1
|
Pedaran M, Oelkrug R, Sun Q, Resch J, Schomburg L, Mittag J. Maternal Thyroid Hormone Programs Cardiovascular Functions in the Offspring. Thyroid 2021; 31:1424-1435. [PMID: 34269617 DOI: 10.1089/thy.2021.0275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background: Maternal thyroid hormone (TH) plays an essential role for fetal development, especially for the cardiovascular system and its central control. However, the precise consequences of altered TH action during the different periods in pregnancy remain poorly understood. Methods: To address this question, we used mice heterozygous for a mutant thyroid hormone receptor α1 (TRα1) and wild-type controls that were born to wild-type mothers treated with 3,3',5-triiodothyronine (T3) during the first or the second half of pregnancy. We then phenotyped the offspring animals as adults by in vivo measurements and postmortem tissue analyses. Results: Maternal T3 treatment in either half of the pregnancy did not affect postnatal growth development. Serum thyroxine and hypophyseal thyrotropin subunit beta or deiodinase type II expression was also not affected in any group, only TRα1 mutant males exhibited a reduction in serum T3 levels after the treatment. Likewise, hepatic deiodinase type I was not altered, but serum selenium levels were reduced by the maternal treatment in wild-type offspring of both genders. Most interestingly, a significant increase in heart weight was found in adult wild-types born to mothers that received T3 during the first or second half of pregnancy, while TRα1 mutant males were protected from this effect. Moreover, we detected a significant increase in heart rate selectively in male mice that were exposed to elevated maternal T3 in the second half of the pregnancy. Conclusion: Taken together, our findings demonstrate that maternal TH is of particular relevance during the second half of pregnancy for establishing cardiac properties, with specific effects depending on TRα1 or gender. The data advocate routinely monitoring TH levels during pregnancy to avoid adverse cardiac effects in the offspring.
Collapse
Affiliation(s)
- Mehdi Pedaran
- Institut für Endokrinologie und Diabetes, Center of Brain Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Rebecca Oelkrug
- Institut für Endokrinologie und Diabetes, Center of Brain Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Qian Sun
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Resch
- Institut für Endokrinologie und Diabetes, Center of Brain Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Lutz Schomburg
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jens Mittag
- Institut für Endokrinologie und Diabetes, Center of Brain Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
2
|
Abel MH, Brandlistuen RE, Caspersen IH, Aase H, Torheim LE, Meltzer HM, Brantsaeter AL. Language delay and poorer school performance in children of mothers with inadequate iodine intake in pregnancy: results from follow-up at 8 years in the Norwegian Mother and Child Cohort Study. Eur J Nutr 2018; 58:3047-3058. [PMID: 30417257 PMCID: PMC6842354 DOI: 10.1007/s00394-018-1850-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/29/2018] [Indexed: 11/25/2022]
Abstract
Purpose Some studies indicate that mild-to-moderate iodine deficiency in pregnant women might negatively affect offspring neurocognitive development, including previous results from the Norwegian Mother and Child Cohort study (MoBa) exploring maternally reported child development at age 3 years. The aim of this follow-up study was to investigate whether maternal iodine intake in pregnancy is associated with language and learning at 8 years of age. Methods The study sample includes 39,471 mother–child pairs participating in MoBa with available information from a validated food frequency questionnaire covering the first half of pregnancy and a questionnaire on child neurocognitive development at 8 years. Multivariable regression was used to explore associations of iodine intake from food and supplements with maternally reported child outcomes. Results Maternal iodine intake from food less than ~ 150 µg/day was associated with poorer child language skills (p-overall = 0.013), reading skills (p-overall = 0.019), and writing skills (p-overall = 0.004) as well as poorer school test result in reading (p < 0.001), and increased likelihood of the child receiving special educational services (p-overall = 0.042) (in non-iodine supplement users). Although significant, differences were generally small. Maternal use of iodine supplements in pregnancy was not significantly associated with any of the outcomes. Conclusions Low habitual iodine intake in pregnant women, i.e., lower than the recommended intake for non-pregnant women, was associated with mothers reporting poorer child language, school performance, and increased likelihood of special educational services. We found no indications of benefits or harm of using iodine-containing supplements in pregnancy. Initiating use in pregnancy might be too late. Electronic supplementary material The online version of this article (10.1007/s00394-018-1850-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marianne H Abel
- Division of Infection Control and Environmental Health, Department of Exposure and Environmental Epidemiology, Norwegian Institute of Public Health, Skøyen, P.O. Box 222, 0213, Oslo, Norway
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs plass, P.O. Box 4, 0130, Oslo, Norway
- Department of Nutrition, Tine, SA, P.O. Box 25, 0051, Oslo, Norway
| | - Ragnhild E Brandlistuen
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Skøyen, P.O. Box 222, 0213, Oslo, Norway
| | - Ida H Caspersen
- Division of Infection Control and Environmental Health, Department of Exposure and Environmental Epidemiology, Norwegian Institute of Public Health, Skøyen, P.O. Box 222, 0213, Oslo, Norway
| | - Heidi Aase
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Skøyen, P.O. Box 222, 0213, Oslo, Norway
| | - Liv E Torheim
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs plass, P.O. Box 4, 0130, Oslo, Norway
| | - Helle Margrete Meltzer
- Division of Infection Control and Environmental Health, Department of Exposure and Environmental Epidemiology, Norwegian Institute of Public Health, Skøyen, P.O. Box 222, 0213, Oslo, Norway
| | - Anne Lise Brantsaeter
- Division of Infection Control and Environmental Health, Department of Exposure and Environmental Epidemiology, Norwegian Institute of Public Health, Skøyen, P.O. Box 222, 0213, Oslo, Norway.
| |
Collapse
|
3
|
Moog NK, Entringer S, Heim C, Wadhwa PD, Kathmann N, Buss C. Influence of maternal thyroid hormones during gestation on fetal brain development. Neuroscience 2017; 342:68-100. [PMID: 26434624 PMCID: PMC4819012 DOI: 10.1016/j.neuroscience.2015.09.070] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/22/2015] [Accepted: 09/25/2015] [Indexed: 01/09/2023]
Abstract
Thyroid hormones (THs) play an obligatory role in many fundamental processes underlying brain development and maturation. The developing embryo/fetus is dependent on maternal supply of TH. The fetal thyroid gland does not commence TH synthesis until mid gestation, and the adverse consequences of severe maternal TH deficiency on offspring neurodevelopment are well established. Recent evidence suggests that even more moderate forms of maternal thyroid dysfunction, particularly during early gestation, may have a long-lasting influence on child cognitive development and risk of neurodevelopmental disorders. Moreover, these observed alterations appear to be largely irreversible after birth. It is, therefore, important to gain a better understanding of the role of maternal thyroid dysfunction on offspring neurodevelopment in terms of the nature, magnitude, time-specificity, and context-specificity of its effects. With respect to the issue of context specificity, it is possible that maternal stress and stress-related biological processes during pregnancy may modulate maternal thyroid function. The possibility of an interaction between the thyroid and stress systems in the context of fetal brain development has, however, not been addressed to date. We begin this review with a brief overview of TH biology during pregnancy and a summary of the literature on its effect on the developing brain. Next, we consider and discuss whether and how processes related to maternal stress and stress biology may interact with and modify the effects of maternal thyroid function on offspring brain development. We synthesize several research areas and identify important knowledge gaps that may warrant further study. The scientific and public health relevance of this review relates to achieving a better understanding of the timing, mechanisms and contexts of thyroid programing of brain development, with implications for early identification of risk, primary prevention and intervention.
Collapse
Affiliation(s)
- N K Moog
- Department of Medical Psychology, Charité University Medicine Berlin, Luisenstrasse 57, 10117 Berlin, Germany
| | - S Entringer
- Department of Medical Psychology, Charité University Medicine Berlin, Luisenstrasse 57, 10117 Berlin, Germany; University of California, Irvine, Development, Health, and Disease Research Program, 333 The City Drive West, Suite 1200, Orange, CA 92868, USA; Department of Pediatrics, University of California, Irvine, School of Medicine, 505 South Main Street, Suite 525, Orange, CA 92868, USA
| | - C Heim
- Department of Medical Psychology, Charité University Medicine Berlin, Luisenstrasse 57, 10117 Berlin, Germany; Department of Biobehavioral Health, Pennsylvania State University, College of Health and Human Development, 219 Biobehavioral Health Building, University Park, PA 16802, USA
| | - P D Wadhwa
- University of California, Irvine, Development, Health, and Disease Research Program, 333 The City Drive West, Suite 1200, Orange, CA 92868, USA; Department of Pediatrics, University of California, Irvine, School of Medicine, 505 South Main Street, Suite 525, Orange, CA 92868, USA; Department of Psychiatry and Human Behavior, University of California, Irvine, School of Medicine, 3117 Gillespie Neuroscience Research Facility, 837 Health Sciences Drive, Irvine, CA 92697, USA; Department of Obstetrics and Gynecology, University of California, Irvine, School of Medicine, 3117 Gillespie Neuroscience Research Facility, 837 Health Sciences Drive, Irvine, CA 92697, USA; Department of Epidemiology, University of California, Irvine, School of Medicine, 3117 Gillespie Neuroscience Research Facility, 837 Health Sciences Drive, Irvine, CA 92697, USA
| | - N Kathmann
- Department of Clinical Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany
| | - C Buss
- Department of Medical Psychology, Charité University Medicine Berlin, Luisenstrasse 57, 10117 Berlin, Germany; University of California, Irvine, Development, Health, and Disease Research Program, 333 The City Drive West, Suite 1200, Orange, CA 92868, USA; Department of Pediatrics, University of California, Irvine, School of Medicine, 505 South Main Street, Suite 525, Orange, CA 92868, USA.
| |
Collapse
|
4
|
Yassaee F, Farahani M, Abadi AR. Prevalence of subclinical hypothyroidism in pregnant women in tehran-iran. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2014; 8:163-6. [PMID: 25083181 PMCID: PMC4107690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 07/22/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Maternal subclinical hypothyroidism during pregnancy is associated with various adverse outcomes. Recent consensus guidelines advocate universal thyroid function screening during pregnancy. There are no data from Iran about the prevalence of thyroid hypofunction in pregnancy. This study aims to find the prevalence of thyroid dysfunction. MATERIALS AND METHODS In this descriptive cross sectional study, thyrotropin (TSH) was measured in 3158 pregnant women irrespective of gestational age from October 2008-March 2012. If TSH was more than 2.5 mIU/L in the first trimester or more than 3 mIU/L in the second or third trimester, free T4 was measured to diagnose subclinical/ overt hypothyroidism. If serum free T4 was in the normal range (0.7-1.8 ng/dl) the diagnosis was subclinical hypothyroidism and if below the normal range, overt hypothyroidism was diagnosed. RESULTS A total of 3158 pregnant women were evaluated. One hundred forty seven of them were diagnosed as hypothyroidism. Subclinical hypothyroidism and overt hypothyroidism were present in 131 (89.1%) and 16 (10.9%) women respectively. Prevalence of subclinical hypothyroidism was 4.15%. Most of the subclinical and overt hypothyroidism cases were diagnosed in the first trimester. CONCLUSION It appears logical to check TSH during pregnancy due to the observed prevalence of subclinical hypothyroidism.
Collapse
Affiliation(s)
- Fakhrolmolouk Yassaee
- Department of Obstetrics and Gynecology, Taleghani University Hospital, Shahid Beheshti University of Medical
Sciences, Tehran, Iran,Department of Obstetrics and Gynecology, Shahid Beheshti University of Medical Sciences, Genomic Research
Center, Infertility and Health Reseach Center, Tehran, Iran,P.O. Box: 1985717413Department of Obstetrics and GynecologyTaleghani University HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Masoumeh Farahani
- Department of Obstetrics and Gynecology, Taleghani University Hospital, Shahid Beheshti University of Medical
Sciences, Tehran, Iran,Department of Obstetrics and Gynecology, Shahid Beheshti University of Medical Sciences, Genomic Research
Center, Infertility and Health Reseach Center, Tehran, Iran
| | - Ali Reza Abadi
- Department of Community Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|