1
|
Biyani M, Isogai Y, Sharma K, Maeda S, Akashi H, Sugai Y, Nakano M, Kodera N, Biyani M, Nakajima M. High-speed atomic force microscopy and 3D modeling reveal the structural dynamics of ADAR1 complexes. Nat Commun 2025; 16:4757. [PMID: 40419486 DOI: 10.1038/s41467-025-59987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 05/09/2025] [Indexed: 05/28/2025] Open
Abstract
Targeting abnormal dysregulation of adenosine-to-inosine deamination by ADAR enzymes offers a promising therapeutic strategy in cancer research. However, the development of effective inhibitors is impeded by the incomplete structural information on ADAR1 complexes. In this study, we employ a combination of computational 3D modeling and high-speed atomic force microscopy to elucidate the atomic and molecular dynamics of ADAR1. Two distinct interface regions (IFx and IFy) on the surface of the deaminase domain and oligomerization structural models are identified. Single-molecule-level insights into the structural dynamics of ADAR1 reveal the oligomerization of ADAR1 monomers through the self-assembly of deaminase domains. In the presence of the substrate dsRNA, the N-terminal region, including RNA-binding domains, of ADAR1 dimer exhibits a controlled flexible conformation and promotes a stable dimeric interaction with dsRNA for RNA editing. These findings provide the basis for the development of targeted inhibitors to regulate ADAR1 activity in therapeutic applications.
Collapse
Affiliation(s)
- Madhu Biyani
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| | - Yasuhiro Isogai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Toyama, Japan
| | - Kirti Sharma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Shoei Maeda
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hinako Akashi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yui Sugai
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masataka Nakano
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Manish Biyani
- BioSeeds Corporation, Ishikawa Create Labo, Nomi City, Ishikawa, Japan.
- Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan.
| | - Miki Nakajima
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
2
|
Stopa V, Dafou D, Karagianni K, Nossent AY, Farrugia R, Devaux Y, Sopic M. Epitranscriptomics in atherosclerosis: Unraveling RNA modifications, editing and splicing and their implications in vascular disease. Vascul Pharmacol 2025; 159:107496. [PMID: 40239855 DOI: 10.1016/j.vph.2025.107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/08/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
Atherosclerosis remains a leading cause of morbidity and mortality worldwide, driven by complex molecular mechanisms involving gene regulation and post-transcriptional processes. Emerging evidence highlights the critical role of epitranscriptomics, the study of chemical modifications occurring on RNA molecules, in atherosclerosis development. Epitranscriptomics provides a new layer of regulation in vascular health, influencing cellular functions in endothelial cells, smooth muscle cells, and macrophages, thereby shedding light on the pathogenesis of atherosclerosis and presenting new opportunities for novel therapeutic targets. This review provides a comprehensive overview of the epitranscriptomic landscape, focusing on key RNA modifications such as N6-methyladenosine (m6A), 5-methylcytosine (m5C), pseudouridine (Ψ), RNA editing mechanisms including A-to-I and C-to-U editing and RNA isoforms. The functional implications of these modifications in RNA stability, alternative splicing, and microRNA biology are discussed, with a focus on their roles in inflammatory signaling, lipid metabolism, and vascular cell adaptation within atherosclerotic plaques. We also highlight how these modifications influence the generation of RNA isoforms, potentially altering cellular phenotypes and contributing to disease progression. Despite the promise of epitranscriptomics, significant challenges remain, including the technical limitations in detecting RNA modifications in complex tissues and the need for deeper mechanistic insights into their causal roles in atherosclerotic pathogenesis. Integrating epitranscriptomics with other omics approaches, such as genomics, proteomics, and metabolomics, holds the potential to provide a more holistic understanding of the disease.
Collapse
Affiliation(s)
- Victoria Stopa
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Dimitra Dafou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Korina Karagianni
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Yaël Nossent
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Rosienne Farrugia
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg.
| | - Miron Sopic
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg; Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Marceca GP, Romano G, Acunzo M, Nigita G. ncRNA Editing: Functional Characterization and Computational Resources. Methods Mol Biol 2025; 2883:455-495. [PMID: 39702721 DOI: 10.1007/978-1-0716-4290-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Non-coding RNAs (ncRNAs) play crucial roles in gene expression regulation, translation, and disease development, including cancer. They are classified by size in short and long non-coding RNAs. This chapter focuses on the functional implications of adenosine-to-inosine (A-to-I) RNA editing in both short (e.g., miRNAs) and long ncRNAs. RNA editing dynamically alters the sequence and structure of primary transcripts, impacting ncRNA biogenesis and function. Notable findings include the role of miRNA editing in promoting glioblastoma invasiveness, characterizing RNA editing hotspots across cancers, and its implications in thyroid cancer and ischemia. This chapter also highlights bioinformatics resources and next-generation sequencing (NGS) technologies that enable comprehensive ncRNAome studies and genome-wide RNA editing detection. Dysregulation of RNA editing machinery has been linked to various human diseases, emphasizing the potential of RNA editing as a biomarker and therapeutic target. This overview integrates current knowledge and computational tools for studying ncRNA editing, providing insights into its biological significance and clinical applications.
Collapse
Affiliation(s)
| | - Giulia Romano
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Alvarez-Arguedas S, Mazhar K, Wangzhou A, Sankaranarayanan I, Gaona G, Lafin JT, Mitchell RB, Price TJ, Shiloh MU. Single cell transcriptional analysis of human adenoids identifies molecular features of airway microfold cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619143. [PMID: 39484391 PMCID: PMC11526898 DOI: 10.1101/2024.10.19.619143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The nasal, oropharyngeal, and bronchial mucosa are primary contact points for airborne pathogens like Mycobacterium tuberculosis (Mtb), SARS-CoV-2, and influenza virus. While mucosal surfaces can function as both entry points and barriers to infection, mucosa-associated lymphoid tissues (MALT) facilitate early immune responses to mucosal antigens. MALT contains a variety of specialized epithelial cells, including a rare cell type called a microfold cell (M cell) that functions to transport apical antigens to basolateral antigen-presenting cells, a crucial step in the initiation of mucosal immunity. M cells have been extensively characterized in the gastrointestinal (GI) tract in murine and human models. However, the precise development and functions of human airway M cells is unknown. Here, using single-nucleus RNA sequencing (snRNA-seq), we generated an atlas of cells from the human adenoid and identified 16 unique cell types representing basal, club, hillock, and hematopoietic lineages, defined their developmental trajectories, and determined cell-cell relationships. Using trajectory analysis, we found that human airway M cells develop from progenitor club cells and express a gene signature distinct from intestinal M cells. Surprisingly, we also identified a heretofore unknown epithelial cell type demonstrating a robust interferon-stimulated gene signature. Our analysis of human adenoid cells enhances our understanding of mucosal immune responses and the role of M cells in airway immunity. This work also provides a resource for understanding early interactions of pathogens with airway mucosa and a platform for development of mucosal vaccines.
Collapse
|
5
|
Cheng H, Yu J, Wong CC. Adenosine-to-Inosine RNA editing in cancer: molecular mechanisms and downstream targets. Protein Cell 2024:pwae039. [PMID: 39126156 DOI: 10.1093/procel/pwae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 08/12/2024] Open
Abstract
Adenosine-to-Inosine (A-to-I), one of the most prevalent RNA modifications, has recently garnered significant attention. The A-to-I modification actively contributes to biological and pathological processes by affecting the structure and function of various RNA molecules, including double stranded RNA, transfer RNA, microRNA, and viral RNA. Increasing evidence suggests that A-to-I plays a crucial role in the development of human disease, particularly in cancer, and aberrant A-to-I levels are closely associated with tumorigenesis and progression through regulation of the expression of multiple oncogenes and tumor suppressor genes. Currently, the underlying molecular mechanisms of A-to-I modification in cancer are not comprehensively understood. Here, we review the latest advances regarding the A-to-I editing pathways implicated in cancer, describing their biological functions and their connections to the disease.
Collapse
Affiliation(s)
- Hao Cheng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR 518172, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR 518172, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR 518172, China
| |
Collapse
|
6
|
Caporali A, Anwar M, Devaux Y, Katare R, Martelli F, Srivastava PK, Pedrazzini T, Emanueli C. Non-coding RNAs as therapeutic targets and biomarkers in ischaemic heart disease. Nat Rev Cardiol 2024; 21:556-573. [PMID: 38499868 DOI: 10.1038/s41569-024-01001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/20/2024]
Abstract
The adult heart is a complex, multicellular organ that is subjected to a series of regulatory stimuli and circuits and has poor reparative potential. Despite progress in our understanding of disease mechanisms and in the quality of health care, ischaemic heart disease remains the leading cause of death globally, owing to adverse cardiac remodelling, leading to ischaemic cardiomyopathy and heart failure. Therapeutic targets are urgently required for the protection and repair of the ischaemic heart. Moreover, personalized clinical biomarkers are necessary for clinical diagnosis, medical management and to inform the individual response to treatment. Non-coding RNAs (ncRNAs) deeply influence cardiovascular functions and contribute to communication between cells in the cardiac microenvironment and between the heart and other organs. As such, ncRNAs are candidates for translation into clinical practice. However, ncRNA biology has not yet been completely deciphered, given that classes and modes of action have emerged only in the past 5 years. In this Review, we discuss the latest discoveries from basic research on ncRNAs and highlight both the clinical value and the challenges underscoring the translation of these molecules as biomarkers and therapeutic regulators of the processes contributing to the initiation, progression and potentially the prevention or resolution of ischaemic heart disease and heart failure.
Collapse
Affiliation(s)
- Andrea Caporali
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Maryam Anwar
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Luxembourg, Luxemburg
| | - Rajesh Katare
- Department of Physiology, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | | | - Thierry Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
- British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
7
|
Zawisza-Álvarez M, Peñuela-Melero J, Vegas E, Reverter F, Garcia-Fernàndez J, Herrera-Úbeda C. Exploring functional conservation in silico: a new machine learning approach to RNA-editing. Brief Bioinform 2024; 25:bbae332. [PMID: 38980372 PMCID: PMC11232462 DOI: 10.1093/bib/bbae332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
Around 50 years ago, molecular biology opened the path to understand changes in forms, adaptations, complexity, or the basis of human diseases through myriads of reports on gene birth, gene duplication, gene expression regulation, and splicing regulation, among other relevant mechanisms behind gene function. Here, with the advent of big data and artificial intelligence (AI), we focus on an elusive and intriguing mechanism of gene function regulation, RNA editing, in which a single nucleotide from an RNA molecule is changed, with a remarkable impact in the increase of the complexity of the transcriptome and proteome. We present a new generation approach to assess the functional conservation of the RNA-editing targeting mechanism using two AI learning algorithms, random forest (RF) and bidirectional long short-term memory (biLSTM) neural networks with an attention layer. These algorithms, combined with RNA-editing data coming from databases and variant calling from same-individual RNA and DNA-seq experiments from different species, allowed us to predict RNA-editing events using both primary sequence and secondary structure. Then, we devised a method for assessing conservation or divergence in the molecular mechanisms of editing completely in silico: the cross-testing analysis. This novel method not only helps to understand the conservation of the editing mechanism through evolution but could set the basis for achieving a better understanding of the adenosine-targeting mechanism in other fields.
Collapse
Affiliation(s)
- Michał Zawisza-Álvarez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Jesús Peñuela-Melero
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
| | - Esteban Vegas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Calle Sinesio Delgado 4, 28029 Madrid, Spain
| | - Ferran Reverter
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
| | - Jordi Garcia-Fernàndez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Carlos Herrera-Úbeda
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
8
|
Jin H, Li C, Jia Y, Qi Y, Piao W. Revealing the hidden RBP-RNA interactions with RNA modification enzyme-based strategies. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1863. [PMID: 39392204 PMCID: PMC11469752 DOI: 10.1002/wrna.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 10/12/2024]
Abstract
RNA-binding proteins (RBPs) are powerful and versatile regulators in living creatures, playing fundamental roles in organismal development, metabolism, and various diseases by the regulation of gene expression at multiple levels. The requirements of deep research on RBP function have promoted the rapid development of RBP-RNA interplay detection methods. Recently, the detection method of fusing RNA modification enzymes (RME) with RBP of interest has become a hot topic. Here, we reviewed RNA modification enzymes in adenosine deaminases that act on RNA (ADAR), terminal nucleotidyl transferase (TENT), and activation-induced cytosine deaminase/ApoB mRNA editing enzyme catalytic polypeptide-like (AID/APOBEC) protein family, regarding the biological function, biochemical activity, and substrate specificity originated from enzyme selves, their domains and partner proteins. In addition, we discussed the RME activity screening system, and the RME mutations with engineered enzyme activity. Furthermore, we provided a systematic overview of the basic principles, advantages, disadvantages, and applications of the RME-based and cross-linking and immunopurification (CLIP)-based RBP target profiling strategies, including targets of RNA-binding proteins identified by editing (TRIBE), RNA tagging, surveying targets by APOBEC-mediated profiling (STAMP), CLIP-seq, and their derivative technology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| | - Chong Li
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yunxiao Jia
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yuxuan Qi
- Faculty of ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Weilan Piao
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| |
Collapse
|
9
|
Yin Q, Qu Z, Mathew R, Zeng L, Du Z, Xue Y, Liu D, Zheng X. Epitranscriptomic orchestrations: Unveiling the regulatory paradigm of m6A, A-to-I editing, and m5C in breast cancer via long noncoding RNAs and microRNAs. Cell Biochem Funct 2024; 42:e3996. [PMID: 38561942 DOI: 10.1002/cbf.3996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Breast cancer (BC) poses a persistent global health challenge, particularly in countries with elevated human development indices linked to factors such as increased life expectancy, education, and wealth. Despite therapeutic progress, challenges persist, and the role of epitranscriptomic RNA modifications in BC remains inadequately understood. The epitranscriptome, comprising diverse posttranscriptional modifications on RNA molecules, holds the potential to intricately modulate RNA function and regulation, implicating dysregulation in various diseases, including BC. Noncoding RNAs (ncRNAs), acting as posttranscriptional regulators, influence physiological and pathological processes, including cancer. RNA modifications in long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) add an extra layer to gene expression control. This review delves into recent insights into epitranscriptomic RNA modifications, such as N-6-methyladenosine (m6A), adenine-to-inosine (A-to-I) editing, and 5-methylcytosine (m5C), specifically in the context of lncRNA and miRNAs in BC, highlighting their potential implications in BC development and progression. Understanding this intricate regulatory landscape is vital for deciphering the molecular mechanisms underlying BC and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Qinan Yin
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Zhifeng Qu
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Regina Mathew
- Department of Chemistry and Biochemistry, California State University, Los Angeles, California, USA
| | - Li Zeng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Zhe Du
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Yun Xue
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Dechun Liu
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Xuewei Zheng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
10
|
Sadeq S, Chitcharoen S, Al-Hashimi S, Rattanaburi S, Casement J, Werner A. Significant Variations in Double-Stranded RNA Levels in Cultured Skin Cells. Cells 2024; 13:226. [PMID: 38334619 PMCID: PMC10854852 DOI: 10.3390/cells13030226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Endogenous double-stranded RNA has emerged as a potent stimulator of innate immunity. Under physiological conditions, endogenous dsRNA is maintained in the cell nucleus or the mitochondria; however, if protective mechanisms are breached, it leaches into the cytoplasm and triggers immune signaling pathways. Ectopic activation of innate immune pathways is associated with various diseases and senescence and can trigger apoptosis. Hereby, the level of cytoplasmic dsRNA is crucial. We have enriched dsRNA from two melanoma cell lines and primary dermal fibroblasts, including a competing probe, and analyzed the dsRNA transcriptome using RNA sequencing. There was a striking difference in read counts between the cell lines and the primary cells, and the effect was confirmed by northern blotting and immunocytochemistry. Both mitochondria (10-20%) and nuclear transcription (80-90%) contributed significantly to the dsRNA transcriptome. The mitochondrial contribution was lower in the cancer cells compared to fibroblasts. The expression of different transposable element families was comparable, suggesting a general up-regulation of transposable element expression rather than stimulation of a specific sub-family. Sequencing of the input control revealed minor differences in dsRNA processing pathways with an upregulation of oligoadenylate synthase and RNP125 that negatively regulates the dsRNA sensors RIG1 and MDA5. Moreover, RT-qPCR, Western blotting, and immunocytochemistry confirmed the relatively minor adaptations to the hugely different dsRNA levels. As a consequence, these transformed cell lines are potentially less tolerant to interventions that increase the formation of endogenous dsRNA.
Collapse
Affiliation(s)
- Shaymaa Sadeq
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (S.A.-H.)
- Fallujah College of Medicine, University of Fallujah, Al-Fallujah 31002, Iraq
| | - Suwalak Chitcharoen
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Surar Al-Hashimi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (S.A.-H.)
- College of Medicine, University of Misan, Al-Sader Teaching Hospital, Amarah 62001, Iraq
| | - Somruthai Rattanaburi
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - John Casement
- Bioinformatics Support Unit, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Andreas Werner
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (S.A.-H.)
| |
Collapse
|
11
|
Jiao Y, Xu Y, Liu C, Miao R, Liu C, Wang Y, Liu J. The role of ADAR1 through and beyond its editing activity in cancer. Cell Commun Signal 2024; 22:42. [PMID: 38233935 PMCID: PMC10795376 DOI: 10.1186/s12964-023-01465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024] Open
Abstract
Adenosine-to-inosine (A-to-I) editing of RNA, catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes, is a prevalent RNA modification in mammals. It has been shown that A-to-I editing plays a critical role in multiple diseases, such as cardiovascular disease, neurological disorder, and particularly cancer. ADARs are the family of enzymes, including ADAR1, ADAR2, and ADAR3, that catalyze the occurrence of A-to-I editing. Notably, A-to-I editing is mainly catalyzed by ADAR1. Given the significance of A-to-I editing in disease development, it is important to unravel the complex roles of ADAR1 in cancer for the development of novel therapeutic interventions.In this review, we briefly describe the progress of research on A-to-I editing and ADARs in cancer, mainly focusing on the role of ADAR1 in cancer from both editing-dependent and independent perspectives. In addition, we also summarized the factors affecting the expression and editing activity of ADAR1 in cancer.
Collapse
Affiliation(s)
- Yue Jiao
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Yuqin Xu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Chengbin Liu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Rui Miao
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Chunyan Liu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Yilong Wang
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Jiao Liu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
12
|
Wales-McGrath B, Mercer H, Piontkivska H. Changes in ADAR RNA editing patterns in CMV and ZIKV congenital infections. BMC Genomics 2023; 24:685. [PMID: 37968596 PMCID: PMC10652522 DOI: 10.1186/s12864-023-09778-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND RNA editing is a process that increases transcriptome diversity, often through Adenosine Deaminases Acting on RNA (ADARs) that catalyze the deamination of adenosine to inosine. ADAR editing plays an important role in regulating brain function and immune activation, and is dynamically regulated during brain development. Additionally, the ADAR1 p150 isoform is induced by interferons in viral infection and plays a role in antiviral immune response. However, the question of how virus-induced ADAR expression affects host transcriptome editing remains largely unanswered. This question is particularly relevant in the context of congenital infections, given the dynamic regulation of ADAR editing during brain development, the importance of this editing for brain function, and subsequent neurological symptoms of such infections, including microcephaly, sensory issues, and other neurodevelopmental abnormalities. Here, we begin to address this question, examining ADAR expression in publicly available datasets of congenital infections of human cytomegalovirus (HCMV) microarray expression data, as well as mouse cytomegalovirus (MCMV) and mouse/ human induced pluripotent neuroprogenitor stem cell (hiNPC) Zika virus (ZIKV) RNA-seq data. RESULTS We found that in all three datasets, ADAR1 was overexpressed in infected samples compared to uninfected samples. In the RNA-seq datasets, editing rates were also analyzed. In all mouse infections cases, the number of editing sites was significantly increased in infected samples, albeit this was not the case for hiNPC ZIKV samples. Mouse ZIKV samples showed altered editing of well-established protein-recoding sites such as Gria3, Grik5, and Nova1, as well as editing sites that may impact miRNA binding. CONCLUSIONS Our findings provide evidence for changes in ADAR expression and subsequent dysregulation of ADAR editing of host transcriptomes in congenital infections. These changes in editing patterns of key neural genes have potential significance in the development of neurological symptoms, thus contributing to neurodevelopmental abnormalities. Further experiments should be performed to explore the full range of editing changes that occur in different congenital infections, and to confirm the specific functional consequences of these editing changes.
Collapse
Affiliation(s)
- Benjamin Wales-McGrath
- University of Pennsylvania, Perelman School of Medicine, Department of Genetics, Philadelphia, PA, USA
- Children's Hospital of Philadelphia, Division of Cancer Pathobiology, Philadelphia, PA, USA
| | - Heather Mercer
- Department of Biological and Environmental Sciences, University of Mount Union, Alliance, OH, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, USA.
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.
- Brain Health Research Institute, Kent State University, Kent, OH, USA.
- Healthy Communities Research Institute, Kent State University, Kent, OH, USA.
| |
Collapse
|
13
|
Frezza V, Chellini L, Del Verme A, Paronetto MP. RNA Editing in Cancer Progression. Cancers (Basel) 2023; 15:5277. [PMID: 37958449 PMCID: PMC10648226 DOI: 10.3390/cancers15215277] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Coding and noncoding RNA molecules play their roles in ensuring cell function and tissue homeostasis in an ordered and systematic fashion. RNA chemical modifications can occur both at bases and ribose sugar, and, similarly to DNA and histone modifications, can be written, erased, and recognized by the corresponding enzymes, thus modulating RNA activities and fine-tuning gene expression programs. RNA editing is one of the most prevalent and abundant forms of post-transcriptional RNA modification in normal physiological processes. By altering the sequences of mRNAs, it makes them different from the corresponding genomic template. Hence, edited mRNAs can produce protein isoforms that are functionally different from the corresponding genome-encoded variants. Abnormalities in regulatory enzymes and changes in RNA-modification patterns are closely associated with the occurrence and development of various human diseases, including cancer. To date, the roles played by RNA modifications in cancer are gathering increasing interest. In this review, we focus on the role of RNA editing in cancer transformation and provide a new perspective on its impact on tumorigenesis, by regulating cell proliferation, differentiation, invasion, migration, stemness, metabolism, and drug resistance.
Collapse
Affiliation(s)
- Valentina Frezza
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, Via del Fosso di Fiorano, 64, 00143 Rome, Italy; (V.F.); (L.C.); (A.D.V.)
| | - Lidia Chellini
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, Via del Fosso di Fiorano, 64, 00143 Rome, Italy; (V.F.); (L.C.); (A.D.V.)
| | - Arianna Del Verme
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, Via del Fosso di Fiorano, 64, 00143 Rome, Italy; (V.F.); (L.C.); (A.D.V.)
| | - Maria Paola Paronetto
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, Via del Fosso di Fiorano, 64, 00143 Rome, Italy; (V.F.); (L.C.); (A.D.V.)
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| |
Collapse
|
14
|
Sun H, Li K, Liu C, Yi C. Regulation and functions of non-m 6A mRNA modifications. Nat Rev Mol Cell Biol 2023; 24:714-731. [PMID: 37369853 DOI: 10.1038/s41580-023-00622-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
Nucleobase modifications are prevalent in eukaryotic mRNA and their discovery has resulted in the emergence of epitranscriptomics as a research field. The most abundant internal (non-cap) mRNA modification is N6-methyladenosine (m6A), the study of which has revolutionized our understanding of post-transcriptional gene regulation. In addition, numerous other mRNA modifications are gaining great attention because of their major roles in RNA metabolism, immunity, development and disease. In this Review, we focus on the regulation and function of non-m6A modifications in eukaryotic mRNA, including pseudouridine (Ψ), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), inosine, 5-methylcytidine (m5C), N4-acetylcytidine (ac4C), 2'-O-methylated nucleotide (Nm) and internal N7-methylguanosine (m7G). We highlight their regulation, distribution, stoichiometry and known roles in mRNA metabolism, such as mRNA stability, translation, splicing and export. We also discuss their biological consequences in physiological and pathological processes. In addition, we cover research techniques to further study the non-m6A mRNA modifications and discuss their potential future applications.
Collapse
Affiliation(s)
- Hanxiao Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Kai Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Cong Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
15
|
Yuan J, Xu L, Bao HJ, Wang JL, Zhao Y, Chen S. Biological roles of A-to-I editing: implications in innate immunity, cell death, and cancer immunotherapy. J Exp Clin Cancer Res 2023; 42:149. [PMID: 37328893 DOI: 10.1186/s13046-023-02727-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) editing, a key RNA modification widely found in eukaryotes, is catalyzed by adenosine deaminases acting on RNA (ADARs). Such RNA editing destabilizes endogenous dsRNAs, which are subsequently recognized by the sensors of innate immune and other proteins as autologous dsRNAs. This prevents the activation of innate immunity and type I interferon-mediated responses, thereby reducing the downstream cell death induced by the activation of the innate immune sensing system. ADARs-mediated editing can also occur in mRNAs and non-coding RNAs (ncRNAs) in different species. In mRNAs, A-to-I editing may lead to missense mutations and the selective splicing of coding regions. Meanwhile, in ncRNAs, A-to-I editing may affect targeting and disrupt ncRNAs maturation, leading to anomalous cell proliferation, invasion, and responses to immunotherapy. This review highlights the biological functions of A-to-I editing, its role in regulating innate immunity and cell death, and its potential molecular significance in tumorigenesis and cancer targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, P. R. China
| | - Li Xu
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Hai-Juan Bao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, P. R. China
| | - Jie-Lin Wang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, P. R. China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, P. R. China.
| | - Shuo Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, P. R. China.
| |
Collapse
|
16
|
Hwang H, Chang HR, Baek D. Determinants of Functional MicroRNA Targeting. Mol Cells 2023; 46:21-32. [PMID: 36697234 PMCID: PMC9880601 DOI: 10.14348/molcells.2023.2157] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) play cardinal roles in regulating biological pathways and processes, resulting in significant physiological effects. To understand the complex regulatory network of miRNAs, previous studies have utilized massivescale datasets of miRNA targeting and attempted to computationally predict the functional targets of miRNAs. Many miRNA target prediction tools have been developed and are widely used by scientists from various fields of biology and medicine. Most of these tools consider seed pairing between miRNAs and their mRNA targets and additionally consider other determinants to improve prediction accuracy. However, these tools exhibit limited prediction accuracy and high false positive rates. The utilization of additional determinants, such as RNA modifications and RNA-binding protein binding sites, may further improve miRNA target prediction. In this review, we discuss the determinants of functional miRNA targeting that are currently used in miRNA target prediction and the potentially predictive but unappreciated determinants that may improve prediction accuracy.
Collapse
Affiliation(s)
- Hyeonseo Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hee Ryung Chang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Daehyun Baek
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
17
|
Gan WL, Ng L, Ng BYL, Chen L. Recent Advances in Adenosine-to-Inosine RNA Editing in Cancer. Cancer Treat Res 2023; 190:143-179. [PMID: 38113001 DOI: 10.1007/978-3-031-45654-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
RNA epigenetics, or epitranscriptome, is a growing group of RNA modifications historically classified into two categories: RNA editing and RNA modification. RNA editing is usually understood as post-transcriptional RNA processing (except capping, splicing and polyadenylation) that changes the RNA nucleotide sequence encoded by the genome. This processing can be achieved through the insertion or deletion of nucleotides or deamination of nucleobases, generating either standard nucleotides such as uridine (U) or the rare nucleotide inosine (I). Adenosine-to-inosine (A-to-I) RNA editing is the most prevalent type of RNA modification in mammals and is catalyzed by adenosine deaminase acting on the RNA (ADAR) family of enzymes that recognize double-stranded RNAs (dsRNAs). Inosine mimics guanosine (G) in base pairing with cytidine (C), thereby A-to-I RNA editing alters dsRNA secondary structure. Inosine is also recognized as guanosine by the splicing and translation machineries, resulting in mRNA alternative splicing and protein recoding. Therefore, A-to-I RNA editing is an important mechanism that causes and regulates "RNA mutations" in both normal physiology and diseases including cancer. In this chapter, we reviewed current paradigms and developments in the field of A-to-I RNA editing in the context of cancer.
Collapse
Affiliation(s)
- Wei Liang Gan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Larry Ng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Bryan Y L Ng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore.
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117594, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.
| |
Collapse
|
18
|
Zhang Y, Zhang Q, Hou Y, Wang R, Wang Y. Comparative functional RNA editomes of neural differentiation from human PSCs. LIFE MEDICINE 2022; 1:221-235. [PMID: 39871920 PMCID: PMC11749364 DOI: 10.1093/lifemedi/lnac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/09/2022] [Indexed: 01/29/2025]
Abstract
RNA editing is a fundamental mechanism that constitutes the epitranscriptomic complexity. A-to-G editing is the predominant type catalyzed by ADAR1 and ADAR2 in human. Using a CRISPR/Cas9 approach to knockout ADAR1/2, we identified a regulatory role of RNA editing in directed differentiation of human embryonic stem cells (hESCs) toward neural progenitor cells (NPCs). Genome-wide landscapes of A-to-G editing in hESCs and four derivative cell lineages representing all three germ layers and the extraembryonic cell fate were profiled, with a particular focus on neural differentiation. Furthermore, a bioinformatics-guided case study identified a potential functional editing event in ZYG11B 3'UTR that might play a role in regulation of NPC differentiation through gain of miR6089 targeting. Collectively, our study established the functional role of A-to-G RNA editing in neural lineage differentiation; illustrated the RNA editing landscapes of hESCs and NPC differentiation; and shed new light on molecular insights thereof.
Collapse
Affiliation(s)
- Yu Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Mlobio, Singularity Center, Beijing 102200, China
| | - Qu Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Experimental Medicine Unit, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Yuhong Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Cell Resource Center, Peking Union Medical College (PUMC), Beijing 100005, China
| | - Ran Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Peking Union Medical College Hospital, Beijing 100730, China
| | - Yu Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
19
|
Liu J, Wang F, Zhang Y, Liu J, Zhao B. ADAR1-Mediated RNA Editing and Its Role in Cancer. Front Cell Dev Biol 2022; 10:956649. [PMID: 35898396 PMCID: PMC9309331 DOI: 10.3389/fcell.2022.956649] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
It is well known that the stability of RNA, the interaction between RNA and protein, and the correct translation of protein are significant forces that drive the transition from normal cell to malignant tumor. Adenosine deaminase acting on RNA 1 (ADAR1) is an RNA editing enzyme that catalyzes the deamination of adenosine to inosine (A-to-I), which is one dynamic modification that in a combinatorial manner can give rise to a very diverse transcriptome. ADAR1-mediated RNA editing is essential for survival in mammals and its dysregulation results in aberrant editing of its substrates that may affect the phenotypic changes in cancer. This overediting phenomenon occurs in many cancers, such as liver, lung, breast, and esophageal cancers, and promotes tumor progression in most cases. In addition to its editing role, ADAR1 can also play an editing-independent role, although current research on this mechanism is relatively shallowly explored in tumors. In this review, we summarize the nature of ADAR1, mechanisms of ADAR1 editing-dependent and editing-independent and implications for tumorigenesis and prognosis, and pay special attention to effects of ADAR1 on cancers by regulating non-coding RNA formation and function.
Collapse
Affiliation(s)
- Jizhe Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Fei Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, China
| | - Yindan Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Jingfeng Liu
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
- *Correspondence: Jingfeng Liu, ; Bixing Zhao,
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, China
- *Correspondence: Jingfeng Liu, ; Bixing Zhao,
| |
Collapse
|
20
|
Dutta N, Deb I, Sarzynska J, Lahiri A. Inosine and its methyl derivatives: Occurrence, biogenesis, and function in RNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:21-52. [PMID: 35065168 DOI: 10.1016/j.pbiomolbio.2022.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 05/21/2023]
Abstract
Inosine is one of the most common post-transcriptional modifications. Since its discovery, it has been noted for its ability to contribute to non-Watson-Crick interactions within RNA. Rapidly accumulating evidence points to the widespread generation of inosine through hydrolytic deamination of adenosine to inosine by different classes of adenosine deaminases. Three naturally occurring methyl derivatives of inosine, i.e., 1-methylinosine, 2'-O-methylinosine and 1,2'-O-dimethylinosine are currently reported in RNA modification databases. These modifications are expected to lead to changes in the structure, folding, dynamics, stability and functions of RNA. The importance of the modifications is indicated by the strong conservation of the modifying enzymes across organisms. The structure, binding and catalytic mechanism of the adenosine deaminases have been well-studied, but the underlying mechanism of the catalytic reaction is not very clear yet. Here we extensively review the existing data on the occurrence, biogenesis and functions of inosine and its methyl derivatives in RNA. We also included the structural and thermodynamic aspects of these modifications in our review to provide a detailed and integrated discussion on the consequences of A-to-I editing in RNA and the contribution of different structural and thermodynamic studies in understanding its role in RNA. We also highlight the importance of further studies for a better understanding of the mechanisms of the different classes of deamination reactions. Further investigation of the structural and thermodynamic consequences and functions of these modifications in RNA should provide more useful information about their role in different diseases.
Collapse
Affiliation(s)
- Nivedita Dutta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Indrajit Deb
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India.
| |
Collapse
|
21
|
Wang K, Lu Y, Morrow DF, Xiao D, Xu C. Associations of ARHGAP26 Polymorphisms with Alzheimer's Disease and Cardiovascular Disease. J Mol Neurosci 2022; 72:1085-1097. [PMID: 35171450 DOI: 10.1007/s12031-022-01972-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/10/2022] [Indexed: 02/03/2023]
Abstract
The Rho GTPase activating protein 26 (ARHGAP26) gene has been reported to be associated with neuropsychiatric diseases and neurodegenerative diseases including Parkinson's disease. We examined whether the ARHGAP26 gene is associated with Alzheimer's disease (AD) and/or cardiovascular disease (CVD). Multivariable logistic regression model was used to examine the associations of 154 single nucleotide polymorphisms (SNPs) within the ARHGAP26 gene with AD and CVD using the Alzheimer's Disease Neuroimaging Initiative 1 (ADNI-1) cohort. Fourteen SNPs were associated with AD (top SNP rs3776362 with p = 3.43 × 10-3), while 37 SNPs revealed associations with CVD (top SNP rs415235 with p = 2.06 × 10-4). Interestingly, 13 SNPs were associated with both AD and CVD. SNP rs3776362 was associated with CVD, Functional Activities Questionnaire (FAQ), and Clinical Dementia Rating Sum of Boxes (CDR-SB). A replication study using a Caribbean Hispanics sample showed that 17 SNPs revealed associations with AD, and 12 SNPs were associated with CVD. The third sample using a family-based study design showed that 9 SNPs were associated with AD, and 3 SNPs were associated with CVD. SNP rs6836509 within the ARHGAP10 gene (an important paralogon of ARHGAP26) was associated with AD and cerebrospinal fluid total tau (t-tau) level in the ADNI sample. Several SNPs were functionally important using the RegulomeDB, while a number of SNPs were associated with significant expression quantitative trait loci (eQTLs) using Genotype-Tissue Expression (GTEx) databases. In conclusion, genetic variants within ARHGAP26 were associated with AD and CVD. These findings add important new insights into the potentially shared pathogenesis of AD and CVD.
Collapse
Affiliation(s)
- Kesheng Wang
- Department of Family and Community Health, School of Nursing, Health Sciences Center, West Virginia University, Post Office Box 9600 - Office 6419, Morgantown, WV, 26506, USA.
| | - Yongke Lu
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Deana F Morrow
- School of Social Work, West Virginia University, Morgantown, WV, 26506, USA
| | - Danqing Xiao
- Department of STEM, School of Arts and Sciences, Regis College, Weston, MA, 02493, USA
- McLean Imaging Center, McLean Hospital, MA, 02478, Belmont, USA
| | - Chun Xu
- Department of Health and Biomedical Sciences, College of Health Professions, University of Texas Rio Grande Valley, TX, 78520, Brownsville, USA.
| |
Collapse
|
22
|
Adetula AA, Fan X, Zhang Y, Yao Y, Yan J, Chen M, Tang Y, Liu Y, Yi G, Li K, Tang Z. Landscape of tissue-specific RNA Editome provides insight into co-regulated and altered gene expression in pigs ( Sus-scrofa). RNA Biol 2021; 18:439-450. [PMID: 34314293 PMCID: PMC8677025 DOI: 10.1080/15476286.2021.1954380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/08/2022] Open
Abstract
RNA editing generates genetic diversity in mammals by altering amino acid sequences, miRNA targeting site sequences, influencing the stability of targeted RNAs, and causing changes in gene expression. However, the extent to which RNA editing affect gene expression via modifying miRNA binding site remains unexplored. Here, we first profiled the dynamic A-to-I RNA editome across tissues of Duroc and Luchuan pigs. The RNA editing events at the miRNA binding sites were generated. The biological function of the differentially edited gene in skeletal muscle was further characterized in pig muscle-derived satellite cells. RNA editome analysis revealed a total of 171,909 A-to-I RNA editing sites (RESs), and examination of its features showed that these A-to-I editing sites were mainly located in SINE retrotransposons PRE-1/Pre0_SS element. Analysis of differentially edited sites (DESs) revealed a total of 4,552 DESs across tissues between Duroc and Luchuan pigs, and functional category enrichment analysis of differentially edited gene (DEG) sets highlighted a significant association and enrichment of tissue-developmental pathways including TGF-beta, PI3K-Akt, AMPK, and Wnt signaling pathways. Moreover, we found that RNA editing events at the miRNA binding sites in the 3'-UTR of HSPA12B mRNA could prevent the miRNA-mediated mRNA downregulation of HSPA12B in the muscle-derived satellite (MDS) cell, consistent with the results obtained from the Luchuan skeletal muscle. This study represents the most systematic attempt to characterize the significance of RNA editing in regulating gene expression, particularly in skeletal muscle, constituting a new layer of regulation to understand the genetic mechanisms behind phenotype variance in animals.Abbreviations: A-to-I: Adenosine-to-inosine; ADAR: Adenosine deaminase acting on RNA; RES: RNA editing site; DEG: Differentially edited gene; DES: Differentially edited site; FDR: False discovery rate; GO: Gene Ontology; KEGG: Kyoto Encyclopaedia of Genes and Genomes; MDS cell: musclederived satellite cell; RPKM: Reads per kilobase of exon model in a gene per million mapped reads; UTR: Untranslated coding regions.
Collapse
Affiliation(s)
- Adeyinka A. Adetula
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Group of Pig Genome and Design Breeding, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xinhao Fan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Group of Pig Genome and Design Breeding, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yongsheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Group of Pig Genome and Design Breeding, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yilong Yao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Group of Pig Genome and Design Breeding, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Junyu Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Group of Pig Genome and Design Breeding, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Muya Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Group of Pig Genome and Design Breeding, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yijie Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Group of Pig Genome and Design Breeding, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Group of Pig Genome and Design Breeding, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
- GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama, China
| | - Guoqiang Yi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Group of Pig Genome and Design Breeding, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
- GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama, China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Group of Pig Genome and Design Breeding, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
- GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama, China
| |
Collapse
|
23
|
De Paolis V, Lorefice E, Orecchini E, Carissimi C, Laudadio I, Fulci V. Epitranscriptomics: A New Layer of microRNA Regulation in Cancer. Cancers (Basel) 2021; 13:3372. [PMID: 34282776 PMCID: PMC8268402 DOI: 10.3390/cancers13133372] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are pervasive regulators of gene expression at the post-transcriptional level in metazoan, playing key roles in several physiological and pathological processes. Accordingly, these small non-coding RNAs are also involved in cancer development and progression. Furthermore, miRNAs represent valuable diagnostic and prognostic biomarkers in malignancies. In the last twenty years, the role of RNA modifications in fine-tuning gene expressions at several levels has been unraveled. All RNA species may undergo post-transcriptional modifications, collectively referred to as epitranscriptomic modifications, which, in many instances, affect RNA molecule properties. miRNAs are not an exception, in this respect, and they have been shown to undergo several post-transcriptional modifications. In this review, we will summarize the recent findings concerning miRNA epitranscriptomic modifications, focusing on their potential role in cancer development and progression.
Collapse
Affiliation(s)
| | | | | | - Claudia Carissimi
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma, 00161 Rome, Italy; (V.D.P.); (E.L.); (E.O.); (V.F.)
| | - Ilaria Laudadio
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma, 00161 Rome, Italy; (V.D.P.); (E.L.); (E.O.); (V.F.)
| | | |
Collapse
|
24
|
Torsin LI, Petrescu GED, Sabo AA, Chen B, Brehar FM, Dragomir MP, Calin GA. Editing and Chemical Modifications on Non-Coding RNAs in Cancer: A New Tale with Clinical Significance. Int J Mol Sci 2021; 22:ijms22020581. [PMID: 33430133 PMCID: PMC7827606 DOI: 10.3390/ijms22020581] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Currently, for seemingly every type of cancer, dysregulated levels of non-coding RNAs (ncRNAs) are reported and non-coding transcripts are expected to be the next class of diagnostic and therapeutic tools in oncology. Recently, alterations to the ncRNAs transcriptome have emerged as a novel hallmark of cancer. Historically, ncRNAs were characterized mainly as regulators and little attention was paid to the mechanisms that regulate them. The role of modifications, which can control the function of ncRNAs post-transcriptionally, only recently began to emerge. Typically, these modifications can be divided into reversible (i.e., chemical modifications: m5C, hm5C, m6A, m1A, and pseudouridine) and non-reversible (i.e., editing: ADAR dependent, APOBEC dependent and ADAR/APOBEC independent). The first research papers showed that levels of these modifications are altered in cancer and can be part of the tumorigenic process. Hence, the aim of this review paper is to describe the most common regulatory modifications (editing and chemical modifications) of the traditionally considered “non-functional” ncRNAs (i.e., microRNAs, long non-coding RNAs and circular RNAs) in the context of malignant disease. We consider that only by understanding this extra regulatory layer it is possible to translate the knowledge about ncRNAs and their modifications into clinical practice.
Collapse
Affiliation(s)
- Ligia I. Torsin
- Department of Anesthesiology and Critical Care, Elias Clinical Emergency Hospital, 011461 Bucharest, Romania;
| | - George E. D. Petrescu
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (G.E.D.P.); (F.M.B.)
- Department of Neurosurgery, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania
| | - Alexandru A. Sabo
- Zentrum für Kinder, Jugend und Frauenmedizin, Pediatrics 2 (General and Special Pediatrics), Klinikum Stuttgart, Olgahospital, 70174 Stuttgart, Germany;
| | - Baoqing Chen
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China;
- Guangdong Esophageal Cancer Research Institute, Guangzhou 510060, China
| | - Felix M. Brehar
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (G.E.D.P.); (F.M.B.)
- Department of Neurosurgery, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania
| | - Mihnea P. Dragomir
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Correspondence: or (M.P.D.); (G.A.C.); Tel.: +40-254-219-493 (M.P.D.); +1-713-792-5461 (G.A.C.)
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Correspondence: or (M.P.D.); (G.A.C.); Tel.: +40-254-219-493 (M.P.D.); +1-713-792-5461 (G.A.C.)
| |
Collapse
|
25
|
Abstract
RNA editing of adenosines to inosines contributes to a wide range of biological processes by regulating gene expression post-transcriptionally. To understand the effect, accurate mapping of inosines is necessary. The most conventional method to identify an editing site is to compare the cDNA sequence with its corresponding genomic sequence. However, this method has a high false discovery rate because guanosine signals, due to experimental errors or noise in the obtained sequences, contaminate genuine inosine signals detected as guanosine. To ensure high accuracy, we developed the Inosine Chemical Erasing (ICE) method to accurately and biochemically identify inosines in RNA strands utilizing inosine cyanoethylation and reverse transcription-PCR. Furthermore, we applied this technique to next-generation sequencing technology, called ICE-seq, to conduct an unbiased genome-wide screening of A-to-I editing sites in the transcriptome.
Collapse
|
26
|
Immune-related IncRNA LINC00944 responds to variations in ADAR1 levels and it is associated with breast cancer prognosis. Life Sci 2020; 268:118956. [PMID: 33383047 DOI: 10.1016/j.lfs.2020.118956] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022]
Abstract
AIMS Breast cancer is one of the leading causes of woman deaths worldwide, being a major public health problem. It has been reported that the expression of the RNA-editing enzyme Adenosine Deaminase Acting on RNAs 1 (ADAR1) is upregulated in breast cancer, predicting poor prognosis in patients. A few reports in literature examine ADAR1 and long non-coding RNAs (lncRNAs) interplay in cancer and suggest key roles in cancer-related pathways. This study aimed to investigate whether ADAR1 could alter the expression levels of lncRNAs and explore how those changes are related to breast cancer biology. MAIN METHODS ADAR1 overexpression and knockdown studies were performed in breast cancer cell lines to analyze the effects over lncRNAs expression. Guilt-by-Association correlation analysis of the TCGA-BRCA cohort was performed to predict the function of the lncRNA LINC00944. KEY FINDINGS Here, we show that LINC00944 is responsive to ADAR1 up- and downregulation in breast cancer cells. We found that LINC00944 expression has a strong relationship with immune signaling pathways. Further assessment of the TCGA-BRCA cohort showed that LINC00944 expression was positively correlated to tumor-infiltrating T lymphocytes and pro-apoptotic markers. Moreover, we found that LINC00944 expression was correlated to the age at diagnosis, tumor size, and estrogen and progesterone receptor expression. Finally, we show that low expression of LINC00944 is correlated to poor prognosis in breast cancer patients. SIGNIFICANCE Our study provides further evidence of the effect of ADAR1 over lncRNA expression levels, and on the participation of LINC00944 in breast cancer, suggesting to further investigate its potential role as prognostic biomarker.
Collapse
|
27
|
Erdmann EA, Mahapatra A, Mukherjee P, Yang B, Hundley HA. To protect and modify double-stranded RNA - the critical roles of ADARs in development, immunity and oncogenesis. Crit Rev Biochem Mol Biol 2020; 56:54-87. [PMID: 33356612 DOI: 10.1080/10409238.2020.1856768] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adenosine deaminases that act on RNA (ADARs) are present in all animals and function to both bind double-stranded RNA (dsRNA) and catalyze the deamination of adenosine (A) to inosine (I). As inosine is a biological mimic of guanosine, deamination by ADARs changes the genetic information in the RNA sequence and is commonly referred to as RNA editing. Millions of A-to-I editing events have been reported for metazoan transcriptomes, indicating that RNA editing is a widespread mechanism used to generate molecular and phenotypic diversity. Loss of ADARs results in lethality in mice and behavioral phenotypes in worm and fly model systems. Furthermore, alterations in RNA editing occur in over 35 human pathologies, including several neurological disorders, metabolic diseases, and cancers. In this review, a basic introduction to ADAR structure and target recognition will be provided before summarizing how ADARs affect the fate of cellular RNAs and how researchers are using this knowledge to engineer ADARs for personalized medicine. In addition, we will highlight the important roles of ADARs and RNA editing in innate immunity and cancer biology.
Collapse
Affiliation(s)
- Emily A Erdmann
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Priyanka Mukherjee
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| | - Boyoon Yang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| |
Collapse
|
28
|
Marceca GP, Nigita G, Calore F, Croce CM. MicroRNAs in Skeletal Muscle and Hints on Their Potential Role in Muscle Wasting During Cancer Cachexia. Front Oncol 2020; 10:607196. [PMID: 33330108 PMCID: PMC7732629 DOI: 10.3389/fonc.2020.607196] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer-associated cachexia is a heterogeneous, multifactorial syndrome characterized by systemic inflammation, unintentional weight loss, and profound alteration in body composition. The main feature of cancer cachexia is represented by the loss of skeletal muscle tissue, which may or may not be accompanied by significant adipose tissue wasting. Such phenotypic alteration occurs as the result of concomitant increased myofibril breakdown and reduced muscle protein synthesis, actively contributing to fatigue, worsening of quality of life, and refractoriness to chemotherapy. According to the classical view, this condition is primarily triggered by interactions between specific tumor-induced pro-inflammatory cytokines and their cognate receptors expressed on the myocyte membrane. This causes a shift in gene expression of muscle cells, eventually leading to a pronounced catabolic condition and cell death. More recent studies, however, have shown the involvement of regulatory non-coding RNAs in the outbreak of cancer cachexia. In particular, the role exerted by microRNAs is being widely addressed, and several mechanistic studies are in progress. In this review, we discuss the most recent findings concerning the role of microRNAs in triggering or exacerbating muscle wasting in cancer cachexia, while mentioning about possible roles played by long non-coding RNAs and ADAR-mediated miRNA modifications.
Collapse
Affiliation(s)
- Gioacchino P Marceca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Federica Calore
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
29
|
Chan TW, Fu T, Bahn JH, Jun HI, Lee JH, Quinones-Valdez G, Cheng C, Xiao X. RNA editing in cancer impacts mRNA abundance in immune response pathways. Genome Biol 2020; 21:268. [PMID: 33106178 PMCID: PMC7586670 DOI: 10.1186/s13059-020-02171-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND RNA editing generates modifications to the RNA sequences, thereby increasing protein diversity and shaping various layers of gene regulation. Recent studies have revealed global shifts in editing levels across many cancer types, as well as a few specific mechanisms implicating individual sites in tumorigenesis or metastasis. However, most tumor-associated sites, predominantly in noncoding regions, have unknown functional relevance. RESULTS Here, we carry out integrative analysis of RNA editing profiles between epithelial and mesenchymal tumors, since epithelial-mesenchymal transition is a key paradigm for metastasis. We identify distinct editing patterns between epithelial and mesenchymal tumors in seven cancer types using TCGA data, an observation further supported by single-cell RNA sequencing data and ADAR perturbation experiments in cell culture. Through computational analyses and experimental validations, we show that differential editing sites between epithelial and mesenchymal phenotypes function by regulating mRNA abundance of their respective genes. Our analysis of RNA-binding proteins reveals ILF3 as a potential regulator of this process, supported by experimental validations. Consistent with the known roles of ILF3 in immune response, epithelial-mesenchymal differential editing sites are enriched in genes involved in immune and viral processes. The strongest target of editing-dependent ILF3 regulation is the transcript encoding PKR, a crucial player in immune and viral response. CONCLUSIONS Our study reports widespread differences in RNA editing between epithelial and mesenchymal tumors and a novel mechanism of editing-dependent regulation of mRNA abundance. It reveals the broad impact of RNA editing in cancer and its relevance to cancer-related immune pathways.
Collapse
Affiliation(s)
- Tracey W Chan
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA
| | - Ting Fu
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, CA, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Hyun-Ik Jun
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Jae-Hyung Lee
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
- Department of Life and Nanopharmaceutical Sciences & Oral Microbiology, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | | | - Chonghui Cheng
- Lester & Sue Smith Breast Center & Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA.
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, CA, USA.
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
- Institute for Quantitative and Computational Sciences, UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Zhou S, Zhang D, Guo J, Chen Z, Chen Y, Zhang J. Deficiency of NEAT1 prevented MPP +-induced inflammatory response, oxidative stress and apoptosis in dopaminergic SK-N-SH neuroblastoma cells via miR-1277-5p/ARHGAP26 axis. Brain Res 2020; 1750:147156. [PMID: 33069733 DOI: 10.1016/j.brainres.2020.147156] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/27/2020] [Accepted: 10/11/2020] [Indexed: 12/19/2022]
Abstract
Noncoding RNAs including long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) have been documented to play prominent role in neurodegenerative diseases including Parkinson's disease (PD). This study intended to investigate the role of lncRNA nuclear enriched assembly transcript 1 (NEAT1) in MPP+-induced PD model in dopaminergic neuronblastoma SK-N-SH cells, as well as its mechanism through sponging miRNA (miR)-1277-5p. Real-time PCR and western blotting revealed that NEAT1 and ARHGAP26 were upregulated, and miR-1277-5p was downregulated in MPP+-treated SK-N-SH cells in a certain of concentration- and time- dependent manner. MPP+ induced apoptosis in SK-N-SH cells, as evidenced by decreased cell viability and Bcl-2 expression, and elevated apoptosis rate and levels of Bax and cleaved caspase-3, which were examined by MTT assay, flow cytometry and western blotting. Moreover, commercial assay kits indicated that inflammatory response and oxidative stress were provoked in response to MPP+, due to promoted contents of interleukin (IL)-6, IL-1β, tumor necrosis factor-α, malondialdehyde, and lactate dehydrogenase, accompanied with suppressed superoxide dismutase and glutathione peroxidase levels. Notably, MPP+-induced apoptosis, inflammatory response and oxidative stress in SK-N-SH cells were mitigated by NEAT1 knockdown and/or miR-1277-5p overexpression. Moreover, silencing of miR-1277-5p could abrogate the suppression of NEAT1 deficiency on MPP+-induced cell injury. Similarly, upregulating miR-1277-5p-elicited neuroprotection in MPP+-induced SK-N-SH cells was reversed by ARHGAP26 restoration. Dual-luciferase reporter assay demonstrated a direct interaction between miR-1277-5p and NEAT1 or ARHGAP26. Collectively, NEAT1 upregulation might contribute to MPP+-induced neuron injury via NEAT1-miR-1277-5p-ARHGAP26 competing endogenous RNAs (ceRNAs) pathway.
Collapse
Affiliation(s)
- Shufang Zhou
- Department of Neurology, The Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Dan Zhang
- Department of Endodontics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junnan Guo
- Department of Neurology, The Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Zhenzhen Chen
- Department of Rehabilitation Medicine, The Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Yong Chen
- Department of Neurology, The Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Junshi Zhang
- Department of Neurology, The Huaihe Hospital of Henan University, Kaifeng, Henan, China.
| |
Collapse
|
31
|
Park S, Doherty EE, Xie Y, Padyana AK, Fang F, Zhang Y, Karki A, Lebrilla CB, Siegel JB, Beal PA. High-throughput mutagenesis reveals unique structural features of human ADAR1. Nat Commun 2020; 11:5130. [PMID: 33046702 PMCID: PMC7550611 DOI: 10.1038/s41467-020-18862-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 09/11/2020] [Indexed: 01/06/2023] Open
Abstract
Adenosine Deaminases that act on RNA (ADARs) are enzymes that catalyze adenosine to inosine conversion in dsRNA, a common form of RNA editing. Mutations in the human ADAR1 gene are known to cause disease and recent studies have identified ADAR1 as a potential therapeutic target for a subset of cancers. However, efforts to define the mechanistic effects for disease associated ADAR1 mutations and the rational design of ADAR1 inhibitors are limited by a lack of structural information. Here, we describe the combination of high throughput mutagenesis screening studies, biochemical characterization and Rosetta-based structure modeling to identify unique features of ADAR1. Importantly, these studies reveal a previously unknown zinc-binding site on the surface of the ADAR1 deaminase domain which is important for ADAR1 editing activity. Furthermore, we present structural models that explain known properties of this enzyme and make predictions about the role of specific residues in a surface loop unique to ADAR1.
Collapse
Affiliation(s)
- SeHee Park
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Erin E Doherty
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Yixuan Xie
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | | | | | - Yue Zhang
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Agya Karki
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
| | - Justin B Siegel
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
- Genome Center, University of California Davis, Davis, CA, USA
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
32
|
lncRNA deleted in lymphocytic leukaemia 1 (DLEU1) promotes the migration and invasion of human embryonic trophoblast cells. ZYGOTE 2020. [DOI: 10.1017/s0967199420000246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryTo investigate the roles of lncRNA deleted in lymphocytic leukaemia 1 (DLEU1) on migration and invasion of human trophoblast cells. Human chorionic trophoblast cell line HTR8/SVneo was cultured and transfected using lncRNA DLEU1 small interfering RNA. Real-time quantitative polymerase chain reaction was used to detect lncRNA DLEU1 expression. The activity of migration regulatory protein CDC42 was detected by western blot. The downstream miRNA targets of lncRNA and mRNAs targeted by corresponding miRNAs were respectively predicted using bioinformatics analyses. Compared with the control group, the expression of lncRNA DLEU1 in the small interfering RNA group was significantly decreased (P < 0.05). There was no significant change in cell proliferation capacity for transfected cells (lncRNA DLEU1 siRNA-1, P = 0.537; lncRNA DLEU1 siRNA-2, P = 0.384), but cell migration (lncRNA DLEU1 siRNA-1, P = 0.025; lncRNA DLEU1 siRNA-2, P = 0.019) and invasion (lncRNA DLEU1 siRNA-1, P = 0.0327; lncRNA DLEU1 siRNA-2, P = 0.021) was significantly reduced. CDC42 activity in the lncRNA DLEU1 knockdown group decreased and the phosphorylation of cofilin increased. Therefore, downregulation of lncRNA DLEU1 suppressed the migration and invasion of human trophoblast cells.
Collapse
|
33
|
Thuy-Boun AS, Thomas JM, Grajo HL, Palumbo CM, Park S, Nguyen LT, Fisher AJ, Beal PA. Asymmetric dimerization of adenosine deaminase acting on RNA facilitates substrate recognition. Nucleic Acids Res 2020; 48:7958-7972. [PMID: 32597966 PMCID: PMC7641318 DOI: 10.1093/nar/gkaa532] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/09/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) are enzymes that convert adenosine to inosine in duplex RNA, a modification that exhibits a multitude of effects on RNA structure and function. Recent studies have identified ADAR1 as a potential cancer therapeutic target. ADARs are also important in the development of directed RNA editing therapeutics. A comprehensive understanding of the molecular mechanism of the ADAR reaction will advance efforts to develop ADAR inhibitors and new tools for directed RNA editing. Here we report the X-ray crystal structure of a fragment of human ADAR2 comprising its deaminase domain and double stranded RNA binding domain 2 (dsRBD2) bound to an RNA duplex as an asymmetric homodimer. We identified a highly conserved ADAR dimerization interface and validated the importance of these sequence elements on dimer formation via gel mobility shift assays and size exclusion chromatography. We also show that mutation in the dimerization interface inhibits editing in an RNA substrate-dependent manner for both ADAR1 and ADAR2.
Collapse
Affiliation(s)
| | - Justin M Thomas
- Department of Chemistry, University of California, Davis, CA, USA
| | - Herra L Grajo
- Department of Chemistry, University of California, Davis, CA, USA
| | - Cody M Palumbo
- Department of Chemistry, University of California, Davis, CA, USA
| | - SeHee Park
- Department of Chemistry, University of California, Davis, CA, USA
| | - Luan T Nguyen
- Department of Chemistry, University of California, Davis, CA, USA
| | - Andrew J Fisher
- Department of Chemistry, University of California, Davis, CA, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, CA, USA
| |
Collapse
|
34
|
Yang X, Yang J, Liang X, Chen Q, Jiang S, Liu H, Gao Y, Ren Z, Shi YW, Li S, Yu Y, Zhong M, Yang X. Landscape of Dysregulated Placental RNA Editing Associated With Preeclampsia. Hypertension 2020; 75:1532-1541. [DOI: 10.1161/hypertensionaha.120.14756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dysregulated RNA editing is well documented in several diseases, such as cancer and neurodegenerative diseases. The extent to which RNA editing might be involved in diseases originated in the placenta remains unknown. Here, we have systematically profiled RNA editome on the placentae, 9 from patients with early-onset severe preeclampsia (EOSPE) and 32 from normal subjects, and a widespread RNA editing dysregulation in EOSPE has been identified. The mis-edited gene set is enriched with known preeclampsia-associated genes and differentially expressed genes in EOSPE. The RNA editing events at 2 microRNA binding sites in 3′-untranslated region of the
LEP
mRNA were generated, which could inhibit the microRNA-induced mRNA downregulation of
LEP
in placenta-derived cell line, consistent with the observation in the placentae of preeclampsia patients. These results demonstrate the association of dysregulated placental RNA editing with preeclampsia, and providing a resource for further study on the role of RNA editing in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Xiaoxue Yang
- From the Center for Genetics and Developmental Systems Biology, Department of Obstetrics and Gynecology, Nanfang Hospital (Xiaoxue Yang, J.Y., X.L., Q.C., S.J., H.L., Y.G., Z.R., Y.Y., M.Z., Xinping Yang), Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Yang
- From the Center for Genetics and Developmental Systems Biology, Department of Obstetrics and Gynecology, Nanfang Hospital (Xiaoxue Yang, J.Y., X.L., Q.C., S.J., H.L., Y.G., Z.R., Y.Y., M.Z., Xinping Yang), Southern Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Mental Health of the Ministry of Education (J.Y., Y.G., Xinping Yang), Southern Medical University, Guangzhou, Guangdong, China
- Department of Bioinformatics, School of Basic Medical Sciences (J.Y., Y.G., Xinping Yang), Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaozhen Liang
- From the Center for Genetics and Developmental Systems Biology, Department of Obstetrics and Gynecology, Nanfang Hospital (Xiaoxue Yang, J.Y., X.L., Q.C., S.J., H.L., Y.G., Z.R., Y.Y., M.Z., Xinping Yang), Southern Medical University, Guangzhou, Guangdong, China
| | - Qian Chen
- From the Center for Genetics and Developmental Systems Biology, Department of Obstetrics and Gynecology, Nanfang Hospital (Xiaoxue Yang, J.Y., X.L., Q.C., S.J., H.L., Y.G., Z.R., Y.Y., M.Z., Xinping Yang), Southern Medical University, Guangzhou, Guangdong, China
| | - Sijia Jiang
- From the Center for Genetics and Developmental Systems Biology, Department of Obstetrics and Gynecology, Nanfang Hospital (Xiaoxue Yang, J.Y., X.L., Q.C., S.J., H.L., Y.G., Z.R., Y.Y., M.Z., Xinping Yang), Southern Medical University, Guangzhou, Guangdong, China
| | - Haihua Liu
- From the Center for Genetics and Developmental Systems Biology, Department of Obstetrics and Gynecology, Nanfang Hospital (Xiaoxue Yang, J.Y., X.L., Q.C., S.J., H.L., Y.G., Z.R., Y.Y., M.Z., Xinping Yang), Southern Medical University, Guangzhou, Guangdong, China
| | - Yue Gao
- From the Center for Genetics and Developmental Systems Biology, Department of Obstetrics and Gynecology, Nanfang Hospital (Xiaoxue Yang, J.Y., X.L., Q.C., S.J., H.L., Y.G., Z.R., Y.Y., M.Z., Xinping Yang), Southern Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Mental Health of the Ministry of Education (J.Y., Y.G., Xinping Yang), Southern Medical University, Guangzhou, Guangdong, China
- Department of Bioinformatics, School of Basic Medical Sciences (J.Y., Y.G., Xinping Yang), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhonglu Ren
- From the Center for Genetics and Developmental Systems Biology, Department of Obstetrics and Gynecology, Nanfang Hospital (Xiaoxue Yang, J.Y., X.L., Q.C., S.J., H.L., Y.G., Z.R., Y.Y., M.Z., Xinping Yang), Southern Medical University, Guangzhou, Guangdong, China
| | - Yi-Wu Shi
- Institute of Neuroscience and Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, China (Y.-W.S.)
| | - Sheng Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, China (S.L.)
| | - Yanhong Yu
- From the Center for Genetics and Developmental Systems Biology, Department of Obstetrics and Gynecology, Nanfang Hospital (Xiaoxue Yang, J.Y., X.L., Q.C., S.J., H.L., Y.G., Z.R., Y.Y., M.Z., Xinping Yang), Southern Medical University, Guangzhou, Guangdong, China
| | - Mei Zhong
- From the Center for Genetics and Developmental Systems Biology, Department of Obstetrics and Gynecology, Nanfang Hospital (Xiaoxue Yang, J.Y., X.L., Q.C., S.J., H.L., Y.G., Z.R., Y.Y., M.Z., Xinping Yang), Southern Medical University, Guangzhou, Guangdong, China
| | - Xinping Yang
- From the Center for Genetics and Developmental Systems Biology, Department of Obstetrics and Gynecology, Nanfang Hospital (Xiaoxue Yang, J.Y., X.L., Q.C., S.J., H.L., Y.G., Z.R., Y.Y., M.Z., Xinping Yang), Southern Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Mental Health of the Ministry of Education (J.Y., Y.G., Xinping Yang), Southern Medical University, Guangzhou, Guangdong, China
- Department of Bioinformatics, School of Basic Medical Sciences (J.Y., Y.G., Xinping Yang), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
35
|
Humphries BA, Wang Z, Yang C. MicroRNA Regulation of the Small Rho GTPase Regulators-Complexities and Opportunities in Targeting Cancer Metastasis. Cancers (Basel) 2020; 12:E1092. [PMID: 32353968 PMCID: PMC7281527 DOI: 10.3390/cancers12051092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
The small Rho GTPases regulate important cellular processes that affect cancer metastasis, such as cell survival and proliferation, actin dynamics, adhesion, migration, invasion and transcriptional activation. The Rho GTPases function as molecular switches cycling between an active GTP-bound and inactive guanosine diphosphate (GDP)-bound conformation. It is known that Rho GTPase activities are mainly regulated by guanine nucleotide exchange factors (RhoGEFs), GTPase-activating proteins (RhoGAPs), GDP dissociation inhibitors (RhoGDIs) and guanine nucleotide exchange modifiers (GEMs). These Rho GTPase regulators are often dysregulated in cancer; however, the underlying mechanisms are not well understood. MicroRNAs (miRNAs), a large family of small non-coding RNAs that negatively regulate protein-coding gene expression, have been shown to play important roles in cancer metastasis. Recent studies showed that miRNAs are capable of directly targeting RhoGAPs, RhoGEFs, and RhoGDIs, and regulate the activities of Rho GTPases. This not only provides new evidence for the critical role of miRNA dysregulation in cancer metastasis, it also reveals novel mechanisms for Rho GTPase regulation. This review summarizes recent exciting findings showing that miRNAs play important roles in regulating Rho GTPase regulators (RhoGEFs, RhoGAPs, RhoGDIs), thus affecting Rho GTPase activities and cancer metastasis. The potential opportunities and challenges for targeting miRNAs and Rho GTPase regulators in treating cancer metastasis are also discussed. A comprehensive list of the currently validated miRNA-targeting of small Rho GTPase regulators is presented as a reference resource.
Collapse
Affiliation(s)
- Brock A. Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Zhishan Wang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 V A Drive, Lexington, KY 40536, USA;
| | - Chengfeng Yang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 V A Drive, Lexington, KY 40536, USA;
| |
Collapse
|
36
|
The Butterfly Effect of RNA Alterations on Transcriptomic Equilibrium. Cells 2019; 8:cells8121634. [PMID: 31847302 PMCID: PMC6953095 DOI: 10.3390/cells8121634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022] Open
Abstract
: Post-transcriptional regulation plays a key role in modulating gene expression, and the perturbation of transcriptomic equilibrium has been shown to drive the development of multiple diseases including cancer. Recent studies have revealed the existence of multiple post-transcriptional processes that coordinatively regulate the expression and function of each RNA transcript. In this review, we summarize the latest research describing various mechanisms by which small alterations in RNA processing or function can potentially reshape the transcriptomic landscape, and the impact that this may have on cancer development.
Collapse
|
37
|
Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. Deciphering miRNAs' Action through miRNA Editing. Int J Mol Sci 2019; 20:E6249. [PMID: 31835747 PMCID: PMC6941098 DOI: 10.3390/ijms20246249] [Citation(s) in RCA: 591] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with the capability of modulating gene expression at the post-transcriptional level either by inhibiting messenger RNA (mRNA) translation or by promoting mRNA degradation. The outcome of a myriad of physiological processes and pathologies, including cancer, cardiovascular and metabolic diseases, relies highly on miRNAs. However, deciphering the precise roles of specific miRNAs in these pathophysiological contexts is challenging due to the high levels of complexity of their actions. Indeed, regulation of mRNA expression by miRNAs is frequently cell/organ specific; highly dependent on the stress and metabolic status of the organism; and often poorly correlated with miRNA expression levels. Such biological features of miRNAs suggest that various regulatory mechanisms control not only their expression, but also their activity and/or bioavailability. Several mechanisms have been described to modulate miRNA action, including genetic polymorphisms, methylation of miRNA promoters, asymmetric miRNA strand selection, interactions with RNA-binding proteins (RBPs) or other coding/non-coding RNAs. Moreover, nucleotide modifications (A-to-I or C-to-U) within the miRNA sequences at different stages of their maturation are also critical for their functionality. This regulatory mechanism called "RNA editing" involves specific enzymes of the adenosine/cytidine deaminase family, which trigger single nucleotide changes in primary miRNAs. These nucleotide modifications greatly influence a miRNA's stability, maturation and activity by changing its specificity towards target mRNAs. Understanding how editing events impact miRNA's ability to regulate stress responses in cells and organs, or the development of specific pathologies, e.g., metabolic diseases or cancer, should not only deepen our knowledge of molecular mechanisms underlying complex diseases, but can also facilitate the design of new therapeutic approaches based on miRNA targeting. Herein, we will discuss the current knowledge on miRNA editing and how this mechanism regulates miRNA biogenesis and activity.
Collapse
Affiliation(s)
| | | | | | | | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (M.C.d.S.); (M.G.); (D.D.); (C.S.)
| |
Collapse
|
38
|
Weirick T, Militello G, Hosen MR, John D, Moore JB, Uchida S. Investigation of RNA Editing Sites within Bound Regions of RNA-Binding Proteins. High Throughput 2019; 8:ht8040019. [PMID: 31795425 PMCID: PMC6970233 DOI: 10.3390/ht8040019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/08/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
Studies in epitranscriptomics indicate that RNA is modified by a variety of enzymes. Among these RNA modifications, adenosine to inosine (A-to-I) RNA editing occurs frequently in the mammalian transcriptome. These RNA editing sites can be detected directly from RNA sequencing (RNA-seq) data by examining nucleotide changes from adenosine (A) to guanine (G), which substitutes for inosine (I). However, a careful investigation of such nucleotide changes must be conducted to distinguish sequencing errors and genomic mutations from the genuine editing sites. Building upon our recent introduction of an easy-to-use bioinformatics tool, RNA Editor, to detect RNA editing events from RNA-seq data, we examined the extent by which RNA editing events affect the binding of RNA-binding proteins (RBP). Through employing bioinformatic techniques, we uncovered that RNA editing sites occur frequently in RBP-bound regions. Moreover, the presence of RNA editing sites are more frequent when RNA editing islands were examined, which are regions in which RNA editing sites are present in clusters. When the binding of one RBP, human antigen R [HuR; encoded by ELAV-like protein 1 (ELAV1)], was quantified experimentally, its binding was reduced upon silencing of the RNA editing enzyme adenosine deaminases acting on RNA (ADAR) compared to the control-suggesting that the presence of RNA editing islands influence HuR binding to its target regions. These data indicate RNA editing as an important mediator of RBP-RNA interactions-a mechanism which likely constitutes an additional mode of post-transcription gene regulation in biological systems.
Collapse
Affiliation(s)
- Tyler Weirick
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Giuseppe Militello
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
- Department of Molecular Cellular and Developmental Biology, Yale University, Yale Science Building-260 Whitney Avenue, New Haven, CT 06511, USA;
| | - Mohammed Rabiul Hosen
- Department of Internal Medicine-II, Molecular Cardiology, Biomedical Center (BMZ), University of Bonn, Sigmund-Freud-Str. 25, Bonn 53127, Germany;
| | - David John
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany;
| | - Joseph B. Moore
- The Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
| | - Shizuka Uchida
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
- The Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
- Correspondence: ; Tel.: +1-502-854-0570
| |
Collapse
|
39
|
Jian Y, Xu CH, Li YP, Tang B, Xie SH, Zeng EM. Down-regulated microRNA-30b-3p inhibits proliferation, invasion and migration of glioma cells via inactivation of the AKT signaling pathway by up-regulating RECK. Biosci Rep 2019; 39:BSR20182226. [PMID: 31270250 PMCID: PMC6692569 DOI: 10.1042/bsr20182226] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 12/23/2022] Open
Abstract
microRNAs (miRNAs) have been found to affect various cancers, and expression of numerous miRNAs is revealed in glioma. However, the role of microRNA-30b-3p (miR-30b-3p) in glioma remains elusive. Therefore, the present study aims to explore the specific mechanism by which miR-30b-3p influence the development of glioma in relation to the AKT signaling pathway. First, glioma cell lines were collected with miR-30b-3p and reversion-inducing cysteine-rich protein with kazal motifs (RECK) expression measured. The functional role of miR-30b-3p and RECK in glioma was determined via gain- and loss-of-function approaches. Subsequently, the expression of invasion- and migration-related factors (MMP-2 and MMP-9) and the AKT signaling pathway-related factors (AKT, p-AKT and PI3K-p85) was detected. Moreover, in vivo experiments were also conducted to investigate how miR-30b-3p influences in vivo tumorigenesis. The results showed that miR-30b-3p was up-regulated and RECK was down-regulated in glioma. RECK was a target gene of miR-30b-3p. Decreased miR-30b-3p and overexpressed RECK led to decreased expression of MMP-2, MMP-9 and p-AKT. Overexpressed RECK and LY294002 could decrease p-AKT and PI3K-p85 expression accompanied with unchanged expression of total protein of AKT. Additionally, proliferation, migration and invasion of glioma cells and tumor formation in nude mice were repressed owing to reduced expression of miR-30b-3p or elevated expression of RECK. In summary, miR-30b-3p inhibition suppresses metastasis of glioma cells by inactivating the AKT signaling pathway via RECK up-regulation, providing a new target for glioma treatment.
Collapse
Affiliation(s)
- Yan Jian
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - Chun-Hua Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - You-Ping Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - Bin Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - She-Hao Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - Er-Ming Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| |
Collapse
|
40
|
BioTarget: A Computational Framework Identifying Cancer Type Specific Transcriptional Targets of Immune Response Pathways. Sci Rep 2019; 9:9029. [PMID: 31227749 PMCID: PMC6588588 DOI: 10.1038/s41598-019-45304-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/03/2019] [Indexed: 01/04/2023] Open
Abstract
Transcriptome data can provide information on signaling pathways active in cancers, but new computational tools are needed to more accurately quantify pathway activity and identify tissue-specific pathway features. We developed a computational method called “BioTarget” that incorporates ChIP-seq data into cellular pathway analysis. This tool relates the expression of transcription factor TF target genes (based on ChIP-seq data) with the status of upstream signaling components for an accurate quantification of pathway activity. This analysis also reveals TF targets expressed in specific contexts/tissues. We applied BioTarget to assess the activity of TBX21 and GATA3 pathways in cancers. TBX21 and GATA3 are TF regulators that control the differentiation of T cells into Th1 and Th2 helper cells that mediate cell-based and humoral immune responses, respectively. Since tumor immune responses can impact cancer progression, the significance of our pathway scores should be revealed by effective patient stratification. We found that low Th1/Th2 activity ratios were associated with a significantly poorer survival of stomach and breast cancer patients, whereas an unbalanced Th1/Th2 response was correlated with poorer survival of colon cancer patients. Lung adenocarcinoma and lung squamous cell carcinoma patients had the lowest survival rates when both Th1 and Th2 responses were high. Our method also identified context-specific target genes for TBX21 and GATA3. Applying the BioTarget tool to BCL6, a TF associated with germinal center lymphocytes, we observed that patients with an active BCL6 pathway had significantly improved survival for breast, colon, and stomach cancer. Our findings support the effectiveness of the BioTarget tool for transcriptome analysis and point to interesting associations between some immune-response pathways and cancer progression.
Collapse
|
41
|
Yang M, Zhai Z, Guo S, Li X, Zhu Y, Wang Y. Long non-coding RNA FLJ33360 participates in ovarian cancer progression by sponging miR-30b-3p. Onco Targets Ther 2019; 12:4469-4480. [PMID: 31239715 PMCID: PMC6560195 DOI: 10.2147/ott.s205622] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have been reported to play a key role in the development and progression of human malignancies. FLJ33360 is an lncRNA with unknown functions. This study was designed to determine the clinical significance and mechanism of FLJ33360 in ovarian cancer. Materials and methods The clinical significance of FLJ33360 in ovarian cancer was determined using the Gene Expression Profiling Interactive Analysis (GEPIA) database, Kaplan-Meier Plotter database, quantitative reverse transcription polymerase chain reaction (qRT-PCR) and statistical analysis. The regulatory relationships between FLJ33360 and miR-30b-3p were explored through bioinformatics, the Gene Expression Omnibus (GEO) database, the ArrayExpress database and meta-analysis. The possible pathways were predicted using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. In addition, the key target genes were identified using a protein-protein interaction (PPI) network, the Cancer Genome Atlas (TCGA) database, and correlation analysis. Results FLJ33360 expression was significantly downregulated in ovarian cancer tissue (P=0.0011) and was closely associated with International Federation of Gynecology and Obstetrics (FIGO) stage (P=0.027) and recurrence (P=0.002). FLJ33360 may have potential value in detecting ovarian cancer (area under the curve =0.793). Function analysis demonstrated that FLJ33360 can act as a molecular sponge of miR-30b-3p to regulate the expression of target genes that are mainly involved in positive regulation of smooth muscle cell migration, the unsaturated fatty acid metabolic process, and positive regulation of the epithelial to mesenchymal transition. Among these target genes, BCL2 is the hub gene. Conclusion FLJ33360 is a potential biomarker for early diagnosis and prognostic assessment in ovarian cancer and may regulate the expression of genes by sponging miR-30b-3p and thus participate in the development of ovarian cancer.
Collapse
Affiliation(s)
- Meiqin Yang
- Department of Gynecology and Obstetrics, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450000, Henan, People's Republic of China
| | - Zhensheng Zhai
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzho 450000, Henan, People's Republic of China
| | - Shuang Guo
- Department of Gynecology and Obstetrics, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450000, Henan, People's Republic of China
| | - Xiaoxi Li
- Department of Gynecology and Obstetrics, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450000, Henan, People's Republic of China
| | - Yongxia Zhu
- Department of Gynecology and Obstetrics, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450000, Henan, People's Republic of China
| | - Yue Wang
- Department of Gynecology and Obstetrics, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450000, Henan, People's Republic of China
| |
Collapse
|
42
|
Chigaev M, Yu H, Samuels DC, Sheng Q, Oyebamiji O, Ness S, Yue W, Zhao YY, Guo Y. Genomic Positional Dissection of RNA Editomes in Tumor and Normal Samples. Front Genet 2019; 10:211. [PMID: 30949194 PMCID: PMC6435843 DOI: 10.3389/fgene.2019.00211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
RNA editing is phenomenon that occurs in both protein coding and non-coding RNAs. Increasing evidence have shown that adenosine-to-inosine RNA editing can potentially rendering substantial functional effects throughout the genome. Using RNA editing datasets from two large consortiums: The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) project, we quantitatively analyzed human genome-wide RNA editing events derived from tumor or normal tissues. Generally, a common RNA editing site tends to have a higher editing level in tumors as compared to normal samples. Of the 14 tumor-normal-paired cancer types examined, Eleven of the 14 cancers tested had overall increased RNA editing levels in the tumors. The editomes in cancer or normal tissues were dissected by genomic locations, and significant RNA editing locational difference was found between cancerous and healthy subjects. Additionally, our results indicated a significant correlation between the RNA editing rate and the gene density across chromosomes, highlighted hyper RNA editing clusters through visualization of running RNA editing rates along chromosomes, and identified hyper RNA edited genes (protein-coding genes, lincRNAs, and pseudogenes) that embody a large portion of cancer prognostic predictors. This study reinforces the potential functional effects of RNA editing in protein-coding genes, and also makes a strong foundation for further exploration of RNA editing's roles in non-coding regions.
Collapse
Affiliation(s)
- Michael Chigaev
- Department of Internal Medicine, The University of New Mexico, Albuquerque, NM, United States
| | - Hui Yu
- Department of Internal Medicine, The University of New Mexico, Albuquerque, NM, United States
| | - David C. Samuels
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Olufunmilola Oyebamiji
- Department of Internal Medicine, The University of New Mexico, Albuquerque, NM, United States
| | - Scott Ness
- Department of Internal Medicine, The University of New Mexico, Albuquerque, NM, United States
| | - Wei Yue
- Department of Internal Medicine, The University of New Mexico, Albuquerque, NM, United States
| | - Ying-yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Life Sciences, Northwest University, Xi’an, China
| | - Yan Guo
- Department of Internal Medicine, The University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
43
|
Lopdell TJ, Hawkins V, Couldrey C, Tiplady K, Davis SR, Harris BL, Snell RG, Littlejohn MD. Widespread cis-regulation of RNA editing in a large mammal. RNA (NEW YORK, N.Y.) 2019; 25:319-335. [PMID: 30530731 PMCID: PMC6380278 DOI: 10.1261/rna.066902.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Post-transcriptional RNA editing may regulate transcript expression and diversity in cells, with potential impacts on various aspects of physiology and environmental adaptation. A small number of recent genome-wide studies in Drosophila, mouse, and human have shown that RNA editing can be genetically modulated, highlighting loci that quantitatively impact editing of transcripts. The potential gene expression and physiological consequences of these RNA-editing quantitative trait loci (edQTL), however, are almost entirely unknown. Here, we present analyses of RNA editing in a large domestic mammal (Bos taurus), where we use whole-genome and high-depth RNA sequencing to discover, characterize, and conduct genetic mapping studies of novel transcript edits. Using a discovery population of nine deeply sequenced cows, we identify 2413 edit sites in the mammary transcriptome, the majority of which are adenosine to inosine edits (98.6%). Most sites are predicted to reside in double-stranded secondary structures (85.1%), and quantification of the rates of editing in an additional 355 cows reveals editing is negatively correlated with gene expression in the majority of cases. Genetic analyses of RNA editing and gene expression highlight 152 cis-regulated edQTL, of which 15 appear to cosegregate with expression QTL effects. Trait association analyses in a separate population of 9989 lactating cows also shows 12 of the cis-edQTL coincide with at least one cosegregating lactation QTL. Together, these results enhance our understanding of RNA-editing dynamics in mammals, and suggest mechanistic links by which loci may impact phenotype through RNA editing mediated processes.
Collapse
Affiliation(s)
- Thomas J Lopdell
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1071, New Zealand
| | - Victoria Hawkins
- School of Biological Sciences, University of Auckland, Auckland 1071, New Zealand
| | - Christine Couldrey
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
| | - Kathryn Tiplady
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
| | - Stephen R Davis
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
| | - Bevin L Harris
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
| | - Russell G Snell
- School of Biological Sciences, University of Auckland, Auckland 1071, New Zealand
| | - Mathew D Littlejohn
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
| |
Collapse
|
44
|
Monteleone LR, Matthews MM, Palumbo CM, Thomas JM, Zheng Y, Chiang Y, Fisher AJ, Beal PA. A Bump-Hole Approach for Directed RNA Editing. Cell Chem Biol 2019; 26:269-277.e5. [PMID: 30581135 PMCID: PMC6386613 DOI: 10.1016/j.chembiol.2018.10.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/28/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022]
Abstract
Molecules capable of directing changes to nucleic acid sequences are powerful tools for molecular biology and promising candidates for the therapeutic correction of disease-causing mutations. However, unwanted reactions at off-target sites complicate their use. Here we report selective combinations of mutant editing enzyme and directing oligonucleotide. Mutations in human ADAR2 (adenosine deaminase acting on RNA 2) that introduce aromatic amino acids at position 488 reduce background RNA editing. This residue is juxtaposed to the nucleobase that pairs with the editing site adenine, suggesting a steric clash for the bulky mutants. Replacing this nucleobase with a hydrogen atom removes the clash and restores editing activity. A crystal structure of the E488Y mutant bound to abasic site-containing RNA shows the accommodation of the tyrosine side chain. Finally, we demonstrate directed RNA editing in vitro and in human cells using mutant ADAR2 proteins and modified guide RNAs with reduced off-target activity.
Collapse
Affiliation(s)
- Leanna R Monteleone
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Melissa M Matthews
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Cody M Palumbo
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Justin M Thomas
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Yuxuan Zheng
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Yao Chiang
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Andrew J Fisher
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA; Department of Molecular and Cellular Biology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Peter A Beal
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
45
|
Lopdell TJ, Tiplady K, Couldrey C, Johnson TJJ, Keehan M, Davis SR, Harris BL, Spelman RJ, Snell RG, Littlejohn MD. Multiple QTL underlie milk phenotypes at the CSF2RB locus. Genet Sel Evol 2019; 51:3. [PMID: 30678637 PMCID: PMC6346582 DOI: 10.1186/s12711-019-0446-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022] Open
Abstract
Background Over many years, artificial selection has substantially improved milk production by cows. However, the genes that underlie milk production quantitative trait loci (QTL) remain relatively poorly characterised. Here, we investigate a previously reported QTL located at the CSF2RB locus on chromosome 5, for several milk production phenotypes, to better understand its underlying genetic and molecular causes. Results Using a population of 29,350 taurine dairy cows, we conducted association analyses for milk yield and composition traits, and identified highly significant QTL for milk yield, milk fat concentration, and milk protein concentration. Strikingly, protein concentration and milk yield appear to show co-located yet genetically distinct QTL. To attempt to understand the molecular mechanisms that might be mediating these effects, gene expression data were used to investigate eQTL for 11 genes in the broader interval. This analysis highlighted genetic impacts on CSF2RB and NCF4 expression that share similar association signatures to those observed for lactation QTL, strongly implicating one or both of these genes as responsible for these effects. Using the same gene expression dataset representing 357 lactating cows, we also identified 38 novel RNA editing sites in the 3′ UTR of CSF2RB transcripts. The extent to which two of these sites were edited also appears to be genetically co-regulated with lactation QTL, highlighting a further layer of regulatory complexity that involves the CSF2RB gene. Conclusions This locus presents a diversity of molecular and lactation QTL, likely representing multiple overlapping effects that, at a minimum, highlight the CSF2RB gene as having a causal role in these processes. Electronic supplementary material The online version of this article (10.1186/s12711-019-0446-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas J Lopdell
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand. .,School of Biological Sciences, University of Auckland, Symonds Street, Auckland, New Zealand.
| | - Kathryn Tiplady
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Christine Couldrey
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Thomas J J Johnson
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Michael Keehan
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Stephen R Davis
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Bevin L Harris
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Richard J Spelman
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Russell G Snell
- School of Biological Sciences, University of Auckland, Symonds Street, Auckland, New Zealand
| | - Mathew D Littlejohn
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| |
Collapse
|
46
|
Abstract
Noncoding RNAs (ncRNAs) have received much attention due to their central role in gene expression and translational regulation as well as due to their involvement in several biological processes and disease development. Small noncoding RNAs (sncRNAs), such as microRNAs and piwiRNAs, have been thoroughly investigated and functionally characterized. Long noncoding RNAs (lncRNAs), known to play an important role in chromatin-interacting transcription regulation, posttranscriptional regulation, cell-to-cell signaling, and protein regulation, are also being investigated to further elucidate their functional roles.Next-generation sequencing (NGS) technologies have greatly aided in characterizing the ncRNAome. Moreover, the coupling of NGS technology together with bioinformatics tools has been essential to the genome-wide detection of RNA modifications in ncRNAs. RNA editing, a common human co-transcriptional and posttranscriptional modification, is a dynamic biological phenomenon able to alter the sequence and the structure of primary transcripts (both coding and noncoding RNAs) during the maturation process, consequently influencing the biogenesis, as well as the function, of ncRNAs. In particular, the dysregulation of the RNA editing machineries have been associated with the onset of human diseases.In this chapter we discuss the potential functions of ncRNA editing and describe the knowledge base and bioinformatics resources available to investigate such phenomenon.
Collapse
|
47
|
Okada S, Ueda H, Noda Y, Suzuki T. Transcriptome-wide identification of A-to-I RNA editing sites using ICE-seq. Methods 2018; 156:66-78. [PMID: 30578846 DOI: 10.1016/j.ymeth.2018.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 01/15/2023] Open
Abstract
In A-to-I RNA editing, adenosine is converted to inosine in double-stranded regions of RNAs. Inosine, an abundant epitranscriptomic mark, contributes to a wide range of biological processes by regulating gene expression post-transcriptionally. To understand the effect of A-to-I RNA editing on regulation of the epitranscriptome, accurate mapping of inosines is necessary. To this end, we established a biochemical method called inosine chemical erasing sequencing (ICE-seq) that enables unbiased and reliable identification of A-to-I RNA editing sites throughout the transcriptome. Here, we describe our updated protocol for ICE-seq in the human transcriptome.
Collapse
Affiliation(s)
- Shunpei Okada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroki Ueda
- Biological Data Science Division, Research Center for Advanced Science and Technology (RCAST), University of Tokyo, Tokyo 153-8904, Japan
| | - Yuta Noda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
48
|
Caponio VCA, Troiano G, Botti G, Pedicillo MC, Lo Russo L, Mastrangelo F, Ciavarella D, Losito NS, Aquino G, Nocini R, Santoro R, Santoro A, Lo Muzio L, Pannone G. Overexpression of ADAR1 into the cytoplasm correlates with a better prognosis of patients with oral squamous cells carcinoma. J Oral Pathol Med 2018; 48:108-114. [PMID: 30489667 DOI: 10.1111/jop.12808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND ADAR1 is an enzymatic protein, which catalyzes a RNA editing reaction by converting Adenosine to Inosine, and its expression has been found to be dysregulated in many cancer types. The aim of this study was to analyze the expression of ADAR1 in oral squamous cells carcinoma. METHODS In order to analyze the ADAR1 mRNA expression, data from The Cancer Genome Atlas (TCGA) database were downloaded and analyzed. In addition, immunohistochemistry analysis was performed on an institutional database including 46 samples of oral squamous cell carcinoma in a tissue microarray (TMA). RESULTS No statistically significant correlation linked the mRNA ADAR1 expression to any clinic-pathological variables in the TCGA database. Immunohistochemistry analysis of ADAR1 showed different expressions between normal mucosa and tumor tissue. Focusing on the subcellular localization, the nuclear expression of ADAR1 correlated with higher grading of differentiation (ρ = 0.442; P-value = 0.002); the general expression of ADAR1 either in cytoplasm or in nuclei, correlated with the Gender of patients (Cytoplasm expression: ρ = -0.295; P-value = 0.049; while for nuclear expression: ρ = +0.374; P = 0.011); cytosol expression resulted to be an independent protective prognostic factor (HR = 0.047; C.I. 95% 0.007-0.321; P-value = 0.002). CONCLUSION Higher expression of ADAR1 into the cytoplasm resulted to be an independent prognostic factor. In order to understand ADAR1 role in cancer, further studies should be performed, in bigger cohort and under a bio-molecular point of view.
Collapse
Affiliation(s)
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione G. Pascale, IRCCS, Naples, 80131, Italy
| | | | - Lucio Lo Russo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Filiberto Mastrangelo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Domenico Ciavarella
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Nunzia Simona Losito
- Pathology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione G. Pascale, IRCCS, Naples, 80131, Italy
| | - Gabriella Aquino
- Pathology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione G. Pascale, IRCCS, Naples, 80131, Italy
| | | | - Rossella Santoro
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, Second University of Naples, Naples, Italy
| | - Angela Santoro
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Pannone
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
49
|
Jiang C, Gong W, Chen R, Ke H, Qu X, Yang W, Cheng Z. RhoA/ROCK/ARHGAP26 signaling in the eutopic and ectopic endometrium is involved in clinical characteristics of adenomyosis. J Int Med Res 2018; 46:5019-5029. [PMID: 30387365 PMCID: PMC6300968 DOI: 10.1177/0300060518789038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE This study aimed to investigate RhoA, RhoA-associated coiled-coil containing protein kinase (ROCK) 1, ROCK2, and Rho GTPase-activating protein 26 (ARHGAP26) expression in the eutopic endometrium (EU) and ectopic endometrium (EC), and examine their relationships with the clinical characteristics of adenomyosis. METHODS Twenty patients with adenomyosis who underwent laparoscopy were recruited. Protein and mRNA expression of RhoA, ROCK1, ROCK2, and ARHGAP26 in EU and EC of patients with adenomyosis and in control endometrium without adenomyosis (CE) was detected. RESULTS ROCK1, ROCK2, and RhoA mRNA expression in EU was significantly higher than that in CE, and was highest in EC. ARHGAP26 mRNA expression in EC and EU was significantly lower than that in CE. ROCK1, ROCK2, and RhoA protein expression in EC and EU was significantly higher than that in CE. ARHGAP26 protein expression in EC and EU was significantly lower than that in CE. ROCK1, ROCK2, and RhoA gene and protein expression was positively associated and ARHGAP26 was negatively associated with the severity of menorrhagia and menstrual capacity in adenomyosis. CONCLUSIONS RhoA, ROCK1, and ROCK2 expression is upregulated, and ARHGAP26 expression is downregulated in adenomyosis. The RhoA/ROCK-mediated signaling pathway is associated with dysmenorrhea and menstrual capacity in adenomyosis.
Collapse
Affiliation(s)
- Caixia Jiang
- 1 Department of Gynecology and Obstetrics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Gong
- 2 Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University School of Medicine, Shanghai, China
| | - Rong Chen
- 1 Department of Gynecology and Obstetrics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huihui Ke
- 2 Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University School of Medicine, Shanghai, China
| | - Xiaoyan Qu
- 1 Department of Gynecology and Obstetrics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weihong Yang
- 1 Department of Gynecology and Obstetrics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongping Cheng
- 3 Department of Gynecology and Obstetrics, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Gatsiou A, Vlachogiannis N, Lunella FF, Sachse M, Stellos K. Adenosine-to-Inosine RNA Editing in Health and Disease. Antioxid Redox Signal 2018; 29:846-863. [PMID: 28762759 DOI: 10.1089/ars.2017.7295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Adenosine deamination in transcriptome results in the formation of inosine, a process that is called A-to-I RNA editing. Adenosine deamination is one of the more than 140 described RNA modifications. A-to-I RNA editing is catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes and is essential for life. Recent Advances: Accumulating evidence supports a critical role of RNA editing in all aspects of RNA metabolism, including mRNA stability, splicing, nuclear export, and localization, as well as in recoding of proteins. These advances have significantly enhanced the understanding of mechanisms involved in development and in homeostasis. Furthermore, recent studies have indicated that RNA editing may be critically involved in cancer, aging, neurological, autoimmune, or cardiovascular diseases. CRITICAL ISSUES This review summarizes recent and significant achievements in the field of A-to-I RNA editing and discusses the importance and translational value of this RNA modification for gene expression, cellular, and organ function, as well as for disease development. FUTURE DIRECTIONS Elucidation of the exact RNA editing-dependent mechanisms in a single-nucleotide level may pave the path toward the development of novel therapeutic strategies focusing on modulation of ADAR function in the disease context. Antioxid. Redox Signal. 29, 846-863.
Collapse
Affiliation(s)
- Aikaterini Gatsiou
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,2 Department of Biosciences, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| | - Nikolaos Vlachogiannis
- 5 Rheumatology Unit, First Department of Propaedeutic Internal Medicine and Joint Rheumatology Academic Program, School of Medicine, National and Kapodistrian University of Athens , Athens, Greece
| | - Federica Francesca Lunella
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,2 Department of Biosciences, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| | - Marco Sachse
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| | - Konstantinos Stellos
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| |
Collapse
|