessed by CCK-8 assay, BrdU assay, two chamber transwell assay and flow cytometry, respectively. The regulatory effect of propofol on microRNA-372 (miR-372) expression in A549 cells was analyzed by qRT-PCR. Cell transfection was used to change the expression of miR-372. The protein expression of key factors involving in cell proliferation, apoptosis, migration and invasion, as well as Wnt/β-catenin and mTOR pathways were analyzed by western blotting. RESULTS Propofol inhibited lung cancer A549 cell viability, proliferation, migration, and invasion, but promoted cell apoptosis. Moreover, miR-372 was down-regulated in propofol-treated A549 cells. Overexpression of miR-372 abrogated the effects of propofol on proliferation, migration, invasion and apoptosis of A549 cells. Knockdown of miR-372 had opposite effects. Furthermore, propofol suppressed Wnt/β-catenin and mTOR signaling pathways by down-regulating miR-372. CONCLUSION Propofol inhibits growth, migration and invasion of lung cancer A549 cells at least in part by down-regulating miR-372 and then inactivating Wnt/β-catenin and mTOR pathways.
Collapse
Affiliation(s)
- Hai Sun
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, Jilin, 130033, China
| | - Dengyu Gao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, Jilin, 130033, China.
| |
Collapse
|
16
|
MicroRNAs as Diagnostic and Prognostic Biomarkers in Ischemic Stroke-A Comprehensive Review and Bioinformatic Analysis. Cells 2018; 7:cells7120249. [PMID: 30563269 PMCID: PMC6316722 DOI: 10.3390/cells7120249] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/01/2018] [Accepted: 12/02/2018] [Indexed: 12/14/2022] Open
Abstract
Stroke is the second-most common cause of death worldwide. The pathophysiology of ischemic stroke (IS) is related to inflammation, atherosclerosis, blood coagulation, and platelet activation. MicroRNAs (miRNAs) play important roles in physiological and pathological processes of neurodegenerative diseases and progression of certain neurological diseases, such as IS. Several different miRNAs, and their target genes, are recognized to be involved in the pathophysiology of IS. The capacity of miRNAs to simultaneously regulate several target genes underlies their unique value as diagnostic and prognostic markers in IS. In this review, we focus on the role of miRNAs as diagnostic and prognostic biomarkers in IS. We discuss the most common and reliable detection methods available and promising tests currently under development. We also present original results from bioinformatic analyses of published results, identifying the ten most significant genes (HMGB1, YWHAZ, PIK3R1, STAT3, MAPK1, CBX5, CAPZB, THBS1, TNFRSF10B, RCOR1) associated with inflammation, blood coagulation, and platelet activation and targeted by miRNAs in IS. Additionally, we created miRNA-gene target interaction networks based on Gene Ontology (GO) information derived from publicly available databases. Among our most interesting findings, miR-19a-3p is the most widely modulated miRNA across all selected ontologies and might be proposed as novel biomarker in IS to be tested in future studies.
Collapse
|
17
|
Qi J, Liu Y, Hu K, Zhang Y, Wu Y, Zhang X. MicroRNA-26a inhibits hyperplastic scar formation by targeting Smad2. Exp Ther Med 2018; 15:4332-4338. [PMID: 29731824 PMCID: PMC5920963 DOI: 10.3892/etm.2018.5984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/08/2017] [Indexed: 11/16/2022] Open
Abstract
Hypertrophic scar (HS) is a fibrotic disease in which excessive extracellular matrix forms due to the response of fibroblasts to tissue damage. Novel evidence suggests that microRNAs (miRNAs or miRs) may contribute to hypertrophic scarring; however, the role of miRNAs in HS formation remains unclear. In the present study, miR-26a was significantly downregulated in HS tissues and human HS fibroblasts (hHSFs) was detected by reverse transcription-quantitative analysis. TargetScan was used to predict that mothers against decapentaplegic homolog 2 (Smad2) is a potential target gene of miR-26a and a dual-luciferase reporter assay confirmed that Smad2 was a target gene of miR-26a. The expression of Smad2 was upregulated in HS tissues and hHSFs. Cell Counting Kit-8 and flow cytometry analyses demonstrated that the overexpression of miR-26a significantly suppressed the proliferation ability of hHSFs and the apoptotic rate of hHSFs was significantly upregulated in response to miR-26a mimic transfection. Furthermore, the expression of B-cell lymphoma-2 (Bcl-2)-associated X protein was increased and Bcl-2 expression was decreased following miR-26a mimic transfection. The expression of collagens I and III was significantly inhibited following treatment with miR-26a mimics in hHSF cells. Conversely, miR-26a inhibitors served an opposing role in hHSFs. Furthermore, Smad2 overexpression enhanced the expression of collagens I and c III; however, Smad2 silencing inhibited the expression of collagens I and c III. In conclusion, the results of the present study indicate that miR-26a inhibits HS formation by modulating proliferation and apoptosis ad well as inhibiting the expression of extracellular matrix-associated proteins by targeting Smad2.
Collapse
Affiliation(s)
- Jun Qi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Kesu Hu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yi Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yangyang Wu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xia Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
18
|
Mandujano-Tinoco EA, Garcia-Venzor A, Muñoz-Galindo L, Lizarraga-Sanchez F, Favela-Orozco A, Chavez-Gutierrez E, Krötzsch E, Salgado RM, Melendez-Zajgla J, Maldonado V. miRNA expression profile in multicellular breast cancer spheroids. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1642-1655. [DOI: 10.1016/j.bbamcr.2017.05.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/06/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023]
|
19
|
Choi JW, Um JH, Cho JH, Lee HJ. Tiny RNAs and their voyage via extracellular vesicles: Secretion of bacterial small RNA and eukaryotic microRNA. Exp Biol Med (Maywood) 2017; 242:1475-1481. [PMID: 28741379 PMCID: PMC5648287 DOI: 10.1177/1535370217723166] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs are small non-coding RNAs that bind to the 3'-untranslated region of target mRNAs and have transcriptional or translational inhibitory function in eukaryotes. Before microRNAs were widely known, bacterial non-coding small RNAs around 50-200 nt in length were discovered whose mechanism of action resembled that of microRNAs. Recently, RNAs that are of similar size to or smaller than microRNAs have been discovered in bacteria and indeed, this class of small RNAs have been found throughout all domains of life. Moreover, recent findings suggest that these tiny RNAs can be released via extracellular vesicles (such as exosomes in eukaryotes and outer membrane vesicles in bacteria), which in turn heralds a new field of research, interkingdom communication. This review discusses two similar classes of small RNAs in evolutionarily distinct eukaryotes and bacteria. In addition to their biogenesis and regulation, we discuss small RNA vehicles and their secretion. Impact statement The possible endogenous functions of small RNAs such as regulatory small RNAs in bacteria and microRNAs in eukaryotes have been extensively studied since they were first discovered. However, their powerful functions should not be seen as limited to their cells of origin. Recently, several papers have demonstrated that small RNAs function as signaling molecules between cells. This is possible because small RNAs can be shuttled around after being incorporated into environmentally protective extracellular vesicles. It is now clearly plausible that secreted small RNAs can regulate other types of cells through biofluids. Given their "common molecule" status, the role of small RNAs in mediating bacteria-human crosstalk is an emerging and competitive area of genetic research. This review provides insight into the function of small RNAs in intercellular and even interkingdom communication.
Collapse
Affiliation(s)
- Ji-Woong Choi
- Department of Microbiology and Immunology, Kyungpook National University School of Dentistry, Daegu 41940, Korea
| | - Jee-Hyun Um
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea
| | - Jin-Hyun Cho
- Department of Prosthodontics, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Heon-Jin Lee
- Department of Microbiology and Immunology, Kyungpook National University School of Dentistry, Daegu 41940, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41940, Korea
| |
Collapse
|
20
|
Lambrecht J, Jan Poortmans P, Verhulst S, Reynaert H, Mannaerts I, van Grunsven LA. Circulating ECV-Associated miRNAs as Potential Clinical Biomarkers in Early Stage HBV and HCV Induced Liver Fibrosis. Front Pharmacol 2017; 8:56. [PMID: 28232800 PMCID: PMC5298975 DOI: 10.3389/fphar.2017.00056] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/26/2017] [Indexed: 12/12/2022] Open
Abstract
Introduction: Chronic hepatitis B (HBV) and C (HCV) virus infection is associated with the activation of hepatic stellate cells (HSCs) toward a myofibroblastic phenotype, resulting in excessive deposition of extracellular matrix, the development of liver fibrosis, and its progression toward cirrhosis. The gold standard for the detection and staging of liver fibrosis remains the liver biopsy, which is, however, associated with some mild and severe drawbacks. Other non-invasive techniques evade these drawbacks, but lack inter-stage specificity and are unable to detect early stages of fibrosis. We investigated whether circulating vesicle-associated miRNAs can be used in the diagnosis and staging of liver fibrosis in HBV and HCV patients. Methods: Plasma samples were obtained from 14 healthy individuals and 39 early stage fibrotic patients (F0–F2) with chronic HBV or HCV infection who underwent transient elastography (Fibroscan). Extracellular vesicles were extracted from the plasma and the level of miRNA-122, -150, -192, -21, -200b, and -92a was analyzed by qRT-PCR in total plasma and circulating vesicles. Finally, these same miRNAs were also quantified in vesicles extracted from in vitro activating primary HSCs. Results: In total plasma samples, only miRNA-200b (HBV: p = 0.0384; HCV: p = 0.0069) and miRNA-122 (HBV: p < 0.0001; HCV: p = 0.0007) were significantly up-regulated during early fibrosis. In circulating vesicles, miRNA-192 (HBV: p < 0.0001; HCV: p < 0.0001), -200b (HBV: p < 0.0001; HCV: p < 0.0001), -92a (HBV: p < 0.0001; HCV: p < 0.0001), and -150 (HBV: p = 0.0016; HCV: p = 0.004) displayed a significant down-regulation in both HBV and HCV patients. MiRNA expression profiles in vesicles isolated from in vitro activating primary mouse HSCs resembled the miRNA expression profile in circulating vesicles. Conclusion: Our analysis revealed a distinct miRNA expression pattern in total plasma and its circulating vesicles. The expression profile of miRNAs in circulating vesicles of fibrotic patients suggests the potential use of these vesicle-associated miRNAs as markers for early stages of liver fibrosis.
Collapse
Affiliation(s)
- Joeri Lambrecht
- Liver Cell Biology Lab, Department of Basic Biomedical Sciences, Vrije Universiteit Brussel Brussels, Belgium
| | - Pieter Jan Poortmans
- Liver Cell Biology Lab, Department of Basic Biomedical Sciences, Vrije Universiteit Brussel Brussels, Belgium
| | - Stefaan Verhulst
- Liver Cell Biology Lab, Department of Basic Biomedical Sciences, Vrije Universiteit Brussel Brussels, Belgium
| | - Hendrik Reynaert
- Liver Cell Biology Lab, Department of Basic Biomedical Sciences, Vrije Universiteit BrusselBrussels, Belgium; Department of Gastroenterology and Hepatology, Universitair Ziekenhuis BrusselBrussels, Belgium
| | - Inge Mannaerts
- Liver Cell Biology Lab, Department of Basic Biomedical Sciences, Vrije Universiteit Brussel Brussels, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Lab, Department of Basic Biomedical Sciences, Vrije Universiteit Brussel Brussels, Belgium
| |
Collapse
|
21
|
Choi JW, Kim SC, Hong SH, Lee HJ. Secretable Small RNAs via Outer Membrane Vesicles in Periodontal Pathogens. J Dent Res 2017; 96:458-466. [PMID: 28068479 DOI: 10.1177/0022034516685071] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) have been shown to be major regulators of eukaryotic gene expression. However, bacterial RNAs comparable in size to eukaryotic miRNAs (18-22 nucleotides) have received little attention. Recently, a novel class of small RNAs similar in size to miRNAs (miRNA-size, small RNAs or msRNAs) have also been found in several bacteria. Like miRNAs, msRNAs are approximately 15 to 25 nucleotides in length, and their precursors are predicted to form a hairpin loop secondary structure. Here, we identified msRNAs in the periodontal pathogens Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Treponema denticola. We examined these msRNAs using a deep sequencing method and characterized dozens of msRNAs through bioinformatic analysis. Highly expressed msRNAs were selected for further validation. The findings suggest that this class of small RNAs is well conserved across the domains of life. Indeed, msRNAs secreted via bacterial outer membrane vesicles (OMVs) were detected. The ability of bacterial OMVs to deliver RNAs into eukaryotic cells was also observed. These msRNAs in OMVs allowed us to identify their potential human immune-related target genes. Furthermore, we found that exogenous msRNAs could suppress expression of certain cytokines in Jurkat T cells. We propose msRNAs may function as novel bacterial signaling molecules that mediate bacteria-to-human interactions. Furthermore, this study may provide fresh insight into bacterial pathogenic mechanisms of periodontal diseases.
Collapse
Affiliation(s)
- J-W Choi
- 1 Department of Oral Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - S-C Kim
- 1 Department of Oral Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - S-H Hong
- 1 Department of Oral Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - H-J Lee
- 1 Department of Oral Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea.,2 Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
22
|
Choi JW, Kwon TY, Hong SH, Lee HJ. Isolation and Characterization of a microRNA-size Secretable Small RNA in Streptococcus sanguinis. Cell Biochem Biophys 2016; 76:293-301. [PMID: 27796789 DOI: 10.1007/s12013-016-0770-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/19/2016] [Indexed: 01/05/2023]
Abstract
MicroRNAs in eukaryotic cells are thought to control highly complex signal transduction and other biological processes by regulating coding transcripts, accounting for their important role in cellular events in eukaryotes. Recently, a novel class of bacterial RNAs similar in size [18-22 nucleotides (nt)] to microRNAs has been reported. Herein, we describe microRNAs, small RNAs from the oral pathogen Streptococcus sanguinis. The bacteria are normally present in the oral cavities and cause endocarditis by contaminating bloodstreams. Small RNAs were analyzed by deep sequencing. Selected highly expressed small RNAs were further validated by real-time polymerase chain reaction and northern blot analyses. We found that skim milk supplement changed the expression of small RNAs S.S-1964 in tandem with the nearby SSA_0513 gene involved in vitamin B12 conversion. We furthermore observed small RNAs secreted via bacterial membrane vesicles. Although their precise function remains unclear, secretable small RNAs may represent an entirely new area of study in bacterial genetics.
Collapse
Affiliation(s)
- Ji-Woong Choi
- Department of Oral Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Tae-Yub Kwon
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Su-Hyung Hong
- Department of Oral Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Heon-Jin Lee
- Department of Oral Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
23
|
Zhou S, Ding F, Gu X. Non-coding RNAs as Emerging Regulators of Neural Injury Responses and Regeneration. Neurosci Bull 2016; 32:253-64. [PMID: 27037691 DOI: 10.1007/s12264-016-0028-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/14/2016] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a large cluster of RNAs that do not encode proteins, but have multiple functions in diverse cellular processes. Mounting evidence indicates the involvement of ncRNAs in the physiology and pathophysiology of the central and peripheral nervous systems. It has been shown that numerous ncRNAs, especially microRNAs and long non-coding RNAs, are differentially expressed after insults such as acquired brain injury, spinal cord injury, and peripheral nerve injury. These ncRNAs affect neuronal survival, neurite regrowth, and glial phenotype primarily by targeting specific mRNAs, resulting in translation repression or degradation of the mRNAs. An increasing number of studies have investigated the regulatory roles of microRNAs and long non-coding RNAs in neural injury and regeneration, and thus a new research field is emerging. In this review, we highlight current progress in the field in an attempt to provide further insight into post-transcriptional changes occurring after neural injury, and to facilitate the potential use of ncRNAs for improving neural regeneration. We also suggest potential directions for future studies.
Collapse
Affiliation(s)
- Songlin Zhou
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
24
|
Baffy G. MicroRNAs in Nonalcoholic Fatty Liver Disease. J Clin Med 2015; 4:1977-88. [PMID: 26690233 PMCID: PMC4693153 DOI: 10.3390/jcm4121953] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common liver disorder. Strongly linked to obesity and diabetes, NAFLD has the characteristics of complex diseases with substantial heterogeneity. Accordingly, our ability to predict the risk of advanced NAFLD and provide efficient treatment may improve by a better understanding of the relationship between genotype and phenotype. MicroRNAs (miRNAs) play a major role in the fine-tuning of gene expression and they have recently emerged as novel biomarkers and therapeutic tools in the management of NAFLD. These short non-coding RNA sequences act by partial repression or degradation of targeted mRNAs. Deregulation of miRNAs has been associated with different stages of NAFLD, while their biological role in the pathogenesis remains to be fully understood. Systems biology analyses based on predicted target genes have associated hepatic miRNAs with molecular pathways involved in NAFLD progression such as cholesterol and lipid metabolism, insulin signaling, oxidative stress, inflammation, and pathways of cell survival and proliferation. Moreover, circulating miRNAs have been identified as promising noninvasive biomarkers of NAFLD and linked to disease severity. This rapidly growing field is likely to result in major advances in the pathomechanism, prognostication, and treatment of NAFLD.
Collapse
Affiliation(s)
- György Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women's Hospital, Harvard Medical School, 150 S. Huntington Ave., Room 6A-46, Boston, MA 02130, USA.
| |
Collapse
|
25
|
Byun JS, Hong SH, Choi JK, Jung JK, Lee HJ. Diagnostic profiling of salivary exosomal microRNAs in oral lichen planus patients. Oral Dis 2015; 21:987-93. [PMID: 26389700 DOI: 10.1111/odi.12374] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Oral lichen planus is a chronic inflammatory oral mucosal disease whose exact cause is unclear and which requires efficient diagnostic and therapeutic strategies. Identification of disease-specific biomarkers in saliva is an easy, quick, and non-invasive approach for molecular diagnosis. This study was designed to examine salivary exosomal microRNAs (miRNAs) that could be candidates for diagnosing and elucidating the pathogenesis of oral lichen planus. SUBJECTS AND METHODS We compared miRNA profiles of salivary exosomes of patients with oral lichen planus with those of healthy controls. Saliva samples from 16 patients with oral lichen planus and eight healthy controls were divided into two sets and examined using miRNA microarray analysis and TaqMan quantitative PCR. RESULTS The three miRNAs identified (miR-4484, miR-1246, and miR-1290) were further validated. Of these, miR-4484 was significantly upregulated in the salivary exosomes of patients with oral lichen planus. CONCLUSIONS This study thus identifies a potential miRNA biomarker for oral lichen planus and provides insight into the functions of miRNAs in the pathogenesis of oral inflammatory diseases.
Collapse
Affiliation(s)
- J-S Byun
- Department of Oral Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - S-H Hong
- Department of Oral Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - J-K Choi
- Department of Oral Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - J-K Jung
- Department of Oral Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - H-J Lee
- Department of Oral Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
26
|
Abstract
DNA damage is correlated with and may drive the ageing process. Neurons in the brain are postmitotic and are excluded from many forms of DNA repair; therefore, neurons are vulnerable to various neurodegenerative diseases. The challenges facing the field are to understand how and when neuronal DNA damage accumulates, how this loss of genomic integrity might serve as a 'time keeper' of nerve cell ageing and why this process manifests itself as different diseases in different individuals.
Collapse
Affiliation(s)
- Hei-man Chow
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.,Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Karl Herrup
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
27
|
Lambrecht J, Mannaerts I, van Grunsven LA. The role of miRNAs in stress-responsive hepatic stellate cells during liver fibrosis. Front Physiol 2015; 6:209. [PMID: 26283969 PMCID: PMC4516870 DOI: 10.3389/fphys.2015.00209] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/13/2015] [Indexed: 12/12/2022] Open
Abstract
The progression of liver fibrosis and cirrhosis is associated with the persistence of an injury causing agent, leading to changes in the extracellular environment and a disruption of the cellular homeostasis of liver resident cells. Recruitment of inflammatory cells, apoptosis of hepatocytes, and changes in liver microvasculature are some examples of changing cellular environment that lead to the induction of stress responses in nearby cells. During liver fibrosis, the major stresses include hypoxia, oxidative stress, and endoplasmic reticulum stress. When hepatic stellate cells (HSCs) are subjected to such stress, they modulate fibrosis progression by induction of their activation toward a myofibroblastic phenotype, or by undergoing apoptosis, and thus helping fibrosis resolution. It is widely accepted that microRNAs are import regulators of gene expression, both during normal cellular homeostasis, as well as in pathologic conditions. MicroRNAs are short RNA sequences that regulate the gene expression by mRNA destabilization and inhibition of mRNA translation. Specific microRNAs have been identified to play a role in the activation process of HSCs on the one hand and in stress-responsive pathways on the other hand in other cell types (Table 2). However, so far there are no reports for the involvement of miRNAs in the different stress responses linked to HSC activation. Here, we review briefly the major stress response pathways and propose several miRNAs to be regulated by these stress responsive pathways in activating HSCs, and discuss their potential specific pro-or anti-fibrotic characteristics.
Collapse
Affiliation(s)
- Joeri Lambrecht
- Liver Cell Biology Lab, Department of Biomedical Sciences, Vrije Universiteit Brussel Brussels, Belgium
| | - Inge Mannaerts
- Liver Cell Biology Lab, Department of Biomedical Sciences, Vrije Universiteit Brussel Brussels, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Lab, Department of Biomedical Sciences, Vrije Universiteit Brussel Brussels, Belgium
| |
Collapse
|
28
|
Li YD, Hong YF, Yusufuaji Y, Tang BP, Zhou XH, Xu GJ, Li JX, Sun L, Zhang JH, Xin Q, Xiong J, Ji YT, Zhang Y. Altered expression of hyperpolarization-activated cyclic nucleotide-gated channels and microRNA-1 and -133 in patients with age-associated atrial fibrillation. Mol Med Rep 2015; 12:3243-3248. [PMID: 26005035 PMCID: PMC4526032 DOI: 10.3892/mmr.2015.3831] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 12/09/2014] [Indexed: 01/08/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) cation channels mediate pacemaker currents in the atrium. The microRNA (miR) families miR-1 and miR-133 regulate the expression of multiple genes involved in myocardial function, including HCN channels. It was hypothesized that age‑dependent changes in HCN2, HCN4, miR‑1 and miR‑133 expression may contribute to age‑associated atrial fibrillation, and therefore the correlation between expression levels, among adult (≤65 years) and aged patients (≥65 years), and sinus rhythm was determined. Right atrial appendage samples were collected from 60 patients undergoing coronary artery bypass grafting. Reverse transcription-quantitative polymerase chain reaction (PCR) and western blot analyses were performed in order to determine target RNA and protein expression levels. Compared with aged patients with sinus rhythm, aged patients with atrial fibrillation exhibited significantly higher HCN2 and HCN4 channel mRNA and protein expression levels (P<0.05), but significantly lower expression levels of miR‑1 and miR‑133 (P<0.05). In addition, aged patients with sinus rhythm exhibited significantly higher expression levels of HCN2 and HCN4 channel mRNA and protein (P<0.05), but significantly lower expression levels of miR‑1 and ‑133 (P<0.05), compared with those of adult patients with sinus rhythm. Expression levels of HCN2 and HCN4 increased with age, and a greater increase was identified in patients with age‑associated atrial fibrillation compared with that in those with aged sinus rhythm. These electrophysiological changes may contribute to the induction of ectopic premature beats that trigger atrial fibrillation.
Collapse
Affiliation(s)
- Yao-Dong Li
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Yi-Fan Hong
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Yueerguli Yusufuaji
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Bao-Peng Tang
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Xian-Hui Zhou
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Guo-Jun Xu
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Jin-Xin Li
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Lin Sun
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Jiang-Hua Zhang
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Qiang Xin
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Jian Xiong
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Yu-Tong Ji
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Yu Zhang
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| |
Collapse
|
29
|
Lee SW, Yang J, Kim SY, Jeong HK, Lee J, Kim WJ, Lee EJ, Kim HS. MicroRNA-26a induced by hypoxia targets HDAC6 in myogenic differentiation of embryonic stem cells. Nucleic Acids Res 2015; 43:2057-73. [PMID: 25662604 PMCID: PMC4344521 DOI: 10.1093/nar/gkv088] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The importance of epigenetic regulation for maintenance of embryonic stem cell (ESC) pluripotency or for initiation of differentiation is widely accepted. However, the molecular mechanisms are poorly understood. We recently reported that a hypoxic microenvironment induces ESC differentiation. In the present study, we found that hypoxia-responsive histone deacetylase 6 (HDAC6) performs an essential signaling function for myogenic differentiation of ESCs. HDAC6 was downregulated in hypoxic ESCs or during differentiation. A knock-down of HDAC6 in ESCs resulted in induction of myogenic markers, including Pax7. Suppression of HDAC6 increased acetylation of core histones H3 and H4, leading to enhanced binding of RNA polymerase II to the Pax7 promoter. Transplantation of HDAC6 knock-down cells facilitated muscle regeneration in vivo. Importantly, the downregulation of HDAC6 by hypoxia was not mediated by HIF1α or HIF2α, master transcription regulators under hypoxia, but by induction of microRNA-26a that directly targeted the 3'-untranslated region (3'-UTR) of HDAC6. A point mutation of the microRNA-26a-binding sequence in the HDAC6 3'-UTR diminished the luciferase reporter activity. Taken together, these results suggest that environmental cues of differentiation modulate the epigenetic machinery and guide stem cells to commit to a specific lineage.
Collapse
Affiliation(s)
- Sae-Won Lee
- Department of Internal Medicine and Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jimin Yang
- Department of Internal Medicine and Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Su-Yeon Kim
- Department of Internal Medicine and Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Han-Kyul Jeong
- Department of Internal Medicine and Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Jaewon Lee
- Department of Internal Medicine and Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Woo Jean Kim
- National Research Laboratory of Regenerative Sexual Medicine, Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Eun Ju Lee
- Department of Internal Medicine and Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Hyo-Soo Kim
- Department of Internal Medicine and Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
30
|
Bai G, Ren K, Dubner R. Epigenetic regulation of persistent pain. Transl Res 2015; 165:177-99. [PMID: 24948399 PMCID: PMC4247805 DOI: 10.1016/j.trsl.2014.05.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 02/09/2023]
Abstract
Persistent or chronic pain is tightly associated with various environmental changes and linked to abnormal gene expression within cells processing nociceptive signaling. Epigenetic regulation governs gene expression in response to environmental cues. Recent animal model and clinical studies indicate that epigenetic regulation plays an important role in the development or maintenance of persistent pain and possibly the transition of acute pain to chronic pain, thus shedding light in a direction for development of new therapeutics for persistent pain.
Collapse
Affiliation(s)
- Guang Bai
- Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD.
| | - Ke Ren
- Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD
| | - Ronald Dubner
- Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD
| |
Collapse
|
31
|
Introduction to microRNAs: Biogenesis, Action, Relevance of Tissue microRNAs in Disease Pathogenesis, Diagnosis and Therapy-The Concept of Circulating microRNAs. EXPERIENTIA SUPPLEMENTUM (2012) 2015; 106:3-30. [PMID: 26608197 DOI: 10.1007/978-3-0348-0955-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs as the endogenous mediators of RNA interference have principal roles in gene expression regulation. Since their discovery in the early 1990s, their number has steadily grown to approximately 2500 known microRNAs at present in humans. MicroRNAs encoded by distinct genes regulate the expression of about 30-60 % of human protein coding genes by targeting their messenger RNAs (mRNAs) and induce mostly posttranscriptional inhibition, or in some cases enhancement. MicroRNAs, as fine regulators of the gene expression, have important roles in development, the physiological functioning of the organism, e.g. organogenesis, immune functioning, vascular system, etc. The deregulation of microRNA expression has been observed in many disorders, such as in carcinogenesis. Given their tissue specificity and stability, and specific disease-related alterations, tissue microRNAs can be exploited as excellent biomarkers in the diagnosis. Moreover, microRNAs might also be envisaged as novel therapeutic targets. Beside tissue microRNAs, novel data show that microRNAs are also present in body fluids that could further extend their diagnostic utility as minimally invasive biomarkers of various diseases, but also raises intriguing questions regarding their biological relevance. In this introductory chapter, we summarise the most relevant features of microRNAs including their biogenesis, action, the biological, pathological, diagnostic and potential therapeutical relevance of tissue microRNAs.
Collapse
|
32
|
Sari AN, Korkmaz B, Serin MS, Kacan M, Unsal D, Buharalioglu CK, Firat SS, Manhati VL, Falck JR, Malik KU, Tunctan B. Effects of 5,14-HEDGE, a 20-HETE mimetic, on lipopolysaccharide-induced changes in MyD88/TAK1/IKKβ/IκB-α/NF-κB pathway and circulating miR-150, miR-223, and miR-297 levels in a rat model of septic shock. Inflamm Res 2014; 63:741-56. [PMID: 24915805 PMCID: PMC4158117 DOI: 10.1007/s00011-014-0747-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 05/15/2014] [Accepted: 05/26/2014] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES We have previously demonstrated that a stable synthetic analog of 20-hydroxyeicosatetraenoic acid (20-HETE), N-(20-hydroxyeicosa-5[Z],14[Z]-dienoyl)glycine (5,14-HEDGE), which mimics the effects of endogenously produced 20-HETE, prevents vascular hyporeactivity, hypotension, tachycardia, inflammation, and mortality in a rodent model of septic shock. The present study was performed to determine whether decreased renal and cardiovascular expression and activity of myeloid differentiation factor 88 (MyD88)/transforming growth factor-activated kinase 1 (TAK1)/inhibitor of κB (IκB) kinase β (IKKβ)/IκB-α/nuclear factor-κB (NF-κB) pathway and reduced circulating microRNA (miR)-150, miR-223, and miR-297 expression levels participate in the protective effect of 5,14-HEDGE against hypotension, tachycardia, and inflammation in response to systemic administration of lipopolysaccharide (LPS). METHODS Conscious male Wistar rats received saline (4 ml/kg) or LPS (10 mg/kg) at time 0. Blood pressure and heart rate were measured using a tail-cuff device. Separate groups of LPS-treated rats were given 5,14-HEDGE (30 mg/kg) 1 h after injection of saline or LPS. The rats were killed 4 h after LPS challenge and blood, kidney, heart, thoracic aorta, and superior mesenteric artery were collected for measurement of the protein expression. RESULTS LPS-induced fall in blood pressure and rise in heart rate were associated with increased MyD88 expression and phosphorylation of TAK1 and IκB-α in cytosolic fractions of the tissues. LPS also caused an increase in both unphosphorylated and phosphorylated NF-κB p65 proteins in the cytosolic and nuclear fractions as well as nuclear translocation of NF-κB p65. In addition, serum miR-150, miR-223, and miR-297 expression levels were increased in LPS-treated rats. These effects of LPS were prevented by 5,14-HEDGE. CONCLUSIONS These results suggest that downregulation of MyD88/TAK1/IKKβ/IκB-α/NF-κB pathway as well as decreased circulating miR-150, miR-223, and miR-297 expression levels participate in the protective effect of 5,14-HEDGE against hypotension, tachycardia, and inflammation in the rat model of septic shock.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Arterial Pressure/drug effects
- Disease Models, Animal
- Heart Rate/drug effects
- Hydroxyeicosatetraenoic Acids
- I-kappa B Kinase/metabolism
- I-kappa B Proteins/metabolism
- Kidney/drug effects
- Kidney/metabolism
- Lipopeptides/pharmacology
- Lipopeptides/therapeutic use
- Lipopolysaccharides
- MAP Kinase Kinase Kinases/metabolism
- Male
- Mesenteric Artery, Superior/drug effects
- Mesenteric Artery, Superior/metabolism
- MicroRNAs/blood
- Myeloid Differentiation Factor 88/metabolism
- Myocardium/metabolism
- Protective Agents/pharmacology
- Protective Agents/therapeutic use
- Rats, Wistar
- Shock, Septic/blood
- Shock, Septic/drug therapy
- Shock, Septic/metabolism
- Shock, Septic/physiopathology
- Transcription Factor RelA/metabolism
Collapse
Affiliation(s)
- A. Nihal Sari
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Belma Korkmaz
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Mehmet Sami Serin
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Meltem Kacan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Demet Unsal
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | | | - Seyhan Sahan Firat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Vijay L. Manhati
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John R. Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kafait U. Malik
- Department of Pharmacology, College of Medicine, University of Tennessee, Center for Health Sciences, Memphis, TN, USA
| | - Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| |
Collapse
|
33
|
Cichon C, Sabharwal H, Rüter C, Schmidt MA. MicroRNAs regulate tight junction proteins and modulate epithelial/endothelial barrier functions. Tissue Barriers 2014; 2:e944446. [PMID: 25610754 PMCID: PMC4292042 DOI: 10.4161/21688362.2014.944446] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/22/2014] [Indexed: 02/06/2023] Open
Abstract
Tightly controlled epithelial and endothelial barriers are a prerequisite for life as these barriers separate multicellular organisms from their environment and serve as first lines of defense. Barriers between neighboring epithelial cells are formed by multiple intercellular junctions including the ‘apical junctional complex—AJC’ with tight junctions (TJ), adherens junctions (AJ), and desmosomes. TJ consist of tetraspan transmembrane proteins like occludin, various claudins that directly control paracellular permeability, and the ‘Junctional Adhesion Molecules’ (JAMs). For establishing tight barriers TJ are essential but at the same time have to allow also selective permeability. For this, TJ need to be tightly regulated and controlled. This is organized by a variety of adaptor molecules, i.e., protein kinases, phosphatases and GTPases, which in turn are regulated and fine-tuned involving microRNAs (miRNAs). In this review we summarize available data on the role and targeting of miRNAs in the maintenance of epithelial and/or endothelial barriers.
Collapse
Affiliation(s)
- Christoph Cichon
- Institute of Infectiology-Center for Molecular Biology of Inflammation (ZMBE); University of Münster ; Münster, Germany
| | - Harshana Sabharwal
- Institute of Infectiology-Center for Molecular Biology of Inflammation (ZMBE); University of Münster ; Münster, Germany
| | - Christian Rüter
- Institute of Infectiology-Center for Molecular Biology of Inflammation (ZMBE); University of Münster ; Münster, Germany
| | - M Alexander Schmidt
- Institute of Infectiology-Center for Molecular Biology of Inflammation (ZMBE); University of Münster ; Münster, Germany
| |
Collapse
|
34
|
Abstract
MicroRNAs (miRNAs) have been shown to be major regulators of eukaryotic gene expression. Traditionally, miRNAs were thought to control highly complex signal transduction and other biological pathways by targeting coding transcripts, accounting for their important role in cellular events. Traditional miRNA biogenesis and function focused on several key enzymes that functioned in miRNA maturation and miRNA inhibitory function upon binding to 3'-untranslated region of target transcripts. However, recent studies have revealed that miRNA biosynthesis and function is complicated, with many exceptions to conventional miRNA mechanisms. In addition to those noncanonical miRNA functions, this review introduces newly discovered biogenesis and regulatory mechanisms, as well as a new class of miRNA-sized small RNA and miRNA methylation. miRNA inhibition and intercellular miRNA signaling are also discussed. Taken together, these insights extend current understanding of miRNAs.
Collapse
Affiliation(s)
- Heon-Jin Lee
- Department of Oral Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea Brain Science and Engineering Institute, Kyungpook National University, Daegu 700-412, Korea
| |
Collapse
|
35
|
Zuccotti P, Colombrita C, Moncini S, Barbieri A, Lunghi M, Gelfi C, De Palma S, Nicolin A, Ratti A, Venturin M, Riva P. hnRNPA2/B1 and nELAV proteins bind to a specific U-rich element in CDK5R1 3'-UTR and oppositely regulate its expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:506-16. [PMID: 24792867 DOI: 10.1016/j.bbagrm.2014.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 04/09/2014] [Accepted: 04/23/2014] [Indexed: 01/27/2023]
Abstract
Cyclin-dependent kinase 5 regulatory subunit 1 (CDK5R1) encodes p35, a specific activator of cyclin-dependent kinase 5 (CDK5). CDK5 and p35 have a fundamental role in neuronal migration and differentiation during CNS development. Both the CDK5R1 3'-UTR's remarkable size and its conservation during evolution strongly indicate an important role in post-transcriptional regulation. We previously validated different regulatory elements in the 3'-UTR of CDK5R1, which affect transcript stability, p35 levels and cellular migration through the binding with nELAV proteins and miR-103/7 miRNAs. Interestingly, a 138 bp-long region, named C2.1, was identified as the most mRNA destabilizing portion within CDK5R1 3'-UTR. This feature was maintained by a shorter region of 73 bp, characterized by two poly-U stretches. UV-CL experiments showed that this region interacts with protein factors. UV-CLIP assays and pull-down experiments followed by mass spectrometry analysis demonstrated that nELAV and hnRNPA2/B1 proteins bind to the same U-rich element. These RNA-binding proteins (RBPs) were shown to oppositely control CDK5R1 mRNA stability and p35 protein content at post-trascriptional level. While nELAV proteins have a positive regulatory effect, hnRNPA2/B1 has a negative action that is responsible for the mRNA destabilizing activity both of the C2.1 region and of the full-length 3'-UTR. In co-expression experiments of hnRNPA2/B1 and nELAV RBPs we observed an overall decrease of p35 content. We also demonstrated that hnRNPA2/B1 can downregulate nELAV protein content but not vice versa. This study, by providing new insights on the combined action of different regulatory factors, contributes to clarify the complex post-transcriptional control of CDK5R1 gene expression.
Collapse
Affiliation(s)
- Paola Zuccotti
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Claudia Colombrita
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy; IRCCS Istituto Auxologico Italiano, Cusano, Milan, Italy
| | - Silvia Moncini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Andrea Barbieri
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Marta Lunghi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Cecilia Gelfi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy; IBFM-CNR, Segrate, Milan, Italy
| | - Sara De Palma
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy; IBFM-CNR, Segrate, Milan, Italy
| | - Angelo Nicolin
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Antonia Ratti
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy; IRCCS Istituto Auxologico Italiano, Cusano, Milan, Italy
| | - Marco Venturin
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy.
| | - Paola Riva
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
36
|
Vislovukh A, Vargas TR, Polesskaya A, Groisman I. Role of 3’-untranslated region translational control in cancer development, diagnostics and treatment. World J Biol Chem 2014; 5:40-57. [PMID: 24600513 PMCID: PMC3942541 DOI: 10.4331/wjbc.v5.i1.40] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/22/2013] [Accepted: 12/19/2013] [Indexed: 02/05/2023] Open
Abstract
The messenger RNA 3’-untranslated region (3’UTR) plays an important role in regulation of gene expression on the posttranscriptional level. The 3’UTR controls gene expression via orchestrated interaction between the structural components of mRNAs (cis-element) and the specific trans-acting factors (RNA binding proteins and non-coding RNAs). The crosstalk of these factors is based on the binding sequences and/or direct protein-protein interaction, or just functional interaction. Much new evidence that has accumulated supports the idea that several RNA binding factors can bind to common mRNA targets: to the non-overlapping binding sites or to common sites in a competitive fashion. Various factors capable of binding to the same RNA can cooperate or be antagonistic in their actions. The outcome of the collective function of all factors bound to the same mRNA 3’UTR depends on many circumstances, such as their expression levels, affinity to the binding sites, and localization in the cell, which can be controlled by various physiological conditions. Moreover, the functional and/or physical interactions of the factors binding to 3’UTR can change the character of their actions. These interactions vary during the cell cycle and in response to changing physiological conditions. Abnormal functioning of the factors can lead to disease. In this review we will discuss how alterations of these factors or their interaction can affect cancer development and promote or enhance the malignant phenotype of cancer cells. Understanding these alterations and their impact on 3’UTR-directed posttranscriptional gene regulation will uncover promising new targets for therapeutic intervention and diagnostics. We will also discuss emerging new tools in cancer diagnostics and therapy based on 3’UTR binding factors and approaches to improve them.
Collapse
|
37
|
Role of microRNAs in stroke and poststroke depression. ScientificWorldJournal 2013; 2013:459692. [PMID: 24363618 PMCID: PMC3865697 DOI: 10.1155/2013/459692] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/07/2013] [Indexed: 12/22/2022] Open
Abstract
microRNAs (miRNA), a sort of noncoding RNAs widely distributed in eukaryotic cells, could regulate gene expression by inhibiting transcription or translation. They were involved in important physiological and pathological processes including growth, development, and occurrence and progression of diseases. miRNAs are crucial for the development of the nervous system. Recent studies have demonstrated that some miRNAs play important roles in the occurrence and development of ischemic cerebrovascular diseases such as stroke and were also involved in the occurrence and development of poststroke depression (PSD). Herein, studies on the role of miRNAs in the cerebral ischemia and PSD were reviewed, and results may be helpful for the diagnosis and prognosis of cerebral ischemia and PSD with miRNAs in clinical practice.
Collapse
|
38
|
Di Francesco A, De Pittà C, Moret F, Barbieri V, Celotti L, Mognato M. The DNA-damage response to γ-radiation is affected by miR-27a in A549 cells. Int J Mol Sci 2013; 14:17881-96. [PMID: 24002026 PMCID: PMC3794758 DOI: 10.3390/ijms140917881] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/02/2013] [Accepted: 08/07/2013] [Indexed: 12/19/2022] Open
Abstract
Perturbations during the cell DNA-Damage Response (DDR) can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs), small non-coding RNAs that act as post-transcriptional regulators of gene expression. The oncogenic miR-27a is over-expressed in several tumors and, in the present study, we investigated its interaction with ATM, the gene coding for the main kinase of DDR pathway. Experimental validation to confirm miR-27a as a direct regulator of ATM was performed by site-direct mutagenesis of the luciferase reporter vector containing the 3'UTR of ATM gene, and by miRNA oligonucleotide mimics. We then explored the functional miR-27a/ATM interaction under biological conditions, i.e., during the response of A549 cells to ionizing radiation (IR) exposure. To evaluate if miR-27a over-expression affects IR-induced DDR activation in A549 cells we determined cell survival, cell cycle progression and DNA double-strand break (DSB) repair. Our results show that up-regulation of miR-27a promotes cell proliferation of non-irradiated and irradiated cells. Moreover, increased expression of endogenous mature miR-27a in A549 cells affects DBS rejoining kinetics early after irradiation.
Collapse
Affiliation(s)
- Andrea Di Francesco
- Department of Biology, University of Padova, via U. Bassi 58/B, Padova 35131, Italy; E-Mails: (A.D.F.); (C.D.P.); (F.M.)
| | - Cristiano De Pittà
- Department of Biology, University of Padova, via U. Bassi 58/B, Padova 35131, Italy; E-Mails: (A.D.F.); (C.D.P.); (F.M.)
| | - Francesca Moret
- Department of Biology, University of Padova, via U. Bassi 58/B, Padova 35131, Italy; E-Mails: (A.D.F.); (C.D.P.); (F.M.)
| | - Vito Barbieri
- Department of Surgery, Oncology and Gastroenterology, University of Padova via Gattamelata 64, Padova 35128, Italy; E-Mail:
| | - Lucia Celotti
- Department of Biology, University of Padova, via U. Bassi 58/B, Padova 35131, Italy; E-Mails: (A.D.F.); (C.D.P.); (F.M.)
- INFN-Laboratori Nazionali di Legnaro, Viale dell’Università 2, Legnaro 35020, Padova, Italy
| | - Maddalena Mognato
- Department of Biology, University of Padova, via U. Bassi 58/B, Padova 35131, Italy; E-Mails: (A.D.F.); (C.D.P.); (F.M.)
| |
Collapse
|
39
|
Choi JW, Kang SM, Lee Y, Hong SH, Sanek NA, Young WS, Lee HJ. MicroRNA profiling in the mouse hypothalamus reveals oxytocin-regulating microRNA. J Neurochem 2013; 126:331-7. [PMID: 23682839 DOI: 10.1111/jnc.12308] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/17/2013] [Accepted: 05/15/2013] [Indexed: 02/02/2023]
Abstract
Oxytocin (Oxt), produced in the hypothalamic paraventricular and supraoptic nuclei for transport to and release from the posterior pituitary, was originally discovered through its role in lactation and parturition. Oxt also plays important roles in the central nervous system by influencing various behaviors. MicroRNAs (miRNAs), endogenous regulators of many genes, are a class of small non-coding RNAs that mediate post-transcriptional gene silencing. We performed miRNA expression profiling of the mouse hypothalamus by deep sequencing. Among the sequenced and cross-mapped small RNAs, expression of known miRNAs and unknown miRNAs candidates were analyzed. We investigated in detail one miRNA, miR-24, and found that it is a novel regulator of Oxt and controls both transcript and peptide levels of Oxt. These results provide insights into potential neurohypophysial hormone regulation mediated by miRNAs.
Collapse
Affiliation(s)
- Ji-Woong Choi
- Department of Oral Microbiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | | | |
Collapse
|