1
|
Rugova S, Abboud M. Comparison of One-Drill Protocol to Sequential Drilling In Vitro and In Vivo. Bioengineering (Basel) 2025; 12:51. [PMID: 39851324 PMCID: PMC11762762 DOI: 10.3390/bioengineering12010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
This study compares the heat generated during bone drilling using different protocols and implant systems, first in vitro and then in vivo with an animal model. In the experimental phase, thermal data were collected using an infrared camera while preparing implant beds in bone similes. The heat generated by a one-drill protocol with a new-generation drill bit and the Straumann BLT sequential drilling protocol was evaluated. The experimental study was then replicated in an animal model to assess the impact of these protocols on early osseointegration, measured by bone-to-implant contact (BIC) at three weeks post-surgery for Straumann BLT SLActive and Medentika Quattrocone implants. The results showed the BLT sequential protocol generated significantly more heat during drilling in bone similes compared to the new-generation drill bit. In the animal model, a histological analysis revealed a trend favoring shorter drilling protocols, with reduced drilling times and a potential advantage for osseointegration, though the BIC differences were not statistically significant. These findings suggest that minimizing the number of drilling steps and thermal stress may enhance osseointegration more effectively than advanced implant surface treatments. This aligns with emerging views on the importance of optimized drilling protocols and designs to reduce heat generation and better preserve surrounding bone structure.
Collapse
Affiliation(s)
- Sihana Rugova
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Marcus Abboud
- School of Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
2
|
Bisazza KT, Nelson BB, Sikes KJ, Nakamura L, Easley JT. Computed Tomography Provides Improved Quantification of Trabecular Lumbar Spine Bone Loss Compared to Dual-Energy X-Ray Absorptiometry in Ovariectomized Sheep. JBMR Plus 2023; 7:e10807. [PMID: 38130759 PMCID: PMC10731101 DOI: 10.1002/jbm4.10807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 12/23/2023] Open
Abstract
Early detection of osteoporosis using advanced imaging is imperative to the successful treatment and prevention of high morbidity fractures in aging patients. In this preclinical study, we aimed to compare dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) to quantify bone mineral density (BMD) changes in the sheep lumbar spine. We also aimed to determine the relationship of BMD to microarchitecture in the same animals as an estimate of imaging modality precision. Osteoporosis was induced in 10 ewes via laparoscopic ovariectomy and administration of high-dose corticosteroids. We performed DXA and QCT imaging to measure areal BMD (aBMD) and trabecular volumetric BMD (Tb.vBMD)/cortical vBMD (Ct.vBMD), respectively, at baseline (before ovariectomy) and at 3, 6, 9, and 12 months after ovariectomy. Iliac crest bone biopsies were collected at each time point for micro-computed tomography (microCT) analysis; bone volume fraction (BV/TV), trabecular number (Tb.N), thickness (Tb.Th), and spacing (Tb.Sp) were reported. aBMD and Tb.vBMD both decreased significantly by 3 and 6 months (p < 0.05) compared with baseline, whereas no changes to Ct.vBMD were observed. Combined (Tb. and Ct.) vBMD was significantly correlated with aBMD at all time points (all p < 0.05). Additionally, greater significant correlations were found between BV/TV and Tb.vBMD at all five time points (R 2 = 0.54, 0.57, 0.66, 0.46, and 0.56, respectively) than with aBMD values (R 2 = 0.23, 0.55, 0.41, 0.20, and 0.19, respectively). The higher correlation of microCT values with QCT than with DXA indicates that QCT provides additional detailed information regarding bone mineral density changes in preclinical settings. Because trabecular bone is susceptible to rapid density loss and structural changes during osteoporosis, QCT can capture these subtle changes more precisely than DXA in a large animal preclinical model. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Katie T Bisazza
- Preclinical Surgical Research Laboratory, Department of Clinical SciencesColorado State UniversityFort CollinsCOUSA
| | - Brad B Nelson
- Preclinical Surgical Research Laboratory, Department of Clinical SciencesColorado State UniversityFort CollinsCOUSA
| | - Katie J Sikes
- Preclinical Surgical Research Laboratory, Department of Clinical SciencesColorado State UniversityFort CollinsCOUSA
| | - Lucas Nakamura
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical EngineeringColorado State UniversityFort CollinsCOUSA
| | - Jeremiah T Easley
- Preclinical Surgical Research Laboratory, Department of Clinical SciencesColorado State UniversityFort CollinsCOUSA
| |
Collapse
|
3
|
Stein M, Elefteriou F, Busse B, Fiedler IA, Kwon RY, Farell E, Ahmad M, Ignatius A, Grover L, Geris L, Tuckermann J. Why Animal Experiments Are Still Indispensable in Bone Research: A Statement by the European Calcified Tissue Society. J Bone Miner Res 2023; 38:1045-1061. [PMID: 37314012 PMCID: PMC10962000 DOI: 10.1002/jbmr.4868] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/03/2023] [Accepted: 06/09/2023] [Indexed: 06/15/2023]
Abstract
Major achievements in bone research have always relied on animal models and in vitro systems derived from patient and animal material. However, the use of animals in research has drawn intense ethical debate and the complete abolition of animal experimentation is demanded by fractions of the population. This phenomenon is enhanced by the reproducibility crisis in science and the advance of in vitro and in silico techniques. 3D culture, organ-on-a-chip, and computer models have improved enormously over the last few years. Nevertheless, the overall complexity of bone tissue cross-talk and the systemic and local regulation of bone physiology can often only be addressed in entire vertebrates. Powerful genetic methods such as conditional mutagenesis, lineage tracing, and modeling of the diseases enhanced the understanding of the entire skeletal system. In this review endorsed by the European Calcified Tissue Society (ECTS), a working group of investigators from Europe and the US provides an overview of the strengths and limitations of experimental animal models, including rodents, fish, and large animals, as well the potential and shortcomings of in vitro and in silico technologies in skeletal research. We propose that the proper combination of the right animal model for a specific hypothesis and state-of-the-art in vitro and/or in silico technology is essential to solving remaining important questions in bone research. This is crucial for executing most efficiently the 3R principles to reduce, refine, and replace animal experimentation, for enhancing our knowledge of skeletal biology, and for the treatment of bone diseases that affect a large part of society. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Merle Stein
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Germany
| | - Imke A.K. Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Young Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, USA and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | - Eric Farell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Mubashir Ahmad
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Liam Grover
- Healthcare Technologies Institute, Institute of Translational MedicineHeritage Building Edgbaston, Birmingham
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, University of Liège, Liège, Belgium
- Skeletal Biology & Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| |
Collapse
|
4
|
Al-Mutheffer EA, Reinwald Y, El Haj AJ. Donor variability of ovine bone marrow derived mesenchymal stem cell - implications for cell therapy. Int J Vet Sci Med 2023; 11:23-37. [PMID: 37092030 PMCID: PMC10114964 DOI: 10.1080/23144599.2023.2197393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/20/2023] [Indexed: 04/25/2023] Open
Abstract
It is assumed that all species, including sheep, demonstrate significant variation between individuals including the characteristics of their bone marrow-derived mesenchymal stem cells (BM-MSCs). These differences may account for limited success in pre-clinical animal studies and may also impact on treatment strategies that are used within regenerative medicine. This study investigates variations between ovine MSCs (oMSCs) isolated from 13 English Mule sheep donors by studying cell viability, expansion, the cells' trilineage differentiation potential and the expression of cell surface markers. In addition to the primary objective, this article also compares various differentiation media used for the trilineage differentiation of oMSCs. In this study, a clear individual variation between the sheep donors regarding oMSCs characterization, tri-lineage differentiation potential and marker expression was effectively demonstrated. The results set out to systematically explore the ovine mesenchymal stem cell population derived from multiple donors. With this information, it is possible to start addressing the issues of personalized approaches to regenerative therapies.
Collapse
Affiliation(s)
- E’atelaf A. Al-Mutheffer
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, UK
- Department of Surgery and Obstetrics, College of Veterinary Medicine, Baghdad University, Baghdad, Iraq
| | - Yvonne Reinwald
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, UK
- School of Science and Technology, Department of Engineering, Nottingham Trent University Nottingham, Nottingham, UK
| | - Alicia J. El Haj
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, UK
- School of Chemical Engineering, Healthcare Technology Institute, Institute of Translational Medicine Birmingham University, Birmingham, UK
| |
Collapse
|
5
|
Orassi V, Duda GN, Heiland M, Fischer H, Rendenbach C, Checa S. Biomechanical Assessment of the Validity of Sheep as a Preclinical Model for Testing Mandibular Fracture Fixation Devices. Front Bioeng Biotechnol 2021; 9:672176. [PMID: 34026745 PMCID: PMC8134672 DOI: 10.3389/fbioe.2021.672176] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Mandibular fracture fixation and reconstruction are usually performed using titanium plates and screws, however, there is a need to improve current fixation techniques. Animal models represent an important step for the testing of new designs and materials. However, the validity of those preclinical models in terms of implant biomechanics remains largely unknown. In this study, we investigate the biomechanics of the sheep mandible as a preclinical model for testing the mechanical strength of fixation devices and the biomechanical environment induced on mandibular fractures. We aimed to assess the comparability of the biomechanical conditions in the sheep mandible as a preclinical model for human applications of fracture fixation devices and empower analyses of the effect of such defined mechanical conditions on bone healing outcome. We developed 3D finite element models of the human and sheep mandibles simulating physiological muscular loads and three different clenching tasks (intercuspal, incisal, and unilateral). Furthermore, we simulated fractures in the human mandibular body, sheep mandibular body, and sheep mandibular diastema fixated with clinically used titanium miniplates and screws. We compared, at the power stroke of mastication, the biomechanical environment (1) in the healthy mandibular body and (2) at the fracture sites, and (3) the mechanical solicitation of the implants as well as the mechanical conditions for bone healing in such cases. In the healthy mandibles, the sheep mandibular body showed lower mechanical strains compared to the human mandibular body. In the fractured mandibles, strains within a fracture gap in sheep were generally not comparable to humans, while similar or lower mechanical solicitation of the fixation devices was found between the human mandibular body fracture and the sheep mandibular diastema fracture scenarios. We, therefore, conclude that the mechanical environments of mandibular fractures in humans and sheep differ and our analyses suggest that the sheep mandibular bone should be carefully re-considered as a model system to study the effect of fixation devices on the healing outcome. In our analyses, the sheep mandibular diastema showed similar mechanical conditions for fracture fixation devices to those in humans.
Collapse
Affiliation(s)
- Vincenzo Orassi
- Julius Wolff Institute, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Heilwig Fischer
- Julius Wolff Institute, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Carsten Rendenbach
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sara Checa
- Julius Wolff Institute, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
6
|
Large Animal Model of Osteoporotic Defect Healing: An Alternative to Metaphyseal Defect Model. Life (Basel) 2021; 11:life11030254. [PMID: 33808560 PMCID: PMC8003467 DOI: 10.3390/life11030254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is a common metabolic disorder diagnosed by lower bone density and higher risk of fracture. Fragility fractures because of osteoporosis are associated with high mortality rate. Deep understanding of fracture healing in osteoporosis is important for successful treatment. Therefore, the FDA approved the use of small and large animal models for preclinical testing. This study investigated the clinical relevance of a fracture defect model in the iliac crest of the osteoporotic sheep model and its several advantages over other models. The osteoporosis was achieved using ovariectomy (OVX) in combination with diet deficiency (OVXD) and steroid administration (OVXDS). Fluorochrome was injected to examine the rate of bone remodelling and bone mineralization. The defect areas were collected and embedded in paraffin and polymethyl metha acrylate (PMMA) for histological staining. OVXDS showed significantly lower bone mineral density (BMD) and bone mineral content (BMC) at all time points. Furthermore, variations in healing patterns were noticed, while the control, OVX and OVXD showed complete healing after 8 months. Bone quality was affected mostly in the OVXDS group showing irregular trabecular network, lower cortical bone thickness and higher cartilaginous tissue at 8 months. The mineral deposition rate showed a declining pattern in the control, OVX, and OVXD from 5 months to 8 months. One the contrary, the OVXDS group showed an incremental pattern from 5 months to 8 months. The defect zone in osteoporotic animals showed impaired healing and the control showed complete healing after 8 months. This unique established model serves as a dual-purpose model and has several advantages: no intraoperative and postoperative complications, no need for fixation methods for biomaterial testing, and reduction in animal numbers, which comply with 3R principles by using the same animal at two different time points.
Collapse
|
7
|
Taguchi T, Lopez MJ. An overview of de novo bone generation in animal models. J Orthop Res 2021; 39:7-21. [PMID: 32910496 PMCID: PMC7820991 DOI: 10.1002/jor.24852] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 02/04/2023]
Abstract
Some of the earliest success in de novo tissue generation was in bone tissue, and advances, facilitated by the use of endogenous and exogenous progenitor cells, continue unabated. The concept of one health promotes shared discoveries among medical disciplines to overcome health challenges that afflict numerous species. Carefully selected animal models are vital to development and translation of targeted therapies that improve the health and well-being of humans and animals alike. While inherent differences among species limit direct translation of scientific knowledge between them, rapid progress in ex vivo and in vivo de novo tissue generation is propelling revolutionary innovation to reality among all musculoskeletal specialties. This review contains a comparison of bone deposition among species and descriptions of animal models of bone restoration designed to replicate a multitude of bone injuries and pathology, including impaired osteogenic capacity.
Collapse
Affiliation(s)
- Takashi Taguchi
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Mandi J. Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
8
|
Cabrera D, Kruger M, Wolber FM, Roy NC, Fraser K. Effects of short- and long-term glucocorticoid-induced osteoporosis on plasma metabolome and lipidome of ovariectomized sheep. BMC Musculoskelet Disord 2020; 21:349. [PMID: 32503480 PMCID: PMC7275480 DOI: 10.1186/s12891-020-03362-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/25/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Understanding the metabolic and lipidomic changes that accompany bone loss in osteoporosis might provide insights about the mechanisms behind molecular changes and facilitate developing new drugs or nutritional strategies for osteoporosis prevention. This study aimed to examine the effects of short- or long-term glucocorticoid-induced osteoporosis on plasma metabolites and lipids of ovariectomized (OVX) sheep. METHODS Twenty-eight aged ewes were divided randomly into four groups: an OVX group, OVX in combination with glucocorticoids for two months (OVXG2), and OVX in combination with five doses of glucocorticoids (OVXG5) to induce bone loss, and a control group. Liquid chromatography-mass spectrometry untargeted metabolomic analysis was applied to monthly plasma samples to follow the progression of osteoporosis over five months. RESULTS The metabolite profiles revealed significant differences in the plasma metabolome of OVX sheep and OVXG when compared with the control group by univariate analysis. Nine metabolites were altered, namely 5-methoxytryptophan, valine, methionine, tryptophan, glutaric acid, 2-pyrrolidone-5-carboxylic acid, indole-3-carboxaldehyde, 5-hydroxylysine and malic acid. Similarly, fifteen lipids were perturbed from multiple lipid classes such as lysophoslipids, phospholipids and ceramides. CONCLUSION This study showed that OVX and glucocorticoid interventions altered the metabolite and lipid profiles of sheep, suggesting that amino acid and lipid metabolisms are potentially the main perturbed metabolic pathways regulating bone loss in OVX sheep.
Collapse
Affiliation(s)
- Diana Cabrera
- Food Nutrition & Health Team, AgResearch Grasslands, Tennent Drive, Palmerston North, 4442 New Zealand
| | - Marlena Kruger
- School of Health Sciences, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand
- Riddet Institute, Massey University, Palmerston North, 4442 New Zealand
| | - Frances M. Wolber
- Riddet Institute, Massey University, Palmerston North, 4442 New Zealand
- School of Food Advanced technology, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand
- Centre for Metabolic Health Research, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand
| | - Nicole C. Roy
- Food Nutrition & Health Team, AgResearch Grasslands, Tennent Drive, Palmerston North, 4442 New Zealand
- Riddet Institute, Massey University, Palmerston North, 4442 New Zealand
- High-Value Nutrition National Science Challenge, Auckland, 1142 New Zealand
| | - Karl Fraser
- Food Nutrition & Health Team, AgResearch Grasslands, Tennent Drive, Palmerston North, 4442 New Zealand
- Riddet Institute, Massey University, Palmerston North, 4442 New Zealand
- High-Value Nutrition National Science Challenge, Auckland, 1142 New Zealand
| |
Collapse
|
9
|
Nerve grafting for peripheral nerve injuries with extended defect sizes. Wien Med Wochenschr 2018; 169:240-251. [PMID: 30547373 PMCID: PMC6538587 DOI: 10.1007/s10354-018-0675-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/21/2018] [Indexed: 12/25/2022]
Abstract
Artificial and non-artificial nerve grafts are the gold standard in peripheral nerve reconstruction in cases with extensive loss of nerve tissue, particularly where a direct end-to-end suture or an autologous nerve graft is inauspicious. Different materials are marketed and approved by the US Food and Drug Administration (FDA) for peripheral nerve graft reconstruction. The most frequently used materials are collagen and poly(DL-lactide-ε-caprolactone). Only one human nerve allograft is listed for peripheral nerve reconstruction by the FDA. All marketed nerve grafts are able to demonstrate sufficient nerve regeneration over small distances not exceeding 3.0 cm. A key question in the field is whether nerve reconstruction on large defect lengths extending 4.0 cm or more is possible. This review gives a summary of current clinical and experimental approaches in peripheral nerve surgery using artificial and non-artificial nerve grafts in short and long distance nerve defects. Strategies to extend nerve graft lengths for long nerve defects, such as enhancing axonal regeneration, include the additional application of Schwann cells, mesenchymal stem cells or supporting co-factors like growth factors on defect sizes between 4.0 and 8.0 cm.
Collapse
|
10
|
Cabrera D, Wolber FM, Dittmer K, Rogers C, Ridler A, Aberdein D, Parkinson T, Chambers P, Fraser K, Roy NC, Kruger M. Glucocorticoids affect bone mineral density and bone remodelling in OVX sheep: A pilot study. Bone Rep 2018; 9:173-180. [PMID: 30480061 PMCID: PMC6249392 DOI: 10.1016/j.bonr.2018.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/05/2018] [Accepted: 11/12/2018] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to validate the combination of ovariectomy and glucocorticoid treatment in sheep as a large animal model for osteoporosis by measuring the concentration of specific biomarkers in the blood of the sheep and measuring bone loss over five months. Aged Merino ewes were randomly allocated into four groups: control, ovariectomy (OVX), and two OVX groups receiving glucocorticoids-one group once-monthly for five months (OVXG), and the other for two months followed by no treatment for three months (OVXG2). Parameters measured were biochemical markers of bone turnover, areal bone mineral density, volumetric bone mineral density, and total and trabecular bone parameters. Ovariectomy increased the concentrations of bone resorption marker C-terminal telopeptides of type 1 collagen (CTx-1) and bone turnover marker serum osteocalcin (OC) concentrations in the OVX group compared to control sheep. The combination of ovariectomy and glucocorticoid treatment increased the concentrations of CTx-1 and decreased serum OC concentrations in the OVXG group compared to OVXG2. Femur and lumbar spine bone density were lower in experimentally treated groups when compared with the control group. Total and trabecular vBMD in the proximal tibia were significantly lower in the treatment groups when compared with the control group. A significant negative correlation between femoral bone density and CTx-1 was found. The results of this study suggest that the combination of OVX and glucocorticoids induces bone loss in a short period of time in sheep.
Collapse
Affiliation(s)
- Diana Cabrera
- School of Food and Nutrition, Massey University, Tennent Drive, Palmerston North 4442, New Zealand
| | - Frances M Wolber
- Centre for Metabolic Health Research, Massey University, Tennent Drive, Palmerston North 4442, New Zealand
| | - Keren Dittmer
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Tennent Drive, Palmerston North 4442, New Zealand
| | - Chris Rogers
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Tennent Drive, Palmerston North 4442, New Zealand
| | - Anne Ridler
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Tennent Drive, Palmerston North 4442, New Zealand
| | - Danielle Aberdein
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Tennent Drive, Palmerston North 4442, New Zealand
| | - Tim Parkinson
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Tennent Drive, Palmerston North 4442, New Zealand
| | - Paul Chambers
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Tennent Drive, Palmerston North 4442, New Zealand
| | - Karl Fraser
- Riddet Institute, Massey University, Tennent Drive, Palmerston North 4442, New Zealand.,Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands, Tennent Drive, Palmerston North 4442, New Zealand.,High-Value Nutrition National Science Challenge, Auckland 1142, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Tennent Drive, Palmerston North 4442, New Zealand.,Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands, Tennent Drive, Palmerston North 4442, New Zealand.,High-Value Nutrition National Science Challenge, Auckland 1142, New Zealand
| | - Marlena Kruger
- School of Food and Nutrition, Massey University, Tennent Drive, Palmerston North 4442, New Zealand.,Riddet Institute, Massey University, Tennent Drive, Palmerston North 4442, New Zealand
| |
Collapse
|
11
|
Izwan A, Snelling EP, Seymour RS, Meyer LCR, Fuller A, Haw A, Mitchell D, Farrell AP, Costello MA, Maloney SK. Ameliorating the adverse cardiorespiratory effects of chemical immobilization by inducing general anaesthesia in sheep and goats: implications for physiological studies of large wild mammals. J Comp Physiol B 2018; 188:991-1003. [PMID: 30232543 DOI: 10.1007/s00360-018-1184-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
Chemical immobilization is necessary for the physiological study of large wild animals. However, the immobilizing drugs can adversely affect the cardiovascular and respiratory systems, yielding data that do not accurately represent the normal, resting state. We hypothesize that these adverse effects can be ameliorated by reversing the immobilizing agent while holding the animal under general anaesthesia. We used habituated sheep Ovis aries (N = 5, 46.9 ± 5.3 kg body mass, mean ± SEM) and goats Capra hircus (N = 4, 27.7 ± 2.8 kg) as ungulate models for large wild animals, and measured their cardiorespiratory function under three conditions: (1) mild sedation (midazolam), as a proxy for the normal resting state, (2) immobilization (etorphine and azaperone), and (3) general anaesthesia (propofol) followed by etorphine antagonism (naltrexone). Cardiac output for both sheep and goats remained unchanged across the three conditions (overall means of 6.2 ± 0.9 and 3.3 ± 0.3 L min-1, respectively). For both sheep and goats, systemic and pulmonary mean arterial pressures were significantly altered from initial midazolam levels when administered etorphine + azaperone, but those arterial pressures were restored upon transition to propofol anaesthesia and antagonism of the etorphine. Under etorphine + azaperone, minute ventilation decreased in the sheep, though this decrease was corrected under propofol, while the minute ventilation in the goats remained unchanged throughout. Under etorphine + azaperone, both sheep and goats displayed arterial blood hypoxia and hypercapnia (relative to midazolam levels), which failed to completely recover under propofol, indicating that more time might be needed for the blood gases to be adequately restored. Nonetheless, many of the confounding cardiorespiratory effects of etorphine were ameliorated when it was antagonized with naltrexone while the animal was held under propofol, indicating that this procedure can largely restore the cardiovascular and respiratory systems closer to a normal, resting state.
Collapse
Affiliation(s)
- Adian Izwan
- School of Human Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia, Australia.
| | - Edward P Snelling
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Roger S Seymour
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Leith C R Meyer
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa.,Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa.,Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Anna Haw
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Duncan Mitchell
- School of Human Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia, Australia.,Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.,Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mary-Ann Costello
- Central Animal Service, University of the Witwatersrand, Johannesburg, South Africa
| | - Shane K Maloney
- School of Human Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia, Australia.,Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
12
|
Dias IR, Camassa JA, Bordelo JA, Babo PS, Viegas CA, Dourado N, Reis RL, Gomes ME. Preclinical and Translational Studies in Small Ruminants (Sheep and Goat) as Models for Osteoporosis Research. Curr Osteoporos Rep 2018; 16:182-197. [PMID: 29460175 DOI: 10.1007/s11914-018-0431-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF THE REVIEW This review summarizes research on the use of sheep and goats as large animal models of human osteoporosis for preclinical and translational studies. RECENT FINDINGS The most frequent osteoporotic sheep model used is the ovariectomized sheep with 12 months post-operatively or more and the combined treatment of ovariectomized sheep associated to calcium/vitamin D-deficient diet and glucocorticoid applications for 6 months, but other methods are also described, like pinealectomy or hypothalamic-pituitary disconnection in ovariectomized sheep. The goat model for osteoporosis research has been used in a very limited number of studies in osteoporosis research relative to sheep. These osteoporotic small ruminant models are applied for biomaterial research, bone augmentation, efficacy of implant fixation, fragility fracture-healing process improvement, or bone-defect repair studies in the osteopenic or osteoporotic bone. Sheep are a recognized large animal model for preclinical and translational studies in osteoporosis research and the goat to a lesser extent. Recently, the pathophysiological mechanism underlying induction of osteoporosis in glucocorticoid-treated ovariectomized aged sheep was clarified, being similar to what occurs in postmenopausal women with glucocorticoid-induced osteoporosis. It was also concluded that the receptor activator of NF-κB ligand was stimulated in the late progressive phase of the osteoporosis induced by steroids in sheep. The knowledge of the pathophysiological mechanisms at the cellular and molecular levels of the induction of osteoporosis in small ruminants, if identical to humans, will allow in the future, the use of these animal models with greater confidence in the preclinical and translational studies for osteoporosis research.
Collapse
Affiliation(s)
- Isabel R Dias
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, Portugal.
| | - José A Camassa
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - João A Bordelo
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Pedro S Babo
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Carlos A Viegas
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Nuno Dourado
- CMEMS-UMinho, Department of Mechanical Engineering, University of Minho, Campus de Azurém, 4804-533, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Manuela E Gomes
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, Portugal
| |
Collapse
|
13
|
Lin T, Liu J, Yang S, Liu X, Feng X, Fu D. Relation between the development of osteoporosis and osteonecrosis following glucocorticoid in a rabbit model. Indian J Orthop 2016; 50:406-13. [PMID: 27512223 PMCID: PMC4964774 DOI: 10.4103/0019-5413.185606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND There has been a recent increase in the number of patients suffering from bone and joint diseases, as a consequence of corticosteroids administration. There are more patients treated with low dose of GCs under long-term conditions in clinical, such as effect of GCs on Rheumatoid arthritis, Crohn's disease and Asthma patients. Hence, it was difficult for doctor to determine which problem occur first - OP or ON; however, there was no clinical report previously in the literature, and there was no effective animal model of OP and ON about low dose GCs. This study was conducted to develop rabbit models of glucocorticoid (GC)-induced femoral head ON and OP and to investigate the temporal relationship between the occurrence of the two events following administration of glucocorticoids. MATERIALS AND METHODS Fifty six, 6 months old female rabbits were randomly divided into the GC group and control group (C). Rabbits received gluteal injections of methylprednisolone sodium succinate once a day for 4 weeks, while normal saline solution in the control group. Rabbits were sacrificed at 0, 2, 4, and 8 weeks. Hip magnetic resonance imaging was performed before the rabbits were sacrificed. Serum calcium (Ca), phosphorus (P), total cholesterol, and triglyceride levels were also measured. The bone mineral density (BMD) of femoral head and the femoral shaft were measured by dual-energy X-ray absorptiometry. The trabecular parameters of the femur and the 4(th) lumbar vertebrae (L4) were measured with a micro-computed tomography (μ-CT). Also, the femoral head was stained with hematoxylin-eosin staining. RESULTS At 4 weeks in the GC group, the BMD of the femur reduced 33% and 22% in the femoral head and shaft; there was irregular intermediate to high T2-weighted images signals; μ-CT showed microfractures and cystic changes in the femoral head and L4 at 4 weeks. At 8 weeks in the GC group, the classical "line-like sign" indicating ON of the femoral head was observed in 64.3% of the rabbits. CONCLUSION A rabbit model of GC-induced OP and ON was developed by repetitive injection with small doses of GCs in the gluteal region. OP was observed at 4 weeks while ON developed at 8 weeks and followed a clear temporal pattern.
Collapse
Affiliation(s)
- Tao Lin
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Junbin Liu
- Department of Traumatic Surgery, Jining No. 1 Peoples Hospital, Jining, Shandong 272011, China
| | - Shuhua Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianzhe Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dehao Fu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Address for correspondence: Prof. Dehao Fu, Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. E-mail:
| |
Collapse
|
14
|
Alm JJ, Moritz N, Aro HT. In vitro osteogenic capacity of bone marrow MSCs from postmenopausal women reflect the osseointegration of their cementless hip stems. Bone Rep 2016; 5:124-135. [PMID: 28326353 PMCID: PMC4926811 DOI: 10.1016/j.bonr.2016.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 04/25/2016] [Accepted: 05/20/2016] [Indexed: 11/06/2022] Open
Abstract
Age-related dysfunction of mesenchymal stromal cells (MSCs) is suggested as a main cause of altered bone repair with aging. We recently showed that in postmenopausal women undergoing cementless total hip arthroplasty (THA) aging, low bone mineral density (BMD) and age-related geometric changes of the proximal femur are risk factors for increased early migration and delayed osseointegration of the femoral stems. Extending these analyses, we have here explored how the in vitro osteogenic capacity of bone marrow MSCs from these patients reflects implant osseointegration, representing the patient's in vivo bone healing capacity. A total of 19 postmenopausal women with primary hip osteoarthritis (mean age 65 years, range 50–78) and well-defined bone quality underwent successful preoperative in vitro analysis of osteogenic capacity of iliac crest bone marrow MSCs as well as two-year radiostereometric (RSA) follow-up of femoral stem migration after cementless THA. In patients with MSCs of low osteogenic capacity, the magnitude of cumulative stem subsidence after the settling period of three months was greater (p = 0.028) and the time point for translational osseointegration was significantly delayed (p = 0.030) compared to patients with MSCs of high osteogenic capacity. This study suggests that patients with MSCs of low in vitro osteogenic capacity may display increased stem subsidence after the settling period of 3 months and thereby delayed osseointegration. Our study presents a novel approach for studying the biological progress of hip implant osseointegration and to verify the impact of decreased MSCs function, especially in patients with age-related dysfunction of MSCs and bone healing capacity. Age-related dysfunction of MSCs is a main cause of altered bone repair with aging. MSCs play a critical role in osseointegration of cementless hip replacement. We explored if hip implant osseointegration in postmenopausal women is mirrored by in vitro osteogenic ability of their MSCs. Low osteogenic differentiation of MSCs correlated with increased implant migration.
Collapse
Affiliation(s)
- Jessica J Alm
- Orthopaedic Research Unit, Department of Orthopaedic Surgery and Traumatology, University of Turku/Turku University Hospital, Turku, Finland
| | - Niko Moritz
- Orthopaedic Research Unit, Department of Orthopaedic Surgery and Traumatology, University of Turku/Turku University Hospital, Turku, Finland
| | - Hannu T Aro
- Orthopaedic Research Unit, Department of Orthopaedic Surgery and Traumatology, University of Turku/Turku University Hospital, Turku, Finland
| |
Collapse
|
15
|
Abstract
Osteoporosis is a chronic systemic bone disease of growing relevance due to the on-going demographic change. Since the underlying regulatory mechanisms of this critical illness are still not fully understood and treatment options are not satisfactorily resolved, there is still a great need for osteoporosis research in general and animal models in particular. Ovariectomized rodents are standard animal models for postmenopausal osteoporosis and highly attractive due to the possibility to specifically modify their genetic background. However, some aspects can only be addressed in large animal models; such as metaphyseal fracture healing and advancement of orthopedic implants. Among other large animal models sheep in particular have been proven invaluable for osteoporosis research in this context. In conclusion, today we are able to influence the bone metabolism in animals causing a more or less pronounced systemic bone loss and structural deterioration comparable to the situation found in patients suffering from osteoporosis. However, there is no perfect model for osteoporosis, but a variety of models appropriate for answering specific questions. Though, the appropriateness of an animal model is not only defined in regard to the similarity to human physiology and the disease itself, but also in regard to acquisition, housing requirements, handling, costs, and particularly ethical concerns and animal welfare.
Collapse
Affiliation(s)
- Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Pia Pogoda
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
16
|
Chmielewska E, Mazur Z, Kempińska K, Wietrzyk J, Piątek A, Kuryszko JJ, Kiełbowicz Z, Kafarski P. N-Arylaminomethylenebisphosphonates Bearing Fluorine Atoms: Synthesis and Antiosteoporotic Activity. PHOSPHORUS SULFUR 2015. [DOI: 10.1080/10426507.2015.1085046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ewa Chmielewska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Zuzanna Mazur
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Katarzyna Kempińska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wrocław, Poland
| | - Joanna Wietrzyk
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wrocław, Poland
| | - Anita Piątek
- The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland
| | - Jan J. Kuryszko
- The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland
| | - Zdzisław Kiełbowicz
- The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland
| | - Paweł Kafarski
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wrocław, Poland
| |
Collapse
|
17
|
Abstract
Bone defects do not heal in 5-10% of the fractures. In order to enhance bone regeneration, drug delivery systems are needed. They comprise a scaffold with or without inducing factors and/or cells. To test these drug delivery systems before application in patients, they finally need to be tested in animal models. The choice of animal model depends on the main research question; is a functional or mechanistic evaluation needed? Furthermore, which type of bone defects are investigated: load-bearing (i.e. orthopedic) or non-load-bearing (i.e. craniomaxillofacial)? This determines the type of model and in which type of animal. The experiments need to be set-up using the 3R principle and must be reported following the ARRIVE guidelines.
Collapse
|
18
|
Voss PJ, Stoddart MJ, Bernstein A, Schmelzeisen R, Nelson K, Stadelmann V, Ziebart T, Poxleitner PJ. Zoledronate induces bisphosphonate-related osteonecrosis of the jaw in osteopenic sheep. Clin Oral Investig 2015; 20:31-8. [PMID: 25843053 DOI: 10.1007/s00784-015-1468-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/23/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Bisphosphonate-related osteonecrosis of the jaw (BP-ONJ) occurs in 1 % of patients with medication-induced osteoporosis treated with bisphosphonates. Sheep are an established large animal model for investigating osteoporotic skeletal changes. Zoledronate significantly reduces tissue mineral variability in ovariectomized sheep. The aim of this study was to analyze bone healing after tooth extraction in sheep with induced osteopenia and zoledronate administration. MATERIALS AND METHODS Eight adult ewes were randomly divided into two groups of four animals. All sheep underwent ovariectomy and a low-calcium diet. Dexamethasone was administered weekly for 16 weeks. Zoledronate was then given every third week for a further 16 weeks in four sheep; these infusions were repeated after extraction of two lower premolars. Four sheep without zoledronate administrations served as controls. RESULTS Due to general health conditions, two sheep of the zoledronate group had to be excluded before surgery. The remaining two sheep of this group developed BP-ONJ lesions at the extraction site and various other sites in both jaws. Control group animals showed uneventful wound healing. Histology of the alveolar processes as well as lumbar spine revealed larger portions of old bone and smaller portions of new bone in the zoledronate group. CONCLUSIONS This animal study showed uneventful wound healing after tooth extraction in osteopenic sheep whereas zoledronate treatment leads to development of BP-ONJ-like lesions. CLINICAL RELEVANCE As bisphosphonate administration is a standard treatment for glucocorticoid-induced osteoporosis, this model can be used for further research in pathogenesis and management of bisphosphonate-related adverse events.
Collapse
Affiliation(s)
- Pit J Voss
- Department of Oral and Maxillofacial Surgery, University Medical Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| | - Martin J Stoddart
- AO Research Institute Davos, Clavadelerstr. 8, 7270, Davos, Switzerland.
| | - Anke Bernstein
- Department of Orthopedics and Traumatology, University Medical Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| | - Rainer Schmelzeisen
- Department of Oral and Maxillofacial Surgery, University Medical Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| | - Katja Nelson
- Department of Oral and Maxillofacial Surgery, University Medical Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| | - Vincent Stadelmann
- AO Research Institute Davos, Clavadelerstr. 8, 7270, Davos, Switzerland.
| | - Thomas Ziebart
- Department of Oral and Maxillofacial Surgery, University Hospital Mainz, Augustusplatz 2, 55131, Mainz, Germany.
| | - Philipp J Poxleitner
- Department of Oral and Maxillofacial Surgery, University Medical Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany. .,AO Research Institute Davos, Clavadelerstr. 8, 7270, Davos, Switzerland.
| |
Collapse
|
19
|
Gadomski BC, McGilvray KC, Easley JT, Palmer RH, Santoni BG, Puttlitz CM. Partial gravity unloading inhibits bone healing responses in a large animal model. J Biomech 2014; 47:2836-42. [DOI: 10.1016/j.jbiomech.2014.07.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/11/2014] [Accepted: 07/31/2014] [Indexed: 12/29/2022]
|
20
|
Sousa CP, Azevedo JT, Silva AM, Viegas CA, Reis RL, Gomes ME, Dias IR. Serum total and bone alkaline phosphatase levels and their correlation with serum minerals over the lifespan of sheep. Acta Vet Hung 2014; 62:205-14. [PMID: 24334071 DOI: 10.1556/avet.2013.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study aimed to assess serum total alkaline phosphatase (ALP) and its bone isoform (BALP) levels during the ageing and in different physiologic states of sheep, in order to expand the knowledge about the variation of these biomarkers over the sheep lifespan. Ninety female sheep were divided into nine groups of various ages and physiological states (dry, lactation and pregnancy). Serum ALP, BALP and mineral levels were determined by commercial immunoassay, molecular absorbance spectrophotometry and chemical luminescence for BALP determination. Serum ALP and BALP decreased as sheep aged, and no statistically significant differences were obtained between ewes in different physiologic states. The continuous decline of serum BALP concentration along the sheep lifespan, namely in mature and old sheep, is a sign of decreasing bone turnover associated with ageing. Serum calcium concentrations increased slightly until 2 years of age and then showed a tenuous but statistically significant decrease in mature sheep, while serum phosphorus maintained an uninterrupted decrease as sheep matured. The knowledge of serum values of bone biomarkers throughout the sheep lifespan may be useful in preclinical orthopaedic research studies and for animal science studies using sheep.
Collapse
Affiliation(s)
- Cristina P Sousa
- ECAV - University of Trás-os-Montes e Alto Douro (UTAD) Department of Veterinary Sciences P.O. Box 1013 Vila Real 5001-801 Portugal University of Minho 3B's Research Group, Department of Polymer Engineering Guimarães Portugal ICVS/3B's - Life and Health Sciences Research Institute Braga/Guimarães Portugal
| | - Jorge T Azevedo
- ECAV-UTAD Department of Animal Sciences Vila Real Portugal UTAD CECAV - Center for Animal Sciences and Veterinary Studies Vila Real Portugal
| | - Amélia M Silva
- ECVA-UTAD Department of Biology and Environment Vila Real Portugal CITAB - Centre for Research and Technology of Agro-Environmental and Biological Sciences, UTAD Vila Real Portugal
| | - Carlos A Viegas
- ECAV - University of Trás-os-Montes e Alto Douro (UTAD) Department of Veterinary Sciences P.O. Box 1013 Vila Real 5001-801 Portugal University of Minho 3B's Research Group, Department of Polymer Engineering Guimarães Portugal ICVS/3B's - Life and Health Sciences Research Institute Braga/Guimarães Portugal
| | - Rui L Reis
- University of Minho 3B's Research Group, Department of Polymer Engineering Guimarães Portugal ICVS/3B's - Life and Health Sciences Research Institute Braga/Guimarães Portugal
| | - Manuela E Gomes
- University of Minho 3B's Research Group, Department of Polymer Engineering Guimarães Portugal ICVS/3B's - Life and Health Sciences Research Institute Braga/Guimarães Portugal
| | - Isabel R Dias
- ECAV - University of Trás-os-Montes e Alto Douro (UTAD) Department of Veterinary Sciences P.O. Box 1013 Vila Real 5001-801 Portugal University of Minho 3B's Research Group, Department of Polymer Engineering Guimarães Portugal ICVS/3B's - Life and Health Sciences Research Institute Braga/Guimarães Portugal
| |
Collapse
|
21
|
Gadomski BC, McGilvray KC, Easley JT, Palmer RH, Ehrhart EJ, Haussler KK, Browning RC, Santoni BG, Puttlitz CM. An In Vivo Ovine Model of Bone Tissue Alterations in Simulated Microgravity Conditions. J Biomech Eng 2014; 136:021020. [DOI: 10.1115/1.4025854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/29/2013] [Indexed: 11/08/2022]
Abstract
Microgravity and its inherent reduction in body-weight associated mechanical loading encountered during spaceflight have been shown to produce deleterious effects on important human physiological processes. Rodent hindlimb unloading is the most widely-used ground-based microgravity model. Unfortunately, results from these studies are difficult to translate to the human condition due to major anatomic and physiologic differences between the two species such as bone microarchitecture and healing rates. The use of translatable ovine models to investigate orthopedic-related conditions has become increasingly popular due to similarities in size and skeletal architecture of the two species. Thus, a new translational model of simulated microgravity was developed using common external fixation techniques to shield the metatarsal bone of the ovine hindlimb during normal daily activity over an 8 week period. Bone mineral density, quantified via dual-energy X-ray absorptiometry, decreased 29.0% (p < 0.001) in the treated metatarsi. Post-sacrifice biomechanical evaluation revealed reduced bending modulus (–25.8%, p < 0.05) and failure load (–27.8%, p < 0.001) following the microgravity treatment. Microcomputed tomography and histology revealed reduced bone volume (–35.9%, p < 0.01), trabecular thickness (–30.9%, p < 0.01), trabecular number (–22.5%, p < 0.05), bone formation rate (–57.7%, p < 0.01), and osteoblast number (–52.5%, p < 0.001), as well as increased osteoclast number (269.1%, p < 0.001) in the treated metatarsi of the microgravity group. No significant alterations occurred for any outcome parameter in the Sham Surgery Group. These data indicate that the external fixation technique utilized in this model was able to effectively unload the metatarsus and induce significant radiographic, biomechanical, and histomorphometric alterations that are known to be induced by spaceflight. Further, these findings demonstrate that the physiologic mechanisms driving bone remodeling in sheep and humans during prolonged periods of unloading (specifically increased osteoclast activity) are more similar than previously utilized models, allowing more comprehensive investigations of microgravity-related bone remodeling as it relates to human spaceflight.
Collapse
Affiliation(s)
- Benjamin C. Gadomski
- Orthopaedic Research Center, Department of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523
| | - Kirk C. McGilvray
- Orthopaedic Research Center, Department of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523
| | - Jeremiah T. Easley
- Surgical Research Laboratory, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Ross H. Palmer
- Surgical Research Laboratory, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523
| | - E. J. Ehrhart
- Veterinary Diagnostic Laboratory, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Kevin K. Haussler
- Orthopaedic Research Center, Department of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523
| | - Raymond C. Browning
- Physical Activity Energetics/ Mechanics Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523
| | - Brandon G. Santoni
- Phillip Speigel Orthopaedic Research Laboratory, Foundation for Orthopaedic Research and Education, Tampa, FL 33637
| | - Christian M. Puttlitz
- Associate Department Head for Graduate Studies Principal Investigator, Orthopaedic Research Center, Department of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523 e-mail:
| |
Collapse
|
22
|
Sousa CP, de Azevedo JT, Reis RL, Gomes ME, Dias IR. Short-term variability in biomarkers of bone metabolism in sheep. Lab Anim (NY) 2013; 43:21-6. [DOI: 10.1038/laban.418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 09/20/2013] [Indexed: 11/09/2022]
|
23
|
Bindl R, Oheim R, Pogoda P, Beil FT, Gruchenberg K, Reitmaier S, Wehner T, Calcia E, Radermacher P, Claes L, Amling M, Ignatius A. Metaphyseal fracture healing in a sheep model of low turnover osteoporosis induced by hypothalamic-pituitary disconnection (HPD). J Orthop Res 2013; 31:1851-7. [PMID: 23813786 DOI: 10.1002/jor.22416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/31/2013] [Indexed: 02/04/2023]
Abstract
We recently established a large animal model of osteoporosis in sheep using hypothalamic-pituitary disconnection (HPD). As central regulation is important for bone metabolism, HPD-sheep develop severe osteoporosis because of low bone turnover. In this study we investigated metaphyseal fracture healing in HPD-sheep. To elucidate potential pathomechanisms, we included a treatment group receiving thyroxine T4 and 17β-estradiol. Because clinically osteoporotic fractures often occur in the bone metaphysis, HPD-sheep and healthy controls received an osteotomy in the distal femoral condyle. Half of the HPD-sheep were systemically treated with thyroxine T4 and 17β-estradiol during the healing period. Fracture healing was evaluated after 8 weeks using pQCT, µCT, and histomorphometrical analysis. Bone mineral density (BMD) and bone volume/total volume (BV/TV) were considerably reduced by 30% and 36%, respectively, in the osteotomy gap of the HPD-sheep compared to healthy sheep. Histomorphometry also revealed a decreased amount of newly formed bone (-29%) and some remaining cartilage in the HPD-group, suggesting that HPD disturbed fracture healing. Thyroxine T4 and 17β-estradiol substitution considerably improved bone healing in the HPD-sheep. Our results indicate that fracture healing requires central regulation and that thyroxine T4 and 17β-estradiol contribute to the complex pathomechanisms of delayed metaphyseal bone healing in HPD-sheep.
Collapse
Affiliation(s)
- Ronny Bindl
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Helmholtzstr. 14, 89081, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Oheim R, Beil FT, Krause M, Bindl R, Ignatius A, Pogoda P. Mandibular bone loss in ewe induced by hypothalamic-pituitary disconnection. Clin Oral Implants Res 2013; 25:1239-1244. [DOI: 10.1111/clr.12259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Ralf Oheim
- Department of Osteology and Biomechanics; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - F. Timo Beil
- Department of Osteology and Biomechanics; University Medical Center Hamburg-Eppendorf; Hamburg Germany
- Department of Orthopaedics; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Matthias Krause
- Department of Osteology and Biomechanics; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Ronny Bindl
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm; Ulm Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm; Ulm Germany
| | - Pia Pogoda
- Department of Trauma, Hand and Reconstructive Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| |
Collapse
|
25
|
Oheim R, Beil FT, Köhne T, Wehner T, Barvencik F, Ignatius A, Amling M, Clarke IJ, Pogoda P. Sheep model for osteoporosis: sustainability and biomechanical relevance of low turnover osteoporosis induced by hypothalamic-pituitary disconnection. J Orthop Res 2013; 31:1067-74. [PMID: 23440966 DOI: 10.1002/jor.22327] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/24/2013] [Indexed: 02/04/2023]
Abstract
Hypothalamo-pituitary disconnection (HPD) leads to low bone turnover and osteoporosis in sheep. To determine the sustainability of bone loss and its biomechanical relevance, we studied HPD-sheep 24 months after surgery (HPD + OVX-24) in comparison to untreated control (Control), ovariectomized sheep (OVX), and sheep 12 months after HPD (HPD + OVX-12). We performed histomorphometric, HR-pQCT, and qBEI analyses, as well as biomechanical testing of all ewes studied. Twenty-four months after HPD, histomorphometric analyses of the iliac crest showed a significant reduction of BV/TV by 60% in comparison to Control. Cortical thickness of the femora measured by HR-pQCT did not change between 12 and 24 months after HPD but remained decreased by 30%. These structural changes were caused by a persisting depression of osteoblast and osteoclast cellular activity. Biomechanical testing of the femora showed a significant reduction of bending strength, whereas calcium content and distribution was found to be unchanged. In conclusion, HPD surgery leads to a persisting low turnover status with negative turnover balance in sheep followed by dramatic cortical and trabecular bone loss with consequent biomechanical impairment.
Collapse
Affiliation(s)
- Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
von Wilmowsky C, Moest T, Nkenke E, Stelzle F, Schlegel KA. Implants in bone: part II. Research on implant osseointegration: material testing, mechanical testing, imaging and histoanalytical methods. Oral Maxillofac Surg 2013; 18:355-72. [PMID: 23430020 DOI: 10.1007/s10006-013-0397-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 02/04/2013] [Indexed: 11/28/2022]
Abstract
PURPOSE In order to determine whether a newly developed implant material conforms to the requirements of biocompatibility, it must undergo rigorous testing. To correctly interpret the results of studies on implant material osseointegration, it is necessary to have a sound understanding of all the testing methods. The aim of this overview is to elucidate the methods that are used for the experimental evaluation of the osseointegration of implant materials. DISCUSSION In recent decades, there has been a constant proliferation of new materials and surface modifications in the field of dental implants. This continuous development of innovative biomaterials requires a precise and detailed evaluation in terms of biocompatibility and implant healing before clinical use. The current gold standard is in vivo animal testing on well validated animal models. However, long-term outcome studies on patients have to follow to finally validate and show patient benefit. CONCLUSION No experimental set-up can provide answers for all possible research questions. However, a certain transferability of the results to humans might be possible if the experimental set-up is carefully chosen for the aspects and questions being investigated. To enhance the implant survival rate in the rising number of patients with chronic diseases which compromise wound healing and osseointegration, dental implant research on compromised animal models will further gain importance in future.
Collapse
Affiliation(s)
- Cornelius von Wilmowsky
- Mund-,Kiefer- und Gesichtschirurgische Klinik Universitätsklinikum Erlangen, Glückstrasse 11, 91054, Erlangen, Germany,
| | | | | | | | | |
Collapse
|
27
|
Beil FT, Oheim R, Barvencik F, Hissnauer TN, Pestka JM, Ignatius A, Rueger JM, Schinke T, Clarke IJ, Amling M, Pogoda P. Low turnover osteoporosis in sheep induced by hypothalamic-pituitary disconnection. J Orthop Res 2012; 30:1254-62. [PMID: 22234948 DOI: 10.1002/jor.22066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 12/19/2011] [Indexed: 02/04/2023]
Abstract
The hypothalamus is of critical importance in regulating bone remodeling. This is underscored by the fact that intracerebroventricular-application of leptin in ewe leads to osteopenia. As a large animal model of osteoporosis, this approach has some limitations, such as high technical expenditure and running costs. Therefore we asked if a surgical ablation of the leptin signaling axis would have the same effects and would thereby be a more useful model. We analyzed the bone phenotype of ewe after surgical hypothalamo-pituitary disconnection (HPD + OVX) as compared to control ewe (OVX) after 3 and 12 months. Analyses included histomorphometric characterization, micro-CT and measurement of bone turnover parameters. Already 3 months after HPD we found osteopenic ewe with a significantly decreased bone formation (69%) and osteoclast activity (49%). After a period of 12 months the HPD group additionally developed an (preclinical) osteoporosis with significant reduction (33%) of femoral cortical thickness, as compared to controls (OVX). Taken together, HPD leads after 12 month to osteoporosis with a reduction in both trabecular and cortical bone caused by a low bone turnover situation, with reduced osteoblast and osteoclast activity, as compared to controls (OVX). The HPD-sheep is a suitable large animal model of osteoporosis. Furthermore our results indicate that an intact hypothalamo-pituitary axis is required for activation of bone turnover.
Collapse
Affiliation(s)
- Frank Timo Beil
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Egermann M, Gerhardt C, Barth A, Maestroni GJ, Schneider E, Alini M. Pinealectomy affects bone mineral density and structure--an experimental study in sheep. BMC Musculoskelet Disord 2011; 12:271. [PMID: 22115044 PMCID: PMC3270003 DOI: 10.1186/1471-2474-12-271] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/24/2011] [Indexed: 11/17/2022] Open
Abstract
Background Osteoporosis and associated fractures are a major public health burden and there is great need for a large animal model. Melatonin, the hormone of the pineal gland, has been shown to influence bone metabolism. This study aims to evaluate whether absence of melatonin due to pinealectomy affects the bone mass, structure and remodeling in an ovine animal model. Methods Female sheep were arranged into four groups: Control, surgically ovariectomized (Ovx), surgically pinealectomized (Px) and Ovx+Px. Before and 6 months after surgery, iliac crest biopsies were harvested and structural parameters were measured using μCT. Markers of bone formation and resorption were determined. To evaluate long term changes after pinealectomy, bone mineral density (BMD) was analyzed at the distal radius at 0, 3, 9, 18 and 30 months. Results Cancellous bone volume (BV/TV) declined after 6 months by -13.3% Px and -21.5% OvxPx. The bone loss was due to increased trabecular separation as well as decreased thickness. The histomorphometric quantification and determination of collagen degradation products showed increased bone resorption following pinealectomy. Ovariectomy alone results in a transient bone loss at the distal radius followed by continuous increase to baseline levels. The bone resorption activity after pinealectomy causes a bone loss which was not transient, since a continuous decrease in BMD was observed until 30 months. Conclusions The changes after pinealectomy in sheep are indicative of bone loss. Overall, these findings suggest that the pineal gland may influence bone metabolism and that pinealectomy can be used to induce bone loss in sheep.
Collapse
Affiliation(s)
- Marcus Egermann
- Clinic for Orthopedic Surgery, University Hospital Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Dvorak G, Reich KM, Tangl S, Goldhahn J, Haas R, Gruber R. Cortical porosity of the mandible in an osteoporotic sheep model. Clin Oral Implants Res 2010; 22:500-5. [DOI: 10.1111/j.1600-0501.2010.02031.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Benneker LM, Krebs J, Boner V, Boger A, Hoerstrup S, Heini PF, Gisep A. Cardiovascular changes after PMMA vertebroplasty in sheep: the effect of bone marrow removal using pulsed jet-lavage. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2010; 19:1913-20. [PMID: 20725752 DOI: 10.1007/s00586-010-1555-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 07/26/2010] [Accepted: 08/08/2010] [Indexed: 10/19/2022]
Abstract
Clinically, the displacement of intravertebral fat into the circulation during vertebroplasty is reported to lead to problems in elderly patients and can represent a serious complication, especially when multiple levels have to be treated. An in vitro study has shown the feasibility of removing intravertebral fat by pulsed jet-lavage prior to vertebroplasty, potentially reducing the embolization of bone marrow fat from the vertebral bodies and alleviating the cardiovascular changes elicited by pulmonary fat embolism. In this in vivo study, percutaneous vertebroplasty using polymethylmethacrylate (PMMA) was performed in three lumbar vertebrae of 11 sheep. In six sheep (lavage group), pulsed jet-lavage was performed prior to injection of PMMA compared to the control group of five sheep receiving only PMMA vertebroplasty. Invasive recording of blood pressures was performed continuously until 60 min after the last injection. Cardiac output and arterial blood gas parameters were measured at selected time points. Post mortem, the injected cement volume was measured using CT and lung biopsies were processed for assessment of intravascular fat. Pulsed jet-lavage was feasible in the in vivo setting. In the control group, the injection of PMMA resulted in pulmonary fat embolism and a sudden and significant increase in mean pulmonary arterial pressure. Pulsed jet-lavage prevented any cardiovascular changes and significantly reduced the severity of bone marrow fat embolization. Even though significantly more cement had been injected into the lavaged vertebral bodies, significantly fewer intravascular fat emboli were identified in the lung tissue. Pulsed jet-lavage prevented the cardiovascular complications after PMMA vertebroplasty in sheep and alleviated the severity of pulmonary fat embolism.
Collapse
Affiliation(s)
- Lorin M Benneker
- Department of Orthopedic Surgery, Inselspital, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
31
|
Glucocorticoid induced osteopenia in cancellous bone of sheep: validation of large animal model for spine fusion and biomaterial research. Spine (Phila Pa 1976) 2010; 35:363-70. [PMID: 20110841 DOI: 10.1097/brs.0b013e3181b8e0ff] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Glucocorticoid with low calcium and phosphorus intake induces osteopenia in cancellous bone of sheep. OBJECTIVE To validate a large animal model for spine fusion and biomaterial research. SUMMARY OF BACKGROUND DATA A variety of ovariectomized animals has been used to study osteoporosis. Most experimental spine fusions were based on normal animals, and there is a great need for suitable large animal models with adequate bone size that closely resemble osteoporosis in humans. METHODS Eighteen female skeletal mature sheep were randomly allocated into 3 groups, 6 each. Group 1 (GC-1) received prednisolone (GC) treatment (0.60 mg/kg/day, 5 times weekly) for 7 months. Group 2 (GC-2) received the same treatment as GC-1 for 7 months followed by 3 months without treatment. Group 3 was left untreated and served as the controls. All sheep received restricted diet with low calcium and phosphorus during experiment. After killing the animals, cancellous bone specimens from the vertebra, femurs, and tibias were micro-CT scanned and tested mechanically. Serum biomarkers were determined. RESULTS In lumbar vertebra, the GC treatment resulted in significant decrease of cancellous bone volume fraction and trabecular thickness, and bone strength. However, the microarchitecture and bone strength of GC-2 recovered to a similar level of the controls. A similar trend of microarchitectural changes was also observed in the distal femur and proximal tibia of both GC treated sheep. The bone formation marker serum-osteocalcin was largely reduced in GC-1 compared to the controls, but recovered with a rebound increase at month 10 in GC-2. CONCLUSION The current investigation demonstrates that the changes in microarchitecture and mechanical properties were comparable with those observed in humans after long-term GC treatment. A prolonged GC treatment is needed for a long-term observation to keep osteopenic bone. This model resembles long-term glucocorticoid treated osteoporotic model, and is useful in preclinical studies.
Collapse
|
32
|
Boger A, Benneker LM, Krebs J, Boner V, Heini PF, Gisep A. The effect of pulsed jet lavage in vertebroplasty on injection forces of PMMA bone cement: an animal study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2009; 18:1957-62. [PMID: 19568774 PMCID: PMC2899445 DOI: 10.1007/s00586-009-1079-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 04/09/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
Abstract
Percutaneous vertebroplasty, comprising of the injection of polymethylmethacrylate (PMMA) into vertebral bodies, is an efficient procedure to stabilize osteoporotic compression fractures as well as other weakening lesions. Besides fat embolism, cement leakage is considered to be one of the major and most severe complications during percutaneous vertebroplasty. The viscosity of the PMMA during injection plays a key role in this context. It was shown in vitro that the best way to lower the risk of cement leakage is to inject the cement at higher viscosity, which is requires high injection forces. Injection forces can be reduced by applying a newly developed lavage technique as it was shown in vitro using human cadaver vertebrae. The purpose of this study was to prove the in vitro results in an in vivo model. The investigation was incorporated in an animal study that was performed to evaluate the cardiovascular reaction on cement augmentation using the lavage technique. Injection forces were measured with instrumentation for 1 cc syringes, additionally acquiring plunger displacement. Averaged injection forces measured, ranged from 12 to 130 N and from 28 to 140 N for the lavage group and the control group, respectively. Normalized injection forces (by viscosity and injection speed) showed a trend to be lower for the lavage group in comparison to the control group (P = 0.073). In conclusion, the clinical relevance on the investigated lavage technique concerning lowering injection forces was only shown by trend in the performed animal study. However, it might well be that the effect is more pronounced for osteoporotic vertebral bodies.
Collapse
Affiliation(s)
- Andreas Boger
- R&D Biomaterials, Synthes GmbH, Oberdorf, Switzerland
| | | | - Jörg Krebs
- rH realHealth International AG, Hitzkirch, Switzerland
| | | | - Paul F. Heini
- Department of Orthopaedic Surgery, Inselspital, Bern, Switzerland
| | | |
Collapse
|
33
|
Dvorak G, Reich K, Tangl S, Lill C, Gottschalk-Baron M, Watzek G, Gruber R, Haas R. Periodontal histomorphometry and status of aged sheep subjected to ovariectomy, malnutrition and glucocorticoid application. Arch Oral Biol 2009; 54:857-63. [DOI: 10.1016/j.archoralbio.2009.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 04/08/2009] [Accepted: 05/26/2009] [Indexed: 11/16/2022]
|
34
|
Dvorak G, Gruber R, Huber C, Goldhahn J, Zanoni G, Salaberger D, Watzek G, Haas R. Trabecular Bone Structures in the Edentulous Diastema of Osteoporotic Sheep. J Dent Res 2008; 87:866-70. [DOI: 10.1177/154405910808700918] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The edentulous ovine diastema represents a suitable region for implantological research. Due to distinctive embryonic origin and mechanical loading, the edentulous diastema may respond differently to osteoporosis than tooth-bearing areas. To test this assumption, we subjected geriatric sheep to ovariectomy, calcium-/vitamin-D-restricted diet, and methylprednisolone administration. Adult control sheep remained untreated. Structural parameters and bone mineral density were determined by microcomputed tomography and conventional computed tomography, respectively. We report that the trabecular microstructure in the diastema was preserved from catabolic changes. In contrast, the premolar maxillary region of osteoporotic sheep had diminished trabecular bone mineral density, with the corresponding structural deteriorations. These results suggest that maxillary trabecular bone of the edentulous diastema does not respond to catabolic changes which occur in the tooth-bearing area in osteoporosis. Our findings imply that regional anatomic domains must be considered in the planning of pre-clinical studies, taking osteoporotic changes into account.
Collapse
Affiliation(s)
- G. Dvorak
- Department of Oral Surgery, Medical University Vienna, Währingerstrasse 25a, A-1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Schulthess Klinik Zürich, Switzerland
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Upper Austrian University of Applied Science, Wels, Austria; and
| | - R. Gruber
- Department of Oral Surgery, Medical University Vienna, Währingerstrasse 25a, A-1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Schulthess Klinik Zürich, Switzerland
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Upper Austrian University of Applied Science, Wels, Austria; and
| | - C.D. Huber
- Department of Oral Surgery, Medical University Vienna, Währingerstrasse 25a, A-1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Schulthess Klinik Zürich, Switzerland
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Upper Austrian University of Applied Science, Wels, Austria; and
| | - J. Goldhahn
- Department of Oral Surgery, Medical University Vienna, Währingerstrasse 25a, A-1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Schulthess Klinik Zürich, Switzerland
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Upper Austrian University of Applied Science, Wels, Austria; and
| | - G. Zanoni
- Department of Oral Surgery, Medical University Vienna, Währingerstrasse 25a, A-1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Schulthess Klinik Zürich, Switzerland
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Upper Austrian University of Applied Science, Wels, Austria; and
| | - D. Salaberger
- Department of Oral Surgery, Medical University Vienna, Währingerstrasse 25a, A-1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Schulthess Klinik Zürich, Switzerland
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Upper Austrian University of Applied Science, Wels, Austria; and
| | - G. Watzek
- Department of Oral Surgery, Medical University Vienna, Währingerstrasse 25a, A-1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Schulthess Klinik Zürich, Switzerland
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Upper Austrian University of Applied Science, Wels, Austria; and
| | - R. Haas
- Department of Oral Surgery, Medical University Vienna, Währingerstrasse 25a, A-1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Schulthess Klinik Zürich, Switzerland
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Upper Austrian University of Applied Science, Wels, Austria; and
| |
Collapse
|