1
|
Przystupski D, Baczyńska D, Rossowska J, Kulbacka J, Ussowicz M. Calcium ion delivery by microbubble-assisted sonoporation stimulates cell death in human gastrointestinal cancer cells. Biomed Pharmacother 2024; 179:117339. [PMID: 39216448 DOI: 10.1016/j.biopha.2024.117339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Ultrasound-mediated cell membrane permeabilization - sonoporation, enhances drug delivery directly to tumor sites while reducing systemic side effects. The potential of ultrasound to augment intracellular calcium uptake - a critical regulator of cell death and proliferation - offers innovative alternative to conventional chemotherapy. However, calcium therapeutic applications remain underexplored in sonoporation studies. This research provides a comprehensive analysis of calcium sonoporation (CaSP), which combines ultrasound treatment with calcium ions and SonoVue microbubbles, on gastrointestinal cancer cells LoVo and HPAF-II. Initially, optimal sonoporation parameters were determined: an acoustic wave of 1 MHz frequency with a 50 % duty cycle at intensity of 2 W/cm2. Subsequently, various cellular bioeffects, such as viability, oxidative stress, metabolism, mitochondrial function, proliferation, and cell death, were assessed following CaSP treatment. CaSP significantly impaired cancer cell function by inducing oxidative and metabolic stress, evidenced by increased mitochondrial depolarization, decreased ATP levels, and elevated glucose uptake in a Ca2+ dose-dependent manner, leading to activation of the intrinsic apoptotic pathway. Cellular response to CaSP depended on the TP53 gene's mutational status: colon cancer cells were more susceptible to CaSP-induced apoptosis and G1 phase cell cycle arrest, whereas pancreatic cancer cells showed a higher necrotic response and G2 cell cycle arrest. These promising results encourage future research to optimize sonoporation parameters for clinical use, investigate synergistic effects with existing treatments, and assess long-term safety and efficacy in vivo. Our study highlights CaSP's clinical potential for improved safety and efficacy in cancer therapy, offering significant implications for the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Dawid Przystupski
- Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wroclaw Medical University, Borowska 213, Wroclaw 50-556, Poland.
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, Wroclaw 50-556, Poland
| | - Joanna Rossowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wroclaw 53-114, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, Wroclaw 50-556, Poland; Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių 5, Vilnius 08410, Lithuania
| | - Marek Ussowicz
- Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wroclaw Medical University, Borowska 213, Wroclaw 50-556, Poland
| |
Collapse
|
2
|
Moradi Kashkooli F, Hornsby TK, Kolios MC, Tavakkoli JJ. Ultrasound-mediated nano-sized drug delivery systems for cancer treatment: Multi-scale and multi-physics computational modeling. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1913. [PMID: 37475577 DOI: 10.1002/wnan.1913] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 07/22/2023]
Abstract
Computational modeling enables researchers to study and understand various complex biological phenomena in anticancer drug delivery systems (DDSs), especially nano-sized DDSs (NSDDSs). The combination of NSDDSs and therapeutic ultrasound (TUS), that is, focused ultrasound and low-intensity pulsed ultrasound, has made significant progress in recent years, opening many opportunities for cancer treatment. Multiple parameters require tuning and optimization to develop effective DDSs, such as NSDDSs, in which mathematical modeling can prove advantageous. In silico computational modeling of ultrasound-responsive DDS typically involves a complex framework of acoustic interactions, heat transfer, drug release from nanoparticles, fluid flow, mass transport, and pharmacodynamic governing equations. Owing to the rapid development of computational tools, modeling the different phenomena in multi-scale complex problems involved in drug delivery to tumors has become possible. In the present study, we present an in-depth review of recent advances in the mathematical modeling of TUS-mediated DDSs for cancer treatment. A detailed discussion is also provided on applying these computational models to improve the clinical translation for applications in cancer treatment. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
| | - Tyler K Hornsby
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Shi Z, Hu Y, Li X. Polymer mechanochemistry in drug delivery: From controlled release to precise activation. J Control Release 2023; 365:S0168-3659(23)00703-4. [PMID: 39491171 DOI: 10.1016/j.jconrel.2023.10.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Controlled drug delivery systems that can respond to mechanical force offer a unique solution for on-demand activation and release under physiological conditions. Compression, tension, and shear forces encompass the most commonly utilized mechanical stimuli for controlled drug activation and release. While compression and tension forces have been extensively explored for designing mechanoresponsive drug release systems through object deformation, ultrasound (US) holds advantages in achieving spatiotemporally controlled drug release from micro-/nanocarriers such as microbubbles, liposomes, and micelles. Unlike light-based methods, the US bypasses drawbacks such as phototoxicity and limited tissue penetration. Conventional US-triggered drug release primarily relies on heat-induced phase transitions or chemical transformations in the nano-/micro-scale range. In contrast, the cutting-edge approach of "Sonopharmacology" leverages polymer mechanochemistry, where US-induced shear force activates latent sites containing active pharmaceutical ingredients incorporated into polymer chains more readily than other bonds within the polymeric structure. This article provides a brief overview of controlled drug release systems based on compression and tension, followed by recent significant studies on drug activation using the synergistic effects of US and polymer mechanochemistry. The remaining challenges and potential future directions in this subfield are also discussed. PROGRESS AND POTENTIAL: The precise spatiotemporal control of drug activity using exogenous signals holds great promise for achieving precise disease treatment with minimal side effects. Ultrasound, known for its safety, has found widespread application in clinical settings and offers adjustable tissue penetration depth and drug release control. However, challenges persist in achieving precise control over drug activity using ultrasound. In recent years, ultrasound-induced drug release utilizing the principle of polymer mechanochemistry (Sonopharmacology) has made significant progress and demonstrated its potential in achieving precise drug activation and release. These systems enable drug release at the sub-molecular level, allowing for selective control over drug activation. Sonopharmacology offers a unique advantage by integrating both chemical and biomedical perspectives, positioning it as a promising field with broad implications in polymer chemistry, nanoscience and technology, and pharmaceutics. This review article aims to examine recent advancements in ultrasound-triggered drug activation systems based on polymeric materials and with an focus on polymer mechanochemistry, identify remaining challenges, and propose potential perspectives in this rapidly evolving field. By providing a comprehensive understanding of the progress and potential of sonopharmacology, this article aims to guide future research and inspire the development of innovative drug delivery systems that offer enhanced selectivity and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Zhiyuan Shi
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China.
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China.
| | - Xin Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China.
| |
Collapse
|
4
|
Sharma D, Arora S, Singh J, Layek B. A review of the tortuous path of nonviral gene delivery and recent progress. Int J Biol Macromol 2021; 183:2055-2073. [PMID: 34087309 PMCID: PMC8266766 DOI: 10.1016/j.ijbiomac.2021.05.192] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Gene therapy encompasses the transfer of exogenous genetic materials into the patient's target cells to treat or prevent diseases. Nevertheless, the transfer of genetic material into desired cells is challenging and often requires specialized tools or delivery systems. For the past 40 years, scientists are mainly pursuing various viruses as gene delivery vectors, and the overall progress has been slow and far from the expectation. As an alternative, nonviral vectors have gained substantial attention due to their several advantages, including superior safety profile, enhanced payload capacity, and stealth abilities. Since nonviral vectors encounter multiple extra- and intra-cellular barriers limiting the transfer of genetic payload into the target cell nucleus, we have discussed these barriers in detail for this review. A direct approach, utilizing physical methods like electroporation, sonoporation, gene gun, eliminate the requirement for a specific carrier for gene delivery. In contrast, chemical methods of gene transfer exploit natural or synthetic compounds as carriers to increase cellular targeting and gene therapy effectiveness. We have also emphasized the recent advancements aimed at enhancing the current nonviral approaches. Therefore, in this review, we have focused on discussing the current evolving state of nonviral gene delivery systems and their future perspectives.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA.
| |
Collapse
|
5
|
Fumoto S, Yamamoto T, Okami K, Maemura Y, Terada C, Yamayoshi A, Nishida K. Understanding In Vivo Fate of Nucleic Acid and Gene Medicines for the Rational Design of Drugs. Pharmaceutics 2021; 13:159. [PMID: 33530309 PMCID: PMC7911509 DOI: 10.3390/pharmaceutics13020159] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid and genetic medicines are increasingly being developed, owing to their potential to treat a variety of intractable diseases. A comprehensive understanding of the in vivo fate of these agents is vital for the rational design, discovery, and fast and straightforward development of the drugs. In case of intravascular administration of nucleic acids and genetic medicines, interaction with blood components, especially plasma proteins, is unavoidable. However, on the flip side, such interaction can be utilized wisely to manipulate the pharmacokinetics of the agents. In other words, plasma protein binding can help in suppressing the elimination of nucleic acids from the blood stream and deliver naked oligonucleotides and gene carriers into target cells. To control the distribution of these agents in the body, the ligand conjugation method is widely applied. It is also important to understand intracellular localization. In this context, endocytosis pathway, endosomal escape, and nuclear transport should be considered and discussed. Encapsulated nucleic acids and genes must be dissociated from the carriers to exert their activity. In this review, we summarize the in vivo fate of nucleic acid and gene medicines and provide guidelines for the rational design of drugs.
Collapse
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (T.Y.); (K.O.); (Y.M.); (C.T.); (A.Y.); (K.N.)
| | | | | | | | | | | | | |
Collapse
|
6
|
Gao J, Nesbitt H, Logan K, Burnett K, White B, Jack IG, Taylor MA, Love M, Callan B, McHale AP, Callan JF. An ultrasound responsive microbubble-liposome conjugate for targeted irinotecan-oxaliplatin treatment of pancreatic cancer. Eur J Pharm Biopharm 2020; 157:233-240. [PMID: 33222772 DOI: 10.1016/j.ejpb.2020.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/24/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022]
Abstract
Survival rates in pancreatic cancer have remained largely unchanged over the past four decades with less than 5% of patients surviving five years following initial diagnosis. FOLFIRINOX chemotherapy, a combination of folinic acid, 5-fluoruracil, irinotecan and oxaliplatin, has shown the greatest survival benefit for patients with advanced disease but is only indicated for those with good physical performance status due to its extreme off-target toxicity. Ultrasound targeted microbubble destruction (UTMD) has emerged as an effective strategy for the targeted delivery of drug payloads to solid tumours and involves using low intensity ultrasound to disrupt (burst) MBs in the tumour vasculature, releasing encapsulated or attached drugs in a targeted manner. In this manuscript, we describe the preparation of a microbubble-liposome complex (IRMB-OxLipo) carrying two of the three cytotoxic drugs present in the FOLFIRINOX combination, namely irinotecan and oxaliplatin. Efficacy of the IRMB-OxLipo complex following UTMD was determined in Panc-01 3D spheroid and BxPC-3 human xenograft murine models of pancreatic cancer. The results revealed that tumours treated with the IRMB-OxLipo complex and ultrasound were 136% smaller than tumours treated with the same concentration of irinotecan/oxaliplatin but delivered in a conventional manner, i.e. as a non-complexed mixture. This suggests that UTMD facilitates a more effective delivery of irinotecan/oxaliplatin improving the overall effectiveness of this drug combination and to the best of our knowledge, is the first reported example of a microbubble-liposome complex used to deliver these two chemotherapies.
Collapse
Affiliation(s)
- Jinhui Gao
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Heather Nesbitt
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Keiran Logan
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Kathryn Burnett
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Bronagh White
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Iain G Jack
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Mark A Taylor
- Department of HPB Surgery, Mater Hospital, Belfast, Northern Ireland BT14 6AB, UK
| | - Mark Love
- Imaging Centre, The Royal Victoria Hospital, Grosvenor Road, Belfast, Northern Ireland BT12 6BA, UK
| | - Bridgeen Callan
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Anthony P McHale
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - John F Callan
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK.
| |
Collapse
|
7
|
Loria R, Giliberti C, Bedini A, Palomba R, Caracciolo G, Ceci P, Falvo E, Marconi R, Falcioni R, Bossi G, Strigari L. Very low intensity ultrasounds as a new strategy to improve selective delivery of nanoparticles-complexes in cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:1. [PMID: 30606223 PMCID: PMC6318873 DOI: 10.1186/s13046-018-1018-6] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022]
Abstract
Background The possibility to combine Low Intensity UltraSound (LIUS) and Nanoparticles (NP) could represent a promising strategy for drugs delivery in tumors difficult to treat overcoming resistance to therapies. On one side the NP can carry drugs that specifically target the tumors on the other the LIUS can facilitate and direct the delivery to the tumor cells. In this study, we investigated whether Very Low Intensity UltraSound (VLIUS), at intensities lower than 120 mW/cm2, might constitute a novel strategy to improve delivery to tumor cells. Thus, in order to verify the efficacy of this novel modality in terms of increase selective uptake in tumoral cells and translate speedily in clinical practice, we investigated VLIUS in three different in vitro experimental tumor models and normal cells adopting three different therapeutic strategies. Methods VLIUS at different intensities and exposure time were applied to tumor and normal cells to evaluate the efficiency in uptake of labeled human ferritin (HFt)-based NP, the delivery of NP complexed Firefly luciferase reported gene (lipoplex-LUC), and the tumor-killing of chemotherapeutic agent. Results Specifically, we found that specific VLIUS intensity (120 mW/cm2) increases tumor cell uptake of HFt-based NPs at specific concentration (0.5 mg/ml). Similarly, VLIUS treatments increase significantly tumor cells delivery of lipoplex-LUC cargos. Furthermore, of interest, VLIUS increases tumor killing of chemotherapy drug trabectedin in a time dependent fashion. Noteworthy, VLIUS treatments are well tolerated in normal cells with not significant effects on cell survival, NPs delivery and drug-induced toxicity, suggesting a tumor specific fashion. Conclusions Our data shed novel lights on the potential application of VLIUS for the design and development of novel therapeutic strategies aiming to efficiently deliver NP loaded cargos or anticancer drugs into more aggressive and unresponsive tumors niche. Electronic supplementary material The online version of this article (10.1186/s13046-018-1018-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rossella Loria
- Department of Research, Advanced Diagnostics and Technological Innovation, Area of Translational Research, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Claudia Giliberti
- Dipartimento Innovazioni Tecnologiche e Sicurezza degli Impianti, Prodotti e Insediamenti Antropici (DIT), INAIL, Rome, Italy
| | - Angelico Bedini
- Dipartimento Innovazioni Tecnologiche e Sicurezza degli Impianti, Prodotti e Insediamenti Antropici (DIT), INAIL, Rome, Italy
| | - Raffaele Palomba
- Dipartimento Innovazioni Tecnologiche e Sicurezza degli Impianti, Prodotti e Insediamenti Antropici (DIT), INAIL, Rome, Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Pierpaolo Ceci
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | | | - Raffaella Marconi
- Laboratory of Medical Physics and Expert Systems, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Rita Falcioni
- Department of Research, Advanced Diagnostics and Technological Innovation, Area of Translational Research, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Gianluca Bossi
- Laboratory of Medical Physics and Expert Systems, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.
| | - Lidia Strigari
- Laboratory of Medical Physics and Expert Systems, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
8
|
Wang M, Zhang Y, Cai C, Tu J, Guo X, Zhang D. Sonoporation-induced cell membrane permeabilization and cytoskeleton disassembly at varied acoustic and microbubble-cell parameters. Sci Rep 2018; 8:3885. [PMID: 29497082 PMCID: PMC5832802 DOI: 10.1038/s41598-018-22056-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/15/2018] [Indexed: 11/30/2022] Open
Abstract
Sonoporation mediated by microbubbles has being extensively studied as a promising technique to facilitate gene/drug delivery to cells. Previous studies mainly explored the membrane-level responses to sonoporation. To provide in-depth understanding on this process, various sonoporation-induced cellular responses (e.g., membrane permeabilization and cytoskeleton disassembly) generated at different impact parameters (e.g., acoustic driving pressure and microbubble-cell distances) were systemically investigated in the present work. HeLa cells, whose α-tubulin cytoskeleton was labeled by incorporation of a green fluorescence protein (GFP)-α-tubulin fusion protein, were exposed to a single ultrasound pulse (1 MHz, 20 cycles) in the presence of microbubbles. Intracellular transport via sonoporation was assessed in real time using propidium iodide and the disassembly of α-tubulin cytoskeleton was observed by fluorescence microscope. Meanwhile, the dynamics of an interacting bubble-cell pair was theoretically simulated by boundary element method. Both the experimental observations and numerical simulations showed that, by increasing the acoustic pressure or reducing the bubble-cell distance, intensified deformation could be induced in the cellular membrane, which could result in enhanced intracellular delivery and cytoskeleton disassembly. The current results suggest that more tailored therapeutic strategies could be designed for ultrasound gene/drug delivery by adopting optimal bubble-cell distances and/or better controlling incident acoustic energy.
Collapse
Affiliation(s)
- Maochen Wang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing, 210093, China
| | - Yi Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing, 210093, China
| | - Chenliang Cai
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing, 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing, 210093, China.
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing, 210093, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing, 210093, China.
- The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing, 10080, China.
| |
Collapse
|
9
|
Zullino S, Argenziano M, Stura I, Guiot C, Cavalli R. From Micro- to Nano-Multifunctional Theranostic Platform: Effective Ultrasound Imaging Is Not Just a Matter of Scale. Mol Imaging 2018; 17:1536012118778216. [PMID: 30213222 PMCID: PMC6144578 DOI: 10.1177/1536012118778216] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/20/2018] [Accepted: 04/08/2018] [Indexed: 12/20/2022] Open
Abstract
Ultrasound Contrast Agents (UCAs) consisting of gas-filled-coated Microbubbles (MBs) with diameters between 1 and 10 µm have been used for a number of decades in diagnostic imaging. In recent years, submicron contrast agents have proven to be a viable alternative to MBs for ultrasound (US)-based applications for their capability to extravasate and accumulate in the tumor tissue via the enhanced permeability and retention effect. After a short overview of the more recent approaches to ultrasound-mediated imaging and therapeutics at the nanoscale, phase-change contrast agents (PCCAs), which can be phase-transitioned into highly echogenic MBs by means of US, are here presented. The phenomenon of acoustic droplet vaporization (ADV) to produce bubbles is widely investigated for both imaging and therapeutic applications to develop promising theranostic platforms.
Collapse
Affiliation(s)
- Sara Zullino
- Department of Neuroscience, University of Turin, Turin, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Ilaria Stura
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
| | - Caterina Guiot
- Department of Neuroscience, University of Turin, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
10
|
Domenici F, Brasili F, Giantulli S, Cerroni B, Bedini A, Giliberti C, Palomba R, Silvestri I, Morrone S, Paradossi G, Mattei M, Bordi F. Differential effects on membrane permeability and viability of human keratinocyte cells undergoing very low intensity megasonic fields. Sci Rep 2017; 7:16536. [PMID: 29184110 PMCID: PMC5705699 DOI: 10.1038/s41598-017-16708-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/06/2017] [Indexed: 12/20/2022] Open
Abstract
Among different therapeutic applications of Ultrasound (US), transient membrane sonoporation (SP) - a temporary, non-lethal porosity, mechanically induced in cell membranes through US exposure - represents a compelling opportunity towards an efficient and safe drug delivery. Nevertheless, progresses in this field have been limited by an insufficient understanding of the potential cytotoxic effects of US related to the failure of the cellular repair and to the possible activation of inflammatory pathway. In this framework we studied the in vitro effects of very low-intensity US on a human keratinocyte cell line, which represents an ideal model system of skin protective barrier cells which are the first to be involved during medical US treatments. Bioeffects linked to US application at 1 MHz varying the exposure parameters were investigated by fluorescence microscopy and fluorescence activated cell sorting. Our results indicate that keratinocytes undergoing low US doses can uptake drug model molecules with size and efficiency which depend on exposure parameters. According to sub-cavitation SP models, we have identified the range of doses triggering transient membrane SP, actually with negligible biological damage. By increasing US doses we observed a reduced cells viability and an inflammatory gene overexpression enlightening novel healthy relevant strategies.
Collapse
Affiliation(s)
- F Domenici
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", Rome, Italy.
| | - F Brasili
- Dipartimento di Fisica, Università degli Studi di Roma "Sapienza", Rome, Italy
| | - S Giantulli
- Dipartimento di Fisica, Università degli Studi di Roma "Sapienza", Rome, Italy
| | - B Cerroni
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", Rome, Italy
| | - A Bedini
- Dipartimento Innovazioni Tecnologiche e Sicurezza degli Impianti, Prodotti e Insediamenti Antropici (DIT), INAIL, Monteporzio Catone, Rome, Italy
| | - C Giliberti
- Dipartimento Innovazioni Tecnologiche e Sicurezza degli Impianti, Prodotti e Insediamenti Antropici (DIT), INAIL, Monteporzio Catone, Rome, Italy
| | - R Palomba
- Dipartimento Innovazioni Tecnologiche e Sicurezza degli Impianti, Prodotti e Insediamenti Antropici (DIT), INAIL, Monteporzio Catone, Rome, Italy
| | - I Silvestri
- Dipartimento di Medicina Molecolare, Università degli Studi di Roma "Sapienza", Rome, Italy
| | - S Morrone
- Dipartimento di Medicina Sperimentale, Università degli Studi di Roma "Sapienza", Rome, Italy
| | - G Paradossi
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", Rome, Italy
| | - M Mattei
- Centro Servizi Interdipartimentale - Stazione Tecnologia Animale and Dipartimento di Biologia, Università degli Studi di Roma "Tor Vergata", Rome, Italy
| | - F Bordi
- Dipartimento di Fisica, Università degli Studi di Roma "Sapienza", Rome, Italy
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Florence, Italy
| |
Collapse
|
11
|
Herrero MJ, Sendra L, Miguel A, Aliño SF. Physical Methods of Gene Delivery. SAFETY AND EFFICACY OF GENE-BASED THERAPEUTICS FOR INHERITED DISORDERS 2017:113-135. [DOI: 10.1007/978-3-319-53457-2_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
McClure A. Using High-Intensity Focused Ultrasound as a Means to Provide Targeted Drug Delivery. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2016. [DOI: 10.1177/8756479316663167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
High-intensity focused ultrasound (HIFU)–mediated drug delivery is a relatively novel technique used to deliver drugs to a targeted location in the body. High-intensity focused ultrasound–mediated drug delivery has a broad range of applications, such as tumor therapy, treating central nervous diseases, transsclera drug delivery, and cardiovascular treatments. Targeted treatments prove to be advantageous to systemic treatments due to the reduction in the associated side effects. Thus, this literature review focuses on the various applications of HIFU-mediated drug delivery as well as the mechanism involved. This article is intended to supply the reader with a detailed description of how this technique can be used as well as describe its potential to surpass other treatment methods. Further discussion on the efficiency, limitations, and future of HIFU-mediated drug delivery is addressed. Furthermore, the gaps in the published literature, relative to this topic, are discussed. Ultimately, HIFU-mediated drug delivery is a developing technique that could provide patients with exciting treatment options.
Collapse
Affiliation(s)
- Ashley McClure
- Department of Health Sciences, Medical Sonography Program, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
13
|
Prieur F, Pillon A, Mestas JL, Cartron V, Cèbe P, Chansard N, Lafond M, Lafon C. Enhancement of Fluorescent Probe Penetration into Tumors In Vivo Using Unseeded Inertial Cavitation. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1706-1713. [PMID: 27087691 DOI: 10.1016/j.ultrasmedbio.2016.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 01/18/2016] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
Ultrasound-induced cavitation has found many applications in the field of cancer therapy. One of its beneficial effects is the enhancement of drug intake by tumor cells. Our group has developed a device that can create and control unseeded cavitation in tissue using ultrasound. We conducted experiments on tumor-bearing mice using our device to assess the impact of sonication on the penetration of fluorescent probes into tumor cells. We studied the influence of pressure level, timing of sonication and sonication duration on treatment efficiency. Our results indicate that fluorescent probes penetrate better into tumors exposed to ultrasound. The best results revealed an increase in penetration of 61% and were obtained when sonicating the tumor in presence of the probes with a peak negative pressure at focus of 19 MPa. At this pressure level, the treatment generated only minor skin damage. Treatments could be significantly accelerated as equivalent enhanced penetration of probes was achieved when multiplying the initial raster scan speed by a factor of four.
Collapse
Affiliation(s)
- Fabrice Prieur
- Inserm, U1032, LabTau, Lyon, France; Université de Lyon, Lyon, France.
| | - Arnaud Pillon
- Centre de Recherche en Oncologie Expérimentale, Institut de Recherche Pierre Fabre, Toulouse, France
| | - Jean-Louis Mestas
- Inserm, U1032, LabTau, Lyon, France; Université de Lyon, Lyon, France; Caviskills SAS, Vaulx-en-Velin, France
| | - Valérie Cartron
- Centre de Recherche en Oncologie Expérimentale, Institut de Recherche Pierre Fabre, Toulouse, France
| | - Patrick Cèbe
- Centre de Recherche en Oncologie Expérimentale, Institut de Recherche Pierre Fabre, Toulouse, France
| | - Nathalie Chansard
- Centre de Recherche en Oncologie Expérimentale, Institut de Recherche Pierre Fabre, Toulouse, France
| | - Maxime Lafond
- Inserm, U1032, LabTau, Lyon, France; Université de Lyon, Lyon, France
| | - Cyril Lafon
- Inserm, U1032, LabTau, Lyon, France; Université de Lyon, Lyon, France; Caviskills SAS, Vaulx-en-Velin, France
| |
Collapse
|
14
|
Zhou Y, Wang YN, Farr N, Zia J, Chen H, Ko BM, Khokhlova T, Li T, Hwang JH. Enhancement of Small Molecule Delivery by Pulsed High-Intensity Focused Ultrasound: A Parameter Exploration. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:956-63. [PMID: 26803389 PMCID: PMC4775378 DOI: 10.1016/j.ultrasmedbio.2015.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 05/05/2023]
Abstract
Chemotherapeutic drug delivery is often ineffective within solid tumors, but increasing the drug dose would result in systemic toxicity. The use of high-intensity focused ultrasound (HIFU) has the potential to enhance penetration of small molecules. However, operation parameters need to be optimized before the use of chemotherapeutic drugs in vivo and translation to clinical trials. In this study, the effects of pulsed HIFU (pHIFU) parameters (spatial-average pulse-average intensity, duty factor and pulse repetition frequency) on the penetration as well as content of small molecules were evaluated in ex vivo porcine kidneys. Specific HIFU parameters resulted in more than 40 times greater Evans blue content and 3.5 times the penetration depth compared with untreated samples. When selected parameters were applied to porcine kidneys in vivo, a 2.3-fold increase in concentration was obtained after a 2-min exposure to pHIFU. Pulsed HIFU has been found to be an effective modality to enhance both the concentration and penetration depth of small molecules in tissue using the optimized HIFU parameters. Although, performed in normal tissue, this study has the promise of translation into tumor tissue.
Collapse
Affiliation(s)
- Yufeng Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Yak-Nam Wang
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA.
| | - Navid Farr
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Jasmine Zia
- Division of Gastroenterology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Bong Min Ko
- Digestive Disease Center and Research Institute, Department of Internal Medicine, Soonchunhyang University College of Medicine, Asan, Korea
| | - Tatiana Khokhlova
- Division of Gastroenterology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Tong Li
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Joo Ha Hwang
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA; Division of Gastroenterology, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
15
|
Zhou Y. Application of acoustic droplet vaporization in ultrasound therapy. J Ther Ultrasound 2015; 3:20. [PMID: 26566442 PMCID: PMC4642755 DOI: 10.1186/s40349-015-0041-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/02/2015] [Indexed: 12/20/2022] Open
Abstract
Microbubbles have been used widely both in the ultrasonic diagnosis to enhance the contrast of vasculature and in ultrasound therapy to increase the bioeffects induced by bubble cavitation. However, due to their large size, the lifetime of microbubbles in the circulation system is on the order of minutes, and they cannot penetrate through the endothelial gap to enter the tumor. In an acoustic field, liquefied gas nanoparticles may be able to change the state and become the gas form in a few cycles of exposure without significant heating effects. Such a phenomenon is called as acoustic droplet vaporization (ADV). This review is intended to introduce the emerging application of ADV. The physics and the theoretical model behind it are introduced for further understanding of the mechanisms. Current manufacturing approaches are provided, and their differences are compared. Based on the characteristic of phase shift, a variety of therapeutic applications have been carried out both in vitro and in vivo. The latest progress and interesting results of vessel occlusion, thermal ablation using high-intensity focused ultrasound (HIFU), localized drug delivery to the tumor and cerebral tissue through the blood-brain barrier, localized tissue erosion by histotripsy are summarized. ADV may be able to overcome some limitations of microbubble-mediated ultrasound therapy and provide a novel drug and molecular targeting carrier. More investigation will help progress this technology forward for clinical translation.
Collapse
Affiliation(s)
- Yufeng Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| |
Collapse
|
16
|
Novel delivery approaches for cancer therapeutics. J Control Release 2015; 219:248-268. [PMID: 26456750 DOI: 10.1016/j.jconrel.2015.09.067] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/09/2015] [Accepted: 09/30/2015] [Indexed: 02/07/2023]
Abstract
Currently, a majority of cancer treatment strategies are based on the removal of tumor mass mainly by surgery. Chemical and physical treatments such as chemo- and radiotherapies have also made a major contribution in inhibiting rapid growth of malignant cells. Furthermore, these approaches are often combined to enhance therapeutic indices. It is widely known that surgery, chemo- and radiotherapy also inhibit normal cells growth. In addition, these treatment modalities are associated with severe side effects and high toxicity which in turn lead to low quality of life. This review encompasses novel strategies for more effective chemotherapeutic delivery aiming to generate better prognosis. Currently, cancer treatment is a highly dynamic field and significant advances are being made in the development of novel cancer treatment strategies. In contrast to conventional cancer therapeutics, novel approaches such as ligand or receptor based targeting, triggered release, intracellular drug targeting, gene delivery, cancer stem cell therapy, magnetic drug targeting and ultrasound-mediated drug delivery, have added new modalities for cancer treatment. These approaches have led to selective detection of malignant cells leading to their eradication with minimal side effects. Lowering multi-drug resistance and involving influx transportation in targeted drug delivery to cancer cells can also contribute significantly in the therapeutic interventions in cancer.
Collapse
|
17
|
Yu H, Lin Z, Xu L, Liu D, Shen Y. Theoretical study of microbubble dynamics in sonoporation. ULTRASONICS 2015; 61:136-144. [PMID: 25957067 DOI: 10.1016/j.ultras.2015.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 04/20/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
Sonoporation is a promising technology for promoting the transfer of drug or gene into cells using ultrasound-mediated microbubbles that transiently break up the cell membrane. In this article, a model is established to analyze the dynamics of ultrasound-mediated microbubble near the cell membrane, which may be especially useful for understanding the mechanisms of sonoporation. In the model, the velocity potential of fluid on the microbubble surface and on the cell membrane is obtained by the unsteady Bernoulli equations, and it is solved by using the boundary integral equations. By numerically analyzing the model, the typical microbubble dynamics near the cell membrane are enumerated, which may be mainly governed by mechanical index. The model also established the connections among the parameters of ultrasound exposure, microbubble characteristics, and cell membrane properties in sonoporation.
Collapse
Affiliation(s)
- Hao Yu
- Biomedical Engineering Department, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Zhongshi Lin
- Shenzhen Institute for Drug Control, Shenzhen 518056, China
| | - Liang Xu
- Shenzhen Institute for Drug Control, Shenzhen 518056, China
| | - Dalong Liu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yuanyuan Shen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Department of Biomedical Engineering, School of Medicine, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
18
|
Baronzio G, Parmar G, Baronzio M. Overview of Methods for Overcoming Hindrance to Drug Delivery to Tumors, with Special Attention to Tumor Interstitial Fluid. Front Oncol 2015; 5:165. [PMID: 26258072 PMCID: PMC4512202 DOI: 10.3389/fonc.2015.00165] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/06/2015] [Indexed: 12/24/2022] Open
Abstract
Every drug used to treat cancer (chemotherapeutics, immunological, monoclonal antibodies, nanoparticles, radionuclides) must reach the targeted cells through the tumor environment at adequate concentrations, in order to exert their cell-killing effects. For any of these agents to reach the goal cells, they must overcome a number of impediments created by the tumor microenvironment (TME), beginning with tumor interstitial fluid pressure (TIFP), and a multifactorial increase in composition of the extracellular matrix (ECM). A primary modifier of TME is hypoxia, which increases the production of growth factors, such as vascular endothelial growth factor and platelet-derived growth factor. These growth factors released by both tumor cells and bone marrow recruited myeloid cells form abnormal vasculature characterized by vessels that are tortuous and more permeable. Increased leakiness combined with increased inflammatory byproducts accumulates fluid within the tumor mass (tumor interstitial fluid), ultimately creating an increased pressure (TIFP). Fibroblasts are also up-regulated by the TME, and deposit fibers that further augment the density of the ECM, thus, further worsening the TIFP. Increased TIFP with the ECM are the major obstacles to adequate drug delivery. By decreasing TIFP and ECM density, we can expect an associated rise in drug concentration within the tumor itself. In this overview, we will describe all the methods (drugs, nutraceuticals, and physical methods of treatment) able to lower TIFP and to modify ECM used for increasing drug concentration within the tumor tissue.
Collapse
Affiliation(s)
| | - Gurdev Parmar
- Integrated Health Clinic , Fort Langley, BC , Canada
| | - Miriam Baronzio
- Integrative Oncology Section, Medical Center Kines , Milan , Italy
| |
Collapse
|
19
|
Murugappan SK, Zhou Y. Transsclera Drug Delivery by Pulsed High-Intensity Focused Ultrasound (HIFU): An Ex Vivo Study. Curr Eye Res 2014; 40:1172-80. [PMID: 25380302 DOI: 10.3109/02713683.2014.980006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED PURPOSE/AIM OF STUDY: Drug delivery to the ocular posterior segment is of importance, but it is a challenge in the treatment of irreversible blindness disease, such as age-related macular degeneration. Although some methods (i.e. intraocular injection, sustained release by polymer and iontophoresis) have been applied, some technical drawbacks, such as slow rate and damage to the eye, need to be overcome for wide use. MATERIALS AND METHODS In this study, the feasibility of high-intensity focused ultrasound (HIFU) to enhance the transsclera drug delivery was tested for the first time. One-hundred HIFU pulses with the driving frequency of 1.1 MHz, acoustic power of 105.6 W, pulse duration of 10-50 ms and pulse repetition frequency of 1 Hz were delivered to the fresh ex vivo porcine sclera specimen. RESULTS In comparison to the passive diffusion (control), 50-ms HIFU can increase the penetration depth by 2.0 folds (501.7 ± 126.4 µm versus 252.4 ± 29.2 µm) using bicinchoninic acid assay and Rhodamine 6 G fluorescence intensity by 3.1 folds (22.4 ± 12.3 versus 7.1 ± 4.1) and coverage area by 2.6 folds (40.4 ± 9.1% versus 15.8 ± 2.9%). No morphological changes on the sonicated sclera samples were found using a surface electron microscope. CONCLUSIONS In summary, pulsed-HIFU may be an effective modality in the transsclera drug delivery with a high transporting rate and depth. In vivo studies are necessary to further evaluate its performance, including the drug penetration and its possible side effects.
Collapse
Affiliation(s)
- Suresh Kanna Murugappan
- a Division of Engineering Mechanics , School of Mechanical and Aerospace Engineering, Nanyang Technological University , Singapore
| | - Yufeng Zhou
- a Division of Engineering Mechanics , School of Mechanical and Aerospace Engineering, Nanyang Technological University , Singapore
| |
Collapse
|
20
|
Lakshmanan S, Gupta GK, Avci P, Chandran R, Sadasivam M, Jorge AES, Hamblin MR. Physical energy for drug delivery; poration, concentration and activation. Adv Drug Deliv Rev 2014; 71:98-114. [PMID: 23751778 DOI: 10.1016/j.addr.2013.05.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/15/2013] [Accepted: 05/31/2013] [Indexed: 12/11/2022]
Abstract
Techniques for controlling the rate and duration of drug delivery, while targeting specific locations of the body for treatment, to deliver the cargo (drugs or DNA) to particular parts of the body by what are becoming called "smart drug carriers" have gained increased attention during recent years. Using such smart carriers, researchers have also been investigating a number of physical energy forces including: magnetic fields, ultrasound, electric fields, temperature gradients, photoactivation or photorelease mechanisms, and mechanical forces to enhance drug delivery within the targeted cells or tissues and also to activate the drugs using a similar or a different type of external trigger. This review aims to cover a number of such physical energy modalities. Various advanced techniques such as magnetoporation, electroporation, iontophoresis, sonoporation/mechnoporation, phonophoresis, optoporation and thermoporation will be covered in the review. Special emphasis will be placed on photodynamic therapy owing to the experience of the authors' laboratory in this area, but other types of drug cargo and DNA vectors will also be covered. Photothermal therapy and theranostics will also be discussed.
Collapse
|