1
|
Ghaderi S, Mohammadi S, Fatehi F. Glymphatic pathway dysfunction in severe obstructive sleep apnea: A meta-analysis. Sleep Med 2025; 131:106528. [PMID: 40267528 DOI: 10.1016/j.sleep.2025.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/11/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Obstructive sleep apnea (OSA), a sleep disorder, is associated with cognitive decline and is potentially linked to glymphatic system dysfunction. This meta-analysis investigates glymphatic function in severe OSA (apnea-hypopnea index ≥30) using the Diffusion Tensor Imaging Analysis along the Perivascular Space (DTI-ALPS) index. METHODS This study followed PRISMA guidelines for systematic reviews and meta-analyses. A comprehensive search of PubMed, Web of Science, Scopus, and Embase was conducted from inception to January 20, 2024. Studies investigating the ALPS index in OSA using DTI were included. Analyses included a random-effects meta-analysis, sensitivity analysis, meta-regression, publication bias evaluation (funnel plot, Egger's test, and Begg's test), and risk of bias assessment. RESULTS Systematic review identified four studies (137 patients with severe OSA and 170 healthy controls (HCs)). Pooled analysis revealed a significant reduction in the DTI-ALPS index in severe OSA patients compared to HCs (standardized mean difference: -0.95, 95 % CI: -1.46 to -0.44, p < 0.001), indicating impaired glymphatic function. Heterogeneity was moderate to high (I2 = 76.07 %), but sensitivity analyses confirmed robustness. Meta-regression analyses identified the sources of heterogeneity as the apnea-hypopnea index (β = -0.039, p = 0.009) and the Epworth Sleepiness Scale (β = -0.150, p = 0.032), with no effects observed for age or male ratio. Qualitative (funnel plot) and quantitative publication bias assessments (Egger's and Begg's tests) showed no significant bias, and risk of bias evaluations using the Newcastle-Ottawa Scale indicated high methodological quality across studies. CONCLUSIONS These findings suggest that severe OSA disrupts glymphatic activity. The DTI-ALPS index emerges as a promising tool for assessing glymphatic dysfunction in OSA.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Botta D, Hutuca I, Ghoul EE, Sveikata L, Assal F, Lövblad KO, Kurz FT. Emerging non-invasive MRI techniques for glymphatic system assessment in neurodegenerative disease. J Neuroradiol 2025; 52:101322. [PMID: 39894249 DOI: 10.1016/j.neurad.2025.101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
The discovery of the glymphatic system has revolutionized our understanding of brain physiology, particularly in waste clearance and fluid dynamics within the central nervous system. This pathway, essential for nutrient distribution and waste removal, operates predominantly during sleep and has been implicated in neurodegenerative diseases like Alzheimer's and Parkinson's. Recent advances in non-invasive MRI techniques, including diffusion tensor imaging along the perivascular space (DTI-ALPS), perivascular space (PVS) analysis, and free water (FW) indices, have improved our ability to study glymphatic function and its alterations in disease states. This review discusses the glymphatic system's ultrastructure, physiology, and the latest imaging methods to assess this critical pathway. We highlight how these non-invasive MRI techniques can enhance the understanding of glymphatic function in health and disease, with a focus on neurodegenerative conditions. By integrating insights from current research, this review underscores the diagnostic and therapeutic implications of glymphatic dysfunction. Understanding these mechanisms can pave the way for novel strategies to enhance waste clearance and improve neurological health, offering potential benefits for early diagnosis and intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniele Botta
- Division of Diagnostic and Interventional Neuroradiology, HUG Geneva University Hospitals, Geneva, Switzerland
| | - Ioana Hutuca
- Division of Radiology, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - Elyas El Ghoul
- Division of Diagnostic and Interventional Neuroradiology, HUG Geneva University Hospitals, Geneva, Switzerland
| | - Lukas Sveikata
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Frédéric Assal
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Karl-Olof Lövblad
- Division of Diagnostic and Interventional Neuroradiology, HUG Geneva University Hospitals, Geneva, Switzerland
| | - Felix T Kurz
- Division of Diagnostic and Interventional Neuroradiology, HUG Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
3
|
Shirbandi K, Jafari M, Mazaheri F, Tahmasbi M. Diffusion Tensor Imaging Along the Perivascular Space Is a Promising Imaging Method in Parkinson's Disease: A Systematic Review and Meta-Analysis Study. CNS Neurosci Ther 2025; 31:e70434. [PMID: 40376934 DOI: 10.1111/cns.70434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/18/2025] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is a chronic, progressive neurodegenerative disorder that primarily affects motor functions. Recently, a diffusion tensor imaging technique called DTI along the perivascular space (DTI-ALPS) has gained attention as a noninvasive biomarker for glymphatic function. This systematic review and meta-analysis aimed to evaluate the potential and implications of the DTI-ALPS index for diagnosing PD. METHODS This study followed the PRISMA 2020 statement. Eligible cohort and cross-sectional studies measured the ALPS index in PD patients versus non-PD participants. Web of Science, Medline, Scopus, Embase, Cochrane, PROSPERO, and ICTRP databases were explored until November 14, 2024. Two researchers independently screened studies, extracted data, and assessed the risk of bias using the Newcastle-Ottawa Scale (NOS). The meta-analysis used a random effects model (REM), assessing heterogeneity (I2, Q-test) and publication bias (Egger's test, trim&fill plot). The certainty of the evidence was evaluated using the GRADE approach. RESULTS This meta-analysis of 11 studies, involving 1462 patients (855 PD, 607 non-PD of both genders), yielded significant findings. The overall ALPS index differed substantially between PD and non-PD groups (SMD: -0.61, 95% CI: -0.72, -0.50, p < 0.001). Additionally, a significant negative correlation emerged between the ALPS index and Unified PD Rating Scale III (UPDRS III) (r = -0.40, (95% CI: -0.59, -0.18, I2: 89.81, p < 0.001)), indicating glymphatic dysfunction's impact on cognitive decline. However, a weak and statistically non-significant correlation was observed between the ALPS index and Montreal Cognitive Assessment (MoCA) (r = 0.24, 95% CI: -0.32 to 0.68), with high heterogeneity across studies (I2 = 87.37, p < 0.001 for heterogeneity). Publication bias risk was low for the overall ALPS index. CONCLUSION These findings highlight the potential of DTI-ALPS as a noninvasive biomarker for PD diagnosis and progression monitoring. Further studies are warranted to explore its applicability in differentiating PD from other neurodegenerative disorders.
Collapse
Affiliation(s)
- Kiarash Shirbandi
- Department of Biomedical Engineering, Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mostafa Jafari
- Department of Radiologic Technology, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Mazaheri
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Marziyeh Tahmasbi
- Department of Radiologic Technology, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Ma C, Liu A, Liu J, Wang X, Cong F, Li Y, Liu J. A window into the brain: multimodal MRI assessment of vascular cognitive impairment. Front Neurosci 2025; 19:1526897. [PMID: 40309660 PMCID: PMC12040843 DOI: 10.3389/fnins.2025.1526897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/25/2025] [Indexed: 05/02/2025] Open
Abstract
Vascular cognitive impairment (VCI) encompasses a diverse range of syndromes, including mild cognitive impairment and vascular dementia (VaD), primarily attributed to cerebrovascular lesions and vascular risk factors. Its prevalence ranks second only to Alzheimer's disease (AD) in neuro diseases. The advancement of medical imaging technology, particularly magnetic resonance imaging (MRI), has enabled the early detection of structural, functional, metabolic, and cerebral connectivity alterations in individuals with VCI. This paper examines the utility of multimodal MRI in evaluating structural changes in the cerebral cortex, integrity of white matter fiber tracts, alterations in the blood-brain barrier (BBB) and glymphatic system (GS) activity, alteration of neurovascular coupling function, assessment of brain connectivity, and assessment of metabolic changes in patients with VCI.
Collapse
Affiliation(s)
- Changjun Ma
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, China
| | - Ailian Liu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiahui Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, China
| | - Xiulin Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, China
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
| | - Ying Li
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, China
| |
Collapse
|
5
|
Chaganti JR, Talekar TK, Brew BJ. Asymmetrical glymphatic dysfunction in patients with long Covid associated neurocognitive impairment- correlation with BBB disruption. BMC Neurol 2025; 25:112. [PMID: 40108491 PMCID: PMC11921593 DOI: 10.1186/s12883-025-04133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND AND PURPOSE The glymphatic system, a waste clearance pathway, has been implicated in several neurological conditions associated with neuroinflammation. COVID-19 associated neurocognitive impairment, part of the post-acute sequelae of SARS-CoV-2 infection (PASC), is strongly associated with neuroinflammation and disrupted blood-brain barrier (BBB). Several studies have implicated a synergistic interaction between the glymphatic system dysfunction and BBB disruption. In this proof-of-concept study, we investigated the role of the MRI metric diffusion along the perivascular spaces DTI (DTI-ALPS) in patients with PASC and correlated this with the BBB capillary permeability metric- K trans derived from Dynamic contrast enhanced (DCE) perfusion. MATERIALS AND METHODS 14 subjects with PASC who had persisting symptoms of anosmia, ageusia, fatigue, and cognitive impairment (CI) and ten healthy age and sex matched controls were recruited. All PASC subjects underwent routine and advanced MR brain imaging at two time points, (3 months +/- 2 weeks) after initial infection - referred as Time Point 1 (TP-1) - and 10 repeated the MRI scan 12 months (+/- 2 weeks) later - referred as Time Point 2 (TP-2), while the controls had MR imaging done only at TP-1. All had mild neurocognitive impairment. In the final analysis we included those who had DTI study at both time points (n-10). MR imaging included DCE perfusion and DTI in addition to anatomical imaging. STATISTICAL ANALYSIS Given the small size of the sample and nonnormality of data in the descriptive analyses, nonparametric analyses were used for group comparisons. A two-sample Wilcoxon rank sum test was used to show the differences in DTI-ALPS between the patients and controls in the predefined regions of interest. Spearman's correlation coefficient (rho) was used to assess the correlation between DTI-ALPS index with K trans. RESULTS There was significant reduction in the DTI-ALPS index between the patients and controls in the left hemisphere (z = 2.04, p < 0.04). However, there was no significant change over time in the index. There was a strong inverse correlation between the central white matter K trans and DTI-ALPS index (rho = 0.66, p < 0.03). CONCLUSION Our study indicates that disordered para vascular drainage, a marker for glymphatic system and BBB damage may contribute to neurocognitive impairment (NCI) among patients with PASC. The DTI-ALPS index, which does not require contrast injection, has the potential to serve as a non-invasive biomarker.
Collapse
Affiliation(s)
- Joga R Chaganti
- Thomas Jefferson University Hospital, Philadelphia, PA, 19107, USA.
| | - Tanush K Talekar
- Advanced Post-Processing Laboratory For Functional MRI and DTI, The Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Bruce James Brew
- University of New South Wales, Sydney, Australia
- Head Neurosciences Program and Peter Duncan Neurosciences Unit, St Vincent's Centre for Applied Medical Research, Sydney, Australia
- Department of Neurology, St Vincent's Hospital, Sydney, Australia
| |
Collapse
|
6
|
Lin B, Leong YY, Mohamad M. Glymphatic system dysfunction in cerebral infarction: advances and perspectives based on DTI-derived ALPS measures. Am J Transl Res 2025; 17:1630-1642. [PMID: 40226042 PMCID: PMC11982858 DOI: 10.62347/oqre2088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/25/2025] [Indexed: 04/15/2025]
Abstract
The glymphatic pathway plays a crucial role in the clearance of metabolic byproducts and solutes from cerebral tissue. Dysfunction of the glymphatic pathway has been associated with various neurological disorders, including ischemic stroke. Diffusion tensor imaging (DTI) and the derived Analysis aLong the Perivascular Space (ALPS) have emerged as promising tools for evaluating glymphatic pathway function. This review aims to summarize the current evidence on the use of DTI-derived ALPS measures in assessing glymphatic dysfunction in ischemic stroke patients, and to explore their potential implications for diagnosis, prognostication, and treatment monitoring in this patient population.
Collapse
Affiliation(s)
- Bomiao Lin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan MalaysiaJalan Raja Muda Abdul Aziz, Wilayah Persekutuan Kuala Lumpur, 50300, Malaysia
- Department of Radiology, Zhujiang Hospital of Southern Medical UniversityGuangzhou, Guangdong, China
| | - Yuh Yang Leong
- Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif Bandar Tun Razak Cheras56000 Kuala Lumpur, Malaysia
| | - Mazlyfarina Mohamad
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan MalaysiaJalan Raja Muda Abdul Aziz, Wilayah Persekutuan Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
7
|
Li T, Wang Q, Yang B, Qu X, Chen W, Wang H, Wang N, Xian J. Glymphatic system impairment in normal tension glaucoma evaluated by diffusion tensor image analysis along the perivascular space. Brain Res 2025; 1850:149450. [PMID: 39793917 DOI: 10.1016/j.brainres.2025.149450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Disruption of the glymphatic system plays a vital role in pathogenesis of neurodegeneration in normal tension glaucoma (NTG). We evaluated the impairment of glymphatic system of NTG patients by diffusion tensor image analysis along the perivascular space (DTI-ALPS), and explored the correlation between the ALPS index and dysfunction of visual cortices in resting state. DTI-ALPS was applied to 37 normal controls (NCs) and 37 NTG patients. Multidirectional diffusivity maps and fractional anisotropy (FA) maps were reconstructed to calculate ALPS index. The Amplitude of low-frequency fluctuation (ALFF) in visual cortices (V1-V5) were calculated using resting-state fMRI. Clinical data and ALPS indexes were compared between the groups. Lateralization of ALPS indexes and differences in visual field of two eyes were analyzed. Subsequently, regression analyses between ALPS indexes and mean deviation (MD) values of bilateral eyes and ALFF of visual cortices were performed. The bilateral ALPS indexes of NTG patients decreased significantly. In NCs and NTG patients, ALPS indexes in right hemisphere were lower than that in left hemisphere. The right ALPS indexes of NTG patients were positively correlated with the MD values of the left eyes. In NTG patients, decreased ALFF was detected in right V1 and bilateral V2-5, and the left ALPS indexes were positively correlated with ALFF in bilateral V1, V2, V5, and right V3V area. The ALPS index decreased in NTG patients, correlated with visual defects and ALFF, indicating impairment of the glymphatic system and the potential to be a biomarker in the future.
Collapse
Affiliation(s)
- Ting Li
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qian Wang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Bingbing Yang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaoxia Qu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Weiwei Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, China
| | - Huaizhou Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, China.
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Choi Y, Jung HJ, Jung HK, Jeong E, Kim S, Kim JY, Lee EJ, Lim YM, Kim H. In vivo imaging markers of glymphatic dysfunction in amyotrophic lateral sclerosis: Analysis of ALPS index and choroid plexus volume. J Neurol Sci 2025; 469:123393. [PMID: 39818026 DOI: 10.1016/j.jns.2025.123393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/24/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND The glymphatic system, essential for brain waste clearance, has been implicated in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Emerging imaging markers, such as the analysis along the perivascular space (ALPS) index and choroid plexus volume (CPV), may provide insights into glymphatic function, but their relevance to ALS remains unclear. OBJECTIVE To assess glymphatic dysfunction in ALS patients using the ALPS index and CPV. METHODS In this prospective single-center study, we analyzed 51 ALS patients and 51 age- and sex-matched healthy controls (HC). The ALPS index was calculated using diffusion tensor imaging, and 3D T1-weighted MRI was used for automated estimation of CPV and its fraction (CPV/total intracranial volume). Diagnostic performance was assessed using area under the receiver operating curve (AUC). Correlations between imaging markers and clinical parameters were also examined. RESULTS ALS patients had a significantly lower ALPS index (ALS: 1.45 ± 0.15; HC: 1.55 ± 0.16; p = 0.002) and higher CPV fraction (ALS: 0.12 ± 0.04 %; HC: 0.10 ± 0.02 %; p < 0.001). The ALPS index and CPV fraction had AUCs of 0.70 and 0.72, respectively. A significant inverse correlation was observed between the ALPS index and CPV fraction (r = -0.31, p = 0.002). Both markers correlated with aging but not with clinical disability or progression rate. CONCLUSION This study identifies glymphatic dysfunction in ALS, as evidenced by changes in the ALPS index and CPV. Larger studies are warranted to validate these findings and assess their potential as biomarkers for ALS.
Collapse
Affiliation(s)
- Yangsean Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hee-Jae Jung
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Ha-Kyung Jung
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Eunseon Jeong
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Shina Kim
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Ji-Yon Kim
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Eun-Jae Lee
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Young-Min Lim
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hyunjin Kim
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Chen S, Wang H, Zhang L, Xi Y, Lu Y, Yu K, Zhu Y, Regina I, Bi Y, Tong F. Glymphatic system: a self-purification circulation in brain. Front Cell Neurosci 2025; 19:1528995. [PMID: 40012567 PMCID: PMC11861344 DOI: 10.3389/fncel.2025.1528995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
The glymphatic system theory introduces a new perspective on fluid flow and homeostasis in the brain. Here, cerebrospinal fluid and interstitial fluid (CSF-ISF) moves from the perivascular spaces (PVS) of arteries to those of veins for drainage. Aquaporin-4 (AQP4) plays a crucial role in driving fluid within the PVS. The impairment to AQP4 is closely linked to the dysfunction of the glymphatic system. The function of the glymphatic system is less active during waking but enhanced during sleep. The efficiency of the glymphatic system decreases with aging. Damage to the glymphatic system will give rise to the development and progression of many brain diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), chronic traumatic encephalopathy (CTE), and vascular dementia (VaD). Here, we reviewed previous research associated with the glymphatic system, including its concepts, principles, and influencing factors. We hypothesize that AQP4 could be a target for the prevention and treatment of certain brain diseases through the regulation on the glymphatic system.
Collapse
Affiliation(s)
- Siying Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Institute of Wound Prevention and Treatment, School of Fundamental Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Huijing Wang
- Institute of Wound Prevention and Treatment, School of Fundamental Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lini Zhang
- Institute of Wound Prevention and Treatment, School of Fundamental Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yingying Xi
- Institute of Wound Prevention and Treatment, School of Fundamental Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yiying Lu
- Institute of Wound Prevention and Treatment, School of Fundamental Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Kailin Yu
- Institute of Wound Prevention and Treatment, School of Fundamental Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yujie Zhu
- Institute of Wound Prevention and Treatment, School of Fundamental Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Izmailova Regina
- Institute of Wound Prevention and Treatment, School of Fundamental Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yong Bi
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Fang Tong
- Institute of Wound Prevention and Treatment, School of Fundamental Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
10
|
Yang J, Liu Y, Ma Y, Zhang W, Han L, Feng H, Chen M, Zhong J. Association of glymphatic clearance function with imaging markers and risk factors of cerebral small vessel disease. J Stroke Cerebrovasc Dis 2025; 34:108187. [PMID: 39667440 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) is a common disease in the elderly, and its pathogenesis is still being explored. Glymphatic clearance function can be evaluated by diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index. This study aims to investigate the changes in glymphatic clearance function in CSVD patients and its relationship with imaging markers and risk factors of CSVD. METHODS The DTI-ALPS index of all participants was calculated. The DTI-ALPS index was compared between the patient group and healthy controls (HCs) group. Pearson correlation analysis was used to analyze the relation between the DTI-ALPS index and CSVD imaging markers, and to explore the effect of mean diffusivity (MD) as a covariate. Regression analysis was used to investigate the correlation between DTI-ALPS index and risk factors. RESULTS The DTI-ALPS index in the bilateral hemispheres of CSVD patients was significantly lower than that in the HCs group (p < 0.001). The DTI-ALPS index in the bilateral hemisphere of CSVD patients was negatively correlated with the grade of EPVS in basal ganglia. There was a significant negative correlation between the left DTI-ALPS index and lacunas, the right DTI-ALPS index and DWMHs. After removing the covariate MD, there was no significant correlation between the DTI-ALPS index and CSVD imaging markers. The DTI-ALPS index was associated with gender, diabetes, drinking and smoking. CONCLUSIONS The CSVD patients have glymphatic clearance dysfunction, which may be related to the imaging features and CSVD risk factors. Meanwhile, it's recommended to consider removing MD as mixed signal.
Collapse
Affiliation(s)
- Jie Yang
- Department of Radiology, Zigong First People's Hospital, Zigong, PR China
| | - Yujian Liu
- Sichuan Vocational College of Health and Rehabilitation, Zigong, PR China
| | - Yuanying Ma
- Department of Radiology, Zigong First People's Hospital, Zigong, PR China
| | - Wei Zhang
- Department of Radiology, Zigong First People's Hospital, Zigong, PR China
| | - Limei Han
- Department of Radiology, Zigong First People's Hospital, Zigong, PR China
| | - Hao Feng
- Department of Radiology, Zigong First People's Hospital, Zigong, PR China
| | - Meining Chen
- MR Research Collaboration, Siemens Healthineers, Shanghai, PR China
| | - Jianquan Zhong
- Department of Radiology, Zigong First People's Hospital, Zigong, PR China.
| |
Collapse
|
11
|
Xiong R, Feng J, Zhu H, Li C, Hu P, Zou Y, Zhou M, Wang Y, Tang X. Evaluation of glymphatic system dysfunction in patients with insomnia via diffusion tensor image analysis along the perivascular space. Quant Imaging Med Surg 2025; 15:1114-1124. [PMID: 39995712 PMCID: PMC11847175 DOI: 10.21037/qims-24-1447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/02/2024] [Indexed: 02/26/2025]
Abstract
Background The glymphatic system is a crucial pathway for the clearance of metabolic waste from the brain, and its dysfunction has been linked to various neurodegenerative disorders. This study examined the connection between insomnia and glymphatic system dysfunction, offering a novel perspective on the pathophysiological mechanisms underlying insomnia. Methods We prospectively recruited 25 patients with insomnia and 37 healthy controls for a case-control study. All participants underwent routine magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) scans. Glymphatic activity was measured via diffusion tensor image analysis along the perivascular space (DTI-ALPS). All patients with insomnia underwent a polysomnogram (PSG) examination and were evaluated using the Pittsburgh Sleep Quality Index (PSQI). We used United Imaging Healthcare artificial intelligence to count the number of enlarged perivascular spaces (ePVSs) in the centrum semiovale, corona radiata, basal ganglia, and hippocampal regions. Results The left ALPS index, right ALPS index, and average ALPS index were found to be lower in the insomnia group than in the control group [P false discovery rate (PFDR)=0.002, 0.002, and 0.002]. There was no difference in the ALPS index between the left and right sides (P>0.05) in healthy control group, insomniac group, or the entire cohort. The average ALPS index was correlated with the proportion of rapid eye movement and N1 stage sleep (r=0.478 and -0.541; PFDR=0.05 and 0.03). The number of ePVSs was not statistically different between groups in the centrum semiovale, the basal ganglia region, the corona radiata region, the hippocampus region, or other regions (PFDR>0.05). Conclusions Insomnia is associated with impairments in glymphatic circulation, and the average ALPS index can serve as an imaging biomarker for glymphatic dysfunction in insomnia, aiding in the prevention of further progression to dementia.
Collapse
Affiliation(s)
- Ruifang Xiong
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China
| | - Jie Feng
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hanting Zhu
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China
| | - Chengyi Li
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China
| | - Pengxin Hu
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China
| | - Yu Zou
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China
| | - Mingyu Zhou
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China
| | - Ye Wang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaoping Tang
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China
- School of Biomedical Engineering, National Graduate College for Engineers, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Jungwon J, Lee JH, Choi CH, Lee J. DTI-ALPS index as a predictor of cognitive decline over 1 year. Neuroradiology 2025; 67:163-170. [PMID: 39680094 DOI: 10.1007/s00234-024-03521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
PURPOSE Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and impaired daily functioning. The glymphatic system removes neurotoxic waste, including amyloid-beta (Aβ), an important factor in AD pathogenesis. This study used the Diffusion Tensor Imaging Analysis Along the Perivascular Space (DTI-ALPS) index, which reflects glymphatic function, to explore its relationship with cognitive decline in patients with probable AD. METHODS We conducted a longitudinal study of 16 participants aged 60-79 years with probable AD who were evaluated using the Clinical Dementia Rating (CDR) and Mini-Mental State Examination (MMSE). Glymphatic function was assessed using the DTI-ALPS index; plasma Aβ 42/40 ratios were measured to account for amyloid pathology. The relationship between the DTI-ALPS index and baseline cognitive function was analyzed using multiple regression models adjusted for age, sex, and plasma Aβ 42/40 ratios. Associations between the DTI-ALPS index and cognitive decline over 1 year were assessed by a model using the percentage change in the MMSE z-score as the outcome variable. RESULTS Higher DTI-ALPS index was significantly associated with better baseline cognitive function as assessed by MMSE (standardized beta = 1.17, p < 0.001) and lower clinical severity as assessed by CDR (standardized beta = - 1.00, p = 0.006). Over the 1-year follow-up, greater baseline DTI-ALPS index values were associated with less cognitive decline (standardized beta = - 0.85, p = 0.018). CONCLUSION Our findings suggest that DTI-ALPS index is associated with cognitive performance and is a biomarker for predicting cognitive decline in AD. Future studies should consider larger sample sizes and longer follow-up periods to validate these findings.
Collapse
Affiliation(s)
- Joo Jungwon
- Department of Psychiatry, Chungbuk National University Hospital, 1 Sunhwan-ro, Cheongju, 28644, Republic of Korea
| | - Ji Hyung Lee
- Department of Psychiatry, Chungbuk National University Hospital, 1 Sunhwan-ro, Cheongju, 28644, Republic of Korea
| | - Chi-Hoon Choi
- Department of Radiology, Chungbuk National University College of Medicine, 1Chungdae-ro, Cheongju, 28644, South Korea
| | - Jeonghwan Lee
- Department of Psychiatry, Chungbuk National University Hospital, 1 Sunhwan-ro, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
13
|
Li H, Yao Q, Huang X, Yang X, Yu C. The role and mechanism of Aβ clearance dysfunction in the glymphatic system in Alzheimer's disease comorbidity. Front Neurol 2024; 15:1474439. [PMID: 39655162 PMCID: PMC11626247 DOI: 10.3389/fneur.2024.1474439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Alzheimer's disease (AD) is the leading type of dementia globally, characterized by a complex pathogenesis that involves various comorbidities. An imbalance in the production and clearance of amyloid β-protein (Aβ) peptides in the brain is a key pathological mechanism of AD, with the glymphatic system playing a crucial role in Aβ clearance. Comorbidities associated with AD, such as diabetes, depression, and hypertension, not only affect Aβ production but also impair the brain's lymphatic system. Abnormalities in the structure and function of this system further weaken Aβ clearance capabilities, and the presence of comorbidities may exacerbate this process. This paper aims to review the role and specific mechanisms of impaired Aβ clearance via the glymphatic system in the context of AD comorbidities, providing new insights for the prevention and treatment of AD. Overall, the damage to the glymphatic system primarily focuses on aquaporin-4 (AQP4) and perivascular spaces (PVS), suggesting that maintaining the health of the glymphatic system may help slow the progression of AD and its comorbidities. Additionally, given the ongoing controversies regarding the structure of the glymphatic system, this paper revisits this structure and discusses the principles and characteristics of current detection methods for the glymphatic system.
Collapse
Affiliation(s)
| | | | | | - Xiaoyan Yang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
14
|
Costa T, Manuello J, Premi E, Mattioli I, Lasagna L, Lahoz CB, Cauda F, Duca S, Liloia D. Evaluating the robustness of DTI-ALPS in clinical context: a meta-analytic parallel on Alzheimer's and Parkinson's diseases. Sci Rep 2024; 14:26381. [PMID: 39487289 PMCID: PMC11530450 DOI: 10.1038/s41598-024-78132-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
In recent years, the glymphatic system has received increasing attention due to its possible implications in biological mechanisms associated with neurodegeneration. In the field of human brain mapping, this led to the development of diffusion tensor image analysis along the perivascular space (DTI-ALPS) index. While this index has been repeatedly used to investigate possible differences between neurodegenerative disorders and healthy controls, a comprehensive evaluation of its stability across multiple measurements and different disorders is still missing. In this study, we perform a Bayesian meta-analysis aiming to assess the consistency of the DTI-ALPS results previously reported for 12 studies on Parkinson's disease and 11 studies on Alzheimer's disease. We also evaluated if the measured value of the DTI-ALPS index can quantitatively inform the diagnostic process, allowing disambiguation between these two disorders. Our results, expressed in terms of Bayes' Factor values, confirmed that the DTI-ALPS index is consistent in measuring the different functioning of the glymphatic system between healthy subjects and patients for both Parkinson's disease (Log10(BF10) = 30) and Alzheimer's disease (Log10(BF10) = 10). Moreover, we showed that the DTI-ALPS can be used to compare these two disorders directly, therefore providing a first proof of concept supporting the reliability of taking into consideration this neuroimaging measurement in the diagnostic process. Our study underscores the potential of the DTI-ALPS index in advancing our understanding of neurodegenerative pathologies and enhancing clinical diagnostics.
Collapse
Affiliation(s)
- Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Laboratory, Department of Psychology, University of Turin, Via Verdi 10, 10124, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
- FOCUS Laboratory, Department of Psychology, University of Turin, Via Verdi 10, 10124, Turin, Italy.
| | - Enrico Premi
- Stroke Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Irene Mattioli
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Luca Lasagna
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Clara Ballonga Lahoz
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Laboratory, Department of Psychology, University of Turin, Via Verdi 10, 10124, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Laboratory, Department of Psychology, University of Turin, Via Verdi 10, 10124, Turin, Italy
| | - Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Laboratory, Department of Psychology, University of Turin, Via Verdi 10, 10124, Turin, Italy
| |
Collapse
|
15
|
Gong Y, Li J, Yuen YS, Yang NS, Li Z, Tang WK, Lu H. Daily high-frequency transcranial random noise stimulation (hf-tRNS) for sleep disturbances and cognitive dysfunction in patients with mild vascular cognitive impairments: A study protocol for a pilot randomized controlled trial. PLoS One 2024; 19:e0309233. [PMID: 39441802 PMCID: PMC11498659 DOI: 10.1371/journal.pone.0309233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/07/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Poor sleep quality is increasingly considered to be an underlying cause of cerebrovascular diseases. This is a slowly progressing condition that gradually leads to vascular cognitive impairment and stroke during ageing. At present, randomized clinical trials examining the non-pharmacological therapies in the management of this comorbidity are very limited. Transcranial current stimulation (tCS) is a non-invasive technology for promoting cognitive function and treating brain disorders. As advanced modalities of tCS, transcranial random noise stimulation (tRNS) and transcranial alternating current stimulation (tACS), could deliver frequency-specific waveforms of currents that can modulate brain activities in a more specific manner. METHODS AND DESIGN Chinese individuals between the ages of 60 and 90 years, who are right-handed and have mild vascular cognitive impairment (VCI) with sleep disturbances, will participate in a randomized study. They will undergo a 2-week intervention period where they will be randomly assigned to one of three groups: high-frequency (hf)-tRNS, 40 Hz tACS, or sham tCS. Each group will consist of 15 participants. Before the intervention, high-resolution magnetic resonance imaging (MRI) data will be used to create a computational head model for each participant. This will help identify the treatment target of left inferior parietal lobe (IPL). Throughout the study, comprehensive assessments will be conducted at multiple time points, including baseline, 2nd week, 6th week, and 12th week. These assessments will evaluate various factors such as sleep quality, domain-specific cognitive performance, and actigraphic records. In addition, the participants' adherence to the program and any potential adverse effects will be closely monitored throughout the duration of the intervention. CONCLUSIONS The primary objective of this study is to examine the safety, feasibility, and effectiveness of hf-tRNS and 40 Hz tACS interventions targeting left IPL in individuals with mild vascular cognitive impairment (VCI) who experience sleep disturbances and cognitive dysfunction. Additionally, the study seeks to evaluate the program's adherence, tolerability, and any potential adverse effects associated with frequency-specific transcranial current stimulation (tCS). The findings from this research will contribute to a deeper understanding of the intricate relationship between oscillation, sleep, and cognition. Furthermore, the results will provide valuable insights to guide future investigations in the field of sleep medicine and neurodegenerative diseases. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT06169254.
Collapse
Affiliation(s)
- Yuqi Gong
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jing Li
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuk Shan Yuen
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Natalie Shu Yang
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | - Zeyan Li
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Kwong Tang
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hanna Lu
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
16
|
Du Y, Huang Z, Wu Y, Xue Y, Che Z. Glymphatic system dysfunction associated with cognitive impairment in chronic tinnitus patients. Front Neurosci 2024; 18:1455294. [PMID: 39308949 PMCID: PMC11412960 DOI: 10.3389/fnins.2024.1455294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Background The glymphatic system has been regarded as a pivotal factor in the pathogenesis of neurodegenerative diseases. Given the heightened risk of cognitive impairment in chronic tinnitus patients, the possible alterations of the glymphatic system in tinnitus patients remain elusive. This study was designed to evaluate glymphatic dysfunction in chronic tinnitus patients using the diffusion tensor imaging (DTI) along the perivascular space (DTI-ALPS) approach. Methods Fifty chronic tinnitus patients and 50 age, sex, and education-matched healthy controls (HCs) with normal hearing thresholds were recruited. The DTI-ALPS was calculated from each group. We investigated the differences in the DTI-ALPS index between the tinnitus patients and HCs. The relationships between the DTI-ALPS index and specific cognitive performance were further assessed. Results There were significant differences in the DTI-ALPS index between the two groups. The DTI-ALPS index was significantly lower in the tinnitus group than in HCs group (p < 0.01). In addition, the Dyyproj index was significantly higher in the tinnitus group than in the HC group (p < 0.01). In chronic tinnitus patients, the decreased DTI-ALPS index was negatively associated with worse TMT-B scores (r = -0.309, p = 0.039). Moreover, the increased Dyyproj index was negatively correlated with the reduced AVLT performances (r = -0.413, p = 0.005). Conclusion In this current study, glymphatic system activity in chronic tinnitus was investigated for the first time using DTI-ALPS index. Significant decrease in glymphatic system function was detected in chronic tinnitus, which correlated well with the specific cognitive performance. The current study may provide pivotal imaging markers for chronic tinnitus with cognitive impairment.
Collapse
Affiliation(s)
- Yinjuan Du
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhichun Huang
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Xue
- Department of Otolaryngology, Nanjing Pukou People’s Hospital, Nanjing, China
| | - Zigang Che
- Department of Radiology, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
17
|
Wright AM, Wu YC, Feng L, Wen Q. Diffusion magnetic resonance imaging of cerebrospinal fluid dynamics: Current techniques and future advancements. NMR IN BIOMEDICINE 2024; 37:e5162. [PMID: 38715420 PMCID: PMC11303114 DOI: 10.1002/nbm.5162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/20/2024] [Accepted: 03/30/2024] [Indexed: 05/22/2024]
Abstract
Cerebrospinal fluid (CSF) plays a critical role in metabolic waste clearance from the brain, requiring its circulation throughout various brain pathways, including the ventricular system, subarachnoid spaces, para-arterial spaces, interstitial spaces, and para-venous spaces. The complexity of CSF circulation has posed a challenge in obtaining noninvasive measurements of CSF dynamics. The assessment of CSF dynamics throughout its various circulatory pathways is possible using diffusion magnetic resonance imaging (MRI) with optimized sensitivity to incoherent water movement across the brain. This review presents an overview of both established and emerging diffusion MRI techniques designed to measure CSF dynamics and their potential clinical applications. The discussion offers insights into the optimization of diffusion MRI acquisition parameters to enhance the sensitivity and specificity of diffusion metrics on underlying CSF dynamics. Lastly, we emphasize the importance of cautious interpretations of diffusion-based imaging, especially when differentiating between tissue- and fluid-related changes or elucidating structural versus functional alterations.
Collapse
Affiliation(s)
- Adam M. Wright
- Department of Radiology and Imaging Sciences, Indiana
University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering Department, Purdue
University, West Lafayette, Indiana, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana
University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering Department, Purdue
University, West Lafayette, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University
School of Medicine, Indianapolis, Indiana, USA
| | - Li Feng
- Center for Advanced Imaging Innovation and Research
(CAI2R), New York University Grossman School of Medicine, New York, New York,
USA
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana
University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering Department, Purdue
University, West Lafayette, Indiana, USA
| |
Collapse
|
18
|
Zhuo J, Raghavan P, Li J, Roys S, Njonkou Tchoquessi RL, Chen H, Wickwire EM, Parikh GY, Schwartzbauer GT, Grattan LM, Wang Z, Gullapalli RP, Badjatia N. Longitudinal assessment of glymphatic changes following mild traumatic brain injury: Insights from perivascular space burden and DTI-ALPS imaging. Front Neurol 2024; 15:1443496. [PMID: 39170078 PMCID: PMC11335690 DOI: 10.3389/fneur.2024.1443496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Traumatic brain injury (TBI) even in the mild form may result in long-lasting post-concussion symptoms. TBI is also a known risk to late-life neurodegeneration. Recent studies suggest that dysfunction in the glymphatic system, responsible for clearing protein waste from the brain, may play a pivotal role in the development of dementia following TBI. Given the diverse nature of TBI, longitudinal investigations are essential to comprehending the dynamic changes in the glymphatic system and its implications for recovery. Methods In this prospective study, we evaluated two promising glymphatic imaging markers, namely the enlarged perivascular space (ePVS) burden and Diffusion Tensor Imaging-based ALPS index, in 44 patients with mTBI at two early post-injury time points: approximately 14 days (14Day) and 6-12 months (6-12Mon) post-injury, while also examining their associations with post-concussion symptoms. Additionally, 37 controls, comprising both orthopedic patients and healthy individuals, were included for comparative analysis. Results Our key findings include: (1) White matter ePVS burden (WM-ePVS) and ALPS index exhibit significant correlations with age. (2) Elevated WM-ePVS burden in acute mTBI (14Day) is significantly linked to a higher number of post-concussion symptoms, particularly memory problems. (3) The increase in the ALPS index from acute (14Day) to the chronic (6-12Mon) phases in mTBI patients correlates with improvement in sleep measures. Furthermore, incorporating WM-ePVS burden and the ALPS index from acute phase enhances the prediction of chronic memory problems beyond socio-demographic and basic clinical information. Conclusion ePVS burden and ALPS index offers distinct values in assessing glymphatic structure and activity. Early evaluation of glymphatic function could be crucial for understanding TBI recovery and developing targeted interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Jiachen Zhuo
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Prashant Raghavan
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jiang Li
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Steven Roys
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rosy Linda Njonkou Tchoquessi
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Hegang Chen
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Emerson M. Wickwire
- Department of Psychiatry and Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Gunjan Y. Parikh
- Program in Trauma, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Gary T. Schwartzbauer
- Program in Trauma, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Lynn M. Grattan
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ze Wang
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rao P. Gullapalli
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Neeraj Badjatia
- Program in Trauma, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
19
|
Taoka T, Ito R, Nakamichi R, Nakane T, Kawai H, Naganawa S. Diffusion Tensor Image Analysis ALong the Perivascular Space (DTI-ALPS): Revisiting the Meaning and Significance of the Method. Magn Reson Med Sci 2024; 23:268-290. [PMID: 38569866 PMCID: PMC11234944 DOI: 10.2463/mrms.rev.2023-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
More than 5 years have passed since the Diffusion Tensor Image Analysis ALong the Perivascular Space (DTI-ALPS) method was proposed with the intention of evaluating the glymphatic system. This method is handy due to its noninvasiveness, provision of a simple index in a straightforward formula, and the possibility of retrospective analysis. Therefore, the ALPS method was adopted to evaluate the glymphatic system for many disorders in many studies. The purpose of this review is to look back and discuss the ALPS method at this moment.The ALPS-index was found to be an indicator of a number of conditions related to the glymphatic system. Thus, although this was expected in the original report, the results of the ALPS method are often interpreted as uniquely corresponding to the function of the glymphatic system. However, a number of subsequent studies have pointed out the problems on the data interpretation. As they rightly point out, a higher ALPS-index indicates predominant Brownian motion of water molecules in the radial direction at the lateral ventricular body level, no more and no less. Fortunately, the term "ALPS-index" has become common and is now known as a common term by many researchers. Therefore, the ALPS-index should simply be expressed as high or low, and whether it reflects a glymphatic system is better to be discussed carefully. In other words, when a decreased ALPS-index is observed, it should be expressed as "decreased ALPS-index" and not directly as "glymphatic dysfunction". Recently, various methods have been proposed to evaluate the glymphatic system. It has become clear that these methods also do not seem to reflect the entirety of the extremely complex glymphatic system. This means that it would be desirable to use various methods in combination to evaluate the glymphatic system in a comprehensive manner.
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rintaro Ito
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rei Nakamichi
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Toshiki Nakane
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Hisashi Kawai
- Department of Radiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
20
|
Zhuo J, Raghavan P, Jiang L, Roys S, Tchoquessi RLN, Chen H, Wickwire EM, Parikh GY, Schwartzbauer GT, Grattan LM, Wang Z, Gullapalli RP, Badjatia N. Longitudinal Assessment of Glymphatic Changes Following Mild Traumatic Brain Injury: Insights from PVS burden and DTI-ALPS Imaging. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.01.24307927. [PMID: 38854000 PMCID: PMC11160843 DOI: 10.1101/2024.06.01.24307927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Traumatic brain injury (TBI) even in the mild form may result in long-lasting post-concussion symptoms. TBI is also a known risk to late-life neurodegeneration. Recent studies suggest that dysfunction in the glymphatic system, responsible for clearing protein waste from the brain, may play a pivotal role in the development of dementia following TBI. Given the diverse nature of TBI, longitudinal investigations are essential to comprehending the dynamic changes in the glymphatic system and its implications for recovery. In this prospective study, we evaluated two promising glymphatic imaging markers, namely the enlarged perivascular space (ePVS) burden and Diffusion Tensor Imaging-based ALPS index, in 44 patients with mTBI at two early post-injury time points: approximately 14 days (14Day) and 6-12 months (6-12Mon) post-injury, while also examining their associations with post-concussion symptoms. Additionally, 37 controls, comprising both orthopedic patients and healthy individuals, were included for comparative analysis. Our key findings include: 1) White matter ePVS burden (WM-ePVS) and ALPS index exhibit significant correlations with age. 2) Elevated WM-ePVS burden in acute mTBI (14Day) is significantly linked to a higher number of post-concussion symptoms, particularly memory problems. 3) The increase in the ALPS index from acute (14Day) to the chronic (6-12Mon) phases in mTBI patients correlates with improvement in sleep measures. Furthermore, incorporating WM-ePVS burden and the ALPS index from acute phase enhances the prediction of chronic memory problems beyond socio-demographic and basic clinical information, highlighting their distinct roles in assessing glymphatic structure and activity. Early evaluation of glymphatic function could be crucial for understanding TBI recovery and developing targeted interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Jiachen Zhuo
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Prashant Raghavan
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Li Jiang
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Steven Roys
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Rosy Linda Njonkou Tchoquessi
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Hegang Chen
- Department of Epidemiology & public Health, University of Maryland School of Medicine, Baltimore, MD
| | - Emerson M. Wickwire
- Department of Psychiatry & Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Gunjan Y. Parikh
- Program in Trauma, University of Maryland School of Medicine, Baltimore, MD
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD
| | - Gary T. Schwartzbauer
- Program in Trauma, University of Maryland School of Medicine, Baltimore, MD
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD
| | - Lynn M. Grattan
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD
| | - Ze Wang
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Rao P. Gullapalli
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Neeraj Badjatia
- Program in Trauma, University of Maryland School of Medicine, Baltimore, MD
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
21
|
Rehman MU, Sehar N, Rasool I, Aldossari RM, Wani AB, Rashid SM, Wali AF, Ali A, Arafah A, Khan A. Glymphatic pathway: An emerging perspective in the pathophysiology of neurodegenerative diseases. Int J Geriatr Psychiatry 2024; 39:e6104. [PMID: 38877354 DOI: 10.1002/gps.6104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
The central nervous system (CNS) is widely recognized as the only organ system without lymphatic capillaries to promote the removal of interstitial metabolic by-products. Thus, the newly identified glymphatic system which provides a pseudolymphatic activity in the nervous system has been focus of latest research in neurosciences. Also, findings reported that, sleep stimulates the elimination actions of glymphatic system and is linked to normal brain homeostatis. The CNS is cleared of potentially hazardous compounds via the glymphatic system, particularly during sleep. Any age-related alterations in brain functioning and pathophysiology of various neurodegenerative illnesses indicates the disturbance of the brain's glymphatic system. In this context, β-amyloid as well as tau leaves the CNS through the glymphatic system, it's functioning and CSF discharge markedly altered in elderly brains as per many findings. Thus, glymphatic failure may have a potential mechanism which may be therapeutically targetable in several neurodegenerative and age-associated cognitive diseases. Therefore, there is an urge to focus for more research into the connection among glymphatic system and several potential brain related diseases. Here, in our current review paper, we reviewed current research on the glymphatic system's involvement in a number of prevalent neurodegenerative and neuropsychiatric diseases and, we also discussed several therapeutic approaches, diet and life style modifications which might be used to acquire a more thorough performance and purpose of the glymphatic system to decipher novel prospects for clinical applicability for the management of these diseases.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nouroz Sehar
- Centre for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Iyman Rasool
- Department of Pathology, Government Medical College (GMC-Srinagar), Srinagar, Jammu and Kashmir, India
| | - Rana M Aldossari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin AbdulAziz University, Al Kharj, Saudi Arabia
| | - Amir Bashir Wani
- Division of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alusteng, Shuhama, Srinagar, Jammu and Kashmir, India
| | - Adil Farooq Wali
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Aarif Ali
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alusteng, Shuhama, Srinagar, Jammu and Kashmir, India
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Andleeb Khan
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
22
|
Zhou L, Yang W, Liu Y, Zheng Y, Ge X, Ai K, Liu G, Zhang J. Moderating effect of education on glymphatic function and cognitive performance in mild cognitive impairment. Front Aging Neurosci 2024; 16:1399943. [PMID: 38756534 PMCID: PMC11096465 DOI: 10.3389/fnagi.2024.1399943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
Objective This research aims to investigate putative mechanisms between glymphatic activity and cognition in mild cognitive impairment (MCI) and analyzes whether the relationship between cognitive reserve (CR) and cognition was mediated by glymphatic activity. Methods 54 MCI patients and 31 NCs were enrolled to evaluate the bilateral diffusivity along the perivascular spaces and to acquire an index for diffusivity along the perivascular space (ALPS-index) on diffusion tensor imaging (DTI). The year of education was used as a proxy for CR. The ALPS-index was compared between two groups and correlation analyses among the ALPS-index, cognitive function, and CR were conducted. Mediation analyses were applied to investigate the correlations among CR, glymphatic activity and cognition. Results MCI group had a significantly lower right ALPS-index and whole brain ALPS-index, but higher bilateral diffusivity along the y-axis in projection fiber area (Dyproj) than NCs. In MCI group, the left Dyproj was negatively related to cognitive test scores and CR, the whole brain ALPS-index was positively correlated with cognitive test scores and CR. Mediation analysis demonstrated that glymphatic activity partially mediated the correlations between CR and cognitive function. Conclusion MCI exhibited decreased glymphatic activity compared to NCs. CR has a protective effect against cognitive decline in MCI, and this effect may be partially mediated by changes in glymphatic activity.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Magnetic Resonance, The Second Hospital of Lanzhou University, Lanzhou, China
- Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Wenxia Yang
- Department of Magnetic Resonance, The Second Hospital of Lanzhou University, Lanzhou, China
- Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yang Liu
- Department of Magnetic Resonance, The Second Hospital of Lanzhou University, Lanzhou, China
- Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yu Zheng
- Department of Magnetic Resonance, The Second Hospital of Lanzhou University, Lanzhou, China
- Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xin Ge
- Department of Magnetic Resonance, The Second Hospital of Lanzhou University, Lanzhou, China
- Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Kai Ai
- Philips Healthcare, Xi’an, China
| | - Guangyao Liu
- Department of Magnetic Resonance, The Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Jing Zhang
- Department of Magnetic Resonance, The Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| |
Collapse
|
23
|
Lopes DM, Wells JA, Ma D, Wallis L, Park D, Llewellyn SK, Ahmed Z, Lythgoe MF, Harrison IF. Glymphatic inhibition exacerbates tau propagation in an Alzheimer's disease model. Alzheimers Res Ther 2024; 16:71. [PMID: 38576025 PMCID: PMC10996277 DOI: 10.1186/s13195-024-01439-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND The aggregation and spread of misfolded amyloid structured proteins, such as tau and α-synuclein, are key pathological features associated with neurodegenerative disorders, including Alzheimer's and Parkinson's disease. These proteins possess a prion-like property, enabling their transmission from cell to cell leading to propagation throughout the central and peripheral nervous systems. While the mechanisms underlying their intracellular spread are still being elucidated, targeting the extracellular space has emerged as a potential therapeutic approach. The glymphatic system, a brain-wide pathway responsible for clearing extracellular metabolic waste from the central nervous system, has gained attention as a promising target for removing these toxic proteins. METHODS In this study, we investigated the impact of long-term modulation of glymphatic function on tau aggregation and spread by chronically treating a mouse model of tau propagation with a pharmacological inhibitor of AQP4, TGN-020. Thy1-hTau.P301S mice were intracerebrally inoculated with tau into the hippocampus and overlying cortex, and subsequently treated with TGN-020 (3 doses/week, 50 mg/kg TGN-020, i.p.) for 10-weeks. During this time, animal memory was studied using cognitive behavioural tasks, and structural MR images were acquired of the brain in vivo prior to brain extraction for immunohistochemical characterisation. RESULTS Our findings demonstrate increased tau aggregation in the brain and transhemispheric propagation in the hippocampus following the inhibition of glymphatic clearance. Moreover, disruption of the glymphatic system aggravated recognition memory in tau inoculated mice and exacerbated regional changes in brain volume detected in the model. When initiation of drug treatment was delayed for several weeks post-inoculation, the alterations were attenuated. CONCLUSIONS These results indicate that by modulating AQP4 function and, consequently, glymphatic clearance, it is possible to modify the propagation and pathological impact of tau in the brain, particularly during the initial stages of the disease. These findings highlight the critical role of the glymphatic system in preserving healthy brain homeostasis and offer valuable insights into the therapeutic implications of targeting this system for managing neurodegenerative diseases characterized by protein aggregation and spread.
Collapse
Affiliation(s)
- Douglas M Lopes
- Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Jack A Wells
- Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Da Ma
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Lauren Wallis
- Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Daniel Park
- Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Sophie K Llewellyn
- Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Zeshan Ahmed
- Neuroscience Next Generation Therapeutics (NGTx), Eli Lilly and Company, Cambridge, MA, USA
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Ian F Harrison
- Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK.
| |
Collapse
|
24
|
Eisen A, Nedergaard M, Gray E, Kiernan MC. The glymphatic system and Amyotrophic lateral sclerosis. Prog Neurobiol 2024; 234:102571. [PMID: 38266701 DOI: 10.1016/j.pneurobio.2024.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/18/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
The glymphatic system and the meningeal lymphatic vessels provide a pathway for transport of solutes and clearance of toxic material from the brain. Of specific relevance to ALS, this is applicable for TDP-43 and glutamate, both major elements in disease pathogenesis. Flow is propelled by arterial pulsation, respiration, posture, as well as the positioning and proportion of aquaporin-4 channels (AQP4). Non-REM slow wave sleep is the is key to glymphatic drainage which discontinues during wakefulness. In Parkinson's disease and Alzheimer's disease, sleep impairment is known to predate the development of characteristic clinical features by several years and is associated with progressive accumulation of toxic proteinaceous products. While sleep issues are well described in ALS, consideration of preclinical sleep impairment or the potential of a failing glymphatic system in ALS has rarely been considered. Here we review how the glymphatic system may impact ALS. Preclinical sleep impairment as an unrecognized major risk factor for ALS is considered, while potential therapeutic options to improve glymphatic flow are explored.
Collapse
Affiliation(s)
- Andrew Eisen
- Department of Neurology, University of British Columbia, Vancouver, Canada.
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical School and Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Emma Gray
- Department of Neurology, Royal Prince Alfred Hospital and University of Sydney, NSW 2050, Australia
| | | |
Collapse
|
25
|
Xu K, Zhang J, Xing C, Xu X, Yin X, Wu Y, Chen X, Chen Y. Evaluation of glymphatic system activity by diffusion tensor image analysis along the perivascular space in presbycusis. CNS Neurosci Ther 2024; 30:e14458. [PMID: 37680170 PMCID: PMC10916424 DOI: 10.1111/cns.14458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/13/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
PURPOSE Previous studies have suggested that presbycusis (age-related hearing loss) is accompanied with cognitive decline and dementia. However, the neural mechanism underlying the cognitive decline in presbycusis remains unclear. This study aimed to evaluate the glymphatic system function in presbycusis patients compared to healthy controls using diffusion tensor imaging (DTI) with the perivascular space (DTI-ALPS) method. METHODS DTI scans were obtained from 30 presbycusis patients with cognitive decline (PCD), 30 presbycusis patients with no cognitive decline (PNCD) and 40 age-, gender-, and education-matched healthy controls (HCs). The DTI-ALPS index was calculated for each group. We evaluated the differences in the DTI-ALPS index among PCD, PNCD and HCs. In addition, we conducted a correlation analysis between the DTI-ALPS index and cognitive performance. RESULTS There were significant differences of the DTI-ALPS index among three groups. Post-hoc analysis suggested that the DTI-ALPS index in PCD was significantly lower patients in relative to PNCD and HCs (1.49147 vs. 1.57441 vs. 1.62020, p < 0.001). After correcting for age, gender, and education, the DTI-ALPS index is positively correlated with the MoCA scores (rho = 0.426, p = 0.026). CONCLUSION Presbycusis patients with cognitive impairment exhibited decreased glymphatic activity than those without cognitive impairment and HCs. The DTI-ALPS index may provide useful disease progression or treatment biomarkers for patients with presbycusis as an indicator of modulation of glymphatic activity.
Collapse
Affiliation(s)
- Kaixi Xu
- Department of RadiologyLianyungang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineLianyungangChina
| | - Juan Zhang
- Department of Neurology, Nanjing Yuhua HospitalYuhua Branch of Nanjing First HospitalNanjingChina
| | - Chunhua Xing
- Department of Radiology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Xiaomin Xu
- Department of Radiology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Xindao Yin
- Department of Radiology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Xinjian Chen
- Department of RadiologyLianyungang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineLianyungangChina
| | - Yu‐Chen Chen
- Department of Radiology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
26
|
Cai Y, Zhang Y, Leng S, Ma Y, Jiang Q, Wen Q, Ju S, Hu J. The relationship between inflammation, impaired glymphatic system, and neurodegenerative disorders: A vicious cycle. Neurobiol Dis 2024; 192:106426. [PMID: 38331353 DOI: 10.1016/j.nbd.2024.106426] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
The term "glymphatic" emerged roughly a decade ago, marking a pivotal point in neuroscience research. The glymphatic system, a glial-dependent perivascular network distributed throughout the brain, has since become a focal point of investigation. There is increasing evidence suggesting that impairment of the glymphatic system appears to be a common feature of neurodegenerative disorders, and this impairment exacerbates as disease progression. Nevertheless, the common factors contributing to glymphatic system dysfunction across most neurodegenerative disorders remain unclear. Inflammation, however, is suspected to play a pivotal role. Dysfunction of the glymphatic system can lead to a significant accumulation of protein and waste products, which can trigger inflammation. The interaction between the glymphatic system and inflammation appears to be cyclical and potentially synergistic. Yet, current research is limited, and there is a lack of comprehensive models explaining this association. In this perspective review, we propose a novel model suggesting that inflammation, impaired glymphatic function, and neurodegenerative disorders interconnected in a vicious cycle. By presenting experimental evidence from the existing literature, we aim to demonstrate that: (1) inflammation aggravates glymphatic system dysfunction, (2) the impaired glymphatic system exacerbated neurodegenerative disorders progression, (3) neurodegenerative disorders progression promotes inflammation. Finally, the implication of proposed model is discussed.
Collapse
Affiliation(s)
- Yu Cai
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yangqiqi Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Shuo Leng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yuanyuan Ma
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI 48202, USA
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W.16th Street, Indianapolis, IN 46202-5188, USA
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.
| | - Jiani Hu
- Department of Radiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
27
|
Okar SV, Fagiani F, Absinta M, Reich DS. Imaging of brain barrier inflammation and brain fluid drainage in human neurological diseases. Cell Mol Life Sci 2024; 81:31. [PMID: 38212566 PMCID: PMC10838199 DOI: 10.1007/s00018-023-05073-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
The intricate relationship between the central nervous system (CNS) and the immune system plays a crucial role in the pathogenesis of various neurological diseases. Understanding the interactions among the immunopathological processes at the brain borders is essential for advancing our knowledge of disease mechanisms and developing novel diagnostic and therapeutic approaches. In this review, we explore the emerging role of neuroimaging in providing valuable insights into brain barrier inflammation and brain fluid drainage in human neurological diseases. Neuroimaging techniques have enabled us not only to visualize and assess brain structures, but also to study the dynamics of the CNS in health and disease in vivo. By analyzing imaging findings, we can gain a deeper understanding of the immunopathology observed at the brain-immune interface barriers, which serve as critical gatekeepers that regulate immune cell trafficking, cytokine release, and clearance of waste products from the brain. This review explores the integration of neuroimaging data with immunopathological findings, providing valuable insights into brain barrier integrity and immune responses in neurological diseases. Such integration may lead to the development of novel diagnostic markers and targeted therapeutic approaches that can benefit patients with neurological disorders.
Collapse
Affiliation(s)
- Serhat V Okar
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Francesca Fagiani
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
- Division of Neuroscience, Vita-Salute San Raffaele University, 20132, Milan, Italy.
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
28
|
Osuna-Ramos JF, Camberos-Barraza J, Torres-Mondragón LE, Rábago-Monzón ÁR, Camacho-Zamora A, Valdez-Flores MA, Angulo-Rojo CE, Guadrón-Llanos AM, Picos-Cárdenas VJ, Calderón-Zamora L, Magaña-Gómez JA, Norzagaray-Valenzuela CD, Cárdenas-Torres FI, De la Herrán-Arita AK. Interplay between the Glymphatic System and the Endocannabinoid System: Implications for Brain Health and Disease. Int J Mol Sci 2023; 24:17458. [PMID: 38139290 PMCID: PMC10743431 DOI: 10.3390/ijms242417458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The intricate mechanisms governing brain health and function have long been subjects of extensive investigation. Recent research has shed light on two pivotal systems, the glymphatic system and the endocannabinoid system, and their profound role within the central nervous system. The glymphatic system is a recently discovered waste clearance system within the brain that facilitates the efficient removal of toxic waste products and metabolites from the central nervous system. It relies on the unique properties of the brain's extracellular space and is primarily driven by cerebrospinal fluid and glial cells. Conversely, the endocannabinoid system, a multifaceted signaling network, is intricately involved in diverse physiological processes and has been associated with modulating synaptic plasticity, nociception, affective states, appetite regulation, and immune responses. This scientific review delves into the intricate interconnections between these two systems, exploring their combined influence on brain health and disease. By elucidating the synergistic effects of glymphatic function and endocannabinoid signaling, this review aims to deepen our understanding of their implications for neurological disorders, immune responses, and cognitive well-being.
Collapse
Affiliation(s)
- Juan F. Osuna-Ramos
- Faculty of Medicine, Autonomous University of Sinaloa, Culiacán 80019, Mexico
| | - Josué Camberos-Barraza
- Faculty of Medicine, Autonomous University of Sinaloa, Culiacán 80019, Mexico
- Doctorado en Biomedicina Molecular, Autonomous University of Sinaloa, Culiacán 80019, Mexico
| | - Laura E. Torres-Mondragón
- Faculty of Medicine, Autonomous University of Sinaloa, Culiacán 80019, Mexico
- Maestría en Biomedicina Molecular, Autonomous University of Sinaloa, Culiacán 80019, Mexico
| | - Ángel R. Rábago-Monzón
- Faculty of Medicine, Autonomous University of Sinaloa, Culiacán 80019, Mexico
- Doctorado en Biomedicina Molecular, Autonomous University of Sinaloa, Culiacán 80019, Mexico
| | | | | | | | | | | | | | - Javier A. Magaña-Gómez
- Faculty of Nutrition Sciences and Gastronomy, Autonomous University of Sinaloa, Culiacán 80019, Mexico
| | | | | | | |
Collapse
|
29
|
He P, Gao Y, Shi L, Li Y, Jiang S, Tie Z, Qiu Y, Ma G, Zhang Y, Nie K, Wang L. Motor progression phenotypes in early-stage Parkinson's Disease: A clinical prediction model and the role of glymphatic system imaging biomarkers. Neurosci Lett 2023; 814:137435. [PMID: 37562710 DOI: 10.1016/j.neulet.2023.137435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Substantial heterogeneity of motor symptoms in Parkinson's disease (PD) poses a challenge to disease prediction. OBJECTIVES The aim of this study was to construct a nomogram model that can distinguish different longitudinal trajectories of motor symptom changes in early-stage PD patients. METHODS Data on 90 patients with 5-years of follow-up were collected from the Parkinson's Progression Marker Initiative (PPMI) cohort. We used a latent class mixed modeling (LCMM) to identify distinct progression patterns of motor symptoms, and backward stepwise logistic regression with baseline information was conducted to identify the potential predictors for motor trajectory and to develop a nomogram. The performance of the nomogram model was then evaluated using the optimism-corrected C-index for internal validation, the area under the curve (AUC) of the receiver operating characteristic (ROC) curve for discrimination, the calibration curve for predictive accuracy, and decision curve analysis (DCA) for its clinical value. RESULTS We identified two trajectories for motor progression patterns. The first, Class 1 (Motor deteriorated group), was characterized by sustained, continuously worsening motor symptoms, and the second, Class 2 (Motor stable group), had stable motor symptoms throughout the follow-up period. The best combination of 7 baseline variables was identified and assembled into the nomogram: Scopa-AUT [odds ratio (OR), 1.11; p = 0.091], Letter number sequencing (LNS) (OR, 0.76; p = 0.068), the asymmetry index of putamen (OR, 0.95; p = 0.034), mean caudate uptake (OR, 0.14; p = 0.086), CSF pTau/α-synuclein (OR, 0.00; p = 0.011), CSF tTau/Aβ (OR, 25434806; p = 0.025), and the index for diffusion tensor image analysis along the perivascular space (ALPS-index) (OR, 0.02; p = 0.030). The nomogram achieved good discrimination, with an original AUC of 0.901 (95% CI, 0.813-0.989), and the bias-corrected concordance index (C-index) with 1,000 bootstraps was 0.834. The calibration curve and DCA also suggested both the high accuracy and clinical usefulness of the nomogram, respectively. CONCLUSIONS This study proposes an effective nomogram to predict different motor progression patterns in early-stage PD. Furthermore, the imaging biomarker indicating glymphatic function could be an independent predictive factor for PD motor progression.
Collapse
Affiliation(s)
- Peikun He
- School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuyuan Gao
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; BrainNow Research Institute, Shenzhen, Guangdong Province, China
| | - Yanyi Li
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shuolin Jiang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zihui Tie
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yihui Qiu
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guixian Ma
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Kun Nie
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Lijuan Wang
- School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
30
|
Gędek A, Koziorowski D, Szlufik S. Assessment of factors influencing glymphatic activity and implications for clinical medicine. Front Neurol 2023; 14:1232304. [PMID: 37767530 PMCID: PMC10520725 DOI: 10.3389/fneur.2023.1232304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The glymphatic system is a highly specialized fluid transport system in the central nervous system. It enables the exchange of the intercellular fluid of the brain, regulation of the movement of this fluid, clearance of unnecessary metabolic products, and, potentially, brain immunity. In this review, based on the latest scientific reports, we present the mechanism of action and function of the glymphatic system and look at the role of factors influencing its activity. Sleep habits, eating patterns, coexisting stress or hypertension, and physical activity can significantly affect glymphatic activity. Modifying them can help to change lives for the better. In the next section of the review, we discuss the connection between the glymphatic system and neurological disorders. Its association with many disease entities suggests that it plays a major role in the physiology of the whole brain, linking many pathophysiological pathways of individual diseases.
Collapse
Affiliation(s)
- Adam Gędek
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- Praski Hospital, Warsaw, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Stanisław Szlufik
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|