1
|
Cornwell-Arquitt RL, Nigh R, Hathaway MT, Yesselman JD, Hendrix DA. Analysis of natural structures and chemical mapping data reveals local stability compensation in RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627843. [PMID: 39713387 PMCID: PMC11661157 DOI: 10.1101/2024.12.11.627843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
RNA molecules adopt complex structures that perform essential biological functions across all forms of life, making them promising candidates for therapeutic applications. However, our ability to design new RNA structures remains limited by an incomplete understanding of their folding principles. While global metrics such as the minimum free energy are widely used, they are at odds with naturally occurring structures and incompatible with established design rules. Here, we introduce local stability compensation (LSC), a principle that RNA folding is governed by the local balance between destabilizing loops and their stabilizing adjacent stems, challenging the focus on global energetic optimization. Analysis of over 100,000 RNA structures revealed that LSC signatures are particularly pronounced in bulges and their adjacent stems, with distinct patterns across different RNA families that align with their biological functions. To validate LSC experimentally, we systematically analyzed thousands of RNA variants using DMS chemical mapping. Our results demonstrate that stem reactivity correlates strongly with LSC (R2 = 0.458 for hairpin loops) and that structural perturbations affect folding primarily within ~6 nucleotides from the loop. These findings establish LSC as a fundamental principle that could enhance the rational design of functional RNAs.
Collapse
Affiliation(s)
| | - Riley Nigh
- Department of Biochemistry, University of Nebraska-Lincoln
| | - Michael T. Hathaway
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, 97333, USA
- Department of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon, 97333, USA
- Current affiliation: DocuSign Inc
| | | | - David A. Hendrix
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, 97333, USA
- Department of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon, 97333, USA
| |
Collapse
|
2
|
Ellenbroek BD, Kahler JP, Evers SR, Pomplun SJ. Synthetic Peptides: Promising Modalities for the Targeting of Disease-Related Nucleic Acids. Angew Chem Int Ed Engl 2024; 63:e202401704. [PMID: 38456368 DOI: 10.1002/anie.202401704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
DNA and RNA play pivotal roles in life processes by storing and transferring genetic information, modulating gene expression, and contributing to essential cellular machinery such as ribosomes. Dysregulation and mutations in nucleic acid-related processes are implicated in numerous diseases. Despite the critical impact on health of nucleic acid mutations or dysregulation, therapeutic compounds addressing these biomolecules remain limited. Peptides have emerged as a promising class of molecules for biomedical research, offering potential solutions for challenging drug targets. This review focuses on the use of synthetic peptides to target disease-related nucleic acids. We discuss examples of peptides targeting double-stranded DNA, including the clinical candidate Omomyc, and compounds designed for regulatory G-quadruplexes. Further, we provide insights into both library-based screenings and the rational design of peptides to target regulatory human RNA scaffolds and viral RNAs, emphasizing the potential of peptides in addressing nucleic acid-related diseases.
Collapse
Affiliation(s)
| | | | - Sophie R Evers
- Leiden University, 2333 CC, Leiden, The Netherlands
- Present address, Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, 8057, Zurich, Switzerland
| | | |
Collapse
|
3
|
Seyhan AA. Trials and Tribulations of MicroRNA Therapeutics. Int J Mol Sci 2024; 25:1469. [PMID: 38338746 PMCID: PMC10855871 DOI: 10.3390/ijms25031469] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
The discovery of the link between microRNAs (miRNAs) and a myriad of human diseases, particularly various cancer types, has generated significant interest in exploring their potential as a novel class of drugs. This has led to substantial investments in interdisciplinary research fields such as biology, chemistry, and medical science for the development of miRNA-based therapies. Furthermore, the recent global success of SARS-CoV-2 mRNA vaccines against the COVID-19 pandemic has further revitalized interest in RNA-based immunotherapies, including miRNA-based approaches to cancer treatment. Consequently, RNA therapeutics have emerged as highly adaptable and modular options for cancer therapy. Moreover, advancements in RNA chemistry and delivery methods have been pivotal in shaping the landscape of RNA-based immunotherapy, including miRNA-based approaches. Consequently, the biotechnology and pharmaceutical industry has witnessed a resurgence of interest in incorporating RNA-based immunotherapies and miRNA therapeutics into their development programs. Despite substantial progress in preclinical research, the field of miRNA-based therapeutics remains in its early stages, with only a few progressing to clinical development, none reaching phase III clinical trials or being approved by the US Food and Drug Administration (FDA), and several facing termination due to toxicity issues. These setbacks highlight existing challenges that must be addressed for the broad clinical application of miRNA-based therapeutics. Key challenges include establishing miRNA sensitivity, specificity, and selectivity towards their intended targets, mitigating immunogenic reactions and off-target effects, developing enhanced methods for targeted delivery, and determining optimal dosing for therapeutic efficacy while minimizing side effects. Additionally, the limited understanding of the precise functions of miRNAs limits their clinical utilization. Moreover, for miRNAs to be viable for cancer treatment, they must be technically and economically feasible for the widespread adoption of RNA therapies. As a result, a thorough risk evaluation of miRNA therapeutics is crucial to minimize off-target effects, prevent overdosing, and address various other issues. Nevertheless, the therapeutic potential of miRNAs for various diseases is evident, and future investigations are essential to determine their applicability in clinical settings.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
4
|
Shortridge MD, Chaubey B, Zhang HJ, Pavelitz T, Vidadala V, Tang C, Olsen GL, Calin GA, Varani G. Drug-Like Small Molecules That Inhibit Expression of the Oncogenic MicroRNA-21. ACS Chem Biol 2023; 18:237-250. [PMID: 36727622 PMCID: PMC10593481 DOI: 10.1021/acschembio.2c00502] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We report the discovery of drug-like small molecules that bind specifically to the precursor of the oncogenic and pro-inflammatory microRNA-21 with mid-nanomolar affinity. The small molecules target a local structure at the Dicer cleavage site and induce distinctive structural changes in the RNA, which correlate with specific inhibition of miRNA processing. Structurally conservative single nucleotide substitutions eliminate the conformational change induced by the small molecules, which is also not observed in other miRNA precursors. The most potent of these compounds reduces cellular proliferation and miR-21 levels in cancer cell lines without inhibiting kinases or classical receptors, while closely related compounds without this specific binding activity are inactive in cells. These molecules are highly ligand-efficient (MW < 330) and display specific biochemical and cellular activity by suppressing the maturation of miR-21, thereby providing an avenue toward therapeutic development in multiple diseases where miR-21 is abnormally expressed.
Collapse
Affiliation(s)
- Matthew D Shortridge
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Bhawna Chaubey
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Huanyu J Zhang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Thomas Pavelitz
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Venkata Vidadala
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Changyan Tang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gregory L Olsen
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - George A Calin
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
5
|
Chaudhry T, Coxon CR, Ross K. Trading places: Peptide and small molecule alternatives to oligonucleotide-based modulation of microRNA expression. Drug Discov Today 2022; 27:103337. [PMID: 35995360 DOI: 10.1016/j.drudis.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/13/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
It is well established that microRNA (miRNA) dysregulation is involved in the development and progression of various diseases, especially cancer. Emerging evidence suggests that small molecule and peptide agents can interfere with miRNA disease pathways. Despite this, very little is known about structural features that drive drug-miRNA interactions and subsequent inhibition. In this review, we highlight the advances made in the development of small molecule and peptide inhibitors of miRNA processing. Specifically, we attempt to draw attention to peptide features that may be critical for interaction with the miRNA secondary structure to regulate miRNA expression. We hope that this review will help to establish peptides as exciting miRNA expression modulators and will contribute towards the development of the first miRNA-targeting peptide therapy.
Collapse
Affiliation(s)
- Talhat Chaudhry
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool, UK; Institute for Health Research, Liverpool John Moores University, Liverpool, UK
| | - Christopher R Coxon
- EaStChem School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH14 4AS, UK
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool, UK; Institute for Health Research, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
6
|
Correia de Sousa M, Calo N, Sobolewski C, Gjorgjieva M, Clément S, Maeder C, Dolicka D, Fournier M, Vinet L, Montet X, Dufour JF, Humar B, Negro F, Sempoux C, Foti M. Mir-21 Suppression Promotes Mouse Hepatocarcinogenesis. Cancers (Basel) 2021; 13:4983. [PMID: 34638467 PMCID: PMC8508272 DOI: 10.3390/cancers13194983] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
The microRNA 21 (miR-21) is upregulated in almost all known human cancers and is considered a highly potent oncogene and potential therapeutic target for cancer treatment. In the liver, miR-21 was reported to promote hepatic steatosis and inflammation, but whether miR-21 also drives hepatocarcinogenesis remains poorly investigated in vivo. Here we show using both carcinogen (Diethylnitrosamine, DEN) or genetically (PTEN deficiency)-induced mouse models of hepatocellular carcinoma (HCC), total or hepatocyte-specific genetic deletion of this microRNA fosters HCC development-contrasting the expected oncogenic role of miR-21. Gene and protein expression analyses of mouse liver tissues further indicate that total or hepatocyte-specific miR-21 deficiency is associated with an increased expression of oncogenes such as Cdc25a, subtle deregulations of the MAPK, HiPPO, and STAT3 signaling pathways, as well as alterations of the inflammatory/immune anti-tumoral responses in the liver. Together, our data show that miR-21 deficiency promotes a pro-tumoral microenvironment, which over time fosters HCC development via pleiotropic and complex mechanisms. These results question the current dogma of miR-21 being a potent oncomiR in the liver and call for cautiousness when considering miR-21 inhibition for therapeutic purposes in HCC.
Collapse
Affiliation(s)
- Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Nicolas Calo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Sophie Clément
- Division of Clinical Pathology, Geneva University Hospitals, 1206 Geneva, Switzerland; (S.C.); (F.N.)
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Dobrochna Dolicka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Laurent Vinet
- Department of Radiology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (L.V.); (X.M.)
| | - Xavier Montet
- Department of Radiology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (L.V.); (X.M.)
| | - Jean-François Dufour
- Department for Visceral Surgery and Medicine, University Hospital Bern, 3010 Bern, Switzerland;
| | - Bostjan Humar
- Department of Visceral & Transplantation Surgery, University Hospital Zürich, 8006 Zürich, Switzerland;
| | - Francesco Negro
- Division of Clinical Pathology, Geneva University Hospitals, 1206 Geneva, Switzerland; (S.C.); (F.N.)
| | - Christine Sempoux
- Service of Clinical Pathology, University Institute of Pathology, Vaud University Hospital Center, 1011 Lausanne, Switzerland;
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| |
Collapse
|
7
|
Fu Z, Wang L, Li S, Chen F, Au-Yeung KKW, Shi C. MicroRNA as an Important Target for Anticancer Drug Development. Front Pharmacol 2021; 12:736323. [PMID: 34512363 PMCID: PMC8425594 DOI: 10.3389/fphar.2021.736323] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer has become the second greatest cause of death worldwide. Although there are several different classes of anticancer drugs that are available in clinic, some tough issues like side-effects and low efficacy still need to dissolve. Therefore, there remains an urgent need to discover and develop more effective anticancer drugs. MicroRNAs (miRNAs) are a class of small endogenous non-coding RNAs that regulate gene expression by inhibiting mRNA translation or reducing the stability of mRNA. An abnormal miRNA expression profile was found to exist widely in cancer cell, which induces limitless replicative potential and evading apoptosis. MiRNAs function as oncogenes (oncomiRs) or tumor suppressors during tumor development and progression. It was shown that regulation of specific miRNA alterations using miRNA mimics or antagomirs can normalize the gene regulatory network and signaling pathways, and reverse the phenotypes in cancer cells. The miRNA hence provides an attractive target for anticancer drug development. In this review, we will summarize the latest publications on the role of miRNA in anticancer therapeutics and briefly describe the relationship between abnormal miRNAs and tumorigenesis. The potential of miRNA-based therapeutics for anticancer treatment has been critically discussed. And the current strategies in designing miRNA targeting therapeutics are described in detail. Finally, the current challenges and future perspectives of miRNA-based therapy are conferred.
Collapse
Affiliation(s)
- Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Liu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Fen Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | | | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| |
Collapse
|
8
|
Baisden JT, Childs-Disney JL, Ryan LS, Disney MD. Affecting RNA biology genome-wide by binding small molecules and chemically induced proximity. Curr Opin Chem Biol 2021; 62:119-129. [PMID: 34118759 PMCID: PMC9264282 DOI: 10.1016/j.cbpa.2021.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/08/2023]
Abstract
The ENCODE and genome-wide association projects have shown that much of the genome is transcribed into RNA and much less is translated into protein. These and other functional studies suggest that the druggable transcriptome is much larger than the druggable proteome. This review highlights approaches to define druggable RNA targets and structure-activity relationships across genomic RNA. Binding compounds can be identified and optimized into structure-specific ligands by using sequence-based design with various modes of action, for example, inhibiting translation or directing pre-mRNA splicing outcomes. In addition, strategies to direct protein activity against an RNA of interest via chemically induced proximity is a burgeoning area that has been validated both in cells and in preclinical animal models, and we describe that it may allow rapid access to new avenues to affect RNA biology. These approaches and the unique modes of action suggest that more RNAs are potentially amenable to targeting than proteins.
Collapse
Affiliation(s)
- Jared T Baisden
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Jessica L Childs-Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Lucas S Ryan
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA.
| |
Collapse
|
9
|
Bood M, Del Nogal AW, Nilsson JR, Edfeldt F, Dahlén A, Lemurell M, Wilhelmsson LM, Grøtli M. Interbase-FRET binding assay for pre-microRNAs. Sci Rep 2021; 11:9396. [PMID: 33931703 PMCID: PMC8087795 DOI: 10.1038/s41598-021-88922-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
The aberrant expression of microRNAs (miRs) has been linked to several human diseases. A promising approach for targeting these anomalies is the use of small-molecule inhibitors of miR biogenesis. These inhibitors have the potential to (i) dissect miR mechanisms of action, (ii) discover new drug targets, and (iii) function as new therapeutic agents. Here, we designed Förster resonance energy transfer (FRET)-labeled oligoribonucleotides of the precursor of the oncogenic miR-21 (pre-miR-21) and used them together with a set of aminoglycosides to develop an interbase-FRET assay to detect ligand binding to pre-miRs. Our interbase-FRET assay accurately reports structural changes of the RNA oligonucleotide induced by ligand binding. We demonstrate its application in a rapid, qualitative drug candidate screen by assessing the relative binding affinity between 12 aminoglycoside antibiotics and pre-miR-21. Surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) were used to validate our new FRET method, and the accuracy of our FRET assay was shown to be similar to the established techniques. With its advantages over SPR and ITC owing to its high sensitivity, small sample size, straightforward technique and the possibility for high-throughput expansion, we envision that our solution-based method can be applied in pre-miRNA–target binding studies.
Collapse
Affiliation(s)
- Mattias Bood
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden.,Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Anna Wypijewska Del Nogal
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Jesper R Nilsson
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Fredrik Edfeldt
- Structure & Biophysics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Anders Dahlén
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Malin Lemurell
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden.
| |
Collapse
|
10
|
Aldhumani AH, Hossain MI, Fairchild EA, Boesger H, Marino EC, Myers M, Hines JV. RNA sequence and ligand binding alter conformational profile of SARS-CoV-2 stem loop II motif. Biochem Biophys Res Commun 2021; 545:75-80. [PMID: 33545635 PMCID: PMC7834705 DOI: 10.1016/j.bbrc.2021.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/07/2021] [Indexed: 11/09/2022]
Abstract
Antiviral drug discovery continues to be an essential complement to vaccine development for overcoming the global pandemic caused by SARS-CoV-2. The genomic RNA of SARS-CoV-2 contains structural elements important for viral replication and/or pathogenesis making them potential therapeutic targets. Here we report on the stem-loop II motif, a highly conserved noncoding RNA element. Based on our homology model we determined that the G to U transversion in the SARS-CoV-2 stem-loop II motif (S2MG35U) forms a C–U base-pair isosteric to the C-G base-pair in the early 2000’s SARS-CoV (S2M). In addition, chemo-enzymatic probing and molecular dynamics simulations indicate the S2MG35U conformational profile is altered compared to S2M in the apical loop region. We explored S2MG35U as a potential drug target by docking a library of FDA approved drugs. Enzymatic probing of the best docking ligands (aminoglycosides and polymyxins) indicated that polymyxin binding alters the conformational profile and/or secondary structure of the RNA. The SARS-CoV-2 stem-loop II motif conformational differences due to nucleotide transversion and ligand binding are highly significant and provide insight for future drug discovery efforts since the conformation of noncoding RNA elements affects their function.
Collapse
Affiliation(s)
- Ali H Aldhumani
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, United States
| | - Md Ismail Hossain
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, United States
| | - Emily A Fairchild
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, United States
| | - Hannah Boesger
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, United States; Honors Tutorial College, Ohio University, Athens, OH, 45701, United States
| | - Emily C Marino
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, United States; Honors Tutorial College, Ohio University, Athens, OH, 45701, United States
| | - Mason Myers
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, United States; Honors Tutorial College, Ohio University, Athens, OH, 45701, United States
| | - Jennifer V Hines
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, United States.
| |
Collapse
|
11
|
Murata A, Nakamori M, Nakatani K. Modulating RNA secondary and tertiary structures by mismatch binding ligands. Methods 2019; 167:78-91. [DOI: 10.1016/j.ymeth.2019.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022] Open
|
12
|
Wang D, Sun X, Wei Y, Liang H, Yuan M, Jin F, Chen X, Liu Y, Zhang CY, Li L, Zen K. Nuclear miR-122 directly regulates the biogenesis of cell survival oncomiR miR-21 at the posttranscriptional level. Nucleic Acids Res 2019; 46:2012-2029. [PMID: 29253196 PMCID: PMC5829740 DOI: 10.1093/nar/gkx1254] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/06/2017] [Indexed: 01/04/2023] Open
Abstract
Hepatic miR-122 can serve as a pro-apoptotic factor to suppress tumorigenesis. The underlying mechanism, however, remains incompletely understood. Here we present the first evidence that miR-122 promotes hepatocellular carcinoma cell apoptosis through directly silencing the biogenesis of cell survival oncomiR miR-21 at posttranscriptional level. We find that miR-122 is strongly expressed in primary liver cell nucleus but its nuclear localization is markedly decreased in transformed cells particularly in chemoresistant tumor cells. MiRNA profiling and RT-qPCR confirm an inverse correlation between miR-122 and miR-21 in hepatocellular carcinoma tissues/cells, and increasing or decreasing nuclear level of miR-122 respectively reduces or increases miR-21 expression. Mechanistically, nuclear miR-122 suppresses miR-21 maturation via binding to a 19-nt UG-containing recognition element in the basal region of pri-miR-21 and preventing the Drosha-DGCR8 microprocessor's conversion of pri-miR-21 into pre-miR-21. Furthermore, both in vitro and in vivo studies demonstrate that nuclear miR-122 participates in the regulation of HCC cell apoptosis through modulating the miR-21-targeted programmed cell death 4 (PDCD4) signal pathway.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.,State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Xinlei Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yao Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Hongwei Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.,Center of Inflammation, Immunity and Infection, Center for Diagnostics and Therapeutics, Program of Cellular Biology and Immunology of Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Min Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Fangfang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yuan Liu
- Center of Inflammation, Immunity and Infection, Center for Diagnostics and Therapeutics, Program of Cellular Biology and Immunology of Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Limin Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.,Center of Inflammation, Immunity and Infection, Center for Diagnostics and Therapeutics, Program of Cellular Biology and Immunology of Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
13
|
Yan H, Liang FS. miRNA inhibition by proximity-enabled Dicer inactivation. Methods 2019; 167:117-123. [PMID: 31077820 DOI: 10.1016/j.ymeth.2019.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/22/2019] [Accepted: 05/05/2019] [Indexed: 11/17/2022] Open
Abstract
microRNAs (miRNAs) are considered as master regulators of biological processes. Dysregulation of miRNA expression has been implicated in many human diseases. Driven by the key biological roles and the therapeutic potential, developing methods for miRNA regulation has become an intense research area. Due to favorable pharmacological properties, small molecule-based miRNA inhibition emerges as a promising strategy and significant progresses have been made. However, it remains challenging to regulate miRNA using small molecules because of the inherent difficulty in RNA targeting and inhibition. Herein we outline the workflow of generating bifunctional small molecule inhibitors blocking miRNA biogenesis through proximity-enabled inactivation of Dicer, an enzyme required for the processing of precursor miRNA (pre-miRNA) into mature miRNA. By conjugating a weak Dicer inhibitor with a pre-miRNA binder, the inhibitor can be delivered to the Dicer processing site associated with the targeted pre-miRNA, and as a result inhibiting Dicer-mediated pre-miRNA processing. This protocol can be applicable in producing bifunctional inhibitors for different miRNAs.
Collapse
Affiliation(s)
- Hao Yan
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Fu-Sen Liang
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
14
|
Culf AS. Peptoids as tools and sensors. Biopolymers 2019; 110:e23285. [PMID: 31070792 DOI: 10.1002/bip.23285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Abstract
A review of molecular tools and sensors assembled on N-substituted glycine, or α-peptoid, oligomers between 2013 and November 2018 with the following sections: (a) Peptoids as crystal growth modifiers, (b) Peptoids as catalysts, (c) Ion and molecule sequestration and transport, (d) Peptoid sensors, (e) Macromolecule recognition, (f) Cellular transporters, (g) Medical imaging, (h) Future direction and (i) Summary and outlook. Peptoids are a promising class of peptide mimic making them an excellent platform for functional molecule preparation. Attributes of peptoid oligomers include: (a) the ease of precise sequence definition and mono-dispersity; (b) access to a vast chemical space within simple and repeating chemical preparative steps and (c) thermal, chemical and biological stability all lending support for their application in a number of areas, with some that have been realised to date. The peptoid tool and sensor examples selected have realised practical utility. They serve to illustrate the rapidity of new insight that can generate in many disparate areas of science and technology, enabling the quick assembly of design criteria for efficient peptoid molecular tools and sensors.
Collapse
Affiliation(s)
- Adrian S Culf
- Sussex Research Laboratories, Inc., Ottawa, Ontario, Canada
| |
Collapse
|
15
|
Garner AL, Lorenz DA, Sandoval J, Gallagher EE, Kerk SA, Kaur T, Menon A. Tetracyclines as Inhibitors of Pre-microRNA Maturation: A Disconnection between RNA Binding and Inhibition. ACS Med Chem Lett 2019; 10:816-821. [PMID: 31098005 DOI: 10.1021/acsmedchemlett.9b00091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/22/2019] [Indexed: 12/21/2022] Open
Abstract
In a high-throughput screening campaign, we recently discovered the rRNA-binding tetracyclines, methacycline and meclocycline, as inhibitors of Dicer-mediated processing of microRNAs. Herein, we describe our biophysical and biochemical characterization of these compounds. Interestingly, although direct, albeit weak, binding to the pre-microRNA hairpins was observed, the inhibitory activity of these compounds was not due to RNA binding. Through additional biochemical and chemical studies, we revealed that metal chelation likely plays a principle role in their mechanism of inhibition. By exploring the activity of other known RNA-binding scaffolds, we identified additional disconnections between direct RNA interaction and inhibition of Dicer processing. Thus, the results presented within provide a valuable case study in the complexities of targeting RNA with small molecules, particularly with weak binding and potentially promiscuous scaffolds.
Collapse
|
16
|
Otabe T, Nagano K, Kawai G, Murata A, Nakatani K. Inhibition of pre-miRNA-136 processing by Dicer with small molecule BzDANP suggested the formation of ternary complex of pre-miR-136–BzDANP–Dicer. Bioorg Med Chem 2019; 27:2140-2148. [DOI: 10.1016/j.bmc.2019.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/04/2019] [Accepted: 03/16/2019] [Indexed: 11/27/2022]
|
17
|
Yan H, Zhou M, Bhattarai U, Song Y, Zheng M, Cai J, Liang FS. Cyclic Peptidomimetics as Inhibitor for miR-155 Biogenesis. Mol Pharm 2019; 16:914-920. [PMID: 30601666 PMCID: PMC8513084 DOI: 10.1021/acs.molpharmaceut.8b01247] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
miR-155 plays key promoting roles in several cancers and emerges as an important anticancer therapeutic target. However, the discovery of small molecules that target RNAs is challenging. Peptidomimetics have been shown to be a rich source for discovering novel ligands to regulate cellular proteins. However, the potential of using peptidomimetics for RNA targeting is relatively unexplored. To this end, we designed and synthesized members of a novel 320 000 compound macrocyclic peptidomimetic library. An affinity-based screening protocol led to the identification of a pre-miR-155 binder that inhibits oncogenic miR-155 maturation in vitro and in cell and induces cancer cell apoptosis. The results of this investigation demonstrate that macrocyclic peptidomimetics could serve as a new scaffold for RNA targeting.
Collapse
Affiliation(s)
- Hao Yan
- Department of Chemistry and Chemical Biology, University of New Mexico, 300 Terrace Street NE, Albuquerque, New Mexico 87131, United States
| | - Mi Zhou
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Umesh Bhattarai
- Department of Chemistry and Chemical Biology, University of New Mexico, 300 Terrace Street NE, Albuquerque, New Mexico 87131, United States
| | - Yabin Song
- Department of Chemistry and Chemical Biology, University of New Mexico, 300 Terrace Street NE, Albuquerque, New Mexico 87131, United States
| | - Mengmeng Zheng
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Fu-Sen Liang
- Department of Chemistry and Chemical Biology, University of New Mexico, 300 Terrace Street NE, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
18
|
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression that bind complementary target mRNAs and repress their expression. Precursor miRNA molecules undergo nuclear and cytoplasmic processing events, carried out by the endoribonucleases DROSHA and DICER, respectively, to produce mature miRNAs that are loaded onto the RISC (RNA-induced silencing complex) to exert their biological function. Regulation of mature miRNA levels is critical in development, differentiation, and disease, as demonstrated by multiple levels of control during their biogenesis cascade. Here, we will focus on post-transcriptional mechanisms and will discuss the impact of cis-acting sequences in precursor miRNAs, as well as trans-acting factors that bind to these precursors and influence their processing. In particular, we will highlight the role of general RNA-binding proteins (RBPs) as factors that control the processing of specific miRNAs, revealing a complex layer of regulation in miRNA production and function.
Collapse
Affiliation(s)
- Gracjan Michlewski
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Zhejiang 314400, P.R. China
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
19
|
McLoughlin NM, Mueller C, Grossmann TN. The Therapeutic Potential of PTEN Modulation: Targeting Strategies from Gene to Protein. Cell Chem Biol 2018; 25:19-29. [PMID: 29153852 DOI: 10.1016/j.chembiol.2017.10.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/05/2017] [Accepted: 10/23/2017] [Indexed: 01/04/2023]
|
20
|
Chakraborty S, Krishnan Y. A structural map of oncomiR-1 at single-nucleotide resolution. Nucleic Acids Res 2017; 45:9694-9705. [PMID: 28934477 PMCID: PMC5766152 DOI: 10.1093/nar/gkx613] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022] Open
Abstract
The miR-17-92a cluster, also known as 'oncomiR-1', is an RNA transcript that plays a pivotal regulatory role in cellular processes, including the cell cycle, proliferation and apoptosis. Its dysregulation underlies the development of several cancers. Oncomir-1 comprises six constituent miRNAs, each processed with different efficiencies as a function of both developmental time and tissue type. The structural mechanisms that regulate such differential processing are unknown, and this has impeded our understanding of the dysregulation of oncomiR-1 in pathophysiology. By probing the sensitivity of each nucleotide in oncomiR-1 to reactive small molecules, we present a secondary structural map of this RNA at single-nucleotide resolution. The secondary structure and solvent accessible regions of oncomiR-1 reveal that most of its primary microRNA domains are suboptimal substrates for Drosha-DGCR8, and therefore resistant to microprocessing. The structure indicates that the binding of trans-acting factors is required to remodel the tertiary organization and unmask cryptic primary microRNA domains to facilitate their processing into pre-microRNAs.
Collapse
Affiliation(s)
- Saikat Chakraborty
- National Centre for Biological Sciences-TIFR, Bangalore, Karnataka 560065, India
| | - Yamuna Krishnan
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA.,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
21
|
Lorenz DA, Vander Roest S, Larsen MJ, Garner AL. Development and Implementation of an HTS-Compatible Assay for the Discovery of Selective Small-Molecule Ligands for Pre-microRNAs. SLAS DISCOVERY 2017; 23:47-54. [PMID: 28686847 DOI: 10.1177/2472555217717944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNAs) are small gene regulatory RNAs, and their expression has been found to be dysregulated in a number of human diseases. To facilitate the discovery of small molecules capable of selectively modulating the activity of a specific miRNA, we have utilized new high-throughput screening technology targeting Dicer-mediated pre-miRNA maturation. Pilot screening of ~50,000 small molecules and ~33,000 natural product extract libraries against pre-miR-21 processing indicated the potential of our assay for this goal, yielding a campaign Z' factor of 0.52 and an average plate signal-to-background (S/B) ratio of 13. Using two-dimensional screening against a second pre-miRNA, pre-let-7d, we evaluated the selectivity of confirmed hits. The results presented demonstrate how high-throughput screening can be used to identify selective small molecules for a target RNA.
Collapse
Affiliation(s)
- Daniel A Lorenz
- 1 Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Steve Vander Roest
- 3 Center for Chemical Genomics, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Martha J Larsen
- 3 Center for Chemical Genomics, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Amanda L Garner
- 1 Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA.,2 Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
22
|
Shortridge MD, Walker MJ, Pavelitz T, Chen Y, Yang W, Varani G. A Macrocyclic Peptide Ligand Binds the Oncogenic MicroRNA-21 Precursor and Suppresses Dicer Processing. ACS Chem Biol 2017; 12:1611-1620. [PMID: 28437065 DOI: 10.1021/acschembio.7b00180] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) help orchestrate cellular growth and survival through post-transcriptional mechanisms. The dysregulation of miRNA biogenesis can lead to cellular growth defects and chemotherapeutic resistance and plays a direct role in the development of many chronic diseases. Among these RNAs, miR-21 is consistently overexpressed in most human cancers, leading to the down-regulation of key tumor-suppressing and pro-apoptotic factors, suggesting that inhibition of miR-21 biogenesis could reverse these negative effects. However, targeted inhibition of miR-21 using small molecules has had limited success. To overcome difficulties in targeting RNA secondary structure with small molecules, we developed a class of cyclic β-hairpin peptidomimetics which bind to RNA stem-loop structures, such as miRNA precursors, with potent affinity and specificity. We screened an existing cyclic peptide library and discovered a lead structure which binds to pre-miR21 with KD = 200 nM and prefers it over other pre-miRNAs. The NMR structure of the complex shows that the peptide recognizes the Dicer cleavage site and alters processing of the precursor to the mature miRNA in vitro and in cultured cells. The structure provides a rationale for the peptide binding activity and clear guidance for further improvements in affinity and targeting.
Collapse
Affiliation(s)
- Matthew D. Shortridge
- Department of Chemistry, University of Washington, Seattle, Box
351700, Seattle, Washington 98195, United States
| | - Matthew J. Walker
- Department of Chemistry, University of Washington, Seattle, Box
351700, Seattle, Washington 98195, United States
| | - Tom Pavelitz
- Department of Chemistry, University of Washington, Seattle, Box
351700, Seattle, Washington 98195, United States
| | - Yu Chen
- Department of Chemistry, University of Washington, Seattle, Box
351700, Seattle, Washington 98195, United States
| | - Wen Yang
- Department of Chemistry, University of Washington, Seattle, Box
351700, Seattle, Washington 98195, United States
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Box
351700, Seattle, Washington 98195, United States
| |
Collapse
|
23
|
Connelly CM, Boer RE, Moon MH, Gareiss P, Schneekloth JS. Discovery of Inhibitors of MicroRNA-21 Processing Using Small Molecule Microarrays. ACS Chem Biol 2017; 12:435-443. [PMID: 27959491 DOI: 10.1021/acschembio.6b00945] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The identification of small molecules that bind to and perturb the function of microRNAs is an attractive approach for the treatment for microRNA-associated pathologies. However, there are only a few small molecules known to interact directly with microRNAs. Here, we report the use of a small molecule microarray (SMM) screening approach to identify low molecular weight compounds that directly bind to a pre-miR-21 hairpin. Compounds identified using this approach exhibit good affinity for the RNA (ranging from 0.8-2.0 μM) and are not composed of a polycationic scaffold. Several of the highest affinity compounds inhibit Dicer-mediated processing, while in-line probing experiments indicate that the compounds bind to the apical loop of the hairpin, proximal to the Dicer site. This work provides evidence that small molecules can be developed to bind directly to and inhibit miR-21.
Collapse
Affiliation(s)
- Colleen M. Connelly
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Robert E. Boer
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Michelle H. Moon
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Peter Gareiss
- Yale Center for Molecular Discovery, West Haven, Connecticut 06516, United States
| | - John S. Schneekloth
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
24
|
Sakamoto K, Otake K, Umemoto T. Discovery of peptidic miR-21 processing inhibitor by mirror image phage display: A novel method to generate RNA binding D-peptides. Bioorg Med Chem Lett 2017; 27:826-828. [DOI: 10.1016/j.bmcl.2017.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/29/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
|
25
|
Approaches for the Discovery of Small Molecule Ligands Targeting microRNAs. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2017_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Connelly CM, Abulwerdi FA, Schneekloth JS. Discovery of RNA Binding Small Molecules Using Small Molecule Microarrays. Methods Mol Biol 2017; 1518:157-175. [PMID: 27873206 DOI: 10.1007/978-1-4939-6584-7_11] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
New methods to identify RNA-binding small molecules open yet unexplored opportunities for the pharmacological modulation of RNA-driven biology and disease states. One such approach is the use of small molecule microarrays (SMMs). Typically, SMMs are generated by spatially arraying and covalently linking a library of small molecules to a glass surface. Next, incubation of the arrays with a fluorescently labeled RNA reveals binding interactions that are detected upon slide imaging. The relative ease with which SMMs are manufactured enables the screening of multiple oligonucleotides in parallel against tens of thousands of small molecules, providing information about both binding and selectivity of identified RNA-small molecule interactions. This approach is useful for screening a broad variety of structurally and functionally diverse RNAs. Here, we present a general method for the preparation and use of SMMs to rapidly identify small molecules that selectively bind to an RNA of interest.
Collapse
Affiliation(s)
- Colleen M Connelly
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Fardokht A Abulwerdi
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
27
|
Murata A, Otabe T, Zhang J, Nakatani K. BzDANP, a Small-Molecule Modulator of Pre-miR-29a Maturation by Dicer. ACS Chem Biol 2016; 11:2790-2796. [PMID: 27536863 DOI: 10.1021/acschembio.6b00214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We here report the synthesis of novel molecule BzDANP having a three-ring benzo[c][1,8]naphthyridine system, the evaluation of its binding properties to a single nucleotide bulge in RNA duplexes, and BzDANP-induced suppression of pre-miR-29a processing by Dicer. BzDANP showed much increased affinity to the bulged RNAs as compared with the parent molecule DANP, which possesses the same hydrogen-bonding surface as BzDANP but in a two-ring [1,8]naphthyridine system. Melting temperature analysis of bulged RNAs showed that BzDANP most effectively stabilized the C-bulged RNA. Dicer-mediated processing of pre-miR-29a was suppressed by BzDANP in a concentration dependent manner. The presence of the C-bulge at the Dicer cleavage site was effective for the suppression of pre-miR-29a processing by BzDANP. These results demonstrated that the small molecule binding to the bulged site in the vicinity of the Dicer cleavage site could be a potential modulator for the maturation of pre-miRNA.
Collapse
Affiliation(s)
- Asako Murata
- Department of Regulatory
Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takahiro Otabe
- Department of Regulatory
Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Jinhua Zhang
- Department of Regulatory
Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory
Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
28
|
Chen Y, Yang F, Zubovic L, Pavelitz T, Yang W, Godin K, Walker M, Zheng S, Macchi P, Varani G. Targeted inhibition of oncogenic miR-21 maturation with designed RNA-binding proteins. Nat Chem Biol 2016; 12:717-23. [PMID: 27428511 PMCID: PMC4990487 DOI: 10.1038/nchembio.2128] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 05/02/2016] [Indexed: 02/07/2023]
Abstract
The RNA Recognition Motif (RRM) is the largest family of eukaryotic RNA-binding proteins. Engineered RRMs with new specificity would provide valuable tools and an exacting test of our understanding of specificity. We have achieved the first successful re-design of the specificity of an RRM using rational methods and demonstrated re-targeting of activity in cells. We engineered the conserved RRM of human Rbfox proteins to specifically bind to the terminal loop of miR-21 precursor with high affinity and inhibit its processing by Drosha and Dicer. We further engineered Giardia Dicer by replacing its PAZ domain with the designed RRM. The reprogrammed enzyme degrades pre-miR-21 specifically in vitro and suppresses mature miR-21 levels in cells, which results in increased expression of PDCD4 and significantly decreased viability for cancer cells. The results demonstrate the feasibility of engineering the sequence-specificity of RRMs and of using this ubiquitous platform for diverse biological applications.
Collapse
Affiliation(s)
- Yu Chen
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Fan Yang
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Lorena Zubovic
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Tom Pavelitz
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Wen Yang
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Katherine Godin
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Matthew Walker
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Suxin Zheng
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Paolo Macchi
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
29
|
Abulwerdi FA, Schneekloth JS. Microarray-based technologies for the discovery of selective, RNA-binding molecules. Methods 2016; 103:188-95. [PMID: 27109057 PMCID: PMC6314024 DOI: 10.1016/j.ymeth.2016.04.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/18/2016] [Accepted: 04/18/2016] [Indexed: 11/20/2022] Open
Abstract
The identification of small molecules that bind specifically to RNA is a challenge. However, the recent explosion in knowledge about the role RNA plays in a number of physiological processes apart from coding for protein sequences makes it a highly interesting target for chemical probes and therapeutics. One technology that has played an important role in the discovery of RNA-binding molecules is microarrays. Microarrays have been broadly employed to screen, profile, and quantify RNA interactions, and will likely play an important role in the discovery of new classes of ligands going forward. Here, we discuss the development of microarray technologies, including aminoglycoside, peptide, peptoid, and small molecule microarrays, and their use in studying RNA-interacting molecules.
Collapse
Affiliation(s)
- Fardokht A Abulwerdi
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, United States; Basic Research Laboratory, National Cancer Institute, Frederick, MD, United States
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, United States.
| |
Collapse
|
30
|
Fukuzumi T, Murata A, Aikawa H, Harada Y, Nakatani K. Exploratory Study on the RNA-Binding Structural Motifs by Library Screening Targeting pre-miRNA-29 a. Chemistry 2015; 21:16859-67. [DOI: 10.1002/chem.201502913] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 12/31/2022]
|
31
|
Wen D, Danquah M, Chaudhary AK, Mahato RI. Small molecules targeting microRNA for cancer therapy: Promises and obstacles. J Control Release 2015; 219:237-247. [PMID: 26256260 DOI: 10.1016/j.jconrel.2015.08.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/20/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023]
Abstract
Aberrant expression of miRNAs is critically implicated in cancer initiation and progression. Therapeutic approaches focused on regulating miRNAs are therefore a promising approach for treating cancer. Antisense oligonucleotides, miRNA sponges, and CRISPR/Cas9 genome editing systems are being investigated as tools for regulating miRNAs. Despite the accruing insights in the use of these tools, delivery concerns have mitigated clinical application of such systems. In contrast, little attention has been given to the potential of small molecules to modulate miRNA expression for cancer therapy. In these years, many researches proved that small molecules targeting cancer-related miRNAs might have greater potential for cancer treatment. Small molecules targeting cancer related miRNAs showed significantly promising results in different cancer models. However, there are still several obstacles hindering the progress and clinical application in this area. This review discusses the development, mechanisms and application of small molecules for modulating oncogenic miRNAs (oncomiRs). Attention has also been given to screening technologies and perspectives aimed to facilitate clinical translation for small molecule-based miRNA therapeutics.
Collapse
Affiliation(s)
- Di Wen
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Michael Danquah
- Department of Pharmaceutical Sciences, Chicago State University, 9501 South King Drive., Chicago, IL 60628, USA
| | - Amit Kumar Chaudhary
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA.
| |
Collapse
|
32
|
Bose D, Nahar S, Rai MK, Ray A, Chakraborty K, Maiti S. Selective inhibition of miR-21 by phage display screened peptide. Nucleic Acids Res 2015; 43:4342-52. [PMID: 25824952 PMCID: PMC4417150 DOI: 10.1093/nar/gkv185] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 11/20/2014] [Accepted: 02/23/2015] [Indexed: 01/07/2023] Open
Abstract
miRNAs are nodal regulators of gene expression and deregulation of miRNAs is causally associated with different diseases, including cancer. Modulation of miRNA expression is thus of therapeutic importance. Small molecules are currently being explored for their potential to downregulate miRNAs. Peptides have shown to have better potency and selectivity toward their targets but their potential in targeting and modulating miRNAs remain unexplored. Herein, using phage display we found a very selective peptide against pre-miR-21. Interestingly, the peptide has the potential to downregulate miR-21, by binding to pre-miR-21 and hindering Dicer processing. It is selective towards miR-21 inside the cell. By antagonising miR-21 function, the peptide is able to increase the expression of its target proteins and thereby increase apoptosis and suppress cell proliferation, invasion and migration. This peptide can further be explored for its anti-cancer activity in vivo and may be even extended to clinical studies.
Collapse
Affiliation(s)
- Debojit Bose
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR. Mathura Road, Delhi 110020, India
| | - Smita Nahar
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR. Mathura Road, Delhi 110020, India Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110001, India
| | - Manish Kumar Rai
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR. Mathura Road, Delhi 110020, India Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110001, India
| | - Arjun Ray
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR. Mathura Road, Delhi 110020, India Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110001, India
| | - Kausik Chakraborty
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR. Mathura Road, Delhi 110020, India Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110001, India
| | - Souvik Maiti
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR. Mathura Road, Delhi 110020, India Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110001, India National Chemical Laboratory, CSIR, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
33
|
Quarles KA, Chadalavada D, Showalter SA. Deformability in the cleavage site of primary microRNA is not sensed by the double-stranded RNA binding domains in the microprocessor component DGCR8. Proteins 2015; 83:1165-79. [PMID: 25851436 DOI: 10.1002/prot.24810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 03/10/2015] [Accepted: 03/25/2015] [Indexed: 01/01/2023]
Abstract
The prevalence of double-stranded RNA (dsRNA) in eukaryotic cells has only recently been appreciated. Of interest here, RNA silencing begins with dsRNA substrates that are bound by the dsRNA-binding domains (dsRBDs) of their processing proteins. Specifically, processing of microRNA (miRNA) in the nucleus minimally requires the enzyme Drosha and its dsRBD-containing cofactor protein, DGCR8. The smallest recombinant construct of DGCR8 that is sufficient for in vitro dsRNA binding, referred to as DGCR8-Core, consists of its two dsRBDs and a C-terminal tail. As dsRBDs rarely recognize the nucleotide sequence of dsRNA, it is reasonable to hypothesize that DGCR8 function is dependent on the recognition of specific structural features in the miRNA precursor. Previously, we demonstrated that noncanonical structural elements that promote RNA flexibility within the stem of miRNA precursors are necessary for efficient in vitro cleavage by reconstituted Microprocessor complexes. Here, we combine gel shift assays with in vitro processing assays to demonstrate that neither the N-terminal dsRBD of DGCR8 in isolation nor the DGCR8-Core construct is sensitive to the presence of noncanonical structural elements within the stem of miRNA precursors, or to single-stranded segments flanking the stem. Extending DGCR8-Core to include an N-terminal heme-binding region does not change our conclusions. Thus, our data suggest that although the DGCR8-Core region is necessary for dsRNA binding and recruitment to the Microprocessor, it is not sufficient to establish the previously observed connection between RNA flexibility and processing efficiency.
Collapse
Affiliation(s)
- Kaycee A Quarles
- Department of Chemistry, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvannia, 16802
| | - Durga Chadalavada
- Department of Chemistry, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvannia, 16802
| | - Scott A Showalter
- Department of Chemistry, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvannia, 16802
| |
Collapse
|
34
|
Shortridge MD, Varani G. Structure based approaches for targeting non-coding RNAs with small molecules. Curr Opin Struct Biol 2015; 30:79-88. [PMID: 25687935 PMCID: PMC4416997 DOI: 10.1016/j.sbi.2015.01.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/19/2015] [Accepted: 01/28/2015] [Indexed: 12/22/2022]
Abstract
The increasing appreciation of the central role of non-coding RNAs (miRNAs and long non-coding RNAs) in chronic and degenerative human disease makes them attractive therapeutic targets. This would not be unprecedented: the bacterial ribosomal RNA is a mainstay for antibacterial treatment, while the conservation and functional importance of viral RNA regulatory elements has long suggested they would constitute attractive targets for new antivirals. Oligonucleotide-based chemistry has obvious appeals but also considerable pharmacological limitations that are yet to be addressed satisfactorily. Recent studies identifying small molecules targeting non-coding RNAs may provide an alternative approach to oligonucleotide methods. Here we review recent work investigating new structural and chemical principles for targeting RNA with small molecules.
Collapse
Affiliation(s)
- Matthew D Shortridge
- Department of Chemistry, University of Washington, Seattle, Box 351700, Seattle 98195, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Box 351700, Seattle 98195, USA.
| |
Collapse
|
35
|
Lorenz DA, Song JM, Garner AL. High-throughput platform assay technology for the discovery of pre-microrna-selective small molecule probes. Bioconjug Chem 2015; 26:19-23. [PMID: 25506628 DOI: 10.1021/bc500544v] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
MicroRNAs (miRNA) play critical roles in human development and disease. As such, the targeting of miRNAs is considered attractive as a novel therapeutic strategy. A major bottleneck toward this goal, however, has been the identification of small molecule probes that are specific for select RNAs and methods that will facilitate such discovery efforts. Using pre-microRNAs as proof-of-concept, herein we report a conceptually new and innovative approach for assaying RNA-small molecule interactions. Through this platform assay technology, which we term catalytic enzyme-linked click chemistry assay or cat-ELCCA, we have designed a method that can be implemented in high throughput, is virtually free of false readouts, and is general for all nucleic acids. Through cat-ELCCA, we envision the discovery of selective small molecule ligands for disease-relevant miRNAs to promote the field of RNA-targeted drug discovery and further our understanding of the role of miRNAs in cellular biology.
Collapse
Affiliation(s)
- Daniel A Lorenz
- Program in Chemical Biology and ‡Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
36
|
Jayaraj GG, Nahar S, Maiti S. Nonconventional chemical inhibitors of microRNA: therapeutic scope. Chem Commun (Camb) 2015; 51:820-31. [DOI: 10.1039/c4cc04514a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are a class of genomically encoded small RNA molecules (∼22nts in length), which regulate gene expression post transcriptionally. miRNAs are implicated in several diseases, thus modulation of miRNA is of prime importance. Small molecules offer a non-conventional alternative to do so.
Collapse
Affiliation(s)
- Gopal Gunanathan Jayaraj
- Chemical & Systems Biology Unit
- CSIR-Institute of Genomics and Integrative Biology
- New Delhi
- India 110020
- AcSIR – Academy of Scientific and Innovative Research
| | - Smita Nahar
- Chemical & Systems Biology Unit
- CSIR-Institute of Genomics and Integrative Biology
- New Delhi
- India 110020
- AcSIR – Academy of Scientific and Innovative Research
| | - Souvik Maiti
- Chemical & Systems Biology Unit
- CSIR-Institute of Genomics and Integrative Biology
- New Delhi
- India 110020
- CSIR-National Chemical Laboratory
| |
Collapse
|
37
|
Chirayil S, Wu Q, Amezcua C, Luebke KJ. NMR characterization of an oligonucleotide model of the miR-21 pre-element. PLoS One 2014; 9:e108231. [PMID: 25250627 PMCID: PMC4177108 DOI: 10.1371/journal.pone.0108231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/25/2014] [Indexed: 01/04/2023] Open
Abstract
We have used NMR spectroscopy to characterize an oligonucleotide stem loop structure based on the pre-element of an oncogenic microRNA, miR-21. This predicted stem-loop structure is cleaved from the precursor of miR-21 (pre-miR-21) by the nuclease Dicer. It is also a critical feature recognized by the protein complex that converts the primary transcript (pri-miR-21) into the pre-miRNA. The secondary structure of the native sequence is poorly defined by NMR due to rapid exchange of imino protons with solvent; however, replacement of two adjacent putative G•U base pairs with G•C base pairs retains the conformation of the hairpin observed by chemical probing and stabilizes it sufficiently to observe most of the imino proton resonances of the molecule. The observed resonances are consistent with the predicted secondary structure. In addition, a peak due to a loop uridine suggests an interaction between it and a bulged uridine in the stem. Assignment of non-exchangeable proton resonances and characterization of NOEs and coupling constants allows inference of the following features of the structure: extrahelicity of a bulged adenosine, deviation from A-form geometry in a base-paired stem, and consecutive stacking of the adenosines in the 5′ side of the loop, the guanosine of the closing base pair, and a cross-strand adenosine. Modeling of the structure by restrained molecular dynamics suggests a basis for the interaction between the loop uridine, the bulged uridine in the stem, and an A•U base pair in the stem.
Collapse
Affiliation(s)
- Sara Chirayil
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qiong Wu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Carlos Amezcua
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Structural Elucidation Group, Medical Products Division, Baxter Healthcare, Round Lake, Illinois, United States of America
| | - Kevin J. Luebke
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|