1
|
Lanzillotti MB, Brodbelt JS. Progress in Tandem Mass Spectrometry Data Analysis for Nucleic Acids. MASS SPECTROMETRY REVIEWS 2025. [PMID: 39797409 DOI: 10.1002/mas.21923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025]
Abstract
Mass spectrometry (MS) has become a critical tool in the characterization of covalently modified nucleic acids. Well-developed bottom-up approaches, where nucleic acids are digested with an endonuclease and the resulting oligonucleotides are separated before MS and MS/MS analysis, provide substantial insight into modified nucleotides in biological and synthetic nucleic. Top-down MS presents an alternative approach where the entire nucleic acid molecule is introduced to the mass spectrometer intact and then fragmented by MS/MS. Current top-down MS workflows have incorporated automated, on-line HPLC workflows to enable rapid desalting of nucleic acid samples for facile mass analysis without complication from adduction. Furthermore, optimization of MS/MS parameters utilizing collision, electron, or photon-based activation methods have enabled effective bond cleavage throughout the phosphodiester backbone while limiting secondary fragmentation, allowing characterization of progressively larger (~100 nt) nucleic acids and localization of covalent modifications. Development of software applications to perform automated identification of fragment ions has accelerated the broader adoption of mass spectrometry for analysis of nucleic acids. This review focuses on progress in tandem mass spectrometry for characterization of nucleic acids with particular emphasis on the software tools that have proven critical for advancing the field.
Collapse
|
2
|
Damiano DK, Azevedo BOP, Fernandes GSC, Teixeira AF, Gonçalves VM, Nascimento ALTO, Lopes APY. The Toxin of VapBC-1 Toxin-Antitoxin Module from Leptospira interrogans Is a Ribonuclease That Does Not Arrest Bacterial Growth but Affects Cell Viability. Microorganisms 2024; 12:1660. [PMID: 39203502 PMCID: PMC11356721 DOI: 10.3390/microorganisms12081660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Bacterial ubiquitous Toxin-Antitoxin (TA) systems are considered to be important survival mechanisms during stress conditions. In regular environmental conditions, the antitoxin blocks the toxin, whereas during imbalanced conditions, the antitoxin concentration decreases, exposing the bacteria cell to a range of toxic events. The most evident consequence of this disequilibrium is cell growth arrest, which is the reason why TAs are generally described as active in the function of bacterial growth kinetics. Virulence-associated proteins B and C (VapBC) are a family of type II TA system, in which VapC is predicted to display the toxic ribonuclease activity while VapB counteracts this activity. Previously, using in silico data, we designated four VapBC TA modules in Leptospira interrogans serovar Copenhageni, the main etiological agent of human leptospirosis in Brazil. The present study aimed to obtain the proteins and functionally characterize the VapBC-1 module. The expression of the toxin gene vapC in E. coli did not decrease the cell growth rate in broth culture, as was expected to happen within active TA modules. However, interestingly, when the expression of the toxin was compared to that of the complexed toxin and antitoxin, cell viability was strongly affected, with a decrease of three orders of magnitude in colony forming unity (CFU). The assumption of the affinity between the toxin and the antitoxin was confirmed in vivo through the observation of their co-purification from cultivation of E. coli co-expressing vapB-vapC genes. RNAse activity assays showed that VapC-1 cleaves MS2 RNA and ribosomal RNA from L. interrogans. Our results indicate that the VapBC-1 module is a potentially functional TA system acting on targets that involve specific functions. It is very important to emphasize that the common attribution of the functionality of TA modules cannot be defined based merely on their ability to inhibit bacterial growth in a liquid medium.
Collapse
Affiliation(s)
- Deborah K. Damiano
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 1730, São Paulo 05508-900, Brazil
| | - Bruna O. P. Azevedo
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 1730, São Paulo 05508-900, Brazil
| | - George S. C. Fernandes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 1730, São Paulo 05508-900, Brazil
| | - Aline F. Teixeira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
| | - Viviane M. Gonçalves
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
| | - Ana L. T. O. Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
| | - Alexandre P. Y. Lopes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
| |
Collapse
|
3
|
Khan S, Ahmad F, Ansari MI, Ashfaque M, Islam MH, Khubaib M. Toxin-Antitoxin system of Mycobacterium tuberculosis: Roles beyond stress sensor and growth regulator. Tuberculosis (Edinb) 2023; 143:102395. [PMID: 37722233 DOI: 10.1016/j.tube.2023.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 08/10/2023] [Indexed: 09/20/2023]
Abstract
The advent of effective drug regimen and BCG vaccine has significantly decreased the rate of morbidity and mortality of TB. However, lengthy treatment and slower recovery rate, as well as reactivation of the disease with the emergence of multi-drug, extensively-drug, and totally-drug resistance strains, pose a serious concern. The complexities associated are due to the highly evolved and complex nature of the bacterium itself. One of the unique features of Mycobacterium tuberculosis [M.tb] is that it has undergone reductive evolution while maintaining and amplified a few gene families. One of the critical gene family involved in the virulence and pathogenesis is the Toxin-Antitoxin system. These families are believed to harbor virulence signature and are strongly associated with various stress adaptations and pathogenesis. The M.tb TA systems are linked with growth regulation machinery during various environmental stresses. The genes of TA systems are differentially expressed in the host during an active infection, oxidative stress, low pH stress, and starvation, which essentially indicate their role beyond growth regulators. Here in this review, we have discussed different roles of TA gene families in various stresses and their prospective role at the host-pathogen interface, which could be exploited to understand the M.tb associated pathomechanisms better and further designing the new strategies against the pathogen.
Collapse
Affiliation(s)
- Saima Khan
- Department of Biosciences, Integral University, Lucknow, India
| | - Firoz Ahmad
- Department of Biosciences, Integral University, Lucknow, India
| | | | | | | | - Mohd Khubaib
- Department of Biosciences, Integral University, Lucknow, India.
| |
Collapse
|
4
|
Hernández-Ramírez KC, Valle-Maldonado MI, Patiño-Medina JA, Calo S, Jácome-Galarza IE, Garre V, Meza-Carmen V, Ramírez-Díaz MI. Role of PumB antitoxin as a transcriptional regulator of the PumAB type-II toxin-antitoxin system and its endoribonuclease activity on the PumA (toxin) transcript. Mol Genet Genomics 2023; 298:455-472. [PMID: 36604348 DOI: 10.1007/s00438-022-01988-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023]
Abstract
The PumAB type-II toxin-antitoxin (TA) system is encoded by pumAB genes that are organized into an operon. This system is encoded by the pUM505 plasmid, isolated from a Pseudomonas aeruginosa clinical strain. The pumA gene encodes a putative RelE toxin protein (toxic component), whereas the pumB gene encodes a putative HTH antitoxin protein. The expression of the PumAB system in Escherichia coli confers plasmid stability. In addition, PumA toxin overexpression in P. aeruginosa possesses the capability to increase bacterial virulence, an effect that is neutralized by the PumB antitoxin. The aim of this study was to establish the mechanism of regulation of the PumAB toxin-antitoxin system from pUM505. By an in silico analysis of the putative regulatory elements, we identified two putative internal promoters, PpumB and PpumB-AlgU (in addition to the already reported PpumAB), located upstream of pumB. By RT-qPCR assays, we determined that the pumAB genes are transcribed differentially, in that the mRNA of pumB is more abundant than the pumA transcript. We also observed that pumB could be expressed individually and that its mRNA levels decreased under oxidative stress, during individual expression as well as co-expression of pumAB. However, under stressful conditions, the pumA mRNA levels were not affected. This suggests the negative regulation of pumB by stressful conditions. The PumB purified protein was found to bind to a DNA region located between the PpumAB and the pumA coding region, and PumA participates in PumB binding, suggesting that a PumA-PumB complex co-regulates the transcription of the pumAB operon. Interestingly, the pumA mRNA levels decreased after incubation in vitro with PumB protein. This effect was repressed by ribonuclease inhibitors, suggesting that PumB could function as an RNAse toward the mRNA of the toxin. Taken together, we conclude that the PumAB TA system possesses multiple mechanisms to regulate its expression, as well as that the PumB antitoxin generates a decrease in the mRNA toxin levels, suggesting an RNase function. Our analysis provides new insights into the understanding of the control of TA systems from mobile plasmid-encoded genes from a human pathogen.
Collapse
Affiliation(s)
- K C Hernández-Ramírez
- Laboratorio de Microbiología, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - M I Valle-Maldonado
- Laboratorio de Diferenciación Celular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.,Laboratorio Estatal de Salud Pública, Secretaría de Salud Michoacán, Morelia, Mexico
| | - J A Patiño-Medina
- Laboratorio de Diferenciación Celular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - S Calo
- School of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, 51033, Santiago de los Caballeros, Dominican Republic
| | - I E Jácome-Galarza
- Laboratorio Estatal de Salud Pública, Secretaría de Salud Michoacán, Morelia, Mexico
| | - V Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - V Meza-Carmen
- Laboratorio de Diferenciación Celular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - M I Ramírez-Díaz
- Laboratorio de Microbiología, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
5
|
Jurėnas D, Van Melderen L. The Variety in the Common Theme of Translation Inhibition by Type II Toxin-Antitoxin Systems. Front Genet 2020; 11:262. [PMID: 32362907 PMCID: PMC7180214 DOI: 10.3389/fgene.2020.00262] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Type II Toxin-antitoxin (TA) modules are bacterial operons that encode a toxic protein and its antidote, which form a self-regulating genetic system. Antitoxins put a halter on toxins in many ways that distinguish different types of TA modules. In type II TA modules, toxin and antitoxin are proteins that form a complex which physically sequesters the toxin, thereby preventing its toxic activity. Type II toxins inhibit various cellular processes, however, the translation process appears to be their favorite target and nearly every step of this complex process is inhibited by type II toxins. The structural features, enzymatic activities and target specificities of the different toxin families are discussed. Finally, this review emphasizes that the structural folds presented by these toxins are not restricted to type II TA toxins or to one particular cellular target, and discusses why so many of them evolved to target translation as well as the recent developments regarding the role(s) of these systems in bacterial physiology and evolution.
Collapse
Affiliation(s)
- Dukas Jurėnas
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, CNRS, Aix-Marseille Université, Marseille, France
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
6
|
Andrews ESV, Arcus VL. PhoH2 proteins couple RNA helicase and RNAse activities. Protein Sci 2020; 29:883-892. [PMID: 31886915 DOI: 10.1002/pro.3814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/29/2023]
Abstract
PhoH2 proteins are found in a very diverse range of microorganisms that span bacteria and archaea. These proteins are composed of two domains: an N-terminal PIN-domain fused with a C-terminal PhoH domain. Collectively this fusion functions as an RNA helicase and ribonuclease. In other genomic contexts, PINdomains and PhoHdomains are separate but adjacent suggesting association to achieve similar function. Exclusively among the mycobacteria, PhoH2 proteins are encoded in the genome with an upstream gene, phoAT, which is thought to play the role of an antitoxin (in place of the traditional VapB antitoxin that lies upstream of the 47 other PINdomains in the mycobacterial genome). This review examines PhoH2 proteins as a whole and describes the bioinformatics, biochemical, structural, and biological properties of the two domains that make up PhoH2: PIN and PhoH. We review the transcriptional regulators of phoH2 from two mycobacterial species and speculate on the function of PhoH2 proteins in the context of a Type II toxin-antitoxin system which are thought to play a role in the stress response in bacteria.
Collapse
Affiliation(s)
- Emma S V Andrews
- School of Science, Division of Health, Engineering, Computing and Science, University of Waikato, Hamilton, New Zealand
| | - Vickery L Arcus
- School of Science, Division of Health, Engineering, Computing and Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
7
|
Deep A, Tiwari P, Agarwal S, Kaundal S, Kidwai S, Singh R, Thakur KG. Structural, functional and biological insights into the role of Mycobacterium tuberculosis VapBC11 toxin-antitoxin system: targeting a tRNase to tackle mycobacterial adaptation. Nucleic Acids Res 2019; 46:11639-11655. [PMID: 30329074 PMCID: PMC6265470 DOI: 10.1093/nar/gky924] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/04/2018] [Indexed: 01/10/2023] Open
Abstract
Toxin–antitoxin (TA) systems are involved in diverse physiological processes in prokaryotes, but their exact role in Mycobacterium tuberculosis (Mtb) virulence and in vivo stress adaptation has not been extensively studied. Here, we demonstrate that the VapBC11 TA module is essential for Mtb to establish infection in guinea pigs. RNA-sequencing revealed that overexpression of VapC11 toxin results in metabolic slowdown, suggesting that modulation of the growth rate is an essential strategy for in vivo survival. Interestingly, overexpression of VapC11 resulted in the upregulation of chromosomal TA genes, suggesting the existence of highly coordinated crosstalk among TA systems. In this study, we also present the crystal structure of the VapBC11 heterooctameric complex at 1.67 Å resolution. Binding kinetic studies suggest that the binding affinities of toxin–substrate and toxin–antitoxin interactions are comparable. We used a combination of structural studies, molecular docking, mutational analysis and in vitro ribonuclease assays to enhance our understanding of the mode of substrate recognition by the VapC11 toxin. Furthermore, we have also designed peptide-based inhibitors to target VapC11 ribonuclease activity. Taken together, we propose that the structure-guided design of inhibitors against in vivo essential ribonucleases might be a novel strategy to hasten clearance of intracellular Mtb.
Collapse
Affiliation(s)
- Amar Deep
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh 160036, India
| | - Prabhakar Tiwari
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad 121001, India
| | - Sakshi Agarwal
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad 121001, India
| | - Soni Kaundal
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh 160036, India
| | - Saqib Kidwai
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad 121001, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad 121001, India
| | - Krishan G Thakur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh 160036, India
| |
Collapse
|
8
|
Cintrón M, Zeng JM, Barth VC, Cruz JW, Husson RN, Woychik NA. Accurate target identification for Mycobacterium tuberculosis endoribonuclease toxins requires expression in their native host. Sci Rep 2019; 9:5949. [PMID: 30976025 PMCID: PMC6459853 DOI: 10.1038/s41598-019-41548-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/01/2019] [Indexed: 01/18/2023] Open
Abstract
The Mycobacterium tuberculosis genome harbors an unusually high number of toxin-antitoxin (TA) systems. These TA systems have been implicated in establishing the nonreplicating persistent state of this pathogen during latent tuberculosis infection. More than half of the M. tuberculosis TA systems belong to the VapBC (virulence associated protein) family. In this work, we first identified the RNA targets for the M. tuberculosis VapC-mt11 (VapC11, Rv1561) toxin in vitro to learn more about the general function of this family of toxins. Recombinant VapC-mt11 cleaved 15 of the 45 M. tuberculosis tRNAs at a single site within their anticodon stem loop (ASL) to generate tRNA halves. Cleavage was dependent on the presence of a GG consensus sequence immediately before the cut site and a structurally intact ASL. However, in striking contrast to the broad enzyme activity exhibited in vitro, we used a specialized RNA-seq method to demonstrate that tRNA cleavage was highly specific in vivo. Expression of VapC-mt11 in M. tuberculosis resulted in cleavage of only two tRNA isoacceptors containing the GG consensus sequence, tRNAGln32-CUG and tRNALeu3-CAG. Therefore, our results indicate that although in vitro studies are useful for identification of the class of RNA cleaved and consensus sequences required for accurate substrate recognition by endoribonuclease toxins, definitive RNA target identification requires toxin expression in their native host. The restricted in vivo specificity of VapC-mt11 suggests that it may be enlisted to surgically manipulate pathogen physiology in response to stress.
Collapse
Affiliation(s)
- Melvilí Cintrón
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Ju-Mei Zeng
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Valdir C Barth
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Jonathan W Cruz
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Robert N Husson
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Nancy A Woychik
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA. .,Member, Rutgers Cancer Institute of New Jersey, Piscataway, 08854, USA.
| |
Collapse
|
9
|
ParST is a widespread toxin-antitoxin module that targets nucleotide metabolism. Proc Natl Acad Sci U S A 2018; 116:826-834. [PMID: 30598453 DOI: 10.1073/pnas.1814633116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Toxin-antitoxin (TA) systems interfere with essential cellular processes and are implicated in bacterial lifestyle adaptations such as persistence and the biofilm formation. Here, we present structural, biochemical, and functional data on an uncharacterized TA system, the COG5654-COG5642 pair. Bioinformatic analysis showed that this TA pair is found in 2,942 of the 16,286 distinct bacterial species in the RefSeq database. We solved a structure of the toxin bound to a fragment of the antitoxin to 1.50 Å. This structure suggested that the toxin is a mono-ADP-ribosyltransferase (mART). The toxin specifically modifies phosphoribosyl pyrophosphate synthetase (Prs), an essential enzyme in nucleotide biosynthesis conserved in all organisms. We propose renaming the toxin ParT for Prs ADP-ribosylating toxin and ParS for the cognate antitoxin. ParT is a unique example of an intracellular protein mART in bacteria and is the smallest known mART. This work demonstrates that TA systems can induce bacteriostasis through interference with nucleotide biosynthesis.
Collapse
|
10
|
VapC proteins from Mycobacterium tuberculosis share ribonuclease sequence specificity but differ in regulation and toxicity. PLoS One 2018; 13:e0203412. [PMID: 30169502 PMCID: PMC6118392 DOI: 10.1371/journal.pone.0203412] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022] Open
Abstract
The chromosome of Mycobacterium tuberculosis (Mtb) contains a large number of Type II toxin-antitoxin (TA) systems. The majority of these belong to the VapBC TA family, characterised by the VapC protein consisting of a PIN domain with four conserved acidic residues, and proposed ribonuclease activity. Characterisation of five VapC (VapC1, 19, 27, 29 and 39) proteins from various regions of the Mtb chromosome using a combination of pentaprobe RNA sequences and mass spectrometry revealed a shared ribonuclease sequence-specificity with a preference for UAGG sequences. The TA complex VapBC29 is auto-regulatory and interacts with inverted repeat sequences in the vapBC29 promoter, whereas complexes VapBC1 and VapBC27 display no auto-regulatory properties. The difference in regulation could be due to the different properties of the VapB proteins, all of which belong to different VapB protein families. Regulation of the vapBC29 operon is specific, no cross-talk among Type II TA systems was observed. VapC29 is bacteriostatic when expressed in Mycobacterium smegmatis, whereas VapC1 and VapC27 displayed no toxicity upon expression in M. smegmatis. The shared sequence specificity of the five VapC proteins characterised is intriguing, we propose that the differences observed in regulation and toxicity is the key to understanding the role of these TA systems in the growth and persistence of Mtb.
Collapse
|
11
|
Fei Q, Gao EB, Liu B, Wei Y, Ning D. A Toxin-Antitoxin System VapBC15 from Synechocystis sp. PCC 6803 Shows Distinct Regulatory Features. Genes (Basel) 2018; 9:E173. [PMID: 29561797 PMCID: PMC5924515 DOI: 10.3390/genes9040173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/26/2022] Open
Abstract
Type II toxin-antitoxin (TA) systems play important roles in bacterial stress survival by regulating cell growth or death. They are highly abundant in cyanobacteria yet remain poorly characterized. Here, we report the identification and regulation of a putative type II TA system from Synechocystis PCC6803, VapBC15. The VapBC15 system is encoded by the chromosomal operon vapBC15. Exogenous expression of VapC15 dramatically arrested cell growth of Escherichia coli and reduced the numbers of colony-forming units (CFU). The VapC15 toxicity could be which was counteracted neutralized by simultaneous or delayed production of VapB15. Biochemical analysis demonstrated the formation of VapB15-VapC15 complexes by the physical interaction between VapB15 and VapC15. Notably, the VapB15 antitoxin up-regulated the transcription of the vapBC15 operon by directly binding to the promoter region, and the VapC15 toxin abolished the up-regulatory effect by destabilizing the binding. Moreover, VapB15 can be degraded by the proteases Lons and ClpXP2s from Synechocystis PCC6803, thus activating the latent toxicity of VapBC15. These findings suggest that VapBC15 represents a genuine TA system that utilizes a distinct mechanism to regulate toxin activity.
Collapse
Affiliation(s)
- Qian Fei
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - E-Bin Gao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Biao Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yao Wei
- Huai'an Research Center, Institute of Hydrobiology, Chinese Academy of Sciences, Huai'an 223005, China.
| | - Degang Ning
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- Huai'an Research Center, Institute of Hydrobiology, Chinese Academy of Sciences, Huai'an 223005, China.
| |
Collapse
|
12
|
Kang SM, Kim DH, Lee KY, Park SJ, Yoon HJ, Lee SJ, Im H, Lee BJ. Functional details of the Mycobacterium tuberculosis VapBC26 toxin-antitoxin system based on a structural study: insights into unique binding and antibiotic peptides. Nucleic Acids Res 2017; 45:8564-8580. [PMID: 28575388 PMCID: PMC5737657 DOI: 10.1093/nar/gkx489] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/25/2017] [Indexed: 11/16/2022] Open
Abstract
Toxin-antitoxin (TA) systems are essential for bacterial persistence under stressful conditions. In particular, Mycobacterium tuberculosis express VapBC TA genes that encode the stable VapC toxin and the labile VapB antitoxin. Under normal conditions, these proteins interact to form a non-toxic TA complex, but the toxin is activated by release from the antitoxin in response to unfavorable conditions. Here, we present the crystal structure of the M. tuberculosis VapBC26 complex and show that the VapC26 toxin contains a pilus retraction protein (PilT) N-terminal (PIN) domain that is essential for ribonuclease activity and that, the VapB26 antitoxin folds into a ribbon-helix-helix DNA-binding motif at the N-terminus. The active site of VapC26 is sterically blocked by the flexible C-terminal region of VapB26. The C-terminal region of free VapB26 adopts an unfolded conformation but forms a helix upon binding to VapC26. The results of RNase activity assays show that Mg2+ and Mn2+ are essential for the ribonuclease activity of VapC26. As shown in the nuclear magnetic resonance spectra, several residues of VapB26 participate in the specific binding to the promoter region of the VapBC26 operon. In addition, toxin-mimicking peptides were designed that inhibit TA complex formation and thereby increase toxin activity, providing a novel approach to the development of new antibiotics.
Collapse
Affiliation(s)
- Sung-Min Kang
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Do-Hee Kim
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Ki-Young Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Sung Jean Park
- College of Pharmacy, Gachon University, 534-2 Yeonsu-dong, Yeonsu-gu, Incheon 406-799, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sang Jae Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Hookang Im
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| |
Collapse
|
13
|
Matelska D, Steczkiewicz K, Ginalski K. Comprehensive classification of the PIN domain-like superfamily. Nucleic Acids Res 2017; 45:6995-7020. [PMID: 28575517 PMCID: PMC5499597 DOI: 10.1093/nar/gkx494] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022] Open
Abstract
PIN-like domains constitute a widespread superfamily of nucleases, diverse in terms of the reaction mechanism, substrate specificity, biological function and taxonomic distribution. Proteins with PIN-like domains are involved in central cellular processes, such as DNA replication and repair, mRNA degradation, transcription regulation and ncRNA maturation. In this work, we identify and classify the most complete set of PIN-like domains to provide the first comprehensive analysis of sequence–structure–function relationships within the whole PIN domain-like superfamily. Transitive sequence searches using highly sensitive methods for remote homology detection led to the identification of several new families, including representatives of Pfam (DUF1308, DUF4935) and CDD (COG2454), and 23 other families not classified in the public domain databases. Further sequence clustering revealed relationships between individual sequence clusters and showed heterogeneity within some families, suggesting a possible functional divergence. With five structural groups, 70 defined clusters, over 100,000 proteins, and broad biological functions, the PIN domain-like superfamily constitutes one of the largest and most diverse nuclease superfamilies. Detailed analyses of sequences and structures, domain architectures, and genomic contexts allowed us to predict biological function of several new families, including new toxin-antitoxin components, proteins involved in tRNA/rRNA maturation and transcription/translation regulation.
Collapse
Affiliation(s)
- Dorota Matelska
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Kamil Steczkiewicz
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
14
|
Miyamoto T, Ota Y, Yokota A, Suyama T, Tsuneda S, Noda N. Characterization of a Deinococcus radiodurans MazF: A UACA-specific RNA endoribonuclease. Microbiologyopen 2017; 6. [PMID: 28675659 PMCID: PMC5635168 DOI: 10.1002/mbo3.501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 04/20/2017] [Accepted: 05/03/2017] [Indexed: 11/15/2022] Open
Abstract
Microbes are known to withstand environmental stresses by using chromosomal toxin–antitoxin systems. MazEF is one of the most extensively studied toxin–antitoxin systems. In stressful environments, MazF toxins modulate translation by cleaving single‐stranded RNAs in a sequence‐specific fashion. Previously, a chromosomal gene located at DR0417 in Deinococcus radiodurans was predicted to code for a MazF endoribonuclease (MazFDR0417); however, its function remains unclear. In the present study, we characterized the molecular function of MazFDR0417. Analysis of MazFDR0417‐cleaved RNA sites using modified massively parallel sequencing revealed a unique 4‐nt motif, UACA, as a potential cleavage pattern. The activity of MazFDR0417 was also assessed in a real‐time fluorometric assay, which revealed that MazFDR0417 strictly recognizes the unique tetrad UACA. This sequence specificity may allow D. radiodurans to alter its translation profile and survive under stressful conditions.
Collapse
Affiliation(s)
- Tatsuki Miyamoto
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Yuri Ota
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Akiko Yokota
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Tetsushi Suyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Naohiro Noda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| |
Collapse
|
15
|
Kim Y, Choi E, Hwang J. Functional Studies of Five Toxin-Antitoxin Modules in Mycobacterium tuberculosis H37Rv. Front Microbiol 2016; 7:2071. [PMID: 28066388 PMCID: PMC5175181 DOI: 10.3389/fmicb.2016.02071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/07/2016] [Indexed: 11/25/2022] Open
Abstract
Toxin–antitoxin (TA) systems, which consist of an intracellular toxin and its antidote (antitoxin), are encoded by ubiquitous genetic modules in prokaryotes. Commonly, the activity of a toxin is inhibited by its antitoxin under normal growth conditions. However, antitoxins are degraded in response to environmental stress, and toxins liberated from antitoxins consequently induce cell death or growth arrest. In free-living prokaryotes, TA systems are often present in large numbers and are considered to be associated with the adaptation of pathogenic bacteria or extremophiles to various unfavorable environments by shifting cells to a slow growth rate. Genomic analysis of the human pathogen Mycobacterium tuberculosis H37Rv (Mtb) revealed the presence of a large number of TA systems. Accordingly, we investigated five uncharacterized TA systems (Rv2019-Rv2018, Rv3697c-Rv3697A, Rv3180c-Rv3181c, Rv0299-Rv0298, and Rv3749c-Rv3750c) of Mtb. Among these, the expression of the Rv2019 toxin inhibited the growth of Escherichia coli, and M. smegmatis and this growth defect was recovered by the expression of the Rv2018 antitoxin. Interestingly, Rv3180c was toxic only in M. smegmatis, whose toxicity was neutralized by Rv3181c antitoxin. In vivo and in vitro assays revealed the ribosomal RNA (rRNA) cleavage activity of the Rv2019 toxin. Moreover, mRNAs appeared to be substrates of Rv2019. Therefore, we concluded that the ribonuclease activity of the Rv2019 toxin triggers the growth defect in E. coli and that the Rv2018 antitoxin inhibits the ribonuclease activity of the Rv2019 toxin.
Collapse
Affiliation(s)
- Yoonji Kim
- Department of Microbiology, Pusan National University Busan, Republic of Korea
| | - Eunsil Choi
- Department of Microbiology, Pusan National University Busan, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University Busan, Republic of Korea
| |
Collapse
|
16
|
Structural Determinants for Antitoxin Identity and Insulation of Cross Talk between Homologous Toxin-Antitoxin Systems. J Bacteriol 2016; 198:3287-3295. [PMID: 27672196 DOI: 10.1128/jb.00529-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/20/2016] [Indexed: 01/10/2023] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitous in bacteria and archaea, where they play a pivotal role in the establishment and maintenance of dormancy. Under normal growth conditions, the antitoxin neutralizes the toxin. However, under conditions of stress, such as nutrient starvation or antibiotic treatment, cellular proteases degrade the antitoxin, and the toxin functions to arrest bacterial growth. We characterized the specificity determinants of the interactions between VapB antitoxins and VapC toxins from nontypeable Haemophilus influenzae (NTHi) in an effort to gain a better understanding of how antitoxins control toxin activity and bacterial persistence. We studied truncated and full-length antitoxins with single amino acid mutations in the toxin-binding domain. Coexpressing the toxin and antitoxin in Escherichia coli and measuring bacterial growth by dilution plating assayed the ability of the mutant antitoxins to neutralize the toxin. Our results identified two single amino acid residues (W48 and F52) in the C-terminal region of the VapB2 antitoxin necessary for its ability to neutralize its cognate VapC2 toxin. Additionally, we attempted to alter the specificity of VapB1 by making a mutation that would allow it to neutralize its noncognate toxin. A mutation in VapB1 to contain the tryptophan residue identified herein as important in the VapB2-VapC2 interaction resulted in a VapB1 mutant (the T47W mutant) that binds to and neutralizes both its cognate VapC1 and noncognate VapC2 toxins. This represents the first example of a single mutation causing relaxed specificity in a type II antitoxin. IMPORTANCE Toxin-antitoxin systems are of particular concern in pathogenic organisms, such as nontypeable Haemophilus influenzae, as they can elicit dormancy and persistence, leading to chronic infections and failure of antibiotic treatment. Despite the importance of the TA interaction, the specificity determinants for VapB-VapC complex formation remain uncharacterized. Thus, our understanding of how antitoxins control toxin-induced dormancy and bacterial persistence requires thorough investigation of antitoxin specificity for its cognate toxin. This study characterizes the crucial residues of the VapB2 antitoxin from NTHi necessary for its interaction with VapC2 and provides the first example of a single amino acid change altering the toxin specificity of an antitoxin.
Collapse
|
17
|
Fan Y, Hoshino T, Nakamura A. Identification of a VapBC toxin-antitoxin system in a thermophilic bacterium Thermus thermophilus HB27. Extremophiles 2016; 21:153-161. [PMID: 27853887 DOI: 10.1007/s00792-016-0891-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/07/2016] [Indexed: 11/30/2022]
Abstract
There are 12 putative toxin-antitoxin (TA) loci in the Thermus thermophilus HB27 genome, including four VapBC and three HicBA families. Expression of these seven putative toxin genes in Escherichia coli demonstrated that one putative VapC toxin TTC0125 and two putative HicA toxins, TTC1395 and TTC1705, inhibited cell growth, and co-expression with cognate antitoxin genes rescued growth, indicating that these genes function as TA loci. In vitro analysis with the purified TTC0125 and total RNA/mRNA from E. coli and T. thermophilus showed that TTC0125 has RNase activity to rRNA and mRNA; this activity was inhibited by the addition of the purified TTC0126. Translation inhibition assays showed that TTC0125 inhibited protein synthesis by degrading mRNA but not by inactivating ribosomes. Amino acid substitutions of 14 predicted catalytic and conserved residues in VapC toxins to Ala or Asp in TTC0125 indicated that nine residues are important for its in vivo toxin activity and in vitro RNase activity. These data demonstrate that TTC0125-TTC0126 functions as a VapBC TA module and causes growth inhibition by degrading free RNA. This is the first study to identify the function of TA systems in T. thermophilus.
Collapse
Affiliation(s)
- Yuqi Fan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Takayuki Hoshino
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Akira Nakamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
18
|
Winther K, Tree JJ, Tollervey D, Gerdes K. VapCs of Mycobacterium tuberculosis cleave RNAs essential for translation. Nucleic Acids Res 2016; 44:9860-9871. [PMID: 27599842 PMCID: PMC5175351 DOI: 10.1093/nar/gkw781] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/21/2016] [Accepted: 08/25/2016] [Indexed: 01/16/2023] Open
Abstract
The major human pathogen Mycobacterium tuberculosis can survive in the host organism for decades without causing symptoms. A large cohort of Toxin–Antitoxin (TA) modules contribute to this persistence. Of these, 48 TA modules belong to the vapBC (virulence associated protein) gene family. VapC toxins are PIN domain endonucleases that, in enterobacteria, inhibit translation by site-specific cleavage of initiator tRNA. In contrast, VapC20 of M. tuberculosis inhibits translation by site-specific cleavage of the universally conserved Sarcin-Ricin loop (SRL) in 23S rRNA. Here we identify the cellular targets of 12 VapCs from M. tuberculosis by applying UV-crosslinking and deep sequencing. Remarkably, these VapCs are all endoribonucleases that cleave RNAs essential for decoding at the ribosomal A-site. Eleven VapCs cleave specific tRNAs while one exhibits SRL cleavage activity. These findings suggest that multiple vapBC modules contribute to the survival of M. tuberculosis in its human host by reducing the level of translation.
Collapse
Affiliation(s)
- Kristoffer Winther
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark .,Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, NE2 4AX, Newcastle upon Tyne, UK
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2033, Australia
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Edinburgh EH9 3BF, UK
| | - Kenn Gerdes
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark .,Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, NE2 4AX, Newcastle upon Tyne, UK
| |
Collapse
|
19
|
Characterization of the Deep-Sea Streptomyces sp. SCSIO 02999 Derived VapC/VapB Toxin-Antitoxin System in Escherichia coli. Toxins (Basel) 2016; 8:toxins8070195. [PMID: 27376329 PMCID: PMC4963828 DOI: 10.3390/toxins8070195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 11/16/2022] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic elements that are ubiquitous in prokaryotes. Most studies on TA systems have focused on commensal and pathogenic bacteria; yet very few studies have focused on TAs in marine bacteria, especially those isolated from a deep sea environment. Here, we characterized a type II VapC/VapB TA system from the deep-sea derived Streptomyces sp. SCSIO 02999. The VapC (virulence-associated protein) protein belongs to the PIN (PilT N-terminal) superfamily. Overproduction of VapC strongly inhibited cell growth and resulted in a bleb-containing morphology in E. coli. The toxicity of VapC was neutralized through direct protein-protein interaction by a small protein antitoxin VapB encoded by a neighboring gene. Antitoxin VapB alone or the VapB/VapC complex negatively regulated the vapBC promoter activity. We further revealed that three conserved Asp residues in the PIN domain were essential for the toxic effect of VapC. Additionally, the VapC/VapB TA system stabilized plasmid in E. coli. Furthermore, VapC cross-activated transcription of several TA operons via a partially Lon-dependent mechanism in E. coli, and the activated toxins accumulated more preferentially than their antitoxin partners. Collectively, we identified and characterized a new deep sea TA system in the deep sea Streptomyces sp. and demonstrated that the VapC toxin in this system can cross-activate TA operons in E. coli.
Collapse
|
20
|
Emerging Roles of Toxin-Antitoxin Modules in Bacterial Pathogenesis. Molecules 2016; 21:molecules21060790. [PMID: 27322231 PMCID: PMC6273597 DOI: 10.3390/molecules21060790] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 11/17/2022] Open
Abstract
Toxin-antitoxin (TA) cassettes are encoded widely by bacteria. The modules typically comprise a protein toxin and protein or RNA antitoxin that sequesters the toxin factor. Toxin activation in response to environmental cues or other stresses promotes a dampening of metabolism, most notably protein translation, which permits survival until conditions improve. Emerging evidence also implicates TAs in bacterial pathogenicity. Bacterial persistence involves entry into a transient semi-dormant state in which cells survive unfavorable conditions including killing by antibiotics, which is a significant clinical problem. TA complexes play a fundamental role in inducing persistence by downregulating cellular metabolism. Bacterial biofilms are important in numerous chronic inflammatory and infectious diseases and cause serious therapeutic problems due to their multidrug tolerance and resistance to host immune system actions. Multiple TAs influence biofilm formation through a network of interactions with other factors that mediate biofilm production and maintenance. Moreover, in view of their emerging contributions to bacterial virulence, TAs are potential targets for novel prophylactic and therapeutic approaches that are required urgently in an era of expanding antibiotic resistance. This review summarizes the emerging evidence that implicates TAs in the virulence profiles of a diverse range of key bacterial pathogens that trigger serious human disease.
Collapse
|
21
|
Flood BE, Fliss P, Jones DS, Dick GJ, Jain S, Kaster AK, Winkel M, Mußmann M, Bailey J. Single-Cell (Meta-)Genomics of a Dimorphic Candidatus Thiomargarita nelsonii Reveals Genomic Plasticity. Front Microbiol 2016; 7:603. [PMID: 27199933 PMCID: PMC4853749 DOI: 10.3389/fmicb.2016.00603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/11/2016] [Indexed: 11/23/2022] Open
Abstract
The genus Thiomargarita includes the world's largest bacteria. But as uncultured organisms, their physiology, metabolism, and basis for their gigantism are not well understood. Thus, a genomics approach, applied to a single Candidatus Thiomargarita nelsonii cell was employed to explore the genetic potential of one of these enigmatic giant bacteria. The Thiomargarita cell was obtained from an assemblage of budding Ca. T. nelsonii attached to a provannid gastropod shell from Hydrate Ridge, a methane seep offshore of Oregon, USA. Here we present a manually curated genome of Bud S10 resulting from a hybrid assembly of long Pacific Biosciences and short Illumina sequencing reads. With respect to inorganic carbon fixation and sulfur oxidation pathways, the Ca. T. nelsonii Hydrate Ridge Bud S10 genome was similar to marine sister taxa within the family Beggiatoaceae. However, the Bud S10 genome contains genes suggestive of the genetic potential for lithotrophic growth on arsenite and perhaps hydrogen. The genome also revealed that Bud S10 likely respires nitrate via two pathways: a complete denitrification pathway and a dissimilatory nitrate reduction to ammonia pathway. Both pathways have been predicted, but not previously fully elucidated, in the genomes of other large, vacuolated, sulfur-oxidizing bacteria. Surprisingly, the genome also had a high number of unusual features for a bacterium to include the largest number of metacaspases and introns ever reported in a bacterium. Also present, are a large number of other mobile genetic elements, such as insertion sequence (IS) transposable elements and miniature inverted-repeat transposable elements (MITEs). In some cases, mobile genetic elements disrupted key genes in metabolic pathways. For example, a MITE interrupts hupL, which encodes the large subunit of the hydrogenase in hydrogen oxidation. Moreover, we detected a group I intron in one of the most critical genes in the sulfur oxidation pathway, dsrA. The dsrA group I intron also carried a MITE sequence that, like the hupL MITE family, occurs broadly across the genome. The presence of a high degree of mobile elements in genes central to Thiomargarita's core metabolism has not been previously reported in free-living bacteria and suggests a highly mutable genome.
Collapse
Affiliation(s)
- Beverly E Flood
- Department of Earth Sciences, University of Minnesota Minneapolis, MN, USA
| | - Palmer Fliss
- Department of Earth Sciences, University of Minnesota Minneapolis, MN, USA
| | - Daniel S Jones
- Department of Earth Sciences, University of MinnesotaMinneapolis, MN, USA; Biotechnology Institute, University of MinnesotaSt. Paul, MN, USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan Ann Arbor, MI, USA
| | - Sunit Jain
- Department of Earth and Environmental Sciences, University of Michigan Ann Arbor, MI, USA
| | - Anne-Kristin Kaster
- German Collection of Microorganisms and Cell Cultures, Leibniz Institute DSMZ Braunschweig, Germany
| | - Matthias Winkel
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences Potsdam, Germany
| | - Marc Mußmann
- Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Jake Bailey
- Department of Earth Sciences, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
22
|
Chan WT, Espinosa M, Yeo CC. Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems. Front Mol Biosci 2016; 3:9. [PMID: 27047942 PMCID: PMC4803016 DOI: 10.3389/fmolb.2016.00009] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/04/2016] [Indexed: 12/21/2022] Open
Abstract
In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I–VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall also look into some interesting deviations from the canonical type II TA systems such as tripartite TA systems where the regulatory role is played by a third party protein and not the antitoxin, and a unique TA system encoding a single protein with both toxin as well as antitoxin domains.
Collapse
Affiliation(s)
- Wai Ting Chan
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Manuel Espinosa
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Chew Chieng Yeo
- Faculty of Medicine, Biomedical Research Centre, Universiti Sultan Zainal Abidin Kuala Terengganu, Malaysia
| |
Collapse
|
23
|
Miyamoto T, Kato Y, Sekiguchi Y, Tsuneda S, Noda N. Characterization of MazF-Mediated Sequence-Specific RNA Cleavage in Pseudomonas putida Using Massive Parallel Sequencing. PLoS One 2016; 11:e0149494. [PMID: 26885644 PMCID: PMC4757574 DOI: 10.1371/journal.pone.0149494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/02/2016] [Indexed: 11/18/2022] Open
Abstract
Under environmental stress, microbes are known to alter their translation patterns using sequence-specific endoribonucleases that we call RNA interferases. However, there has been limited insight regarding which RNAs are specifically cleaved by these RNA interferases, hence their physiological functions remain unknown. In the current study, we developed a novel method to effectively identify cleavage specificities with massive parallel sequencing. This approach uses artificially designed RNAs composed of diverse sequences, which do not form extensive secondary structures, and it correctly identified the cleavage sequence of a well-characterized Escherichia coli RNA interferase, MazF, as ACA. In addition, we also determined that an uncharacterized MazF homologue isolated from Pseudomonas putida specifically recognizes the unique triplet, UAC. Using a real-time fluorescence resonance energy transfer assay, the UAC triplet was further proved to be essential for cleavage in P. putida MazF. These results highlight an effective method to determine cleavage specificity of RNA interferases.
Collapse
Affiliation(s)
- Tatsuki Miyamoto
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yuka Kato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yuji Sekiguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Naohiro Noda
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| |
Collapse
|
24
|
Growth-regulating Mycobacterium tuberculosis VapC-mt4 toxin is an isoacceptor-specific tRNase. Nat Commun 2015; 6:7480. [PMID: 26158745 DOI: 10.1038/ncomms8480] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/13/2015] [Indexed: 11/09/2022] Open
Abstract
Toxin-antitoxin (TA) systems are implicated in the downregulation of bacterial cell growth associated with stress survival and latent tuberculosis infection, yet the activities and intracellular targets of these TA toxins are largely uncharacterized. Here, we use a specialized RNA-seq approach to identify targets of a Mycobacterium tuberculosis VapC TA toxin, VapC-mt4 (also known as VapC4), which have eluded detection using conventional approaches. Distinct from the one other characterized VapC toxin in M. tuberculosis that cuts 23S rRNA at the sarcin-ricin loop, VapC-mt4 selectively targets three of the 45 M. tuberculosis tRNAs (tRNA(Ala2), tRNA(Ser26) and tRNA(Ser24)) for cleavage at, or adjacent to, their anticodons, resulting in the generation of tRNA halves. While tRNA cleavage is sometimes enlisted as a bacterial host defense mechanism, VapC-mt4 instead alters specific tRNAs to inhibit translation and modulate growth. This stress-linked activity of VapC-mt4 mirrors basic features of eukaryotic tRNases that also generate tRNA halves and inhibit translation in response to stress.
Collapse
|
25
|
Cut to the chase--Regulating translation through RNA cleavage. Biochimie 2015; 114:10-7. [PMID: 25633441 DOI: 10.1016/j.biochi.2015.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/19/2015] [Indexed: 11/23/2022]
Abstract
Activation of toxin-antitoxin (TA) systems provides an important mechanism for bacteria to adapt to challenging and ever changing environmental conditions. Known TA systems are classified into five families based on the mechanisms of antitoxin inhibition and toxin activity. For type II TA systems, the toxin is inactivated in exponentially growing cells by tightly binding its antitoxin partner protein, which also serves to regulate cellular levels of the complex through transcriptional auto-repression. During cellular stress, however, the antitoxin is degraded thus freeing the toxin, which is then able to regulate central cellular processes, primarily protein translation to adjust cell growth to the new conditions. In this review, we focus on the type II TA pairs that regulate protein translation through cleavage of ribosomal, transfer, or messenger RNA.
Collapse
|
26
|
Lipuma J, Cinege G, Bodogai M, Oláh B, Kiers A, Endre G, Dupont L, Dusha I. AvapBC-type toxin-antitoxin module ofSinorhizobium melilotiinfluences symbiotic efficiency and nodule senescence ofMedicago sativa. Environ Microbiol 2015; 16:3714-29. [DOI: 10.1111/1462-2920.12608] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 08/18/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Justine Lipuma
- Institut Sophia Agrobiotech (ISA); INRA UMR 1355; CNRS UMR 7254; Université de Nice Sophia Antipolis; 400 Route des Chappes - BP167 Sophia Antipolis Cedex F-06903 France
| | - Gyöngyi Cinege
- Institute of Genetics; Biological Research Center; Hungarian Academy of Sciences; P.O. Box 521 Szeged H-6701 Hungary
| | - Monica Bodogai
- Institute of Genetics; Biological Research Center; Hungarian Academy of Sciences; P.O. Box 521 Szeged H-6701 Hungary
| | - Boglárka Oláh
- Institute of Genetics; Biological Research Center; Hungarian Academy of Sciences; P.O. Box 521 Szeged H-6701 Hungary
| | - Aurélie Kiers
- Institut Sophia Agrobiotech (ISA); INRA UMR 1355; CNRS UMR 7254; Université de Nice Sophia Antipolis; 400 Route des Chappes - BP167 Sophia Antipolis Cedex F-06903 France
| | - Gabriella Endre
- Institute of Genetics; Biological Research Center; Hungarian Academy of Sciences; P.O. Box 521 Szeged H-6701 Hungary
| | - Laurence Dupont
- Institut Sophia Agrobiotech (ISA); INRA UMR 1355; CNRS UMR 7254; Université de Nice Sophia Antipolis; 400 Route des Chappes - BP167 Sophia Antipolis Cedex F-06903 France
| | - Ilona Dusha
- Institute of Genetics; Biological Research Center; Hungarian Academy of Sciences; P.O. Box 521 Szeged H-6701 Hungary
| |
Collapse
|
27
|
Structure-function analysis of VapB4 antitoxin identifies critical features of a minimal VapC4 toxin-binding module. J Bacteriol 2015; 197:1197-207. [PMID: 25622615 DOI: 10.1128/jb.02508-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Bacterial toxin-antitoxin systems play a critical role in the regulation of gene expression, leading to developmental changes, reversible dormancy, and cell death. Type II toxin-antitoxin pairs, composed of protein toxins and antitoxins, exist in nearly all bacteria and are classified into six groups on the basis of the structure of the toxins. The VapBC group comprises the most common type II system and, like other toxin-antitoxin systems, functions to elicit dormancy by inhibiting protein synthesis. Activation of toxin function requires protease degradation of the VapB antitoxin, which frees the VapC toxin from the VapBC complex, allowing it to hydrolyze the RNAs required for translation. Generally, type II antitoxins bind with high specificity to their cognate toxins via a toxin-binding domain and endow the complex with DNA-binding specificity via a DNA-binding domain. Despite the ubiquity of VapBC systems and their critical role in the regulation of gene expression, few functional studies have addressed the details of VapB-VapC interactions. Here we report on the results of experiments designed to identify molecular determinants of the specificity of the Mycobacterium tuberculosis VapB4 antitoxin for its cognate VapC4 toxin. The results identify the minimal domain of VapB4 required for this interaction as well as the amino acid side chains required for binding to VapC4. These findings have important implications for the evolution of VapBC toxin-antitoxin systems and their potential as targets of small-molecule protein-protein interaction inhibitors. IMPORTANCE VapBC toxin-antitoxin pairs are the most widespread type II toxin-antitoxin systems in bacteria, where they are thought to play key roles in stress-induced dormancy and the formation of persisters. The VapB antitoxins are critical to these processes because they inhibit the activity of the toxins and provide the DNA-binding specificity that controls the synthesis of both proteins. Despite the importance of VapB antitoxins and the existence of several VapBC crystal structures, little is known about their functional features in vivo. Here we report the findings of the first comprehensive structure-function analysis of a VapB toxin. The results identify the minimal toxin-binding domain, its modular antitoxin function, and the specific amino acid side chains required for its activity.
Collapse
|
28
|
Hamilton B, Manzella A, Schmidt K, DiMarco V, Butler JS. Analysis of non-typeable Haemophilous influenzae VapC1 mutations reveals structural features required for toxicity and flexibility in the active site. PLoS One 2014; 9:e112921. [PMID: 25391136 PMCID: PMC4229260 DOI: 10.1371/journal.pone.0112921] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/21/2014] [Indexed: 02/06/2023] Open
Abstract
Bacteria have evolved mechanisms that allow them to survive in the face of a variety of stresses including nutrient deprivation, antibiotic challenge and engulfment by predator cells. A switch to dormancy represents one strategy that reduces energy utilization and can render cells resistant to compounds that kill growing bacteria. These persister cells pose a problem during treatment of infections with antibiotics, and dormancy mechanisms may contribute to latent infections. Many bacteria encode toxin-antitoxin (TA) gene pairs that play an important role in dormancy and the formation of persisters. VapBC gene pairs comprise the largest of the Type II TA systems in bacteria and they produce a VapC ribonuclease toxin whose activity is inhibited by the VapB antitoxin. Despite the importance of VapBC TA pairs in dormancy and persister formation, little information exists on the structural features of VapC proteins required for their toxic function in vivo. Studies reported here identified 17 single mutations that disrupt the function of VapC1 from non-typeable H. influenzae in vivo. 3-D modeling suggests that side chains affected by many of these mutations sit near the active site of the toxin protein. Phylogenetic comparisons and secondary mutagenesis indicate that VapC1 toxicity requires an alternative active site motif found in many proteobacteria. Expression of the antitoxin VapB1 counteracts the activity of VapC1 mutants partially defective for toxicity, indicating that the antitoxin binds these mutant proteins in vivo. These findings identify critical chemical features required for the biological function of VapC toxins and PIN-domain proteins.
Collapse
Affiliation(s)
- Brooke Hamilton
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Alexander Manzella
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Karyn Schmidt
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Victoria DiMarco
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - J. Scott Butler
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for RNA Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Lopes APY, Lopes LM, Fraga TR, Chura-Chambi RM, Sanson AL, Cheng E, Nakajima E, Morganti L, Martins EAL. VapC from the leptospiral VapBC toxin-antitoxin module displays ribonuclease activity on the initiator tRNA. PLoS One 2014; 9:e101678. [PMID: 25047537 PMCID: PMC4105405 DOI: 10.1371/journal.pone.0101678] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/10/2014] [Indexed: 11/30/2022] Open
Abstract
The prokaryotic ubiquitous Toxin-Antitoxin (TA) operons encode a stable toxin and an unstable antitoxin. The most accepted hypothesis of the physiological function of the TA system is the reversible cessation of cellular growth under stress conditions. The major TA family, VapBC is present in the spirochaete Leptospira interrogans. VapBC modules are classified based on the presence of a predicted ribonucleasic PIN domain in the VapC toxin. The expression of the leptospiral VapC in E. coli promotes a strong bacterial growth arrestment, making it difficult to express the recombinant protein. Nevertheless, we showed that long term induction of expression in E. coli enabled the recovery of VapC in inclusion bodies. The recombinant protein was successfully refolded by high hydrostatic pressure, providing a new method to obtain the toxin in a soluble and active form. The structural integrity of the recombinant VapB and VapC proteins was assessed by circular dichroism spectroscopy. Physical interaction between the VapC toxin and the VapB antitoxin was demonstrated in vivo and in vitro by pull down and ligand affinity blotting assays, respectively, thereby indicating the ultimate mechanism by which the activity of the toxin is regulated in bacteria. The predicted model of the leptospiral VapC structure closely matches the Shigella's VapC X-ray structure. In agreement, the ribonuclease activity of the leptospiral VapC was similar to the activity described for Shigella's VapC, as demonstrated by the cleavage of tRNAfMet and by the absence of unspecific activity towards E. coli rRNA. This finding suggests that the cleavage of the initiator transfer RNA may represent a common mechanism to a larger group of bacteria and potentially configures a mechanism of post-transcriptional regulation leading to the inhibition of global translation.
Collapse
Affiliation(s)
| | - Luana M. Lopes
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Tatiana R. Fraga
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Rosa M. Chura-Chambi
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, São Paulo, São Paulo, Brazil
| | - André L. Sanson
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Elisabeth Cheng
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Erika Nakajima
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Ligia Morganti
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
30
|
Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins (Basel) 2014; 6:1002-20. [PMID: 24662523 PMCID: PMC3968373 DOI: 10.3390/toxins6031002] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 12/26/2022] Open
Abstract
The hallmark of Mycobacterium tuberculosis is its ability to persist for a long-term in host granulomas, in a non-replicating and drug-tolerant state, and later awaken to cause disease. To date, the cellular factors and the molecular mechanisms that mediate entry into the persistence phase are poorly understood. Remarkably, M. tuberculosis possesses a very high number of toxin-antitoxin (TA) systems in its chromosome, 79 in total, regrouping both well-known (68) and novel (11) families, with some of them being strongly induced in drug-tolerant persisters. In agreement with the capacity of stress-responsive TA systems to generate persisters in other bacteria, it has been proposed that activation of TA systems in M. tuberculosis could contribute to its pathogenesis. Herein, we review the current knowledge on the multiple TA families present in this bacterium, their mechanism, and their potential role in physiology and virulence.
Collapse
|
31
|
Larson AS, Hergenrother PJ. Light activation of Staphylococcus aureus toxin YoeBSa1 reveals guanosine-specific endoribonuclease activity. Biochemistry 2013; 53:188-201. [PMID: 24279911 DOI: 10.1021/bi4008098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Staphylococcus aureus chromosome harbors two homologues of the YefM-YoeB toxin-antitoxin (TA) system. The toxins YoeBSa1 and YoeBSa2 possess ribosome-dependent ribonuclease (RNase) activity in Escherichia coli. This activity is similar to that of the E. coli toxin YoeBEc, an enzyme that, in addition to ribosome-dependent RNase activity, possesses ribosome-independent RNase activity in vitro. To investigate whether YoeBSa1 is also a ribosome-independent RNase, we expressed YoeBSa1 using a novel strategy and characterized its in vitro RNase activity, sequence specificity, and kinetics. Y88 of YoeBSa1 was critical for in vitro activity and cell culture toxicity. This residue was mutated to o-nitrobenzyl tyrosine (ONBY) via unnatural amino acid mutagenesis. YoeBSa1-Y88ONBY could be expressed in the absence of the antitoxin YefMSa1 in E. coli. Photocaged YoeBSa1-Y88ONBY displayed UV light-dependent RNase activity toward free mRNA in vitro. The in vitro ribosome-independent RNase activity of YoeBSa1-Y88ONBY, YoeBSa1-Y88F, and YoeBSa1-Y88TAG was significantly reduced or abolished. In contrast to YoeBEc, which cleaves RNA at both adenosine and guanosine with a preference for adenosine, YoeBSa1 cleaved mRNA specifically at guanosine. Using this information, a fluorometric assay was developed and used to determine the kinetic parameters for ribosome-independent RNA cleavage by YoeBSa1.
Collapse
Affiliation(s)
- Amy S Larson
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | |
Collapse
|
32
|
Abendroth J, Ollodart A, Andrews ESV, Myler PJ, Staker BL, Edwards TE, Arcus VL, Grundner C. Mycobacterium tuberculosis Rv2179c protein establishes a new exoribonuclease family with broad phylogenetic distribution. J Biol Chem 2013; 289:2139-47. [PMID: 24311791 DOI: 10.1074/jbc.m113.525683] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ribonucleases (RNases) maintain the cellular RNA pool by RNA processing and degradation. In many bacteria, including the human pathogen Mycobacterium tuberculosis (Mtb), the enzymes mediating several central RNA processing functions are still unknown. Here, we identify the hypothetical Mtb protein Rv2179c as a highly divergent exoribonuclease. Although the primary sequence of Rv2179c has no detectable similarity to any known RNase, the Rv2179c crystal structure reveals an RNase fold. Active site residues are equivalent to those in the DEDD family of RNases, and Rv2179c has close structural homology to Escherichia coli RNase T. Consistent with the DEDD fold, Rv2179c has exoribonuclease activity, cleaving the 3' single-strand overhangs of duplex RNA. Functional orthologs of Rv2179c are prevalent in actinobacteria and found in bacteria as phylogenetically distant as proteobacteria. Thus, Rv2179c is the founding member of a new, large RNase family with hundreds of members across the bacterial kingdom.
Collapse
Affiliation(s)
- Jan Abendroth
- From Emerald Bio, Bainbridge Island, Washington 98110
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ning D, Liu S, Xu W, Zhuang Q, Wen C, Tang X. Transcriptional and proteolytic regulation of the toxin-antitoxin locus vapBC10 (ssr2962/slr1767) on the chromosome of Synechocystis sp. PCC 6803. PLoS One 2013; 8:e80716. [PMID: 24260461 PMCID: PMC3834315 DOI: 10.1371/journal.pone.0080716] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/07/2013] [Indexed: 12/01/2022] Open
Abstract
VapBC toxin-antitoxin (TA) systems are defined by the association of a PIN-domain toxin with a DNA-binding antitoxin, and are thought to play important physiological roles in bacteria and archaea. Recently, the PIN-associated gene pair PIN-COG2442 was proposed to encode VapBC-family TA system and found to be abundant in cyanobacteria. However, the features of these predicted TA loci remain under investigation. We here report characterization of the PIN-COG2442 locus vapBC10 (ssr2962/slr1767) on the chromosome of Synechocystis sp. PCC 6803. RT-PCR analysis revealed that the vapBC10 genes were co-transcribed under normal growth conditions. Ectopic expression of the PIN-domain protein VapC10 caused growth arrest of Escherichia coli that does not possess vapBC TA locus. Coincidentally, this growth-inhibition effect could be neutralized by either simultaneous or subsequent production of the COG2442-domain protein VapB10 through formation of the TA complex VapBC10 in vivo. In contrast to the transcription repression activity of the well-studied antitoxins, VapB10 positively auto-regulated the transcription of its own operon via specific binding to the promoter region. Furthermore, in vivo experiments in E. coli demonstrated that the Synechocystis protease ClpXP2s, rather than Lons, could cleave VapB10 and proteolytically activate the VapC10 toxicity. Our results show that the PIN-COG2442 locus vapBC10 encodes a functional VapBC TA system with an alternative mechanism for the transcriptional auto-regulation of its own operon.
Collapse
Affiliation(s)
- Degang Ning
- Department of Environment Sciences, School of the Environment, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shuibing Liu
- Department of Environment Sciences, School of the Environment, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weidong Xu
- Department of Pharmaceutical engineering, School of Pharmacy, Jiangsu University, Xuefu Road, Zhenjiang, Jiangsu, China
| | - Qiang Zhuang
- Department of Environment Sciences, School of the Environment, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chongwei Wen
- Department of Pharmaceutical engineering, School of Pharmacy, Jiangsu University, Xuefu Road, Zhenjiang, Jiangsu, China
| | - Xiaoxia Tang
- Department of Environment Sciences, School of the Environment, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
34
|
Winther KS, Brodersen DE, Brown AK, Gerdes K. VapC20 of Mycobacterium tuberculosis cleaves the Sarcin–Ricin loop of 23S rRNA. Nat Commun 2013; 4:2796. [DOI: 10.1038/ncomms3796] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 10/18/2013] [Indexed: 11/09/2022] Open
|
35
|
Initiation of mRNA decay in bacteria. Cell Mol Life Sci 2013; 71:1799-828. [PMID: 24064983 PMCID: PMC3997798 DOI: 10.1007/s00018-013-1472-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 12/24/2022]
Abstract
The instability of messenger RNA is fundamental to the control of gene expression. In bacteria, mRNA degradation generally follows an "all-or-none" pattern. This implies that if control is to be efficient, it must occur at the initiating (and presumably rate-limiting) step of the degradation process. Studies of E. coli and B. subtilis, species separated by 3 billion years of evolution, have revealed the principal and very disparate enzymes involved in this process in the two organisms. The early view that mRNA decay in these two model organisms is radically different has given way to new models that can be resumed by "different enzymes-similar strategies". The recent characterization of key ribonucleases sheds light on an impressive case of convergent evolution that illustrates that the surprisingly similar functions of these totally unrelated enzymes are of general importance to RNA metabolism in bacteria. We now know that the major mRNA decay pathways initiate with an endonucleolytic cleavage in E. coli and B. subtilis and probably in many of the currently known bacteria for which these organisms are considered representative. We will discuss here the different pathways of eubacterial mRNA decay, describe the major players and summarize the events that can precede and/or favor nucleolytic inactivation of a mRNA, notably the role of the 5' end and translation initiation. Finally, we will discuss the role of subcellular compartmentalization of transcription, translation, and the RNA degradation machinery.
Collapse
|
36
|
Kopfmann S, Hess WR. Toxin-antitoxin systems on the large defense plasmid pSYSA of Synechocystis sp. PCC 6803. J Biol Chem 2013; 288:7399-409. [PMID: 23322786 PMCID: PMC3591647 DOI: 10.1074/jbc.m112.434100] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Indexed: 12/28/2022] Open
Abstract
Bacterial toxin-antitoxin (TA) systems are genetic elements, which are encoded by plasmid as well as chromosomal loci and mediate plasmid and genomic island maintenance through post-segregational killing mechanisms. TA systems exist in surprisingly high numbers in all prokaryotes, but cyanobacterial TA systems have been only very poorly experimentally characterized so far. Cyanobacteria are the only prokaryotes that perform oxygenic photosynthesis. As such, cyanobacteria are of high ecological importance and are considered promising for the production of biofuels. Here, we present the molecular characterization of the sll7003/ssl7004 TA system encoded on plasmid pSYSA of the model cyanobacterium Synechocystis sp. PCC 6803 as involving a Mg(2+)-dependent RNA endonuclease activity targeting single-stranded RNA regions and demonstrate the functionality of four more TA systems encoded on this 100,749-bp plasmid. Furthermore, one additional type I, one additional type II, and three freestanding TA system components are predicted on pSYSA, all of which appear active judged by their expression. By harboring at least seven simultaneously active TA systems, pSYSA appears as the plasmid most strongly selected for among all plasmids studied in this respect thus far. These results point to a high biological relevance of pSYSA, whose coding capacity is 75% devoted to three distinct clustered regularly interspaced short palindromic repeats (CRISPR) systems mediating antiviral defense.
Collapse
Affiliation(s)
- Stefan Kopfmann
- From the Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Wolfgang R. Hess
- From the Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| |
Collapse
|
37
|
Ribonucleases in bacterial toxin-antitoxin systems. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:523-31. [PMID: 23454553 DOI: 10.1016/j.bbagrm.2013.02.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/05/2013] [Accepted: 02/14/2013] [Indexed: 11/21/2022]
Abstract
Toxin-antitoxin (TA) systems are widespread in bacteria and archaea and play important roles in a diverse range of cellular activities. TA systems have been broadly classified into 5 types and the targets of the toxins are diverse, but the most frequently used cellular target is mRNA. Toxins that target mRNA to inhibit translation can be classified as ribosome-dependent or ribosome-independent RNA interferases. These RNA interferases are sequence-specific endoribonucleases that cleave RNA at specific sequences. Despite limited sequence similarity, ribosome-independent RNA interferases belong to a limited number of structural classes. The MazF structural family includes MazF, Kid, ParE and CcdB toxins. MazF members cleave mRNA at 3-, 5- or 7-base recognition sequences in different bacteria and have been implicated in controlling cell death (programmed) and cell growth, and cellular responses to nutrient starvation, antibiotics, heat and oxidative stress. VapC endoribonucleases belong to the PIN-domain family and inhibit translation by either cleaving tRNA(fMet) in the anticodon stem loop, cleaving mRNA at -AUA(U/A)-hairpin-G- sequences or by sequence-specific RNA binding. VapC has been implicated in controlling bacterial growth in the intracellular environment and in microbial adaptation to nutrient limitation (nitrogen, carbon) and heat shock. ToxN shows structural homology to MazF and is also a sequence-specific endoribonuclease. ToxN confers phage resistance by causing cell death upon phage infection by cleaving cellular and phage RNAs, thereby interfering with bacterial and phage growth. Notwithstanding our recent progress in understanding ribonuclease action and function in TA systems, the environmental triggers that cause release of the toxin from its cognate antitoxin and the precise cellular function of these systems in many bacteria remain to be discovered. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|