1
|
Latour M, Kwiatek L, Landry-Voyer AM, Bachand F. Antagonistic roles by the conserved nuclear poly(A)-binding proteins PABPN1 and ZC3H14 in nuclear RNA surveillance. Nucleic Acids Res 2025; 53:gkaf060. [PMID: 39898550 PMCID: PMC11788927 DOI: 10.1093/nar/gkaf060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025] Open
Abstract
Most eukaryotic genomes are transcribed pervasively, thereby producing an array of long non-coding RNAs (lncRNAs) in addition to protein-coding mRNAs. A large fraction of these lncRNAs is targeted by polyadenylation-dependent decay via the poly(A)-binding protein nuclear 1 (PABPN1) and the RNA exosome. Yet, how PABPN1 contributes to nuclear RNA surveillance by facilitating lncRNA turnover by the RNA exosome remains largely unclear. Here, we show that PABPN1 is important for the nuclear retention of polyadenylated lncRNAs, such that PABPN1 loss of function allows target lncRNAs to evade nuclear decay, leading to cytoplasmic accumulation. Interestingly, we found that another nuclear PABP, ZC3H14, functions antagonistically to PABPN1 and the poly(A)-tail exosome targeting (PAXT) connection in the control of nuclear lncRNA turnover. Collectively, our findings disclose the critical interplay between two conserved nuclear PABPs, PABPN1 and ZC3H14, in RNA surveillance via the control of nuclear RNA export.
Collapse
Affiliation(s)
- Mélodie Latour
- RNA Group, Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Lauren Kwiatek
- RNA Group, Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Anne-Marie Landry-Voyer
- RNA Group, Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - François Bachand
- RNA Group, Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| |
Collapse
|
2
|
Li Q, Yang G, Ren B, Liu X, Tang LQ, Shi Q, Shan G, Wang X. ZC3H14 facilitates backsplicing by binding to exon-intron boundary and 3' UTR. Mol Cell 2024; 84:4314-4333.e9. [PMID: 39461343 DOI: 10.1016/j.molcel.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/02/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024]
Abstract
Circular RNAs (circRNAs) are natural outputs of eukaryotic transcription and RNA processing and have emerged as critical regulators in physiology and diseases. Although multiple cis-elements and trans-factors are reported to modulate the backsplicing of circRNA biogenesis, most of these regulations play roles in flanking introns of circRNAs. Here, using a genome-wide CRISPR knockout screen, we have identified an evolutionarily conserved RNA-binding protein ZC3H14 in regulating circRNA biogenesis. ZC3H14 binds to 3' and 5' exon-intron boundaries and 3' UTRs of cognate mRNAs to promote circRNA biogenesis through dimerization and the association with spliceosome. Yeast knockout of the ZC3H14 ortholog Nab2 has significantly lower levels of circRNAs. Zc3h14-/- mice exhibit disrupted spermatogenesis and reduced testicular circRNA levels. Additionally, expression levels of human ZC3H14 are associated with non-obstructive azoospermia. Our findings reveal a conserved requirement for ZC3H14 in the modulation of backsplicing and link ZC3H14 and circRNA biogenesis to male fertility.
Collapse
Affiliation(s)
- Qiqi Li
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (USTC), Hefei 230027, China
| | - Gang Yang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Bingbing Ren
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xu Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (USTC), Hefei 230027, China
| | - Li-Qin Tang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Ge Shan
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (USTC), Hefei 230027, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei 230071, China.
| | - Xiaolin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (USTC), Hefei 230027, China.
| |
Collapse
|
3
|
Rambout X, Maquat LE. Nuclear mRNA decay: regulatory networks that control gene expression. Nat Rev Genet 2024; 25:679-697. [PMID: 38637632 PMCID: PMC11408106 DOI: 10.1038/s41576-024-00712-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 04/20/2024]
Abstract
Proper regulation of mRNA production in the nucleus is critical for the maintenance of cellular homoeostasis during adaptation to internal and environmental cues. Over the past 25 years, it has become clear that the nuclear machineries governing gene transcription, pre-mRNA processing, pre-mRNA and mRNA decay, and mRNA export to the cytoplasm are inextricably linked to control the quality and quantity of mRNAs available for translation. More recently, an ever-expanding diversity of new mechanisms by which nuclear RNA decay factors finely tune the expression of protein-encoding genes have been uncovered. Here, we review the current understanding of how mammalian cells shape their protein-encoding potential by regulating the decay of pre-mRNAs and mRNAs in the nucleus.
Collapse
Affiliation(s)
- Xavier Rambout
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
- Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
- Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
4
|
Querl L, Krebber H. Defenders of the Transcriptome: Guard Protein-Mediated mRNA Quality Control in Saccharomyces cerevisiae. Int J Mol Sci 2024; 25:10241. [PMID: 39408571 PMCID: PMC11476243 DOI: 10.3390/ijms251910241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Cell survival depends on precise gene expression, which is controlled sequentially. The guard proteins surveil mRNAs from their synthesis in the nucleus to their translation in the cytoplasm. Although the proteins within this group share many similarities, they play distinct roles in controlling nuclear mRNA maturation and cytoplasmic translation by supporting the degradation of faulty transcripts. Notably, this group is continuously expanding, currently including the RNA-binding proteins Npl3, Gbp2, Hrb1, Hrp1, and Nab2 in Saccharomyces cerevisiae. Some of the human serine-arginine (SR) splicing factors (SRSFs) show remarkable similarities to the yeast guard proteins and may be considered as functional homologues. Here, we provide a comprehensive summary of their crucial mRNA surveillance functions and their implications for cellular health.
Collapse
Affiliation(s)
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
5
|
Lancaster CL, Yalamanchili PS, Goldy JN, Leung SW, Corbett AH, Moberg KH. The RNA-binding protein Nab2 regulates levels of the RhoGEF Trio to govern axon and dendrite morphology. Mol Biol Cell 2024; 35:ar109. [PMID: 38985523 PMCID: PMC11321036 DOI: 10.1091/mbc.e24-04-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
The Drosophila RNA-binding protein (RBP) Nab2 acts in neurons to regulate neurodevelopment and is orthologous to the human intellectual disability-linked RBP, ZC3H14. Nab2 governs axon projection in mushroom body neurons and limits dendritic arborization of class IV sensory neurons in part by regulating splicing events in ∼150 mRNAs. Analysis of the Sex-lethal (Sxl) mRNA revealed that Nab2 promotes an exon-skipping event and regulates m6A methylation on Sxl pre-mRNA by the Mettl3 methyltransferase. Mettl3 heterozygosity broadly rescues Nab2null phenotypes implying that Nab2 acts through similar mechanisms on other RNAs, including unidentified targets involved in neurodevelopment. Here, we show that Nab2 and Mettl3 regulate the removal of a 5'UTR (untranslated region) intron in the trio pre-mRNA. Trio utilizes two GEF domains to balance Rac and RhoGTPase activity. Intriguingly, an isoform of Trio containing only the RhoGEF domain, GEF2, is depleted in Nab2null nervous tissue. Expression of Trio-GEF2 rescues projection defects in Nab2null axons and dendrites, while the GEF1 Rac1-regulatory domain exacerbates these defects, suggesting Nab2-mediated regulation Trio-GEF activities. Collectively, these data indicate that Nab2-regulated processing of trio is critical for balancing Trio-GEF1 and -GEF2 activity and show that Nab2, Mettl3, and Trio function in a common pathway that shapes axon and dendrite morphology.
Collapse
Affiliation(s)
- Carly L. Lancaster
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA 30322
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322
| | - Pranav S. Yalamanchili
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA 30322
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Jordan N. Goldy
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA 30322
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322
| | - Sara W. Leung
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA 30322
| | - Anita H. Corbett
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA 30322
| | - Kenneth H. Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
6
|
Lester E, Parker R. Tau, RNA, and RNA-Binding Proteins: Complex Interactions in Health and Neurodegenerative Diseases. Neuroscientist 2024; 30:458-472. [PMID: 36892034 DOI: 10.1177/10738584231154551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The tau protein is a key contributor to multiple neurodegenerative diseases. The pathology of tau is thought to be related to tau's propensity to form self-templating fibrillar structures that allow tau fibers to propagate in the brain by prion-like mechanisms. Unresolved issues with respect to tau pathology are how the normal function of tau and its misregulation contribute to disease, how cofactors and cellular organelles influence the initiation and propagation of tau fibers, and determining the mechanism of tau toxicity. Herein, we review the connection between tau and degenerative diseases, the basis for tau fibrilization, and how that process interacts with cellular molecules and organelles. One emerging theme is that tau interacts with RNA and RNA-binding proteins, normally and in pathologic aggregates, which may provide insight into alterations in RNA regulation observed in disease.
Collapse
Affiliation(s)
- Evan Lester
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| |
Collapse
|
7
|
Choi Y, Um B, Na Y, Kim J, Kim JS, Kim VN. Time-resolved profiling of RNA binding proteins throughout the mRNA life cycle. Mol Cell 2024; 84:1764-1782.e10. [PMID: 38593806 DOI: 10.1016/j.molcel.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
mRNAs continually change their protein partners throughout their lifetimes, yet our understanding of mRNA-protein complex (mRNP) remodeling is limited by a lack of temporal data. Here, we present time-resolved mRNA interactome data by performing pulse metabolic labeling with photoactivatable ribonucleoside in human cells, UVA crosslinking, poly(A)+ RNA isolation, and mass spectrometry. This longitudinal approach allowed the quantification of over 700 RNA binding proteins (RBPs) across ten time points. Overall, the sequential order of mRNA binding aligns well with known functions, subcellular locations, and molecular interactions. However, we also observed RBPs with unexpected dynamics: the transcription-export (TREX) complex recruited posttranscriptionally after nuclear export factor 1 (NXF1) binding, challenging the current view of transcription-coupled mRNA export, and stress granule proteins prevalent in aged mRNPs, indicating roles in late stages of the mRNA life cycle. To systematically identify mRBPs with unknown functions, we employed machine learning to compare mRNA binding dynamics with Gene Ontology (GO) annotations. Our data can be explored at chronology.rna.snu.ac.kr.
Collapse
Affiliation(s)
- Yeon Choi
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Buyeon Um
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongwoo Na
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeesoo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Seyres D, Gorka O, Schmidt R, Marone R, Zavolan M, Jeker LT. T helper cells exhibit a dynamic and reversible 3'-UTR landscape. RNA (NEW YORK, N.Y.) 2024; 30:418-434. [PMID: 38302256 PMCID: PMC10946431 DOI: 10.1261/rna.079897.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
3' untranslated regions (3' UTRs) are critical elements of messenger RNAs, as they contain binding sites for RNA-binding proteins (RBPs) and microRNAs that affect various aspects of the RNA life cycle including transcript stability and cellular localization. In response to T cell receptor activation, T cells undergo massive expansion during the effector phase of the immune response and dynamically modify their 3' UTRs. Whether this serves to directly regulate the abundance of specific mRNAs or is a secondary effect of proliferation remains unclear. To study 3'-UTR dynamics in T helper cells, we investigated division-dependent alternative polyadenylation (APA). In addition, we generated 3' end UTR sequencing data from naive, activated, memory, and regulatory CD4+ T cells. 3'-UTR length changes were estimated using a nonnegative matrix factorization approach and were compared with those inferred from long-read PacBio sequencing. We found that APA events were transient and reverted after effector phase expansion. Using an orthogonal bulk RNA-seq data set, we did not find evidence of APA association with differential gene expression or transcript usage, indicating that APA has only a marginal effect on transcript abundance. 3'-UTR sequence analysis revealed conserved binding sites for T cell-relevant microRNAs and RBPs in the alternative 3' UTRs. These results indicate that poly(A) site usage could play an important role in the control of cell fate decisions and homeostasis.
Collapse
Affiliation(s)
- Denis Seyres
- Department of Biomedicine, Basel University Hospital and University of Basel, CH-4031 Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, CH-4031 Basel, Switzerland
| | - Oliver Gorka
- Department of Biomedicine, Basel University Hospital and University of Basel, CH-4031 Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, CH-4031 Basel, Switzerland
| | - Ralf Schmidt
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Romina Marone
- Department of Biomedicine, Basel University Hospital and University of Basel, CH-4031 Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, CH-4031 Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
- Swiss Institute of Bioinformatics, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Lukas T Jeker
- Department of Biomedicine, Basel University Hospital and University of Basel, CH-4031 Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, CH-4031 Basel, Switzerland
| |
Collapse
|
9
|
McMillan PJ, Benbow SJ, Uhrich R, Saxton A, Baum M, Strovas T, Wheeler JM, Baker J, Liachko NF, Keene CD, Latimer CS, Kraemer BC. Tau-RNA complexes inhibit microtubule polymerization and drive disease-relevant conformation change. Brain 2023; 146:3206-3220. [PMID: 36732296 PMCID: PMC10393409 DOI: 10.1093/brain/awad032] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/09/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease and related disorders feature neurofibrillary tangles and other neuropathological lesions composed of detergent-insoluble tau protein. In recent structural biology studies of tau proteinopathy, aggregated tau forms a distinct set of conformational variants specific to the different types of tauopathy disorders. However, the constituents driving the formation of distinct pathological tau conformations on pathway to tau-mediated neurodegeneration remain unknown. Previous work demonstrated RNA can serve as a driver of tau aggregation, and RNA associates with tau containing lesions, but tools for evaluating tau/RNA interactions remain limited. Here, we employed molecular interaction studies to measure the impact of tau/RNA binding on tau microtubule binding and aggregation. To investigate the importance of tau/RNA complexes (TRCs) in neurodegenerative disease, we raised a monoclonal antibody (TRC35) against aggregated tau/RNA complexes. We showed that native tau binds RNA with high affinity but low specificity, and tau binding to RNA competes with tau-mediated microtubule assembly functions. Tau/RNA interaction in vitro promotes the formation of higher molecular weight tau/RNA complexes, which represent an oligomeric tau species. Coexpression of tau and poly(A)45 RNA transgenes in Caenorhabditis elegans exacerbates tau-related phenotypes including neuronal dysfunction and pathological tau accumulation. TRC35 exhibits specificity for Alzheimer's disease-derived detergent-insoluble tau relative to soluble recombinant tau. Immunostaining with TRC35 labels a wide variety of pathological tau lesions in animal models of tauopathy, which are reduced in mice lacking the RNA binding protein MSUT2. TRC-positive lesions are evident in many human tauopathies including Alzheimer's disease, progressive supranuclear palsy, corticobasal degeneration and Pick's disease. We also identified ocular pharyngeal muscular dystrophy as a novel tauopathy disorder, where loss of function in the poly(A) RNA binding protein (PABPN1) causes accumulation of pathological tau in tissue from post-mortem human brain. Tau/RNA binding drives tau conformational change and aggregation inhibiting tau-mediated microtubule assembly. Our findings implicate cellular tau/RNA interactions as modulators of both normal tau function and pathological tau toxicity in tauopathy disorders and suggest feasibility for novel therapeutic approaches targeting TRCs.
Collapse
Affiliation(s)
- Pamela J McMillan
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Sarah J Benbow
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Rikki Uhrich
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Aleen Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Misa Baum
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Timothy Strovas
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Jeanna M Wheeler
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Jeremy Baker
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Nicole F Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brian C Kraemer
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Jalloh B, Lancaster CL, Rounds JC, Brown BE, Leung SW, Banerjee A, Morton DJ, Bienkowski RS, Fasken MB, Kremsky IJ, Tegowski M, Meyer K, Corbett A, Moberg K. The Drosophila Nab2 RNA binding protein inhibits m 6A methylation and male-specific splicing of Sex lethal transcript in female neuronal tissue. eLife 2023; 12:e64904. [PMID: 37458420 PMCID: PMC10351920 DOI: 10.7554/elife.64904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
The Drosophila polyadenosine RNA binding protein Nab2, which is orthologous to a human protein lost in a form of inherited intellectual disability, controls adult locomotion, axon projection, dendritic arborization, and memory through a largely undefined set of target RNAs. Here, we show a specific role for Nab2 in regulating splicing of ~150 exons/introns in the head transcriptome and focus on retention of a male-specific exon in the sex determination factor Sex-lethal (Sxl) that is enriched in female neurons. Previous studies have revealed that this splicing event is regulated in females by N6-methyladenosine (m6A) modification by the Mettl3 complex. At a molecular level, Nab2 associates with Sxl pre-mRNA in neurons and limits Sxl m6A methylation at specific sites. In parallel, reducing expression of the Mettl3, Mettl3 complex components, or the m6A reader Ythdc1 rescues mutant phenotypes in Nab2 flies. Overall, these data identify Nab2 as an inhibitor of m6A methylation and imply significant overlap between Nab2 and Mettl3 regulated RNAs in neuronal tissue.
Collapse
Affiliation(s)
- Binta Jalloh
- Department of Biology, Emory UniversityAtlantaUnited States
- Department of Cell Biology Emory University School of MedicineAtlantaUnited States
- Graduate Program in Genetics and Molecular Biology, Emory UniversityAtlantaUnited States
| | - Carly L Lancaster
- Department of Biology, Emory UniversityAtlantaUnited States
- Department of Cell Biology Emory University School of MedicineAtlantaUnited States
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory UniversityAtlantaUnited States
| | - J Christopher Rounds
- Department of Biology, Emory UniversityAtlantaUnited States
- Department of Cell Biology Emory University School of MedicineAtlantaUnited States
- Graduate Program in Genetics and Molecular Biology, Emory UniversityAtlantaUnited States
| | - Brianna E Brown
- Department of Biology, Emory UniversityAtlantaUnited States
- Department of Cell Biology Emory University School of MedicineAtlantaUnited States
| | - Sara W Leung
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Ayan Banerjee
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Derrick J Morton
- Department of Biology, Emory UniversityAtlantaUnited States
- Emory Institutional Research and Academic Career Development Award (IRACDA), Fellowships in Research and Science Teaching (FIRST) Postdoctoral FellowshipAtlantaUnited States
| | - Rick S Bienkowski
- Department of Biology, Emory UniversityAtlantaUnited States
- Department of Cell Biology Emory University School of MedicineAtlantaUnited States
- Graduate Program in Genetics and Molecular Biology, Emory UniversityAtlantaUnited States
| | - Milo B Fasken
- Department of Biology, Emory UniversityAtlantaUnited States
| | | | - Matthew Tegowski
- Department of Biochemistry, Duke University School of MedicineDurhamUnited States
| | - Kate Meyer
- Department of Biochemistry, Duke University School of MedicineDurhamUnited States
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Anita Corbett
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Ken Moberg
- Department of Cell Biology Emory University School of MedicineAtlantaUnited States
| |
Collapse
|
11
|
Rodríguez‐Molina JB, Turtola M. Birth of a poly(A) tail: mechanisms and control of mRNA polyadenylation. FEBS Open Bio 2023; 13:1140-1153. [PMID: 36416579 PMCID: PMC10315857 DOI: 10.1002/2211-5463.13528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
During their synthesis in the cell nucleus, most eukaryotic mRNAs undergo a two-step 3'-end processing reaction in which the pre-mRNA is cleaved and released from the transcribing RNA polymerase II and a polyadenosine (poly(A)) tail is added to the newly formed 3'-end. These biochemical reactions might appear simple at first sight (endonucleolytic RNA cleavage and synthesis of a homopolymeric tail), but their catalysis requires a multi-faceted enzymatic machinery, the cleavage and polyadenylation complex (CPAC), which is composed of more than 20 individual protein subunits. The activity of CPAC is further orchestrated by Poly(A) Binding Proteins (PABPs), which decorate the poly(A) tail during its synthesis and guide the mRNA through subsequent gene expression steps. Here, we review the structure, molecular mechanism, and regulation of eukaryotic mRNA 3'-end processing machineries with a focus on the polyadenylation step. We concentrate on the CPAC and PABPs from mammals and the budding yeast, Saccharomyces cerevisiae, because these systems are the best-characterized at present. Comparison of their functions provides valuable insights into the principles of mRNA 3'-end processing.
Collapse
Affiliation(s)
| | - Matti Turtola
- Department of Life TechnologiesUniversity of TurkuFinland
| |
Collapse
|
12
|
Corgiat EB, List SM, Rounds JC, Yu D, Chen P, Corbett AH, Moberg KH. The Nab2 RNA-binding protein patterns dendritic and axonal projections through a planar cell polarity-sensitive mechanism. G3 (BETHESDA, MD.) 2022; 12:jkac100. [PMID: 35471546 PMCID: PMC9157165 DOI: 10.1093/g3journal/jkac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 11/15/2022]
Abstract
RNA-binding proteins support neurodevelopment by modulating numerous steps in post-transcriptional regulation, including splicing, export, translation, and turnover of mRNAs that can traffic into axons and dendrites. One such RNA-binding protein is ZC3H14, which is lost in an inherited intellectual disability. The Drosophila melanogaster ZC3H14 ortholog, Nab2, localizes to neuronal nuclei and cytoplasmic ribonucleoprotein granules and is required for olfactory memory and proper axon projection into brain mushroom bodies. Nab2 can act as a translational repressor in conjunction with the Fragile-X mental retardation protein homolog Fmr1 and shares target RNAs with the Fmr1-interacting RNA-binding protein Ataxin-2. However, neuronal signaling pathways regulated by Nab2 and their potential roles outside of mushroom body axons remain undefined. Here, we present an analysis of a brain proteomic dataset that indicates that multiple planar cell polarity proteins are affected by Nab2 loss, and couple this with genetic data that demonstrate that Nab2 has a previously unappreciated role in restricting the growth and branching of dendrites that elaborate from larval body-wall sensory neurons. Further analysis confirms that Nab2 loss sensitizes sensory dendrites to the genetic dose of planar cell polarity components and that Nab2-planar cell polarity genetic interactions are also observed during Nab2-dependent control of axon projection in the central nervous system mushroom bodies. Collectively, these data identify the conserved Nab2 RNA-binding protein as a likely component of post-transcriptional mechanisms that limit dendrite growth and branching in Drosophila sensory neurons and genetically link this role to the planar cell polarity pathway. Given that mammalian ZC3H14 localizes to dendritic spines and controls spine density in hippocampal neurons, these Nab2-planar cell polarity genetic data may highlight a conserved path through which Nab2/ZC3H14 loss affects morphogenesis of both axons and dendrites in diverse species.
Collapse
Affiliation(s)
- Edwin B Corgiat
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - Sara M List
- Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - J Christopher Rounds
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - Dehong Yu
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ping Chen
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Kow RL, Black AH, Saxton AD, Liachko NF, Kraemer BC. Loss of aly/ALYREF suppresses toxicity in both tau and TDP-43 models of neurodegeneration. GeroScience 2022; 44:747-761. [PMID: 35122183 PMCID: PMC9135935 DOI: 10.1007/s11357-022-00526-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/27/2022] [Indexed: 11/04/2022] Open
Abstract
Neurodegenerative diseases with tau pathology, or tauopathies, include Alzheimer's disease and related dementia disorders. Previous work has shown that loss of the poly(A) RNA-binding protein gene sut-2/MSUT2 strongly suppressed tauopathy in Caenorhabditis elegans, human cell culture, and mouse models of tauopathy. However, the mechanism of suppression is still unclear. Recent work has shown that MSUT2 protein interacts with the THO complex and ALYREF, which are components of the mRNA nuclear export complex. Additionally, previous work showed ALYREF homolog Ref1 modulates TDP-43 and G4C2 toxicity in Drosophila melanogaster models. We used transgenic C. elegans models of tau or TDP-43 toxicity to investigate the effects of loss of ALYREF function on tau and TDP-43 toxicity. In C. elegans, three genes are homologous to human ALYREF: aly-1, aly-2, and aly-3. We found that loss of C. elegans aly gene function, especially loss of both aly-2 and aly-3, suppressed tau-induced toxic phenotypes. Loss of aly-2 and aly-3 was also able to suppress TDP-43-induced locomotor behavior deficits. However, loss of aly-2 and aly-3 had divergent effects on mRNA and protein levels as total tau protein levels were reduced while mRNA levels were increased, but no significant effects were seen on total TDP-43 protein or mRNA levels. Our results suggest that although aly genes modulate both tau and TDP-43-induced toxicity phenotypes, the molecular mechanisms of suppression are different and separated from impacts on mRNA and protein levels. Altogether, this study highlights the importance of elucidating RNA-related mechanisms in both tau and TDP-43-induced toxicity.
Collapse
Affiliation(s)
- Rebecca L Kow
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA.
| | - Aristide H Black
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA
| | - Aleen D Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA
| | - Nicole F Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA
| | - Brian C Kraemer
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA.
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
14
|
Ecovoiu AA, Ratiu AC, Micheu MM, Chifiriuc MC. Inter-Species Rescue of Mutant Phenotype-The Standard for Genetic Analysis of Human Genetic Disorders in Drosophila melanogaster Model. Int J Mol Sci 2022; 23:2613. [PMID: 35269756 PMCID: PMC8909942 DOI: 10.3390/ijms23052613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Drosophila melanogaster (the fruit fly) is arguably a superstar of genetics, an astonishing versatile experimental model which fueled no less than six Nobel prizes in medicine. Nowadays, an evolving research endeavor is to simulate and investigate human genetic diseases in the powerful D. melanogaster platform. Such a translational experimental strategy is expected to allow scientists not only to understand the molecular mechanisms of the respective disorders but also to alleviate or even cure them. In this regard, functional gene orthology should be initially confirmed in vivo by transferring human or vertebrate orthologous transgenes in specific mutant backgrounds of D. melanogaster. If such a transgene rescues, at least partially, the mutant phenotype, then it qualifies as a strong candidate for modeling the respective genetic disorder in the fruit fly. Herein, we review various examples of inter-species rescue of relevant mutant phenotypes of the fruit fly and discuss how these results recommend several human genes as candidates to study and validate genetic variants associated with human diseases. We also consider that a wider implementation of this evolutionist exploratory approach as a standard for the medicine of genetic disorders would allow this particular field of human health to advance at a faster pace.
Collapse
Affiliation(s)
- Alexandru Al. Ecovoiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Attila Cristian Ratiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest and Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| |
Collapse
|
15
|
Rounds JC, Corgiat EB, Ye C, Behnke JA, Kelly SM, Corbett AH, Moberg KH. The disease-associated proteins Drosophila Nab2 and Ataxin-2 interact with shared RNAs and coregulate neuronal morphology. Genetics 2022; 220:iyab175. [PMID: 34791182 PMCID: PMC8733473 DOI: 10.1093/genetics/iyab175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/27/2021] [Indexed: 01/05/2023] Open
Abstract
Nab2 encodes the Drosophila melanogaster member of a conserved family of zinc finger polyadenosine RNA-binding proteins (RBPs) linked to multiple steps in post-transcriptional regulation. Mutation of the Nab2 human ortholog ZC3H14 gives rise to an autosomal recessive intellectual disability but understanding of Nab2/ZC3H14 function in metazoan nervous systems is limited, in part because no comprehensive identification of metazoan Nab2/ZC3H14-associated RNA transcripts has yet been conducted. Moreover, many Nab2/ZC3H14 functional protein partnerships remain unidentified. Here, we present evidence that Nab2 genetically interacts with Ataxin-2 (Atx2), which encodes a neuronal translational regulator, and that these factors coordinately regulate neuronal morphology, circadian behavior, and adult viability. We then present the first high-throughput identifications of Nab2- and Atx2-associated RNAs in Drosophila brain neurons using RNA immunoprecipitation-sequencing (RIP-Seq). Critically, the RNA interactomes of each RBP overlap, and Nab2 exhibits high specificity in its RNA associations in neurons in vivo, associating with a small fraction of all polyadenylated RNAs. The identities of shared associated transcripts (e.g., drk, me31B, stai) and of transcripts specific to Nab2 or Atx2 (e.g., Arpc2 and tea) promise insight into neuronal functions of, and genetic interactions between, each RBP. Consistent with prior biochemical studies, Nab2-associated neuronal RNAs are overrepresented for internal A-rich motifs, suggesting these sequences may partially mediate Nab2 target selection. These data support a model where Nab2 functionally opposes Atx2 in neurons, demonstrate Nab2 shares associated neuronal RNAs with Atx2, and reveal Drosophila Nab2 associates with a more specific subset of polyadenylated mRNAs than its polyadenosine affinity alone may suggest.
Collapse
Affiliation(s)
- J Christopher Rounds
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Edwin B Corgiat
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Changtian Ye
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joseph A Behnke
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Seth M Kelly
- Department of Biology, The College of Wooster, Wooster, OH 44691, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Turtola M, Manav MC, Kumar A, Tudek A, Mroczek S, Krawczyk PS, Dziembowski A, Schmid M, Passmore LA, Casañal A, Jensen TH. Three-layered control of mRNA poly(A) tail synthesis in Saccharomyces cerevisiae. Genes Dev 2021; 35:1290-1303. [PMID: 34385261 PMCID: PMC8415320 DOI: 10.1101/gad.348634.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022]
Abstract
Biogenesis of most eukaryotic mRNAs involves the addition of an untemplated polyadenosine (pA) tail by the cleavage and polyadenylation machinery. The pA tail, and its exact length, impacts mRNA stability, nuclear export, and translation. To define how polyadenylation is controlled in S. cerevisiae, we have used an in vivo assay capable of assessing nuclear pA tail synthesis, analyzed tail length distributions by direct RNA sequencing, and reconstituted polyadenylation reactions with purified components. This revealed three control mechanisms for pA tail length. First, we found that the pA binding protein (PABP) Nab2p is the primary regulator of pA tail length. Second, when Nab2p is limiting, the nuclear pool of Pab1p, the second major PABP in yeast, controls the process. Third, when both PABPs are absent, the cleavage and polyadenylation factor (CPF) limits pA tail synthesis. Thus, Pab1p and CPF provide fail-safe mechanisms to a primary Nab2p-dependent pathway, thereby preventing uncontrolled polyadenylation and allowing mRNA export and translation.
Collapse
Affiliation(s)
- Matti Turtola
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - M Cemre Manav
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ananthanarayanan Kumar
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Agnieszka Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Seweryn Mroczek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Paweł S Krawczyk
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Lori A Passmore
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ana Casañal
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
17
|
Ngwa CJ, Farrukh A, Pradel G. Zinc finger proteins of Plasmodium falciparum. Cell Microbiol 2021; 23:e13387. [PMID: 34418264 DOI: 10.1111/cmi.13387] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 01/14/2023]
Abstract
Zinc finger proteins (ZFPs) are a large diverse family of proteins with one or more zinc finger domains in which zinc is important in stabilising the domain. ZFPs can interact with DNA, RNA, lipids or even other proteins and therefore contribute to diverse cellular processes including transcriptional regulation, ubiquitin-mediated protein degradation, mRNA decay and stability. In this review, we provide the first comprehensive classification of ZFPs of the malaria parasite Plasmodium falciparum and provide a state of knowledge on the main ZFPs in the parasite, which include the C2H2, CCCH, RING finger and the PHD finger proteins. TAKE AWAYS: The Plasmodium falciparum genome encodes 170 putative Zinc finger proteins (ZFPs). The C2H2, CCCH, RING finger and PHD finger subfamilies of ZFPs are most represented. Known ZFP functions include the regulation of mRNA metabolism and proteostasis.
Collapse
Affiliation(s)
- Che Julius Ngwa
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Afia Farrukh
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
18
|
Corgiat EB, List SM, Rounds JC, Corbett AH, Moberg KH. The RNA-binding protein Nab2 regulates the proteome of the developing Drosophila brain. J Biol Chem 2021; 297:100877. [PMID: 34139237 PMCID: PMC8260979 DOI: 10.1016/j.jbc.2021.100877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 12/14/2022] Open
Abstract
The human ZC3H14 gene, which encodes a ubiquitously expressed polyadenosine zinc finger RNA-binding protein, is mutated in an inherited form of autosomal recessive, nonsyndromic intellectual disability. To gain insight into neurological functions of ZC3H14, we previously developed a Drosophila melanogaster model of ZC3H14 loss by deleting the fly ortholog, Nab2. Studies in this invertebrate model revealed that Nab2 controls final patterns of neuron projection within fully developed adult brains, but the role of Nab2 during development of the Drosophila brain is not known. Here, we identify roles for Nab2 in controlling the dynamic growth of axons in the developing brain mushroom bodies, which support olfactory learning and memory, and regulating abundance of a small fraction of the total brain proteome. The group of Nab2-regulated brain proteins, identified by quantitative proteomic analysis, includes the microtubule-binding protein Futsch, the neuronal Ig-family transmembrane protein turtle, the glial:neuron adhesion protein contactin, the Rac GTPase-activating protein tumbleweed, and the planar cell polarity factor Van Gogh, which collectively link Nab2 to the processes of brain morphogenesis, neuroblast proliferation, circadian sleep/wake cycles, and synaptic development. Overall, these data indicate that Nab2 controls the abundance of a subset of brain proteins during the active process of wiring the pupal brain mushroom body and thus provide a window into potentially conserved functions of the Nab2/ZC3H14 RNA-binding proteins in neurodevelopment.
Collapse
Affiliation(s)
- Edwin B Corgiat
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA; Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, USA; Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Sara M List
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia, USA
| | - J Christopher Rounds
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA; Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, USA; Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, Georgia, USA.
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
19
|
Kow RL, Strovas TJ, McMillan PJ, Jacobi AM, Behlke MA, Saxton AD, Latimer CS, Keene CD, Kraemer BC. Distinct Poly(A) nucleases have differential impact on sut-2 dependent tauopathy phenotypes. Neurobiol Dis 2021; 147:105148. [PMID: 33184027 PMCID: PMC8092974 DOI: 10.1016/j.nbd.2020.105148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/03/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Aging drives pathological accumulation of proteins such as tau, causing neurodegenerative dementia disorders like Alzheimer's disease. Previously we showed loss of function mutations in the gene encoding the poly(A) RNA binding protein SUT-2/MSUT2 suppress tau-mediated neurotoxicity in C. elegans neurons, cultured human cells, and mouse brain, while loss of PABPN1 had the opposite effect (Wheeler et al., 2019). Here we found that blocking poly(A) tail extension with cordycepin exacerbates tauopathy in cultured human cells, which is rescued by MSUT2 knockdown. To further investigate the molecular mechanisms of poly(A) RNA-mediated tauopathy suppression, we examined whether genes encoding poly(A) nucleases also modulated tauopathy in a C. elegans tauopathy model. We found that loss of function mutations in C. elegans ccr-4 and panl-2 genes enhanced tauopathy phenotypes in tau transgenic C. elegans while loss of parn-2 partially suppressed tauopathy. In addition, loss of parn-1 blocked tauopathy suppression by loss of parn-2. Epistasis analysis showed that sut-2 loss of function suppressed the tauopathy enhancement caused by loss of ccr-4 and SUT-2 overexpression exacerbated tauopathy even in the presence of parn-2 loss of function in tau transgenic C. elegans. Thus sut-2 modulation of tauopathy is epistatic to ccr-4 and parn-2. We found that human deadenylases do not colocalize with human MSUT2 in nuclear speckles; however, expression levels of TOE1, the homolog of parn-2, correlated with that of MSUT2 in post-mortem Alzheimer's disease patient brains. Alzheimer's disease patients with low TOE1 levels exhibited significantly increased pathological tau deposition and loss of NeuN staining. Taken together, this work suggests suppressing tauopathy cannot be accomplished by simply extending poly(A) tails, but rather a more complex relationship exists between tau, sut-2/MSUT2 function, and control of poly(A) RNA metabolism, and that parn-2/TOE1 may be altered in tauopathy in a similar way.
Collapse
Affiliation(s)
- Rebecca L. Kow
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health, Care System, Seattle, WA 98108, USA,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Timothy J. Strovas
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health, Care System, Seattle, WA 98108, USA
| | - Pamela J. McMillan
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | - Aleen D. Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health, Care System, Seattle, WA 98108, USA
| | - Caitlin S. Latimer
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - C. Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brian C. Kraemer
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health, Care System, Seattle, WA 98108, USA,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA,Department of Pathology, University of Washington, Seattle, WA 98195, USA,Corresponding author at: Seattle Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108, USA. (B.C. Kraemer)
| |
Collapse
|
20
|
Alqawlaq S, Livne-Bar I, Williams D, D'Ercole J, Leung SW, Chan D, Tuccitto A, Datti A, Wrana JL, Corbett AH, Schmitt-Ulms G, Sivak JM. An endogenous PI3K interactome promoting astrocyte-mediated neuroprotection identifies a novel association with RNA-binding protein ZC3H14. J Biol Chem 2021; 296:100118. [PMID: 33234594 PMCID: PMC7948738 DOI: 10.1074/jbc.ra120.015389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/06/2022] Open
Abstract
Astrocytes can support neuronal survival through a range of secreted signals that protect against neurotoxicity, oxidative stress, and apoptotic cascades. Thus, analyzing the effects of the astrocyte secretome may provide valuable insight into these neuroprotective mechanisms. Previously, we characterized a potent neuroprotective activity mediated by retinal astrocyte conditioned media (ACM) on retinal and cortical neurons in metabolic stress models. However, the molecular mechanism underlying this complex activity in neuronal cells has remained unclear. Here, a chemical genetics screen of kinase inhibitors revealed phosphoinositide 3-kinase (PI3K) as a central player transducing ACM-mediated neuroprotection. To identify additional proteins contributing to the protective cascade, endogenous PI3K was immunoprecipitated from neuronal cells exposed to ACM or control media, followed by MS/MS proteomic analyses. These data pointed toward a relatively small number of proteins that coimmunoprecipitated with PI3K, and surprisingly only five were regulated by the ACM signal. These hits included expected PI3K interactors, such as the platelet-derived growth factor receptor A (PDGFRA), as well as novel RNA-binding protein interactors ZC3H14 (zinc finger CCCH-type containing 14) and THOC1 (THO complex protein 1). In particular, ZC3H14 has recently emerged as an important RNA-binding protein with multiple roles in posttranscriptional regulation. In validation studies, we show that PI3K recruitment of ZC3H14 is necessary for PDGF-induced neuroprotection and that this interaction is present in primary retinal ganglion cells. Thus, we identified a novel non-cell autonomous neuroprotective signaling cascade mediated through PI3K that requires recruitment of ZC3H14 and may present a promising strategy to promote astrocyte-secreted prosurvival signals.
Collapse
Affiliation(s)
- Samih Alqawlaq
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Izhar Livne-Bar
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada
| | - Joseph D'Ercole
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Sara W Leung
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Darren Chan
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Alessandra Tuccitto
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Alessandro Datti
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jeffrey L Wrana
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada
| | - Jeremy M Sivak
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
A Genetic Screen Links the Disease-Associated Nab2 RNA-Binding Protein to the Planar Cell Polarity Pathway in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2020; 10:3575-3583. [PMID: 32817074 PMCID: PMC7534439 DOI: 10.1534/g3.120.401637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mutations in the gene encoding the ubiquitously expressed RNA-binding protein ZC3H14 result in a non-syndromic form of autosomal recessive intellectual disability in humans. Studies in Drosophila have defined roles for the ZC3H14 ortholog, Nab2 (aka Drosophila Nab2 or dNab2), in axon guidance and memory due in part to interaction with a second RNA-binding protein, the fly Fragile X homolog Fmr1, and coregulation of shared Nab2-Fmr1 target mRNAs. Despite these advances, neurodevelopmental mechanisms that underlie defective axonogenesis in Nab2 mutants remain undefined. Nab2 null phenotypes in the brain mushroom bodies (MBs) resemble defects caused by alleles that disrupt the planar cell polarity (PCP) pathway, which regulates planar orientation of static and motile cells via a non-canonical arm of the Wnt/Wg pathway. A kinked bristle phenotype in surviving Nab2 mutant adults additionally suggests a defect in F-actin polymerization and bundling, a PCP-regulated processes. To test for Nab2-PCP genetic interactions, a collection of PCP mutant alleles was screened for modification of a rough-eye phenotype produced by Nab2 overexpression in the eye (GMR> Nab2) and, subsequently, for modification of a viability defect among Nab2 nulls. Multiple PCP alleles dominantly modify GMR> Nab2 eye roughening and a subset rescue low survival and thoracic bristle kinking in Nab2 zygotic nulls. Collectively, these genetic interactions identify the PCP pathway as a potential target of the Nab2 RNA-binding protein in developing eye and wing tissues and suggest that altered PCP signaling could contribute to neurological defects that result from loss of Drosophila Nab2 or its vertebrate ortholog ZC3H14.
Collapse
|
22
|
Wheeler JM, McMillan P, Strovas TJ, Liachko NF, Amlie-Wolf A, Kow RL, Klein RL, Szot P, Robinson L, Guthrie C, Saxton A, Kanaan NM, Raskind M, Peskind E, Trojanowski JQ, Lee VMY, Wang LS, Keene CD, Bird T, Schellenberg GD, Kraemer B. Activity of the poly(A) binding protein MSUT2 determines susceptibility to pathological tau in the mammalian brain. Sci Transl Med 2020; 11:11/523/eaao6545. [PMID: 31852801 DOI: 10.1126/scitranslmed.aao6545] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 06/20/2019] [Indexed: 12/15/2022]
Abstract
Brain lesions composed of pathological tau help to drive neurodegeneration in Alzheimer's disease (AD) and related tauopathies. Here, we identified the mammalian suppressor of tauopathy 2 (MSUT2) gene as a modifier of susceptibility to tau toxicity in two mouse models of tauopathy. Transgenic PS19 mice overexpressing tau, a model of AD, and lacking the Msut2 gene exhibited decreased learning and memory deficits, reduced neurodegeneration, and reduced accumulation of pathological tau compared to PS19 tau transgenic mice expressing Msut2 Conversely, Msut2 overexpression in 4RTauTg2652 tau transgenic mice increased pathological tau deposition and promoted the neuroinflammatory response to pathological tau. MSUT2 is a poly(A) RNA binding protein that antagonizes the canonical nuclear poly(A) binding protein PABPN1. In individuals with AD, MSUT2 abundance in postmortem brain tissue predicted an earlier age of disease onset. Postmortem AD brain tissue samples with normal amounts of MSUT2 showed elevated neuroinflammation associated with tau pathology. We observed co-depletion of MSUT2 and PABPN1 in postmortem brain samples from a subset of AD cases with higher tau burden and increased neuronal loss. This suggested that MSUT2 and PABPN1 may act together in a macromolecular complex bound to poly(A) RNA. Although MSUT2 and PABPN1 had opposing effects on both tau aggregation and poly(A) RNA tail length, we found that increased poly(A) tail length did not ameliorate tauopathy, implicating other functions of the MSUT2/PABPN1 complex in tau proteostasis. Our findings implicate poly(A) RNA binding proteins both as modulators of pathological tau toxicity in AD and as potential molecular targets for interventions to slow neurodegeneration in tauopathies.
Collapse
Affiliation(s)
- Jeanna M Wheeler
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Pamela McMillan
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Timothy J Strovas
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Nicole F Liachko
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Alexandre Amlie-Wolf
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca L Kow
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Ronald L Klein
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Patricia Szot
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.,Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Linda Robinson
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Chris Guthrie
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Aleen Saxton
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Nicholas M Kanaan
- Department of Translational Sciences and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Murray Raskind
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.,Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Elaine Peskind
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.,Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Virginia M Y Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Thomas Bird
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.,Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA.,Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian Kraemer
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA. .,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA.,Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
23
|
Zarnack K, Balasubramanian S, Gantier MP, Kunetsky V, Kracht M, Schmitz ML, Sträßer K. Dynamic mRNP Remodeling in Response to Internal and External Stimuli. Biomolecules 2020; 10:biom10091310. [PMID: 32932892 PMCID: PMC7565591 DOI: 10.3390/biom10091310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Signal transduction and the regulation of gene expression are fundamental processes in every cell. RNA-binding proteins (RBPs) play a key role in the post-transcriptional modulation of gene expression in response to both internal and external stimuli. However, how signaling pathways regulate the assembly of RBPs with mRNAs remains largely unknown. Here, we summarize observations showing that the formation and composition of messenger ribonucleoprotein particles (mRNPs) is dynamically remodeled in space and time by specific signaling cascades and the resulting post-translational modifications. The integration of signaling events with gene expression is key to the rapid adaptation of cells to environmental changes and stress. Only a combined approach analyzing the signal transduction pathways and the changes in post-transcriptional gene expression they cause will unravel the mechanisms coordinating these important cellular processes.
Collapse
Affiliation(s)
- Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany;
| | | | - Michael P. Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Vladislav Kunetsky
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany;
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, FB11, Justus Liebig University, 35392 Giessen, Germany;
| | - M. Lienhard Schmitz
- Institute of Biochemistry, FB11, Justus Liebig University, 35392 Giessen, Germany;
| | - Katja Sträßer
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany;
- Correspondence:
| |
Collapse
|
24
|
Targeted sequencing of linkage region in Dominican families implicates PRIMA1 and the SPATA7-PTPN21-ZC3H14-EML5-TTC8 locus in carotid-intima media thickness and atherosclerotic events. Sci Rep 2019; 9:11621. [PMID: 31406157 PMCID: PMC6691113 DOI: 10.1038/s41598-019-48186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 07/29/2019] [Indexed: 11/22/2022] Open
Abstract
Carotid intima-media thickness (cIMT) is a subclinical marker for atherosclerosis. Previously, we reported a quantitative trait locus (QTL) for total cIMT on chromosome 14q and identified PRiMA1, FOXN3 and CCDC88C as candidate genes using a common variants (CVs)-based approach. Herein, we further evaluated the genetic contribution of the QTL to cIMT by resequencing. We sequenced all exons within the QTL and genomic regions of PRiMA1, FOXN3 and CCDC88C in Dominican families with evidence for linkage to the QTL. Unrelated Dominicans from the Northern Manhattan Study (NOMAS) were used for validation. Single-variant-based and gene-based analyses were performed for CVs and rare variants (RVs). The strongest evidence for association with CVs was found in PRiMA1 (p = 8.2 × 10−5 in families, p = 0.01 in NOMAS at rs12587586), and in the five-gene cluster SPATA7-PTPN21-ZC3H14-EML5-TTC8 locus (p = 1.3 × 10−4 in families, p = 0.01 in NOMAS at rs2274736). No evidence for association with RVs was found in PRiMA1. The top marker from previous study in PRiMA1 (rs7152362) was associated with fewer atherosclerotic events (OR = 0.67; p = 0.02 in NOMAS) and smaller cIMT (β = −0.58, p = 2.8 × 10−4 in Family). Within the five-gene cluster, evidence for association was found for exonic RVs (p = 0.02 in families, p = 0.28 in NOMAS), which was enriched among RVs with higher functional potentials (p = 0.05 in NOMAS for RVs in the top functional tertile). In summary, targeted resequencing provided validation and novel insights into the genetic architecture of cIMT, suggesting stronger effects for RVs with higher functional potentials. Furthermore, our data support the clinical relevance of CVs associated with subclinical atherosclerosis.
Collapse
|
25
|
Morris KJ, Corbett AH. The polyadenosine RNA-binding protein ZC3H14 interacts with the THO complex and coordinately regulates the processing of neuronal transcripts. Nucleic Acids Res 2019; 46:6561-6575. [PMID: 29912477 PMCID: PMC6061872 DOI: 10.1093/nar/gky446] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 06/13/2018] [Indexed: 12/14/2022] Open
Abstract
The polyadenosine RNA-binding protein ZC3H14 is important in RNA processing. Although ZC3H14 is ubiquitously expressed, mutation of the ZC3H14 gene causes a non-syndromic form of intellectual disability. Here, we examine the function of ZC3H14 in the brain by identifying ZC3H14-interacting proteins using unbiased mass spectrometry. Through this analysis, we identified physical interactions between ZC3H14 and multiple RNA processing factors. Notably, proteins that comprise the THO complex were amongst the most enriched proteins. We demonstrate that ZC3H14 physically interacts with THO components and that these proteins are required for proper RNA processing, as loss of ZC3H14 or THO components leads to extended bulk poly(A) tail length. Furthermore, we identified the transcripts Atp5g1 and Psd95 as shared RNA targets of ZC3H14 and the THO complex. Our data suggest that ZC3H14 and the THO complex are important for proper processing of Atp5g1 and Psd95 RNA, as depletion of ZC3H14 or THO components leads to decreased steady-state levels of each mature transcript accompanied by accumulation of Atp5g1 and Psd95 pre-mRNA in the cytoplasm. Taken together, this work provides the first unbiased identification of nuclear ZC3H14-interacting proteins from the brain and links the functions of ZC3H14 and the THO complex in the processing of RNA.
Collapse
Affiliation(s)
- Kevin J Morris
- Department of Biology, Emory University, Atlanta, GA 30322, USA.,Graduate Program in Biochemistry, Cell and Developmental Biology, James T. Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
26
|
Abstract
In eukaryotes, the separation of translation from transcription by the nuclear envelope enables mRNA modifications such as capping, splicing, and polyadenylation. These modifications are mediated by a spectrum of ribonuclear proteins that associate with preRNA transcripts, coordinating the different steps and coupling them to nuclear export, ensuring that only mature transcripts reach the cytoplasmic translation machinery. Although the components of this machinery have been identified and considerable functional insight has been achieved, a number of questions remain outstanding about mRNA nuclear export and how it is integrated into the nuclear phase of the gene expression pathway. Nuclear export factors mediate mRNA transit through nuclear pores to the cytoplasm, after which these factors are removed from the mRNA, preventing transcripts from returning to the nucleus. However, as outlined in this review, several aspects of the mechanism by which transport factor binding and release are mediated remain unclear, as are the roles of accessory nuclear components in these processes. Moreover, the mechanisms by which completion of mRNA splicing and polyadenylation are recognized, together with how they are coordinated with nuclear export, also remain only partially characterized. One attractive hypothesis is that dissociating poly(A) polymerase from the cleavage and polyadenylation machinery could signal completion of mRNA maturation and thereby provide a mechanism for initiating nuclear export. The impressive array of genetic, molecular, cellular, and structural data that has been generated about these systems now provides many of the tools needed to define the precise mechanisms involved in these processes and how they are integrated.
Collapse
Affiliation(s)
- Murray Stewart
- From the MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
27
|
Schatton D, Rugarli EI. A concert of RNA-binding proteins coordinates mitochondrial function. Crit Rev Biochem Mol Biol 2019; 53:652-666. [DOI: 10.1080/10409238.2018.1553927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Désirée Schatton
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Elena I. Rugarli
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
28
|
Fasken MB, Corbett AH, Stewart M. Structure-function relationships in the Nab2 polyadenosine-RNA binding Zn finger protein family. Protein Sci 2019; 28:513-523. [PMID: 30578643 PMCID: PMC6371209 DOI: 10.1002/pro.3565] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
Abstract
The poly(A) RNA binding Zn finger ribonucleoprotein Nab2 functions to control the length of 3' poly(A) tails in Saccharomyces cerevisiae as well as contributing to the integration of the nuclear export of mature mRNA with preceding steps in the nuclear phase of the gene expression pathway. Nab2 is constructed from an N-terminal PWI-fold domain, followed by QQQP and RGG motifs and then seven CCCH Zn fingers. The nuclear pore-associated proteins Gfd1 and Mlp1 bind to opposite sides of the Nab2 N-terminal domain and function in the nuclear export of mRNA, whereas the Zn fingers, especially fingers 5-7, bind to A-rich regions of mature transcripts and function to regulate poly(A) tail length as well as mRNA compaction prior to nuclear export. Nab2 Zn fingers 5-7 have a defined spatial arrangement, with fingers 5 and 7 arranged on one side of the cluster and finger 6 on the other side. This spatial arrangement facilitates the dimerization of Nab2 when bound to adenine-rich RNAs and regulates both the termination of 3' polyadenylation and transcript compaction. Nab2 also functions to coordinate steps in the nuclear phase of the gene expression pathway, such as splicing and polyadenylation, with the generation of mature mRNA and its nuclear export. Nab2 orthologues in higher Eukaryotes have similar domain structures and play roles associated with the regulation of splicing and polyadenylation. Importantly, mutations in the gene encoding the human Nab2 orthologue ZC3H14 and cause intellectual disability.
Collapse
Affiliation(s)
- Milo B Fasken
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Murray Stewart
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
29
|
Mechanism and Regulation of Co-transcriptional mRNP Assembly and Nuclear mRNA Export. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:1-31. [DOI: 10.1007/978-3-030-31434-7_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Sequences encoding C2H2 zinc fingers inhibit polyadenylation and mRNA export in human cells. Sci Rep 2018; 8:16995. [PMID: 30451889 PMCID: PMC6242934 DOI: 10.1038/s41598-018-35138-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/31/2018] [Indexed: 01/01/2023] Open
Abstract
The large C2H2-Zinc Finger (C2H2-ZNF) gene family has rapidly expanded in primates through gene duplication. There is consequently considerable sequence homology between family members at both the nucleotide and amino acid level, allowing for coordinated regulation and shared functions. Here we show that multiple C2H2-ZNF mRNAs experience differential polyadenylation resulting in populations with short and long poly(A) tails. Furthermore, a significant proportion of C2H2-ZNF mRNAs are retained in the nucleus. Intriguingly, both short poly(A) tails and nuclear retention can be specified by the repeated elements that encode zinc finger motifs. These Zinc finger Coding Regions (ZCRs) appear to restrict polyadenylation of nascent RNAs and at the same time impede their export. However, the polyadenylation process is not necessary for nuclear retention of ZNF mRNAs. We propose that inefficient polyadenylation and export may allow C2H2-ZNF mRNAs to moonlight as non-coding RNAs or to be stored for later use.
Collapse
|
31
|
Bienkowski RS, Banerjee A, Rounds JC, Rha J, Omotade OF, Gross C, Morris KJ, Leung SW, Pak C, Jones SK, Santoro MR, Warren ST, Zheng JQ, Bassell GJ, Corbett AH, Moberg KH. The Conserved, Disease-Associated RNA Binding Protein dNab2 Interacts with the Fragile X Protein Ortholog in Drosophila Neurons. Cell Rep 2018; 20:1372-1384. [PMID: 28793261 DOI: 10.1016/j.celrep.2017.07.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/28/2017] [Accepted: 07/14/2017] [Indexed: 12/20/2022] Open
Abstract
The Drosophila dNab2 protein is an ortholog of human ZC3H14, a poly(A) RNA binding protein required for intellectual function. dNab2 supports memory and axon projection, but its molecular role in neurons is undefined. Here, we present a network of interactions that links dNab2 to cytoplasmic control of neuronal mRNAs in conjunction with the fragile X protein ortholog dFMRP. dNab2 and dfmr1 interact genetically in control of neurodevelopment and olfactory memory, and their encoded proteins co-localize in puncta within neuronal processes. dNab2 regulates CaMKII, but not futsch, implying a selective role in control of dFMRP-bound transcripts. Reciprocally, dFMRP and vertebrate FMRP restrict mRNA poly(A) tail length, similar to dNab2/ZC3H14. Parallel studies of murine hippocampal neurons indicate that ZC3H14 is also a cytoplasmic regulator of neuronal mRNAs. Altogether, these findings suggest that dNab2 represses expression of a subset of dFMRP-target mRNAs, which could underlie brain-specific defects in patients lacking ZC3H14.
Collapse
Affiliation(s)
- Rick S Bienkowski
- Department of Cell Biology, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Biochemistry, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ayan Banerjee
- Department of Biochemistry, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Biology, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA
| | - J Christopher Rounds
- Department of Cell Biology, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Biochemistry, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jennifer Rha
- Department of Biochemistry, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Omotola F Omotade
- Department of Cell Biology, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christina Gross
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Kevin J Morris
- Department of Biochemistry, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Biology, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sara W Leung
- Department of Biochemistry, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Biology, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA
| | - ChangHui Pak
- Department of Cell Biology, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Biochemistry, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stephanie K Jones
- Department of Biochemistry, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Biology, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael R Santoro
- Department of Human Genetics, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stephen T Warren
- Department of Biochemistry, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Human Genetics, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James Q Zheng
- Department of Cell Biology, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Biology, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University and Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
32
|
Rha J, Jones SK, Fidler J, Banerjee A, Leung SW, Morris KJ, Wong JC, Inglis GAS, Shapiro L, Deng Q, Cutler AA, Hanif AM, Pardue MT, Schaffer A, Seyfried NT, Moberg KH, Bassell GJ, Escayg A, García PS, Corbett AH. The RNA-binding protein, ZC3H14, is required for proper poly(A) tail length control, expression of synaptic proteins, and brain function in mice. Hum Mol Genet 2018; 26:3663-3681. [PMID: 28666327 DOI: 10.1093/hmg/ddx248] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/20/2017] [Indexed: 12/30/2022] Open
Abstract
A number of mutations in genes that encode ubiquitously expressed RNA-binding proteins cause tissue specific disease. Many of these diseases are neurological in nature revealing critical roles for this class of proteins in the brain. We recently identified mutations in a gene that encodes a ubiquitously expressed polyadenosine RNA-binding protein, ZC3H14 (Zinc finger CysCysCysHis domain-containing protein 14), that cause a nonsyndromic, autosomal recessive form of intellectual disability. This finding reveals the molecular basis for disease and provides evidence that ZC3H14 is essential for proper brain function. To investigate the role of ZC3H14 in the mammalian brain, we generated a mouse in which the first common exon of the ZC3H14 gene, exon 13 is removed (Zc3h14Δex13/Δex13) leading to a truncated ZC3H14 protein. We report here that, as in the patients, Zc3h14 is not essential in mice. Utilizing these Zc3h14Δex13/Δex13mice, we provide the first in vivo functional characterization of ZC3H14 as a regulator of RNA poly(A) tail length. The Zc3h14Δex13/Δex13 mice show enlarged lateral ventricles in the brain as well as impaired working memory. Proteomic analysis comparing the hippocampi of Zc3h14+/+ and Zc3h14Δex13/Δex13 mice reveals dysregulation of several pathways that are important for proper brain function and thus sheds light onto which pathways are most affected by the loss of ZC3H14. Among the proteins increased in the hippocampi of Zc3h14Δex13/Δex13 mice compared to control are key synaptic proteins including CaMK2a. This newly generated mouse serves as a tool to study the function of ZC3H14 in vivo.
Collapse
Affiliation(s)
- Jennifer Rha
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA 30322, USA
| | - Stephanie K Jones
- Department of Biology.,Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322, USA
| | - Jonathan Fidler
- Department of Anesthesiology, Emory University School of Medicine & Research Division, Atlanta VA Medical Center, Atlanta, GA 30322, USA
| | | | | | - Kevin J Morris
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA 30322, USA.,Department of Biology
| | - Jennifer C Wong
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - George Andrew S Inglis
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322, USA.,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lindsey Shapiro
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322, USA.,Graduate Program in Neuroscience, Emory University, Atlanta, GA 30322, USA
| | - Qiudong Deng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alicia A Cutler
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA 30322, USA.,Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Adam M Hanif
- Department of Opthamology, Emory University School of Medicine & Research Division, & Atlanta VA Medical Center, Atlanta, GA 30322, USA
| | - Machelle T Pardue
- Department of Opthamology, Emory University School of Medicine & Research Division, & Atlanta VA Medical Center, Atlanta, GA 30322, USA
| | - Ashleigh Schaffer
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4955, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew Escayg
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322, USA
| | - Paul S García
- Department of Anesthesiology, Emory University School of Medicine & Research Division, Atlanta VA Medical Center, Atlanta, GA 30322, USA
| | | |
Collapse
|
33
|
Costa CJ, Willis DE. To the end of the line: Axonal mRNA transport and local translation in health and neurodegenerative disease. Dev Neurobiol 2017; 78:209-220. [PMID: 29115051 DOI: 10.1002/dneu.22555] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/20/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022]
Abstract
Axons and growth cones, by their very nature far removed from the cell body, encounter unique environments and require distinct populations of proteins. It seems only natural, then, that they have developed mechanisms to locally synthesize a host of proteins required to perform their specialized functions. Acceptance of this ability has taken decades; however, there is now consensus that axons do indeed have the capacity for local translation, and that this capacity is even retained into adulthood. Accumulating evidence supports the role of locally synthesized proteins in the proper development, maintenance, and function of neurons, and newly emerging studies also suggest that disruption in this process has implications in a number of neurodevelopmental and neurodegenerative diseases. Here, we briefly review the long history of axonal mRNA localization and local translation, and the role that these locally synthesized proteins play in normal neuronal function. Additionally, we highlight the emerging evidence that dysregulation in these processes contributes to a wide range of pathophysiology, including neuropsychiatric disorders, Alzheimer's, and motor neuron diseases such as spinal muscular atrophy and Amyotrophic Lateral Sclerosis. © 2017 Wiley Periodicals, Inc. Develop. Neurobiol 78: 209-220, 2018.
Collapse
Affiliation(s)
| | - Dianna E Willis
- Burke Medical Research Institute, White Plains, New York, 10605.,Brain & Mind Research Institute, Weill Cornell Medicine, New York, New York
| |
Collapse
|
34
|
Kelly SM, Elchert A, Kahl M. Dissection and Immunofluorescent Staining of Mushroom Body and Photoreceptor Neurons in Adult Drosophila melanogaster Brains. J Vis Exp 2017. [PMID: 29155751 PMCID: PMC5755316 DOI: 10.3791/56174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nervous system development involves a sequential series of events that are coordinated by several signaling pathways and regulatory networks. Many of the proteins involved in these pathways are evolutionarily conserved between mammals and other eukaryotes, such as the fruit fly Drosophila melanogaster, suggesting that similar organizing principles exist during the development of these organisms. Importantly, Drosophila has been used extensively to identify cellular and molecular mechanisms regulating processes that are required in mammals including neurogenesis, differentiation, axonal guidance, and synaptogenesis. Flies have also been used successfully to model a variety of human neurodevelopmental diseases. Here we describe a protocol for the step-by-step microdissection, fixation, and immunofluorescent localization of proteins within the adult Drosophila brain. This protocol focuses on two example neuronal populations, mushroom body neurons and retinal photoreceptors, and includes optional steps to trace individual mushroom body neurons using Mosaic Analysis with a Repressible Cell Marker (MARCM) technique. Example data from both wild-type and mutant brains are shown along with a brief description of a scoring criteria for axonal guidance defects. While this protocol highlights two well-established antibodies for investigating the morphology of mushroom body and photoreceptor neurons, other Drosophila brain regions and the localization of proteins within other brain regions can also be investigated using this protocol.
Collapse
Affiliation(s)
- Seth M Kelly
- Program in Neuroscience, The College of Wooster; Department of Biology, The College of Wooster;
| | - Alexandra Elchert
- Program in Biochemistry, Cellular, and Molecular Biology, The College of Wooster
| | - Michael Kahl
- Department of Biology, The College of Wooster; Program in Biochemistry, Cellular, and Molecular Biology, The College of Wooster
| |
Collapse
|
35
|
Gale JR, Aschrafi A, Gioio AE, Kaplan BB. Nuclear-Encoded Mitochondrial mRNAs: A Powerful Force in Axonal Growth and Development. Neuroscientist 2017; 24:142-155. [PMID: 28614981 DOI: 10.1177/1073858417714225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Axons, their growth cones, and synaptic nerve terminals are neuronal subcompartments that have high energetic needs. As such, they are enriched in mitochondria, which supply the ATP necessary to meet these demands. To date, a heterogeneous population of nuclear-encoded mitochondrial mRNAs has been identified in distal axons and growth cones. Accumulating evidence suggests that the local translation of these mRNAs is required for mitochondrial maintenance and axonal viability. Here, we review evidence that suggests a critical role for axonal translation of nuclear-encoded mitochondrial mRNAs in axonal growth and development. Additionally, we explore the role that site-specific translation at the mitochondria itself may play in this process. Finally, we briefly review the clinical implications of dysregulation of local translation of mitochondrial-related mRNAs in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jenna R Gale
- 1 Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Armaz Aschrafi
- 1 Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Anthony E Gioio
- 1 Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Barry B Kaplan
- 1 Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
36
|
Meola N, Jensen TH. Targeting the nuclear RNA exosome: Poly(A) binding proteins enter the stage. RNA Biol 2017; 14:820-826. [PMID: 28421898 DOI: 10.1080/15476286.2017.1312227] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Centrally positioned in nuclear RNA metabolism, the exosome deals with virtually all transcript types. This 3'-5' exo- and endo-nucleolytic degradation machine is guided to its RNA targets by adaptor proteins that enable substrate recognition. Recently, the discovery of the 'Poly(A) tail exosome targeting (PAXT)' connection as an exosome adaptor to human nuclear polyadenylated transcripts has relighted the interest of poly(A) binding proteins (PABPs) in both RNA productive and destructive processes.
Collapse
Affiliation(s)
- Nicola Meola
- a Department of Molecular Biology and Genetics , Aarhus University , Aarhus C , Denmark
| | - Torben Heick Jensen
- a Department of Molecular Biology and Genetics , Aarhus University , Aarhus C , Denmark
| |
Collapse
|
37
|
Fasken MB, Corbett AH. Links between mRNA splicing, mRNA quality control, and intellectual disability. RNA & DISEASE 2016; 3:e1448. [PMID: 27868086 PMCID: PMC5113822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
In recent years, the impairment of RNA binding proteins that play key roles in the post-transcriptional regulation of gene expression has been linked to numerous neurological diseases. These RNA binding proteins perform critical mRNA processing steps in the nucleus, including splicing, polyadenylation, and export. In many cases, these RNA binding proteins are ubiquitously expressed raising key questions about why only brain function is impaired. Recently, mutations in the ZC3H14 gene, encoding an evolutionarily conserved, polyadenosine RNA binding protein, have been linked to a nonsyndromic form of autosomal recessive intellectual disability. Thus far, research on ZC3H14 and its Nab2 orthologs in budding yeast and Drosophila reveals that ZC3H14/Nab2 is important for mRNA processing and neuronal patterning. Two recent studies now provide evidence that ZC3H14/Nab2 may function in the quality control of mRNA splicing and export and could help to explain the molecular defects that cause neuronal dysfunction and lead to an inherited form of intellectual disability. These studies on ZC3H14/Nab2 reveal new clues to the puzzle of why loss of the ubiquitously expressed ZC3H14 protein specifically affects neurons.
Collapse
Affiliation(s)
- Milo B Fasken
- Department of Biology, Emory University, 1510 Clifton Rd., NE RRC 1021, Atlanta, GA 30322, U.S.A
| | - Anita H Corbett
- Department of Biology, Emory University, 1510 Clifton Rd., NE RRC 1021, Atlanta, GA 30322, U.S.A
| |
Collapse
|
38
|
Wigington CP, Morris KJ, Newman LE, Corbett AH. The Polyadenosine RNA-binding Protein, Zinc Finger Cys3His Protein 14 (ZC3H14), Regulates the Pre-mRNA Processing of a Key ATP Synthase Subunit mRNA. J Biol Chem 2016; 291:22442-22459. [PMID: 27563065 DOI: 10.1074/jbc.m116.754069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 08/25/2016] [Indexed: 12/23/2022] Open
Abstract
Polyadenosine RNA-binding proteins (Pabs) regulate multiple steps in gene expression. This protein family includes the well studied Pabs, PABPN1 and PABPC1, as well as the newly characterized Pab, zinc finger CCCH-type containing protein 14 (ZC3H14). Mutations in ZC3H14 are linked to a form of intellectual disability. To probe the function of ZC3H14, we performed a transcriptome-wide analysis of cells depleted of either ZC3H14 or the control Pab, PABPN1. Depletion of PABPN1 affected ∼17% of expressed transcripts, whereas ZC3H14 affected only ∼1% of expressed transcripts. To assess the function of ZC3H14 in modulating target mRNAs, we selected the gene encoding the ATP synthase F0 subunit C (ATP5G1) transcript. Knockdown of ZC3H14 significantly reduced ATP5G1 steady-state mRNA levels. Consistent with results suggesting that ATP5G1 turnover increases upon depletion of ZC3H14, double knockdown of ZC3H14 and the nonsense-mediated decay factor, UPF1, rescues ATP5G1 transcript levels. Furthermore, fractionation reveals an increase in the amount of ATP5G1 pre-mRNA that reaches the cytoplasm when ZC3H14 is depleted and that ZC3H14 binds to ATP5G1 pre-mRNA in the nucleus. These data support a role for ZC3H14 in ensuring proper nuclear processing and retention of ATP5G1 pre-mRNA. Consistent with the observation that ATP5G1 is a rate-limiting component for ATP synthase activity, knockdown of ZC3H14 decreases cellular ATP levels and causes mitochondrial fragmentation. These data suggest that ZC3H14 modulates pre-mRNA processing of select mRNA transcripts and plays a critical role in regulating cellular energy levels, observations that have broad implications for proper neuronal function.
Collapse
Affiliation(s)
- Callie P Wigington
- From the Department of Biochemistry and.,the Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia 30322
| | - Kevin J Morris
- From the Department of Biochemistry and.,the Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia 30322
| | - Laura E Newman
- From the Department of Biochemistry and.,the Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia 30322
| | - Anita H Corbett
- From the Department of Biochemistry and .,the Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
39
|
The Evolutionarily-conserved Polyadenosine RNA Binding Protein, Nab2, Cooperates with Splicing Machinery to Regulate the Fate of pre-mRNA. Mol Cell Biol 2016; 36:2697-2714. [PMID: 27528618 PMCID: PMC5064217 DOI: 10.1128/mcb.00402-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Numerous RNA binding proteins are deposited onto an mRNA transcript to modulate post-transcriptional processing events ensuring proper mRNA maturation. Defining the interplay between RNA binding proteins that couple mRNA biogenesis events is crucial for understanding how gene expression is regulated. To explore how RNA binding proteins control mRNA processing, we investigated a role for the evolutionarily conserved polyadenosine RNA binding protein, Nab2, in mRNA maturation within the nucleus. This work reveals that nab2 mutant cells accumulate intron-containing pre-mRNA in vivo We extend this analysis to identify genetic interactions between mutant alleles of nab2 and genes encoding the splicing factor, MUD2, and the RNA exosome, RRP6, with in vivo consequences of altered pre-mRNA splicing and poly(A) tail length control. As further evidence linking Nab2 proteins to splicing, an unbiased proteomic analysis of vertebrate Nab2, ZC3H14, identifies physical interactions with numerous components of the spliceosome. We validated the interaction between ZC3H14 and U2AF2/U2AF65 Taking all the findings into consideration, we present a model where Nab2/ZC3H14 interacts with spliceosome components to allow proper coupling of splicing with subsequent mRNA processing steps contributing to a kinetic proofreading step that allows properly processed mRNA to exit the nucleus and escape Rrp6-dependent degradation.
Collapse
|
40
|
Reuter LM, Sträßer K. Falling for the dark side of transcription: Nab2 fosters RNA polymerase III transcription. Transcription 2016; 7:69-74. [PMID: 27049816 PMCID: PMC4984684 DOI: 10.1080/21541264.2016.1170252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RNA polymerase III (RNAPIII) synthesizes diverse, small, non-coding RNAs with many important roles in the cellular metabolism. One of the open questions of RNAPIII transcription is whether and how additional factors are involved. Recently, Nab2 was identified as the first messenger ribonucleoprotein particle (mRNP) biogenesis factor with a function in RNAPIII transcription.
Collapse
Affiliation(s)
- L Maximilian Reuter
- a Institute of Biochemistry, Justus Liebig University Giessen , Giessen , Germany
| | - Katja Sträßer
- a Institute of Biochemistry, Justus Liebig University Giessen , Giessen , Germany
| |
Collapse
|
41
|
Abstract
Reuter et al. show that Nab2, a poly(A)-binding protein important for correct poly(A) tail length and nuclear mRNA export, is present at all RNA polymerase III (RNAPIII) transcribed genes. Nab2 is required for the occupancy of RNAPIII and TFIIIB at target genes. RNA polymerase III (RNAPIII) synthesizes most small RNAs, the most prominent being tRNAs. Although the basic mechanism of RNAPIII transcription is well understood, recent evidence suggests that additional proteins play a role in RNAPIII transcription. Here, we discovered by a genome-wide approach that Nab2, a poly(A)-binding protein important for correct poly(A) tail length and nuclear mRNA export, is present at all RNAPIII transcribed genes. The occupancy of Nab2 at RNAPIII transcribed genes is dependent on transcription. Using a novel temperature-sensitive allele of NAB2, nab2-34, we show that Nab2 is required for the occupancy of RNAPIII and TFIIIB at target genes. Furthermore, Nab2 interacts with RNAPIII, TFIIIB, and RNAPIII transcripts. Importantly, impairment of Nab2 function causes an RNAPIII transcription defect in vivo and in vitro. Taken together, we establish Nab2, an important mRNA biogenesis factor, as a novel player required for RNAPIII transcription by stabilizing TFIIIB and RNAPIII at promoters.
Collapse
Affiliation(s)
- L Maximilian Reuter
- Institute of Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; Gene Center, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Dominik M Meinel
- Gene Center, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Katja Sträßer
- Institute of Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; Gene Center, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| |
Collapse
|
42
|
Zhou S, Shi Z, Cui M, Li J, Ma Z, Shi Y, Zheng Z, Zhang F, Jin T, Geng T, Chen C, Guo Y, Zhou J, Huang S, Guo X, Gao L, Gong P, Gao X, Zhang K. A New Role for LOC101928437 in Non-Syndromic Intellectual Disability: Findings from a Family-Based Association Test. PLoS One 2015; 10:e0135669. [PMID: 26287547 PMCID: PMC4545728 DOI: 10.1371/journal.pone.0135669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/25/2015] [Indexed: 11/19/2022] Open
Abstract
Non-syndromic intellectual disability (NSID) is mental retardation in persons of normal physical appearance who have no recognisable features apart from obvious deficits in intellectual functioning and adaptive ability; however, its genetic etiology of most patients has remained unknown. The main purpose of this study was to fine map and identify specific causal gene(s) by genotyping a NSID family cohort using a panel of markers encompassing a target region reported in a previous work. A total of 139 families including probands, parents and relatives were included in the household survey, clinical examinations and intelligence tests, recruited from the Qinba mountain region of Shannxi province, western China. A collection of 34 tagged single nucleotide polymorphisms (tSNPs) spanning five microsatellite marker (STR) loci were genotyped using an iPLEX Gold assay. The association between tSNPs and patients was analyzed by family-based association testing (FBAT) and haplotype analysis (HBAT). Four markers (rs5974392, rs12164331, rs5929554 and rs3116911) in a block that showed strong linkage disequilibrium within the first three introns of the LOC101928437 locus were found to be significantly associated with NSID (all P<0.01) by the FBAT method for a single marker in additive, dominant and recessive models. The results of haplotype tests of this block also revealed a significant association with NSID (all P<0.05) using 2-window and larger HBAT analyses. These results suggest that LOC101928437 is a novel candidate gene for NSID in Han Chinese individuals of the Qinba region of China. Although the biological function of the gene has not been well studied, knowledge about this gene will provide insights that will increase our understanding of NSID development.
Collapse
Affiliation(s)
- Shaohe Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Institute of Population and Health, Northwest University, Xi’an, China
| | - Zhangyan Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Institute of Population and Health, Northwest University, Xi’an, China
| | - Meng Cui
- Xi’an Institute of Mental Health, Xi’an, China
| | - Junlin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Institute of Population and Health, Northwest University, Xi’an, China
| | - Zhe Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Institute of Population and Health, Northwest University, Xi’an, China
| | - Yuanyu Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Institute of Population and Health, Northwest University, Xi’an, China
| | - Zijian Zheng
- College of Public Management, Institute of Application Psychology, Northwest University, Xi’an, China
| | - Fuchang Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Institute of Population and Health, Northwest University, Xi’an, China
- College of Public Management, Institute of Application Psychology, Northwest University, Xi’an, China
| | - Tianbo Jin
- School of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- National Engineering Research Center for Miniaturized Detection Systems, Xi’an, Shaanxi, China
| | - Tingting Geng
- School of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- National Engineering Research Center for Miniaturized Detection Systems, Xi’an, Shaanxi, China
| | - Chao Chen
- School of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- National Engineering Research Center for Miniaturized Detection Systems, Xi’an, Shaanxi, China
| | - Yale Guo
- The 2 Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Jianping Zhou
- The 2 Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Shaoping Huang
- The 2 Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xingli Guo
- School of Computer Science and Technology, Xidian University, Xi'an Shaanxi, China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi'an Shaanxi, China
| | - Pingyuan Gong
- Laboratory of Medical Molecular Biology, Henan University of Science and Technology, Luoyang, China
| | - Xiaocai Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Institute of Population and Health, Northwest University, Xi’an, China
- College of Public Management, Institute of Application Psychology, Northwest University, Xi’an, China
- * E-mail: (XG); (KZ)
| | - Kejin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Institute of Population and Health, Northwest University, Xi’an, China
- * E-mail: (XG); (KZ)
| |
Collapse
|
43
|
Kelly SM, Bienkowski R, Banerjee A, Melicharek DJ, Brewer ZA, Marenda DR, Corbett AH, Moberg KH. The Drosophila ortholog of the Zc3h14 RNA binding protein acts within neurons to pattern axon projection in the developing brain. Dev Neurobiol 2015; 76:93-106. [PMID: 25980665 DOI: 10.1002/dneu.22301] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 12/18/2022]
Abstract
The dNab2 polyadenosine RNA binding protein is the D. melanogaster ortholog of the vertebrate ZC3H14 protein, which is lost in a form of inherited intellectual disability (ID). Human ZC3H14 can rescue D. melanogaster dNab2 mutant phenotypes when expressed in all neurons of the developing nervous system, suggesting that dNab2/ZC3H14 performs well-conserved roles in neurons. However, the cellular and molecular requirements for dNab2/ZC3H14 in the developing nervous system have not been defined in any organism. Here we show that dNab2 is autonomously required within neurons to pattern axon projection from Kenyon neurons into the mushroom bodies, which are required for associative olfactory learning and memory in insects. Mushroom body axons lacking dNab2 project aberrantly across the brain midline and also show evidence of defective branching. Coupled with the prior finding that ZC3H14 is highly expressed in rodent hippocampal neurons, this requirement for dNab2 in mushroom body neurons suggests that dNab2/ZC3H14 has a conserved role in supporting axon projection and branching. Consistent with this idea, loss of dNab2 impairs short-term memory in a courtship conditioning assay. Taken together these results reveal a cell-autonomous requirement for the dNab2 RNA binding protein in mushroom body development and provide a window into potential neurodevelopmental functions of the human ZC3H14 protein.
Collapse
Affiliation(s)
- Seth M Kelly
- Department of Biology, College of Wooster, Wooster, Ohio, 44691
| | - Rick Bienkowski
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, 30322.,Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, 30322.,Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, 30322
| | - Ayan Banerjee
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - David J Melicharek
- Department of Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, 19104
| | | | - Daniel R Marenda
- Department of Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, 19104.,Departments of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, 19104
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, 30322
| |
Collapse
|
44
|
Tran EJ, King MC, Corbett AH. Macromolecular transport between the nucleus and the cytoplasm: Advances in mechanism and emerging links to disease. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:2784-2795. [PMID: 25116306 PMCID: PMC4161953 DOI: 10.1016/j.bbamcr.2014.08.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/01/2014] [Accepted: 08/02/2014] [Indexed: 01/08/2023]
Abstract
Transport of macromolecules between the cytoplasm and the nucleus is critical for the function of all eukaryotic cells. Large macromolecular channels termed nuclear pore complexes that span the nuclear envelope mediate the bidirectional transport of cargoes between the nucleus and cytoplasm. However, the influence of macromolecular trafficking extends past the nuclear pore complex to transcription and RNA processing within the nucleus and signaling pathways that reach into the cytoplasm and beyond. At the Mechanisms of Nuclear Transport biennial meeting held from October 18 to 23, 2013 in Woods Hole, MA, researchers in the field met to report on their recent findings. The work presented highlighted significant advances in understanding nucleocytoplasmic trafficking including how transport receptors and cargoes pass through the nuclear pore complex, the many signaling pathways that impinge on transport pathways, interplay between the nuclear envelope, nuclear pore complexes, and transport pathways, and numerous links between transport pathways and human disease. The goal of this review is to highlight newly emerging themes in nuclear transport and underscore the major questions that are likely to be the focus of future research in the field.
Collapse
Affiliation(s)
- Elizabeth J Tran
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West Lafayette, IN 47907, USA.
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, 4117 Rollins Research Center, 1510 Clifton Road, NE, Atlanta, GA 30322, USA.
| |
Collapse
|
45
|
Wigington CP, Williams KR, Meers MP, Bassell GJ, Corbett AH. Poly(A) RNA-binding proteins and polyadenosine RNA: new members and novel functions. WILEY INTERDISCIPLINARY REVIEWS. RNA 2014; 5:601-22. [PMID: 24789627 PMCID: PMC4332543 DOI: 10.1002/wrna.1233] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/07/2014] [Accepted: 03/06/2014] [Indexed: 02/05/2023]
Abstract
Poly(A) RNA-binding proteins (Pabs) bind with high affinity and specificity to polyadenosine RNA. Textbook models show a nuclear Pab, PABPN1, and a cytoplasmic Pab, PABPC, where the nuclear PABPN1 modulates poly(A) tail length and the cytoplasmic PABPC stabilizes poly(A) RNA in the cytoplasm and also enhances translation. While these conventional roles are critically important, the Pab family has expanded recently both in number and in function. A number of novel roles have emerged for both PAPBPN1 and PABPC that contribute to the fine-tuning of gene expression. Furthermore, as the characterization of the nucleic acid binding properties of RNA-binding proteins advances, additional proteins that show high affinity and specificity for polyadenosine RNA are being discovered. With this expansion of the Pab family comes a concomitant increase in the potential for Pabs to modulate gene expression. Further complication comes from an expansion of the potential binding sites for Pab proteins as revealed by an analysis of templated polyadenosine stretches present within the transcriptome. Thus, Pabs could influence mRNA fate and function not only by binding to the nontemplated poly(A) tail but also to internal stretches of adenosine. Understanding the diverse functions of Pab proteins is not only critical to understand how gene expression is regulated but also to understand the molecular basis for tissue-specific diseases that occur when Pab proteins are altered. Here we describe both conventional and recently emerged functions for PABPN1 and PABPC and then introduce and discuss three new Pab family members, ZC3H14, hnRNP-Q1, and LARP4.
Collapse
Affiliation(s)
- Callie P. Wigington
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Kathryn R. Williams
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael P. Meers
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anita H. Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
46
|
Jalkanen AL, Coleman SJ, Wilusz J. Determinants and implications of mRNA poly(A) tail size--does this protein make my tail look big? Semin Cell Dev Biol 2014; 34:24-32. [PMID: 24910447 DOI: 10.1016/j.semcdb.2014.05.018] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 05/31/2014] [Indexed: 12/22/2022]
Abstract
While the phenomenon of polyadenylation has been well-studied, the dynamics of poly(A) tail size and its impact on transcript function and cell biology are less well-appreciated. The goal of this review is to encourage readers to view the poly(A) tail as a dynamic, changeable aspect of a transcript rather than a simple static entity that marks the 3' end of an mRNA. This could open up new angles of regulation in the post-transcriptional control of gene expression throughout development, differentiation and cancer.
Collapse
Affiliation(s)
- Aimee L Jalkanen
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Stephen J Coleman
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|