1
|
Heneghan PG, Salzberg LI, Ó Cinnéide E, Dewald JA, Weinberg CE, Wolfe KH. Ancient origin and high diversity of zymocin-like killer toxins in the budding yeast subphylum. Proc Natl Acad Sci U S A 2025; 122:e2419860122. [PMID: 39928860 PMCID: PMC11848437 DOI: 10.1073/pnas.2419860122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/06/2024] [Indexed: 02/12/2025] Open
Abstract
Zymocin is a well-characterized killer toxin secreted by some strains of the yeast Kluyveromyces lactis. It acts by cleaving a specific tRNA in sensitive recipient cells. Zymocin is encoded by a killer plasmid or virus-like element (VLE), which is a linear DNA molecule located in the cytosol. We hypothesized that a tRNA-cleaving toxin similar to zymocin may have caused the three parallel changes to the nuclear genetic code that occurred during yeast evolution, in which the codon CUG became translated as Ser or Ala instead of Leu. However, zymocin-like toxins are rare - both among species, and among strains within a species -and only four toxins of this type have previously been discovered. Here, we identified 45 zymocin-like toxin genes in Saccharomycotina, the budding yeast subphylum, using a bioinformatics strategy, and verified that many of them are toxic to Saccharomyces cerevisiae when expressed. Some of the toxin genes are located on cytosolic VLEs, whereas others are on VLE-derived DNA integrated into the nuclear genome. The toxins are extraordinarily diverse in sequence and show evidence of positive selection. Toxin genes were found in five taxonomic orders of budding yeasts, including two of the three orders that reassigned CUG codons, indicating that VLEs have been parasites of yeast species for at least 300 My and that their existence predates the genetic code changes.
Collapse
Affiliation(s)
- Padraic G. Heneghan
- Conway Institute, School of Medicine, University College Dublin, Dublin4, Ireland
| | - Letal I. Salzberg
- Conway Institute, School of Medicine, University College Dublin, Dublin4, Ireland
| | - Eoin Ó Cinnéide
- Conway Institute, School of Medicine, University College Dublin, Dublin4, Ireland
| | - Jan A. Dewald
- Department of Life Sciences, Institute for Biochemistry, Leipzig University, Leipzig04103, Germany
| | - Christina E. Weinberg
- Department of Life Sciences, Institute for Biochemistry, Leipzig University, Leipzig04103, Germany
| | - Kenneth H. Wolfe
- Conway Institute, School of Medicine, University College Dublin, Dublin4, Ireland
| |
Collapse
|
2
|
Heneghan PG, Salzberg LI, Wolfe KH. Zymocin-like killer toxin gene clusters in the nuclear genomes of filamentous fungi. Fungal Genet Biol 2025; 176:103957. [PMID: 39756571 DOI: 10.1016/j.fgb.2024.103957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Zymocin-like killer toxins are anticodon nucleases secreted by some budding yeast species, which kill competitor yeasts by cleaving tRNA molecules. They are encoded by virus-like elements (VLEs), cytosolic linear DNA molecules that are also called killer plasmids. To date, toxins of this type have been found only in budding yeast species (Saccharomycotina). Here, we show that the nuclear genomes of many filamentous fungi (Pezizomycotina) contain small clusters of genes coding for a zymocin-like ribonuclease (γ-toxin), a chitinase (toxin α/β-subunit), and in some cases an immunity protein. The γ-toxins from Fusarium oxysporum and Colletotrichum siamense abolished growth when expressed intracellularly in S. cerevisiae. Phylogenetic analysis of glycoside hydrolase 18 (GH18) domains shows that the chitinase genes in the gene clusters are members of the previously described C-II subgroup of Pezizomycotina chitinases. We propose that the Pezizomycotina gene clusters originated by integration of a yeast-like VLE into the nuclear genome, but this event must have been ancient because (1) phylogenetically, the Pezizomycotina C-II chitinases and the Saccharomycotina VLE-encoded toxin α/β subunit chitinases are sister clades with neither of them nested inside the other, and (2) many of the Pezizomycotina toxin cluster genes contain introns, whereas VLEs do not. One of the toxin gene clusters in Fusarium graminearum is a locus that has previously been shown to be under diversifying selection in North American populations of this plant pathogen. We also show that two genera of agaric mushrooms (Basidiomycota) have acquired toxin gene clusters by horizontal transfers from different Pezizomycotina donors.
Collapse
Affiliation(s)
- Padraic G Heneghan
- Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Letal I Salzberg
- Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Kenneth H Wolfe
- Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
3
|
Ogawa T, Takahashi K, Ishida W, Aono T, Hidaka M, Terada T, Masaki H. Substrate recognition mechanism of tRNA-targeting ribonuclease, colicin D, and an insight into tRNA cleavage-mediated translation impairment. RNA Biol 2020; 18:1193-1205. [PMID: 33211605 DOI: 10.1080/15476286.2020.1838782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Colicin D is a plasmid-encoded bacteriocin that specifically cleaves tRNAArg of sensitive Escherichia coli cells. E. coli has four isoaccepting tRNAArgs; the cleavage occurs at the 3' end of anticodon-loop, leading to translation impairment in the sensitive cells. tRNAs form a common L-shaped structure and have many conserved nucleotides that limit tRNA identity elements. How colicin D selects tRNAArgs from the tRNA pool of sensitive E. coli cells is therefore intriguing. Here, we reveal the recognition mechanism of colicin D via biochemical analyses as well as structural modelling. Colicin D recognizes tRNAArgICG, the most abundant species of E. coli tRNAArgs, at its anticodon-loop and D-arm, and selects it as the most preferred substrate by distinguishing its anticodon-loop sequence from that of others. It has been assumed that translation impairment is caused by a decrease in intact tRNA molecules due to cleavage. However, we found that intracellular levels of intact tRNAArgICG do not determine the viability of sensitive cells after such cleavage; rather, an accumulation of cleaved ones does. Cleaved tRNAArgICG dominant-negatively impairs translation in vitro. Moreover, we revealed that EF-Tu, which is required for the delivery of tRNAs, does not compete with colicin D for binding tRNAArgICG, which is consistent with our structural model. Finally, elevation of cleaved tRNAArgICG level decreases the viability of sensitive cells. These results suggest that cleaved tRNAArgICG transiently occupies ribosomal A-site in an EF-Tu-dependent manner, leading to translation impairment. The strategy should also be applicable to other tRNA-targeting RNases, as they, too, recognize anticodon-loops.Abbreviations: mnm5U: 5-methylaminomethyluridine; mcm5s2U: 5-methoxycarbonylmethyl-2-thiouridine.
Collapse
Affiliation(s)
- Tetsuhiro Ogawa
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Kazutoshi Takahashi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Ishida
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshihiro Aono
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.,Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Makoto Hidaka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Haruhiko Masaki
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Vopálenský V, Sýkora M, Mašek T, Pospíšek M. Messenger RNAs of Yeast Virus-Like Elements Contain Non-templated 5' Poly(A) Leaders, and Their Expression Is Independent of eIF4E and Pab1. Front Microbiol 2019; 10:2366. [PMID: 31736885 PMCID: PMC6831550 DOI: 10.3389/fmicb.2019.02366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/30/2019] [Indexed: 02/01/2023] Open
Abstract
We employed virus-like elements (VLEs) pGKL1,2 from Kluyveromyces lactis as a model to investigate the previously neglected transcriptome of the broader group of yeast cytoplasmic linear dsDNA VLEs. We performed 5′ and 3′ RACE analyses of all pGKL1,2 mRNAs and found them not 3′ polyadenylated and containing frequently uncapped 5′ poly(A) leaders that are not complementary to VLE genomic DNA. The degree of 5′ capping and/or 5′ mRNA polyadenylation is specific to each gene and is controlled by the corresponding promoter region. The expression of pGKL1,2 transcripts is independent of eIF4E and Pab1 and is enhanced in lsm1Δ and pab1Δ strains. We suggest a model of primitive pGKL1,2 gene expression regulation in which the degree of 5′ mRNA capping and 5′ non-template polyadenylation, together with the presence of negative regulators such as Pab1 and Lsm1, play important roles. Our data also support a hypothesis of a close relationship between yeast linear VLEs and poxviruses.
Collapse
Affiliation(s)
- Václav Vopálenský
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Michal Sýkora
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Tomáš Mašek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Martin Pospíšek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
5
|
Abstract
Constitutive and regulated turnover of RNAs is necessary to eliminate aberrant RNA molecules and control the level of specific mRNAs to maintain homeostasis or to respond to signals in living cells. Modifications of nucleosides in specific RNAs are important in modulating the functions of these transcripts, but they can also dramatically impact their fate and turnover. This chapter will review how RNA modifications impact the activities of ribonucleases that target these RNAs for degradation or cleavage, focusing more particularly on tRNAs and mRNAs in eukaryotic cells. Many nucleoside modifications are important to promote proper folding of tRNAs, and the absence of specific modifications makes them susceptible to degradation by quality control pathways that eliminate improperly folded species. Modifications in tRNAs can also modulate their cleavage during stress or by fungal toxins that target modified nucleosides. Modifications of the cap structure found at the 5'-end of eukaryotic mRNAs are essential to control the degradation of these mRNAs. In addition, internal modifications of eukaryotic mRNAs can change their secondary structures or provide binding sites for reader proteins, which can dramatically impact their stability. Recent examples show that mRNA modifications play important roles in regulating mRNA stability during development, cellular differentiation and physiological responses. Finally, many modifications can impact microRNA- and siRNA-mediated gene regulation by direct or indirect effects. With the growing number of genomic techniques able to identify modifications genome wide, it is anticipated that novel chemical modifications or new modification sites will be identified, which will play additional regulatory functions for RNA turnover.
Collapse
|
6
|
Abstract
Wobble uridines (U34) are generally modified in all species. U34 modifications can be essential in metazoans but are not required for viability in fungi. In this review, we provide an overview on the types of modifications and how they affect the physico-chemical properties of wobble uridines. We describe the molecular machinery required to introduce these modifications into tRNA posttranscriptionally and discuss how posttranslational regulation may affect the activity of the modifying enzymes. We highlight the activity of anticodon specific RNases that target U34 containing tRNA. Finally, we discuss how defects in wobble uridine modifications lead to phenotypes in different species. Importantly, this review will mainly focus on the cytoplasmic tRNAs of eukaryotes. A recent review has extensively covered their bacterial and mitochondrial counterparts.1
Collapse
Affiliation(s)
- Raffael Schaffrath
- a Institut für Biologie, FG Mikrobiologie , Universität Kassel , Germany
| | - Sebastian A Leidel
- b Max Planck Institute for Molecular Biomedicine , Germany.,c Cells-in-Motion Cluster of Excellence , University of Münster , Münster , Germany.,d Medical Faculty , University of Münster , Albert-Schweitzer-Campus 1, Münster , Germany
| |
Collapse
|
7
|
Duechler M, Leszczyńska G, Sochacka E, Nawrot B. Nucleoside modifications in the regulation of gene expression: focus on tRNA. Cell Mol Life Sci 2016; 73:3075-95. [PMID: 27094388 PMCID: PMC4951516 DOI: 10.1007/s00018-016-2217-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 01/10/2023]
Abstract
Both, DNA and RNA nucleoside modifications contribute to the complex multi-level regulation of gene expression. Modified bases in tRNAs modulate protein translation rates in a highly dynamic manner. Synonymous codons, which differ by the third nucleoside in the triplet but code for the same amino acid, may be utilized at different rates according to codon-anticodon affinity. Nucleoside modifications in the tRNA anticodon loop can favor the interaction with selected codons by stabilizing specific base pairs. Similarly, weakening of base pairing can discriminate against binding to near-cognate codons. mRNAs enriched in favored codons are translated in higher rates constituting a fine-tuning mechanism for protein synthesis. This so-called codon bias establishes a basic protein level, but sometimes it is necessary to further adjust the production rate of a particular protein to actual requirements, brought by, e.g., stages in circadian rhythms, cell cycle progression or exposure to stress. Such an adjustment is realized by the dynamic change of tRNA modifications resulting in the preferential translation of mRNAs coding for example for stress proteins to facilitate cell survival. Furthermore, tRNAs contribute in an entirely different way to another, less specific stress response consisting in modification-dependent tRNA cleavage that contributes to the general down-regulation of protein synthesis. In this review, we summarize control functions of nucleoside modifications in gene regulation with a focus on recent findings on protein synthesis control by tRNA base modifications.
Collapse
Affiliation(s)
- Markus Duechler
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland.
| | - Grażyna Leszczyńska
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Elzbieta Sochacka
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
8
|
Ogawa T. tRNA-targeting ribonucleases: molecular mechanisms and insights into their physiological roles. Biosci Biotechnol Biochem 2016; 80:1037-45. [PMID: 26967967 DOI: 10.1080/09168451.2016.1148579] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Most bacteria produce antibacterial proteins known as bacteriocins, which aid bacterial defence systems to provide a physiological advantage. To date, many kinds of bacteriocins have been characterized. Colicin has long been known as a plasmidborne bacteriocin that kills other Escherichia coli cells lacking the same plasmid. To defeat other cells, colicins exert specific activities such as ion-channel, DNase, and RNase activity. Colicin E5 and colicin D impair protein synthesis in sensitive E. coli cells; however, their physiological targets have not long been identified. This review describes our finding that colicins E5 and D are novel RNases targeting specific E. coli tRNAs and elucidates their enzymatic properties based on biochemical analyses and X-ray crystal structures. Moreover, tRNA cleavage mediates bacteriostasis, which depends on trans-translation. Based on these results and others, cell growth regulation depending on tRNA cleavage is also discussed.
Collapse
Affiliation(s)
- Tetsuhiro Ogawa
- a Department of Biotechnology , The University of Tokyo , Tokyo , Japan
| |
Collapse
|
9
|
Wemhoff S, Klassen R, Meinhardt F. DNA damage induced by the anticodon nuclease from a Pichia acaciae killer strain is linked to ribonucleotide reductase depletion. Cell Microbiol 2015; 18:211-22. [PMID: 26247322 DOI: 10.1111/cmi.12496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/24/2015] [Accepted: 07/26/2015] [Indexed: 11/30/2022]
Abstract
Virus like element (VLE) encoded killer toxins of Pichia acaciae and Kluyveromyces lactis kill target cells through anticodon nuclease (ACNase) activity directed against tRNA(Gln) and tRNA(Glu) respectively. Not only does tRNA cleavage disable translation, it also affects DNA integrity as well. Consistent with DNA damage, which is involved in toxicity, target cells' mutation frequencies are elevated upon ACNase exposure, suggesting a link between translational integrity and genome surveillance. Here, we analysed whether ACNase action impedes the periodically and highly expressed S-phase specific ribonucleotide reductase (RNR) and proved that RNR expression is severely affected by PaT. Because RNR catalyses the rate-limiting step in dNTP synthesis, mutants affected in dNTP synthesis were scrutinized with respect to ACNase action. Mutations elevating cellular dNTPs antagonized the action of both the above ACNases, whereas mutations lowering dNTPs aggravated toxicity. Consistently, prevention of tRNA cleavage in elp3 or trm9 mutants, which both affect the wobble uridine modification of the target tRNA, suppressed the toxin hypersensitivity of a dNTP synthesis mutant. Moreover, dNTP synthesis defects exacerbated the PaT ACNase sensitivity of cells defective in homologous recombination, proving that dNTP depletion is responsible for subsequent DNA damage.
Collapse
Affiliation(s)
- Sabrina Wemhoff
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Roland Klassen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Friedhelm Meinhardt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| |
Collapse
|
10
|
Kast A, Voges R, Schroth M, Schaffrath R, Klassen R, Meinhardt F. Autoselection of cytoplasmic yeast virus like elements encoding toxin/antitoxin systems involves a nuclear barrier for immunity gene expression. PLoS Genet 2015; 11:e1005005. [PMID: 25973601 PMCID: PMC4431711 DOI: 10.1371/journal.pgen.1005005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/14/2015] [Indexed: 12/13/2022] Open
Abstract
Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle. The rather wide-spread and extremely A/T rich yeast virus like elements (VLEs, also termed linear plasmids) which encode toxic anticodon nucleases (ACNases) ensure autoselection in the cytoplasm by preventing functional nuclear capture of the cognate immunity genes, but how? When expressed in the nucleus, the mRNA of the VLE immunity genes is split into fragments to which poly(A) tails are added. Consistently, lowering the A/T content by gene synthesis prevented transcript cleavage and permitted functional nuclear expression providing full immunity against the respective ACNase toxin. Thus, internal poly(A) cleavage is likely to prevent functional nuclear immunity gene expression.
Collapse
Affiliation(s)
- Alene Kast
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Raphael Voges
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Michael Schroth
- Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | | | - Roland Klassen
- Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
- * E-mail: (RK); (FM)
| | - Friedhelm Meinhardt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
- * E-mail: (RK); (FM)
| |
Collapse
|
11
|
Gu C, Begley TJ, Dedon PC. tRNA modifications regulate translation during cellular stress. FEBS Lett 2014; 588:4287-96. [PMID: 25304425 DOI: 10.1016/j.febslet.2014.09.038] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 12/20/2022]
Abstract
The regulation of gene expression in response to stress is an essential cellular protection mechanism. Recent advances in tRNA modification analysis and genome-based codon bias analytics have facilitated studies that lead to a novel model for translational control, with translation elongation dynamically regulated during stress responses. Stress-induced increases in specific anticodon wobble bases are required for the optimal translation of stress response transcripts that are significantly biased in the use of degenerate codons keyed to these modified tRNA bases. These findings led us to introduce the notion of tRNA modification tunable transcripts (MoTTs - transcripts whose translation is regulated by tRNA modifications), which are identifiable using genome-wide codon counting algorithms. In support of this general model of translational control of stress response, studies making use of detailed measures of translation, tRNA methyltransferase mutants, and computational and mass spectrometry approaches reveal that stress reprograms tRNA modifications to translationally regulate MoTTs linked to arginine and leucine codons, which helps cells survive insults by damaging agents. These studies highlight how tRNA methyltransferase activities and MoTTs are key components of the cellular stress response.
Collapse
Affiliation(s)
- Chen Gu
- Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Thomas J Begley
- State University of New York - College of Nanoscale Science and Engineering, Albany, NY, United States; The RNA Institute at the University at Albany, Albany, NY, United States.
| | - Peter C Dedon
- Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA, United States; Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
| |
Collapse
|
12
|
Structure, mechanism, and specificity of a eukaryal tRNA restriction enzyme involved in self-nonself discrimination. Cell Rep 2014; 7:339-347. [PMID: 24726365 DOI: 10.1016/j.celrep.2014.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/26/2014] [Accepted: 03/11/2014] [Indexed: 11/22/2022] Open
Abstract
tRNA restriction by anticodon nucleases underlies cellular stress responses and self-nonself discrimination in a wide range of taxa. Anticodon breakage inhibits protein synthesis, which, in turn, results in growth arrest or cell death. The eukaryal ribotoxin PaT secreted by Pichia acaciae inhibits growth of Saccharomyces cerevisiae via cleavage of tRNA(Gln(UUG)). We find that recombinant PaT incises a synthetic tRNA(Gln(UUG)) stem-loop RNA by transesterification at a single site 3' of the wobble uridine, yielding 2',3'-cyclic phosphate and 5'-OH ends. Incision is suppressed by replacement of the wobble nucleobase with adenine or guanine. The crystal structure of PaT reveals a distinctive fold and active site, essential components of which are demonstrated by mutagenesis. Pichia acaciae evades self-toxicity via a distinctive intracellular immunity protein, ImmPaT, which binds PaT and blocks nuclease activity. Our results highlight the evolutionary diversity of tRNA restriction and immunity systems.
Collapse
|
13
|
Immunity factors for two related tRNAGln targeting killer toxins distinguish cognate and non-cognate toxic subunits. Curr Genet 2014; 60:213-22. [DOI: 10.1007/s00294-014-0426-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
|
14
|
Kast A, Klassen R, Meinhardt F. rRNA fragmentation induced by a yeast killer toxin. Mol Microbiol 2014; 91:606-17. [PMID: 24308908 DOI: 10.1111/mmi.12481] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 11/27/2022]
Abstract
Virus like dsDNA elements (VLE) in yeast were previously shown to encode the killer toxins PaT and zymocin, which target distinct tRNA species via specific anticodon nuclease (ACNase) activities. Here, we characterize a third member of the VLE-encoded toxins, PiT from Pichia inositovora, and identify PiOrf4 as the cytotoxic subunit by conditional expression in Saccharomyces cerevisiae. In contrast to the tRNA targeting toxins, however, neither a change of the wobble uridine modification status by introduction of elp3 or trm9 mutations nor tRNA overexpression rescued from PiOrf4 toxicity. Consistent with a distinct RNA target, expression of PiOrf4 causes specific fragmentation of the 25S and 18S rRNA. A stable cleavage product comprising the first ∼ 130 nucleotides of the 18S rRNA was purified and characterized by linker ligation and subsequent reverse transcription; 3'-termini were mapped to nucleotide 131 and 132 of the 18S rRNA sequence, a region showing some similarity to the anticodon loop of tRNA(Glu)(UUC), the zymocin target. PiOrf4 residues Glu9 and His214, corresponding to catalytic sites Glu9 and His209 in the ACNase subunit of zymocin are essential for in vivo toxicity and rRNA fragmentation, raising the possibility of functionally conserved RNase modules in both proteins.
Collapse
Affiliation(s)
- Alene Kast
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstr. 3, D-48149, Münster, Germany
| | | | | |
Collapse
|
15
|
Shigematsu M, Ogawa T, Tanaka W, Takahashi K, Kitamoto HK, Hidaka M, Masaki H. Evidence for DNA cleavage caused directly by a transfer RNA-targeting toxin. PLoS One 2013; 8:e75512. [PMID: 24069426 PMCID: PMC3775755 DOI: 10.1371/journal.pone.0075512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/13/2013] [Indexed: 11/24/2022] Open
Abstract
The killer yeast species Pichiaacaciae produces a heteromeric killer protein, PaT, that causes DNA damage and arrests the cell cycle of sensitive Saccharomyces cerevisiae in the S phase. However, the mechanism by which DNA damage occurs remains elusive. A previous study has indicated that Orf2p, a subunit of PaT, specifically cleaves an anticodon loop of an S. cerevisiae transfer RNA (tRNAGlnmcm5s2UUG). This finding raised a question about whether the DNA damage is a result of the tRNA cleavage or whether Orf2p directly associates with and cleaves the genomic DNA of sensitive yeast cells. We showed that Orf2p cleaves genomic DNA in addition to cleaving tRNA in vitro. This DNA cleavage requires the same Orf2p residue as that needed for tRNA cleavage, His299. The expression of Orf2p, in which His299 was substituted to alanine, abolished the cell cycle arrest of the host cell. Moreover, the translation impairment induced by tRNA cleavage enabled Orf2p to enter the nucleus, thereby inducing histone phosphorylation.
Collapse
Affiliation(s)
| | - Tetsuhiro Ogawa
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- * E-mail: (HM); (TO)
| | - Wataru Tanaka
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | | | | | - Makoto Hidaka
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Haruhiko Masaki
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- * E-mail: (HM); (TO)
| |
Collapse
|
16
|
Satwika D, Klassen R, Meinhardt F. Anticodon nuclease encoding virus-like elements in yeast. Appl Microbiol Biotechnol 2012; 96:345-56. [PMID: 22899498 DOI: 10.1007/s00253-012-4349-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/31/2012] [Accepted: 08/01/2012] [Indexed: 11/29/2022]
Abstract
A variety of yeast species are known to host systems of cytoplasmic linear dsDNA molecules that establish replication and transcription independent of the nucleus via self-encoded enzymes that are phylogenetically related to those encoded by true infective viruses. Such yeast virus-like elements (VLE) fall into two categories: autonomous VLEs encode all the essential functions for their inheritance, and additional, dependent VLEs, which may encode a toxin-antitoxin system, generally referred to as killer toxin and immunity. In the two cases studied in depth, killer toxin action relies on chitin binding and hydrophobic domains, together allowing a separate toxic subunit to sneak into the target cell. Mechanistically, the latter sabotages codon-anticodon interaction by endonucleolytic cleavage of specific tRNAs 3' of the wobble nucleotide. This primary action provokes a number of downstream effects, including DNA damage accumulation, which contribute to the cell-killing efficiency and highlight the importance of proper transcript decoding capacity for other cellular processes than translation itself. Since wobble uridine modifications are crucial for efficient anticodon nuclease (ACNase) action of yeast killer toxins, the latter are valuable tools for the characterization of a surprisingly complex network regulating the addition of wobble base modifications in tRNA.
Collapse
Affiliation(s)
- Dhira Satwika
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstr. 3, 48149, Münster, Germany
| | | | | |
Collapse
|