1
|
Entezam A, Fielding A, Ratnayake G, Fontanarosa D. In-silico evaluation of the effect of set-up errors on dose delivery during mouse irradiations with a Cs-137 cell irradiator-based collimator system. Phys Eng Sci Med 2025; 48:21-33. [PMID: 39775458 DOI: 10.1007/s13246-024-01486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/01/2024] [Indexed: 01/11/2025]
Abstract
Set-up errors are a problem for pre-clinical irradiators that lack imaging capabilities. The aim of this study was to investigate the impact of the potential set-up errors on the dose distribution for a mouse with a xenographic tumour irradiated with a standard Cs-137 cell irradiator equipped with an in-house lead collimator with 10 mm diameter apertures. The EGSnrc Monte-Carlo (MC) code was used to simulate the potential errors caused by displacements of the mouse in the irradiation setup. The impact of the simulated set-up displacements on the dose delivered to the xenographic tumour and surrounding organs was assessed. MC dose calculations were performed in a Computed Tomography (CT) derived model of the mouse for the reference position of the tumour in the irradiation setup. The errors were added into the CT data and then the mouse doses for the corresponding shifts were recalculated and dose volume histograms (DVHs) were generated. The investigation was performed for 1 cm and 0.5 cm diameter tumours. The DVH resulting from introducing the maximum setup errors for 1 cm diameter tumours showed up to 35% reduced dose to a significant fraction of the tumour volume. The setup errors demonstrated an insignificant effect on doses for 0.5 cm diameter tumour irradiations. Setup errors were observed to have negligible impact on out of field doses to organs at risk. The dosimetric results presented herein verify the robustness of our collimator system for irradiations of xenograft tumours up to 0.5 cm diameter in the presence of the maximum setup errors.
Collapse
Affiliation(s)
- Amir Entezam
- School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia.
- Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia.
| | - Andrew Fielding
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Gishan Ratnayake
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Radiation Oncology Princess Alexandra-Raymond Terrace, Division of Cancer Services, Queensland Health, Brisbane, Australia
| | - Davide Fontanarosa
- School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Choi DH, Ahn SH, Park K, Choi SH, Kim JS. Development of Total Lymphoid Irradiation (TLI)-Dedicated Shielding and Image-Guided System and Dose Evaluation Using 3D-Printed Rat Phantom. Front Vet Sci 2022; 9:832272. [PMID: 35664845 PMCID: PMC9159376 DOI: 10.3389/fvets.2022.832272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose The purpose of this study is to propose a technique for delivering accurate doses in an image-guided system by developing an experimental setup optimized for total lymphoid irradiation (TLI) in rat lung transplantation. Materials and Methods In this study, a position-controlled shielding system was developed, and the dose was quantitatively evaluated using a 3D rat phantom and Gafchromic EBT3 film. In addition, we made our own image-guided system that allows the position of the rat and the shielding system to be confirmed during TLI. Results As a result of using the position-controlled shielding system, it was found that the doses to the head and lungs were reduced by 93.1 and 87.4%, respectively, of the prescribed doses. In addition, it was shown that the position of the shielding system can be easily confirmed by using the image guidance system. Conclusion A shielding apparatus that can control dose delivery according to the size of the rat can optimize the dose for TLI in rat lung transplantation.
Collapse
Affiliation(s)
- Dong Hyeok Choi
- Department of Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - So Hyun Ahn
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: So Hyun Ahn
| | - Kwangwoo Park
- Department of Radiation Oncology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
- Kwangwoo Park
| | - Sang Hyun Choi
- Research Team of Radiological Physics and Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jin Sung Kim
- Department of Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
3
|
Entezam A, Fielding A, Moi D, Bradley D, Ratnayake G, Sim L, Kralik C, Fontanarosa D. Investigation of scattered dose in a mouse phantom model for pre-clinical dosimetry studies. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Abbott EM, Falzone N, Lenzo N, Vallis KA. Combining External Beam Radiation and Radionuclide Therapies: Rationale, Radiobiology, Results and Roadblocks. Clin Oncol (R Coll Radiol) 2021; 33:735-743. [PMID: 34544640 DOI: 10.1016/j.clon.2021.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/29/2022]
Abstract
The emergence of effective radionuclide therapeutics, such as radium-223 dichloride, [177Lu]Lu-DOTA-TATE and [177Lu]Lu-PSMA ligands, over the last 10 years is driving a rapid expansion in molecular radiotherapy (MRT) research. Clinical trials that are underway will help to define optimal dosing protocols and identify groups of patients who are likely to benefit from this form of treatment. Clinical investigations are also being conducted to combine new MRT agents with other anticancer drugs, with particular emphasis on DNA repair inhibitors and immunotherapeutics. In this review, the case is presented for combining MRT with external beam radiotherapy (EBRT). The technical and dosimetric challenges of combining two radiotherapeutic modalities have impeded progress in the past. However, the need for research into the specific radiobiological effects of radionuclide therapy, which has lagged behind that for EBRT, has been recognised. This, together with innovations in imaging technology, MRT dosimetry tools and EBRT hardware, will facilitate the future use of this important combination of treatments.
Collapse
Affiliation(s)
- E M Abbott
- MIM Software Inc., Cleveland, Ohio, USA.
| | - N Falzone
- GenesisCare, Alexandria, New South Wales, Australia.
| | - N Lenzo
- GenesisCare Theranostics, St John of God Murdoch Cancer Centre, Murdoch, Western Australia, Australia; Department of Medicine, Notre Dame University Australia, Fremantle, Western Australia, Australia
| | - K A Vallis
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
A simple, open and extensible gating Control unit for cardiac and respiratory synchronisation control in small animal MRI and demonstration of its robust performance in steady-state maintained CINE-MRI. Magn Reson Imaging 2021; 81:1-9. [PMID: 33905831 PMCID: PMC8274699 DOI: 10.1016/j.mri.2021.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/22/2021] [Indexed: 11/22/2022]
Abstract
Prospective cardiac gating during MRI is hampered by electromagnetic induction from the rapidly switched imaging gradients into the ECG detection circuit. This is particularly challenging in small animal MRI, as higher heart rates combined with a smaller myocardial mass render routine ECG detection challenging. We have developed an open-hardware system that enables continuously running MRI scans to be performed in conjunction with cardio-respiratory gating such that the relaxation-weighted steady state magnetisation is maintained throughout the scan. This requires that the R-wave must be detected reliably even in the presence of rapidly switching gradients, and that data previously acquired that were corrupted by respiratory motion re-acquired. The accurately maintained steady-state magnetisation leads to an improvement in image quality and removes alterations in intensity that may otherwise occur throughout the cardiac cycle and impact upon automated image analysis. We describe the hardware required to enable this and demonstrate its application and robust performance using prospectively cardio-respiratory gated CINE imaging that is operated at a single, constant TR. Schematics, technical drawings, component listing and assembly instructions are made publicly available.
Collapse
|
6
|
Hörner-Rieber J, Klüter S, Debus J, Adema G, Ansems M, Verheij M. MR-Guided Radiotherapy: The Perfect Partner for Immunotherapy? Front Oncol 2021; 10:615697. [PMID: 33604296 PMCID: PMC7884826 DOI: 10.3389/fonc.2020.615697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
During the last years, preclinical and clinical studies have emerged supporting the rationale to integrate radiotherapy and immunotherapy. Radiotherapy may enhance the effects of immunotherapy by improving tumor antigen release, antigen presentation, and T-cell infiltration. Recently, magnetic resonance guided radiotherapy (MRgRT) has become clinically available. Compared to conventional radiotherapy techniques, MRgRT firstly allows for daily on-table treatment adaptation, which enables both dose escalation for increasing tumor response and superior sparing of radiosensitive organs-at-risk for reducing toxicity. The current review focuses on the potential of combining MR-guided adaptive radiotherapy with immunotherapy by providing an overview on the current status of MRgRT, latest developments in preclinical and clinical radio-immunotherapy, and the unique opportunities and challenges for MR-guided radio-immunotherapy. MRgRT might especially assist in answering open questions in radio-immunotherapy regarding optimal radiation dose, fractionation, timing of immunotherapy, appropriate irradiation volumes, and response prediction.
Collapse
Affiliation(s)
- Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Gosse Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marleen Ansems
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marcel Verheij
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
7
|
Aldridge MD, Peet C, Wan S, Shankar A, Gains JE, Bomanji JB, Gaze MN. Paediatric Molecular Radiotherapy: Challenges and Opportunities. Clin Oncol (R Coll Radiol) 2021; 33:80-91. [PMID: 33246658 DOI: 10.1016/j.clon.2020.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022]
Abstract
The common contemporary indications for paediatric molecular radiotherapy (pMRT) are differentiated thyroid cancer and neuroblastoma. It may also have value in neuroendocrine cancers, and it is being investigated in clinical trials for other diseases. pMRT is the prototypical biomarker-driven, precision therapy, with a unique mode of delivery and mechanism of action. It is safe and well tolerated, compared with other treatments. However, its full potential has not yet been achieved, and its wider use faces a number of challenges and obstacles. Paradoxically, the success of radioactive iodine as a curative treatment for metastatic thyroid cancer has led to a 'one size fits all' approach and limited academic enquiry into optimisation of the conventional treatment regimen, until very recently. Second, the specialised requirements for the delivery of pMRT are available in only a very limited number of centres. This limited capacity and geographical coverage results in reduced accessibility. With few enthusiastic advocates for this treatment modality, investment in research to improve treatments and broaden indications from both industry and national and charitable research funders has historically been suboptimal. Nonetheless, there is now an increasing interest in the opportunities offered by pMRT. Increased research funding has been allocated, and technical developments that will permit innovative approaches in pMRT are available for exploration. A new portfolio of clinical trials is being assembled. These studies should help to move at least some paediatric treatments from simply palliative use into potentially curative protocols. Therapeutic strategies require modification and optimisation to achieve this. The delivery should be personalised and tailored appropriately, with a comprehensive evaluation of tumour and organ-at-risk dosimetry, in alignment with the external beam model of radiotherapy. This article gives an overview of the current status of pMRT, indicating the barriers to progress and identifying ways in which these may be overcome.
Collapse
Affiliation(s)
- M D Aldridge
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK; Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - C Peet
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - S Wan
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - A Shankar
- Department of Paediatric and Adolescent Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - J E Gains
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - J B Bomanji
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - M N Gaze
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
8
|
Kinchesh P, Allen PD, Gilchrist S, Kersemans V, Lanfredini S, Thapa A, O'Neill E, Smart SC. Reduced respiratory motion artefact in constant TR multi-slice MRI of the mouse. Magn Reson Imaging 2019; 60:1-6. [PMID: 30928386 PMCID: PMC6555631 DOI: 10.1016/j.mri.2019.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/20/2019] [Accepted: 03/23/2019] [Indexed: 01/29/2023]
Abstract
PURPOSE Multi-slice scanning in the abdomen and thorax of small animals is compromised by the effects of respiration unless imaging and respiration are synchronised. To avoid the signal modulations that result from respiration motion and a variable TR, blocks of fully relaxed slices are typically acquired during inter-breath periods, at the cost of scan efficiency. This paper reports a conceptually simple yet effective prospective gating acquisition mode for multi-slice scanning in free breathing small animals at any fixed TR of choice with reduced sensitivity to respiratory motion. METHODS Multi-slice scan modes have been implemented in which each slice has its own specific projection or phase encode loop index counter. When a breath is registered RF pulses continue to be applied but data are not acquired, and the corresponding counters remain fixed so that the data are acquired one TR later, providing it coincides with an inter-breath period. The approach is refined to reacquire the slice data that are acquired immediately before each breath is detected. Only the data with reduced motion artefact are used in image reconstruction. The efficacy of the method is demonstrated in the RARE scan mode which is well known to be particularly useful for tumour visualization. RESULTS Validation in mice with RARE demonstrates improved stability with respect to ungated scanning where signal averaging is often used to reduce artefacts. SNR enhancement maps demonstrate the improved efficiency of the proposed method that is equivalent to at least a 2.5 fold reduction in scan time with respect to ungated signal averaging. A steady-state magnetisation transfer contrast prepared gradient echo implementation is observed to highlight tumour structure. Supplementary simulations demonstrate that only small variations in respiration rate are required to enable efficient sampling with the proposed method. CONCLUSIONS The proposed prospective gating acquisition scheme enables efficient multi-slice scanning in small animals at the optimum TR with reduced sensitivity to respiratory motion. The method is compatible with a wide range of complementary methods including non-Cartesian scan modes, partially parallel imaging, and compressed sensing. In particular, the proposed scheme reduces the need for continual close monitoring to effect operator intervention in response to respiratory rate changes, which is both difficult to maintain and precludes high throughput.
Collapse
Affiliation(s)
- Paul Kinchesh
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, United Kingdom.
| | - Philip D Allen
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, United Kingdom
| | - Stuart Gilchrist
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, United Kingdom
| | - Veerle Kersemans
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, United Kingdom
| | - Simone Lanfredini
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, United Kingdom
| | - Asmita Thapa
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, United Kingdom
| | - Eric O'Neill
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, United Kingdom
| | - Sean C Smart
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, United Kingdom
| |
Collapse
|
9
|
Black PJ, Smith DR, Chaudhary K, Xanthopoulos EP, Chin C, Spina CS, Hwang ME, Mayeda M, Wang YF, Connolly EP, Wang TJC, Wuu CS, Hei TK, Cheng SK, Wu CC. Velocity-based Adaptive Registration and Fusion for Fractionated Stereotactic Radiosurgery Using the Small Animal Radiation Research Platform. Int J Radiat Oncol Biol Phys 2018; 102:841-847. [PMID: 29891199 DOI: 10.1016/j.ijrobp.2018.04.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE To implement Velocity-based image fusion and adaptive deformable registration to enable treatment planning for preclinical murine models of fractionated stereotactic radiosurgery (fSRS) using the small animal radiation research platform (SARRP). METHODS AND MATERIALS C57BL6 mice underwent 3 unique cone beam computed tomography (CBCT) scans: 2 in the prone position and a third supine. A single T1-weighted post-contrast magnetic resonance imaging (MRI) series of a murine metastatic brain tumor model was selected for MRI-to-CBCT registration and gross tumor volume (GTV) identification. Two arms were compared: Arm 1, where we performed 3 individual MRI-to-CBCT fusions using rigid registration, contouring GTVs on each, and Arm 2, where the authors performed MRI-to-CBCT fusion and contoured GTV on the first CBCT followed by Velocity-based adaptive registration. The first CBCT and associated GTV were exported from MuriPlan (Xstrahl Life Sciences) into Velocity (Varian Medical Systems, Inc, Palo Alto, CA). In Arm 1, the second and third CBCTs were exported similarly along with associated GTVs (Arm 1), while in Arm 2, the first (prone) CBCT was fused separately to the second (prone) and third (supine) CBCTs, performing deformable registrations on initial CBCTs and applying resulting matrices to the contoured GTV. Resulting GTVs were compared between Arms 1 and 2. RESULTS Comparing GTV overlays using repeated MRI fusion and GTV delineation (Arm 1) versus those of Velocity-based CBCT and GTV adaptive fusion (Arm 2), mean deviations ± standard deviation in the axial, sagittal, and coronal planes were 0.46 ± 0.16, 0.46 ± 0.22, and 0.37 ± 0.22 mm for prone-to-prone and 0.52 ± 0.27, 0.52 ± 0.36, and 0.68 ± 0.31 mm for prone-to-supine adaptive fusions, respectively. CONCLUSIONS Velocity-based adaptive fusion of CBCTs and contoured volumes allows for efficient fSRS planning using a single MRI-to-CBCT fusion. This technique is immediately implementable on current SARRP systems, facilitating advanced preclinical treatment paradigms using existing clinical treatment planning software.
Collapse
Affiliation(s)
- Paul J Black
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Deborah R Smith
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Kunal Chaudhary
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Eric P Xanthopoulos
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Christine Chin
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Catherine S Spina
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Mark E Hwang
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Mark Mayeda
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Yi-Fang Wang
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Eileen P Connolly
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Cheng-Shie Wuu
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Tom K Hei
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York; Center for Radiological Research, Columbia University, New York, New York
| | - Simon K Cheng
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York.
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York.
| |
Collapse
|
10
|
MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors. PLoS One 2018; 13:e0198065. [PMID: 29847586 PMCID: PMC5976174 DOI: 10.1371/journal.pone.0198065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/14/2018] [Indexed: 01/20/2023] Open
Abstract
Multi-modality image-guided radiotherapy is the standard of care in contemporary cancer management; however, it is not common in preclinical settings due to both hardware and software limitations. Soft tissue lesions, such as orthotopic prostate tumors, are difficult to identify using cone beam computed tomography (CBCT) imaging alone. In this study, we characterized a research magnetic resonance (MR) scanner for preclinical studies and created a protocol for combined MR-CBCT image-guided small animal radiotherapy. Two in-house dual-modality, MR and CBCT compatible, phantoms were designed and manufactured using 3D printing technology. The phantoms were used for quality assurance tests and to facilitate end-to-end testing for combined preclinical MR and CBCT based treatment planning. MR and CBCT images of the phantoms were acquired utilizing a Varian 4.7 T scanner and XRad-225Cx irradiator, respectively. The geometry distortion was assessed by comparing MR images to phantom blueprints and CBCT. The corrected MR scans were co-registered with CBCT and subsequently used for treatment planning. The fidelity of 3D printed phantoms compared to the blueprint design yielded favorable agreement as verified with the CBCT measurements. The geometric distortion, which varied between -5% and 11% throughout the scanning volume, was substantially reduced to within 0.4% after correction. The distortion free MR images were co-registered with the corresponding CBCT images and imported into a commercial treatment planning software SmART Plan. The planning target volume (PTV) was on average 19% smaller when contoured on the corrected MR-CBCT images relative to raw images without distortion correction. An MR-CBCT based preclinical workflow was successfully designed and implemented for small animal radiotherapy. Combined MR-CBCT image-guided radiotherapy for preclinical research potentially delivers enhanced relevance to human radiotherapy for various disease sites. This novel protocol is wide-ranging and not limited to the orthotopic prostate tumor study presented in the study.
Collapse
|
11
|
Bolcaen J, Descamps B, Boterberg T, Vanhove C, Goethals I. PET and MRI Guided Irradiation of a Glioblastoma Rat Model Using a Micro-irradiator. J Vis Exp 2017. [PMID: 29364211 DOI: 10.3791/56601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
For decades, small animal radiation research was mostly performed using fairly crude experimental setups applying simple single-beam techniques without the ability to target a specific or well-delineated tumor volume. The delivery of radiation was achieved using fixed radiation sources or linear accelerators producing megavoltage (MV) X-rays. These devices are unable to achieve sub-millimeter precision required for small animals. Furthermore, the high doses delivered to healthy surrounding tissue hamper response assessment. To increase the translation between small animal studies and humans, our goal was to mimic the treatment of human glioblastoma in a rat model. To enable a more accurate irradiation in a preclinical setting, recently, precision image-guided small animal radiation research platforms were developed. Similar to human planning systems, treatment planning on these micro-irradiators is based on computed tomography (CT). However, low soft-tissue contrast on CT makes it very challenging to localize targets in certain tissues, such as the brain. Therefore, incorporating magnetic resonance imaging (MRI), which has excellent soft-tissue contrast compared to CT, would enable a more precise delineation of the target for irradiation. In the last decade also biological imaging techniques, such as positron emission tomography (PET) gained interest for radiation therapy treatment guidance. PET enables the visualization of e.g., glucose consumption, amino-acid transport, or hypoxia, present in the tumor. Targeting those highly proliferative or radio-resistant parts of the tumor with a higher dose could give a survival benefit. This hypothesis led to the introduction of the biological tumor volume (BTV), besides the conventional gross target volume (GTV), clinical target volume (CTV), and planned target volume (PTV). At the preclinical imaging lab of Ghent University, a micro-irradiator, a small animal PET, and a 7 T small animal MRI are available. The goal was to incorporate MRI-guided irradiation and PET-guided sub-volume boosting in a glioblastoma rat model.
Collapse
Affiliation(s)
- Julie Bolcaen
- Department of Nuclear Medicine, Ghent University Hospital;
| | - Benedicte Descamps
- IBiTech-MEDISIP, Department of Electronics and Information Systems, Ghent University
| | - Tom Boterberg
- Department of Radiation Oncology, Ghent University Hospital
| | - Christian Vanhove
- IBiTech-MEDISIP, Department of Electronics and Information Systems, Ghent University
| | | |
Collapse
|
12
|
Cheng P, Hollingsworth B, Scarberry D, Shen DH, Powell K, Smart SC, Beech J, Sheng X, Kirschner LS, Menq CH, Jhiang SM. Automated MicroSPECT/MicroCT Image Analysis of the Mouse Thyroid Gland. Thyroid 2017; 27:1433-1440. [PMID: 28920557 PMCID: PMC5672640 DOI: 10.1089/thy.2017.0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The ability of thyroid follicular cells to take up iodine enables the use of radioactive iodine (RAI) for imaging and targeted killing of RAI-avid thyroid cancer following thyroidectomy. To facilitate identifying novel strategies to improve 131I therapeutic efficacy for patients with RAI refractory disease, it is desired to optimize image acquisition and analysis for preclinical mouse models of thyroid cancer. METHODS A customized mouse cradle was designed and used for microSPECT/CT image acquisition at 1 hour (t1) and 24 hours (t24) post injection of 123I, which mainly reflect RAI influx/efflux equilibrium and RAI retention in the thyroid, respectively. FVB/N mice with normal thyroid glands and TgBRAFV600E mice with thyroid tumors were imaged. In-house CTViewer software was developed to streamline image analysis with new capabilities, along with display of 3D voxel-based 123I gamma photon intensity in MATLAB. RESULTS The customized mouse cradle facilitates consistent tissue configuration among image acquisitions such that rigid body registration can be applied to align serial images of the same mouse via the in-house CTViewer software. CTViewer is designed specifically to streamline SPECT/CT image analysis with functions tailored to quantify thyroid radioiodine uptake. Automatic segmentation of thyroid volumes of interest (VOI) from adjacent salivary glands in t1 images is enabled by superimposing the thyroid VOI from the t24 image onto the corresponding aligned t1 image. The extent of heterogeneity in 123I accumulation within thyroid VOIs can be visualized by 3D display of voxel-based 123I gamma photon intensity. CONCLUSIONS MicroSPECT/CT image acquisition and analysis for thyroidal RAI uptake is greatly improved by the cradle and the CTViewer software, respectively. Furthermore, the approach of superimposing thyroid VOIs from t24 images to select thyroid VOIs on corresponding aligned t1 images can be applied to studies in which the target tissue has differential radiotracer retention from surrounding tissues.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio
| | - Brynn Hollingsworth
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Daniel Scarberry
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Daniel H. Shen
- PET Center and Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kimerly Powell
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Sean C. Smart
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - John Beech
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Xiaochao Sheng
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio
| | | | - Chia-Hsiang Menq
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio
| | - Sissy M. Jhiang
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
13
|
Corroyer-Dulmont A, Falzone N, Kersemans V, Thompson J, Allen DP, Able S, Kartsonaki C, Malcolm J, Kinchesh P, Hill MA, Vojnovic B, Smart SC, Gaze MN, Vallis KA. Improved outcome of 131I-mIBG treatment through combination with external beam radiotherapy in the SK-N-SH mouse model of neuroblastoma. Radiother Oncol 2017; 124:488-495. [PMID: 28595752 PMCID: PMC5636618 DOI: 10.1016/j.radonc.2017.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/03/2022]
Abstract
PURPOSE To assess the efficacy of different schedules for combining external beam radiotherapy (EBRT) with molecular radiotherapy (MRT) using 131I-mIBG in the management of neuroblastoma. MATERIALS AND METHODS BALB/c nu/nu mice bearing SK-N-SH neuroblastoma xenografts were assigned to five treatment groups: 131I-mIBG 24h after EBRT, EBRT 6days after 131I-mIBG, EBRT alone, 131I-mIBG alone and control (untreated). A total of 56 mice were assigned to 3 studies. Study 1: Vessel permeability was evaluated using dynamic contrast-enhanced (DCE)-MRI (n=3). Study 2: Tumour uptake of 131I-mIBG in excised lesions was evaluated by γ-counting and autoradiography (n=28). Study 3: Tumour volume was assessed by longitudinal MR imaging and survival was analysed (n=25). Tumour dosimetry was performed using Monte Carlo simulations of absorbed fractions with the radiation transport code PENELOPE. RESULTS Given alone, both 131I-mIBG and EBRT resulted in a seven-day delay in tumour regrowth. Following EBRT, vessel permeability was evaluated by DCE-MRI and showed an increase at 24h post irradiation that correlated with an increase in 131I-mIBG tumour uptake, absorbed dose and overall survival in the case of combined treatment. Similarly, EBRT administered seven days after MRT to coincide with tumour regrowth, significantly decreased the tumour volume and increased overall survival. CONCLUSIONS This study demonstrates that combining EBRT and MRT has an enhanced therapeutic effect and emphasizes the importance of treatment scheduling according to pathophysiological criteria such as tumour vessel permeability and tumour growth kinetics.
Collapse
Affiliation(s)
| | - Nadia Falzone
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, UK
| | - Veerle Kersemans
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, UK
| | - James Thompson
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, UK
| | - Danny P Allen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, UK
| | - Sarah Able
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, UK
| | | | - Javian Malcolm
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, UK
| | - Paul Kinchesh
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, UK
| | - Mark A Hill
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, UK
| | - Boris Vojnovic
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, UK
| | - Sean C Smart
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, UK
| | - Mark N Gaze
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Katherine A Vallis
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, UK.
| |
Collapse
|
14
|
Kersemans V, Beech JS, Gilchrist S, Kinchesh P, Allen PD, Thompson J, Gomes AL, D’Costa Z, Bird L, Tullis IDC, Newman RG, Corroyer-Dulmont A, Falzone N, Azad A, Vallis KA, Sansom OJ, Muschel RJ, Vojnovic B, Hill MA, Fokas E, Smart SC. An efficient and robust MRI-guided radiotherapy planning approach for targeting abdominal organs and tumours in the mouse. PLoS One 2017; 12:e0176693. [PMID: 28453537 PMCID: PMC5409175 DOI: 10.1371/journal.pone.0176693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/16/2017] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Preclinical CT-guided radiotherapy platforms are increasingly used but the CT images are characterized by poor soft tissue contrast. The aim of this study was to develop a robust and accurate method of MRI-guided radiotherapy (MR-IGRT) delivery to abdominal targets in the mouse. METHODS A multimodality cradle was developed for providing subject immobilisation and its performance was evaluated. Whilst CT was still used for dose calculations, target identification was based on MRI. Each step of the radiotherapy planning procedure was validated initially in vitro using BANG gel dosimeters. Subsequently, MR-IGRT of normal adrenal glands with a size-matched collimated beam was performed. Additionally, the SK-N-SH neuroblastoma xenograft model and the transgenic KPC model of pancreatic ductal adenocarcinoma were used to demonstrate the applicability of our methods for the accurate delivery of radiation to CT-invisible abdominal tumours. RESULTS The BANG gel phantoms demonstrated a targeting efficiency error of 0.56 ± 0.18 mm. The in vivo stability tests of body motion during MR-IGRT and the associated cradle transfer showed that the residual body movements are within this MR-IGRT targeting error. Accurate MR-IGRT of the normal adrenal glands with a size-matched collimated beam was confirmed by γH2AX staining. Regression in tumour volume was observed almost immediately post MR-IGRT in the neuroblastoma model, further demonstrating accuracy of x-ray delivery. Finally, MR-IGRT in the KPC model facilitated precise contouring and comparison of different treatment plans and radiotherapy dose distributions not only to the intra-abdominal tumour but also to the organs at risk. CONCLUSION This is, to our knowledge, the first study to demonstrate preclinical MR-IGRT in intra-abdominal organs. The proposed MR-IGRT method presents a state-of-the-art solution to enabling robust, accurate and efficient targeting of extracranial organs in the mouse and can operate with a sufficiently high throughput to allow fractionated treatments to be given.
Collapse
MESH Headings
- Abdomen/diagnostic imaging
- Abdomen/radiation effects
- Abdominal Neoplasms/diagnostic imaging
- Abdominal Neoplasms/radiotherapy
- Adrenal Glands/diagnostic imaging
- Adrenal Glands/radiation effects
- Animals
- Cell Line, Tumor
- Humans
- Magnetic Resonance Imaging/instrumentation
- Magnetic Resonance Imaging/methods
- Mice, Inbred BALB C
- Mice, Inbred CBA
- Mice, Inbred NOD
- Mice, Nude
- Mice, Transgenic
- Motion
- Multimodal Imaging/instrumentation
- Neoplasm Transplantation
- Phantoms, Imaging
- Radiometry/instrumentation
- Radiotherapy Dosage
- Radiotherapy Planning, Computer-Assisted/instrumentation
- Radiotherapy Planning, Computer-Assisted/methods
- Radiotherapy, Image-Guided/instrumentation
- Radiotherapy, Image-Guided/methods
- Tomography, X-Ray Computed/instrumentation
- Tomography, X-Ray Computed/methods
- Tumor Burden
Collapse
Affiliation(s)
- Veerle Kersemans
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - John S. Beech
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Stuart Gilchrist
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Paul Kinchesh
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Philip D. Allen
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - James Thompson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ana L. Gomes
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Zenobia D’Costa
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Luke Bird
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Iain D. C. Tullis
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Robert G. Newman
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Aurelien Corroyer-Dulmont
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nadia Falzone
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Abul Azad
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Katherine A. Vallis
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Ruth J. Muschel
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Borivoj Vojnovic
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Mark A. Hill
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Emmanouil Fokas
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, Frankfurt, German
- German Cancer Research Center (DKFZ), Heidelberg, Germany, German Cancer Consortium (DKTK) (Partner Site), Frankfurt, Germany
| | - Sean C. Smart
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|