1
|
Deutsch HM, Song Y, Li D. Spliceosome complex and neurodevelopmental disorders. Curr Opin Genet Dev 2025; 93:102358. [PMID: 40378521 DOI: 10.1016/j.gde.2025.102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025]
Abstract
Neurodevelopment requires complex spatiotemporal expression, which heavily relies on proper RNA splicing. The spliceosome is a ribonucleoprotein complex that removes introns from pre-mRNA, joins exons, and produces mature mRNA. Pathogenic variants in genes that code for spliceosome RNAs and proteins cause RNA mis-splicing and spliceosomopathies. Splicing defects during nervous system development upend the tightly controlled neurodevelopmental process, leading to neurodevelopmental disorders (NDDs). Despite the fact that the spliceosome is expressed in every cell, not all spliceosomopathies present as NDDs; spliceosomopathies are often tissue-specific in that a variant has a greater impact on certain cell lineages or cell types. Here we discuss spliceosomopathies whose presentations include NDDs and focus on spliceosome-coding genes.
Collapse
Affiliation(s)
- Hannah M Deutsch
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA. https://twitter.com/@HannahDeutsch16
| | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dong Li
- Center for Applied Genomics, and Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Norppa AJ, Shcherbii MV, Frilander MJ. Connecting genotype and phenotype in minor spliceosome diseases. RNA (NEW YORK, N.Y.) 2025; 31:284-299. [PMID: 39761998 PMCID: PMC11874965 DOI: 10.1261/rna.080337.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Minor spliceosome is responsible for recognizing and excising a specific subset of divergent introns during the pre-mRNA splicing process. Mutations in the unique snRNA and protein components of the minor spliceosome are increasingly being associated with a variety of germline and somatic human disorders, collectively termed as minor spliceosomopathies. Understanding the mechanistic basis of these diseases has been challenging due to limited functional information on many minor spliceosome components. However, recently published cryo-electron microscopy (cryo-EM) structures of various minor spliceosome assembly intermediates have marked a significant advancement in elucidating the roles of these components during splicing. These structural breakthroughs have not only enhanced our comprehension of the minor spliceosome's functionality but also shed light on how disease-associated mutations disrupt its functions. Consequently, research focus is now shifting toward investigating how these splicing defects translate into broader pathological processes within gene expression pathways. Here we outline the current structural and functional knowledge of the minor spliceosome, explore the mechanistic consequences of its mutations, and discuss emerging challenges in connecting molecular dysfunctions to clinical phenotypes.
Collapse
Affiliation(s)
- Antto J Norppa
- Institute of Biotechnology, 000014 University of Helsinki, Finland
| | | | | |
Collapse
|
3
|
Li B, Liu S, Zheng W, Liu A, Yu P, Wu D, Zhou J, Zhang P, Liu C, Lin Q, Ye J, He S, Huang Q, Zhou H, Chen J, Qu L, Yang J. RIP-PEN-seq identifies a class of kink-turn RNAs as splicing regulators. Nat Biotechnol 2024; 42:119-131. [PMID: 37037902 DOI: 10.1038/s41587-023-01749-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/13/2023] [Indexed: 04/12/2023]
Abstract
A kink-turn (K-turn) is a three-dimensional RNA structure that exists in all three primary phylogenetic domains. In this study, we developed the RIP-PEN-seq method to identify the full-length sequences of RNAs bound by the K-turn binding protein 15.5K and discovered a previously uncharacterized class of RNAs with backward K-turn motifs (bktRNAs) in humans and mice. All bktRNAs share two consensus sequence motifs at their fixed terminal position and have complex folding properties, expression and evolution patterns. We found that a highly conserved bktRNA1 guides the methyltransferase fibrillarin to install RNA methylation of U12 small nuclear RNA in humans. Depletion of bktRNA1 causes global splicing dysregulation of U12-type introns by impairing the recruitment of ZCRB1 to the minor spliceosome. Most bktRNAs regulate the splicing of local introns by interacting with the 15.5K protein. Taken together, our findings characterize a class of small RNAs and uncover another layer of gene expression regulation that involves crosstalk among bktRNAs, RNA splicing and RNA methylation.
Collapse
Affiliation(s)
- Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shurong Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wujian Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Anrui Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Peng Yu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Di Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jie Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Ping Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chang Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiao Lin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jiayi Ye
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Simeng He
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Qiaojuan Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Lianghu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Jianhua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| |
Collapse
|
4
|
Tabib A, Richmond CM, McGaughran J. Delineating the phenotype of RNU4ATAC-related spliceosomopathy. Am J Med Genet A 2023; 191:1094-1100. [PMID: 36622817 DOI: 10.1002/ajmg.a.63110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/10/2023]
Abstract
Biallelic pathogenic variants in RNU4ATAC cause microcephalic osteodysplastic primordial dwarfism type I (MOPD1), Roifman syndrome (RS) and Lowry-Wood syndrome (LWS). These conditions demonstrate significant phenotypic heterogeneity yet have overlapping features. Although historically described as discrete conditions they appear to represent a phenotypic spectrum with clinical features not always aligning with diagnostic categories. Clinical variability and ambiguity in diagnostic criteria exist among each disorder. Here we report an individual with a novel genotype and phenotype spanning all three disorders, expanding the phenotypic spectrum of RNU4ATAC-related spliceosomeopathies.
Collapse
Affiliation(s)
- Amanda Tabib
- Paediatrics, John Hunter Children's Hospital, Newcastle, New South Wales, Australia
| | - Christopher M Richmond
- Genetic Health QLD, Royal Brisbane & Women's Hospital, Herston, Queensland, Australia.,School of Medicine, Griffith University, Southport, Queensland, Australia
| | - Julie McGaughran
- Genetic Health QLD, Royal Brisbane & Women's Hospital, Herston, Queensland, Australia.,Faculty of Medicine, University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
5
|
Almentina Ramos Shidi F, Cologne A, Delous M, Besson A, Putoux A, Leutenegger AL, Lacroix V, Edery P, Mazoyer S, Bordonné R. Mutations in the non-coding RNU4ATAC gene affect the homeostasis and function of the Integrator complex. Nucleic Acids Res 2023; 51:712-727. [PMID: 36537210 PMCID: PMC9881141 DOI: 10.1093/nar/gkac1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Various genetic diseases associated with microcephaly and developmental defects are due to pathogenic variants in the U4atac small nuclear RNA (snRNA), a component of the minor spliceosome essential for the removal of U12-type introns from eukaryotic mRNAs. While it has been shown that a few RNU4ATAC mutations result in impaired binding of essential protein components, the molecular defects of the vast majority of variants are still unknown. Here, we used lymphoblastoid cells derived from RNU4ATAC compound heterozygous (g.108_126del;g.111G>A) twin patients with MOPD1 phenotypes to analyze the molecular consequences of the mutations on small nuclear ribonucleoproteins (snRNPs) formation and on splicing. We found that the U4atac108_126del mutant is unstable and that the U4atac111G>A mutant as well as the minor di- and tri-snRNPs are present at reduced levels. Our results also reveal the existence of 3'-extended snRNA transcripts in patients' cells. Moreover, we show that the mutant cells have alterations in splicing of INTS7 and INTS10 minor introns, contain lower levels of the INTS7 and INTS10 proteins and display changes in the assembly of Integrator subunits. Altogether, our results show that compound heterozygous g.108_126del;g.111G>A mutations induce splicing defects and affect the homeostasis and function of the Integrator complex.
Collapse
Affiliation(s)
- Fatimat Almentina Ramos Shidi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR5535, 34293 Montpellier, France
| | - Audric Cologne
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, 69622 Villeurbanne, France
| | - Marion Delous
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
| | - Alicia Besson
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
| | - Audrey Putoux
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
- Clinical Genetics Unit, Department of Genetics, Centre de Référence Anomalies du Développement et Syndromes Polymalformatifs, Hospices Civils de Lyon, University Lyon 1, Bron, France
| | | | - Vincent Lacroix
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, 69622 Villeurbanne, France
| | - Patrick Edery
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
- Clinical Genetics Unit, Department of Genetics, Centre de Référence Anomalies du Développement et Syndromes Polymalformatifs, Hospices Civils de Lyon, University Lyon 1, Bron, France
| | - Sylvie Mazoyer
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
| | - Rémy Bordonné
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR5535, 34293 Montpellier, France
| |
Collapse
|
6
|
Abstract
Precursor mRNA (pre-mRNA) splicing is an essential step in human gene expression and is carried out by a large macromolecular machine called the spliceosome. Given the spliceosome's role in shaping the cellular transcriptome, it is not surprising that mutations in the splicing machinery can result in a range of human diseases and disorders (spliceosomopathies). This review serves as an introduction into the main features of the pre-mRNA splicing machinery in humans and how changes in the function of its components can lead to diseases ranging from blindness to cancers. Recently, several drugs have been developed that interact directly with this machinery to change splicing outcomes at either the single gene or transcriptome-scale. We discuss the mechanism of action of several drugs that perturb splicing in unique ways. Finally, we speculate on what the future may hold in the emerging area of spliceosomopathies and spliceosome-targeted treatments.
Collapse
Affiliation(s)
- Sierra L. Love
- Genetics Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Joseph D. Emerson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aaron A. Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Siebert AE, Corll J, Paige Gronevelt J, Levine L, Hobbs LM, Kenney C, Powell CLE, Battistuzzi FU, Davenport R, Mark Settles A, Brad Barbazuk W, Westrick RJ, Madlambayan GJ, Lal S. Genetic analysis of human RNA binding motif protein 48 (RBM48) reveals an essential role in U12-type intron splicing. Genetics 2022; 222:iyac129. [PMID: 36040194 PMCID: PMC9526058 DOI: 10.1093/genetics/iyac129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
U12-type or minor introns are found in most multicellular eukaryotes and constitute ∼0.5% of all introns in species with a minor spliceosome. Although the biological significance for the evolutionary conservation of U12-type introns is debated, mutations disrupting U12 splicing cause developmental defects in both plants and animals. In human hematopoietic stem cells, U12 splicing defects disrupt proper differentiation of myeloid lineages and are associated with myelodysplastic syndrome, predisposing individuals to acute myeloid leukemia. Mutants in the maize ortholog of RNA binding motif protein 48 (RBM48) have aberrant U12-type intron splicing. Human RBM48 was recently purified biochemically as part of the minor spliceosome and shown to recognize the 5' end of the U6atac snRNA. In this report, we use CRISPR/Cas9-mediated ablation of RBM48 in human K-562 cells to show the genetic function of RBM48. RNA-seq analysis comparing wild-type and mutant K-562 genotypes found that 48% of minor intron-containing genes have significant U12-type intron retention in RBM48 mutants. Comparing these results to maize rbm48 mutants defined a subset of minor intron-containing genes disrupted in both species. Mutations in the majority of these orthologous minor intron-containing genes have been reported to cause developmental defects in both plants and animals. Our results provide genetic evidence that the primary defect of human RBM48 mutants is aberrant U12-type intron splicing, while a comparison of human and maize RNA-seq data identifies candidate genes likely to mediate mutant phenotypes of U12-type splicing defects.
Collapse
Affiliation(s)
- Amy E Siebert
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Jacob Corll
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - J Paige Gronevelt
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Laurel Levine
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Linzi M Hobbs
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Catalina Kenney
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Christopher L E Powell
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Fabia U Battistuzzi
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Ruth Davenport
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - A Mark Settles
- Horticultural Sciences Department and Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - W Brad Barbazuk
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Randal J Westrick
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Gerard J Madlambayan
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Shailesh Lal
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| |
Collapse
|
8
|
Ferrero-Serrano Á, Sylvia MM, Forstmeier PC, Olson AJ, Ware D, Bevilacqua PC, Assmann SM. Experimental demonstration and pan-structurome prediction of climate-associated riboSNitches in Arabidopsis. Genome Biol 2022; 23:101. [PMID: 35440059 PMCID: PMC9017077 DOI: 10.1186/s13059-022-02656-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/20/2022] [Indexed: 11/23/2022] Open
Abstract
Background Genome-wide association studies (GWAS) aim to correlate phenotypic changes with genotypic variation. Upon transcription, single nucleotide variants (SNVs) may alter mRNA structure, with potential impacts on transcript stability, macromolecular interactions, and translation. However, plant genomes have not been assessed for the presence of these structure-altering polymorphisms or “riboSNitches.” Results We experimentally demonstrate the presence of riboSNitches in transcripts of two Arabidopsis genes, ZINC RIBBON 3 (ZR3) and COTTON GOLGI-RELATED 3 (CGR3), which are associated with continentality and temperature variation in the natural environment. These riboSNitches are also associated with differences in the abundance of their respective transcripts, implying a role in regulating the gene's expression in adaptation to local climate conditions. We then computationally predict riboSNitches transcriptome-wide in mRNAs of 879 naturally inbred Arabidopsis accessions. We characterize correlations between SNPs/riboSNitches in these accessions and 434 climate descriptors of their local environments, suggesting a role of these variants in local adaptation. We integrate this information in CLIMtools V2.0 and provide a new web resource, T-CLIM, that reveals associations between transcript abundance variation and local environmental variation. Conclusion We functionally validate two plant riboSNitches and, for the first time, demonstrate riboSNitch conditionality dependent on temperature, coining the term “conditional riboSNitch.” We provide the first pan-genome-wide prediction of riboSNitches in plants. We expand our previous CLIMtools web resource with riboSNitch information and with 1868 additional Arabidopsis genomes and 269 additional climate conditions, which will greatly facilitate in silico studies of natural genetic variation, its phenotypic consequences, and its role in local adaptation. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02656-4.
Collapse
Affiliation(s)
- Ángel Ferrero-Serrano
- Department of Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA.
| | - Megan M Sylvia
- Department of Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Peter C Forstmeier
- Department of Biochemistry, Microbiology, and Molecular Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Andrew J Olson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.,USDA ARS NAA Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Philip C Bevilacqua
- Department of Biochemistry, Microbiology, and Molecular Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA.,Department of Chemistry, Pennsylvania State University, University Park, State College, PA, 16802, USA.,Center for RNA Molecular Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA. .,Center for RNA Molecular Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA.
| |
Collapse
|
9
|
Liu D, Liu Y, Zhang X, Wang Y, Zhang C, Zheng S. An Exploration of Mutagenesis in a Family with Cleidocranial Dysplasia without RUNX2 Mutation. Front Genet 2021; 12:748111. [PMID: 34737766 PMCID: PMC8560734 DOI: 10.3389/fgene.2021.748111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/29/2021] [Indexed: 11/22/2022] Open
Abstract
Cleidocranial dysplasia (CCD) is an autosomal dominant inheritable skeletal disorder characterized by cranial dysplasia, clavicle hypoplasia, and dental abnormalities. Mutations involving Runt-related transcription factor 2 (RUNX2) are currently the only known molecular etiology for CCD but are not identified in all CCD patients. No RUNX2 abnormality can be detected in about 20–30% of patients, and the molecular cause remains unknown. The present study includes a family case with typical features of CCD. RUNX2 mutation was first screened by sequencing analysis, and no mutation was detected. Copy number alterations of the RUNX2 gene were then measured by quantitative PCR and multiplex ligation-dependent probe amplification (MLPA). No copy number variation in RUNX2 could be detected. We performed whole-exome sequencing (WES) to identify the underlying genetic mutations. Unexpectedly, no abnormalities could be detected in genes related to the RUNX2 signaling pathway. Therefore, it was supposed that other new unknown gene variations might contribute to the CCD phenotype. We focused on Immunoglobulin superfamily member 10 (IGSF10), a gene related to bone development. An IGSF10 frameshift mutation (c.6001_6002delCT, p.Leu2001Valfs*24) was detected by WES. Sanger sequencing verified that this mutation was only detected in the patient and her affected mother but not in her unaffected father. Bioinformatics studies demonstrated that this mutation could change the 3D structure of the IGSF10 protein and severely damage its function. In addition, alkaline phosphatase (ALP) activity and the ability to form mineralized nodules were inhibited by IGSF10 knockdown compared with normal controls. The expression of bone sialoprotein (BSP) was significantly reduced by IGSF10 knockdown, but not that of other osteogenic markers. Our results provide new genetic evidence that IGSF10 mutation might contribute to CCD.
Collapse
Affiliation(s)
- Dandan Liu
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Preventive Dentistry, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yang Liu
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Preventive Dentistry, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| | - XianLi Zhang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Preventive Dentistry, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Stomatology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Yixiang Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Central Laboratory, Department of Oral and Maxillofacial Surgery, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| | - Chenying Zhang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Preventive Dentistry, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shuguo Zheng
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Preventive Dentistry, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
10
|
McMillan HJ, Davila J, Osmond M, Chakraborty P, Boycott KM, Dyment DA, Kernohan KD. Whole genome sequencing identifies pathogenic RNU4ATAC variants in a child with recurrent encephalitis, microcephaly, and normal stature. Am J Med Genet A 2021; 185:3502-3506. [PMID: 34405953 DOI: 10.1002/ajmg.a.62457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/04/2021] [Accepted: 07/10/2021] [Indexed: 11/08/2022]
Abstract
Biallelic pathogenic variants in RNU4ATAC have been linked to microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1). Although children with MOPD1 have been reported to show profound, life-limiting clinical decompensation at the time of a febrile illness, these episodes including magnetic resonance imaging (MRI) findings have not been well characterized. We present acute MRI brain findings for a 10-year-old girl with homozygous variants in RNU4ATAC (NR_023343.1) n.55G>A, who presented with two episodes of clinical decompensation associated with a febrile illness in early childhood. The pathogenic variants were identified by whole genome sequencing as RNU4ATAC is not captured in most exome products. Her MRI of the brain revealed symmetric, diffusion restriction of the deep gray nuclei that initially pointed to a mitochondrial disease or acute necrotizing encephalopathy. Her phenotype included microcephaly and profound cognitive impairment that can be seen with MOPD1. However, she did not demonstrate clinical or radiographic evidence of a spondyloepimetaphyseal dysplasia or "primordial dwarfism" that is characteristic of this disease. As such, the predominant neurological presentation of this child represents an atypical variant of RNU4ATAC-associated disease and should be a diagnostic consideration for geneticists and neurologists caring for children, particularly in the event of an acute clinical decline.
Collapse
Affiliation(s)
- Hugh J McMillan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Jorge Davila
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Matt Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Pranesh Chakraborty
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada.,Newborn Screening Ontario, Ottawa, Ontario, Canada
| | -
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada.,Newborn Screening Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Norppa AJ, Frilander MJ. The integrity of the U12 snRNA 3' stem-loop is necessary for its overall stability. Nucleic Acids Res 2021; 49:2835-2847. [PMID: 33577674 PMCID: PMC7968993 DOI: 10.1093/nar/gkab048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/14/2021] [Accepted: 02/07/2021] [Indexed: 12/20/2022] Open
Abstract
Disruption of minor spliceosome functions underlies several genetic diseases with mutations in the minor spliceosome-specific small nuclear RNAs (snRNAs) and proteins. Here, we define the molecular outcome of the U12 snRNA mutation (84C>U) resulting in an early-onset form of cerebellar ataxia. To understand the molecular consequences of the U12 snRNA mutation, we created cell lines harboring the 84C>T mutation in the U12 snRNA gene (RNU12). We show that the 84C>U mutation leads to accelerated decay of the snRNA, resulting in significantly reduced steady-state U12 snRNA levels. Additionally, the mutation leads to accumulation of 3′-truncated forms of U12 snRNA, which have undergone the cytoplasmic steps of snRNP biogenesis. Our data suggests that the 84C>U-mutant snRNA is targeted for decay following reimport into the nucleus, and that the U12 snRNA fragments are decay intermediates that result from the stalling of a 3′-to-5′ exonuclease. Finally, we show that several other single-nucleotide variants in the 3′ stem-loop of U12 snRNA that are segregating in the human population are also highly destabilizing. This suggests that the 3′ stem-loop is important for the overall stability of the U12 snRNA and that additional disease-causing mutations are likely to exist in this region.
Collapse
Affiliation(s)
- Antto J Norppa
- Institute of Biotechnology, P.O. Box 56, Viikinkaari 5, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mikko J Frilander
- Institute of Biotechnology, P.O. Box 56, Viikinkaari 5, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
12
|
Clinical interpretation of variants identified in RNU4ATAC, a non-coding spliceosomal gene. PLoS One 2020; 15:e0235655. [PMID: 32628740 PMCID: PMC7337319 DOI: 10.1371/journal.pone.0235655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Biallelic variants in RNU4ATAC, a non-coding gene transcribed into the minor spliceosome component U4atac snRNA, are responsible for three rare recessive developmental diseases, namely Taybi-Linder/MOPD1, Roifman and Lowry-Wood syndromes. Next-generation sequencing of clinically heterogeneous cohorts (children with either a suspected genetic disorder or a congenital microcephaly) recently identified mutations in this gene, illustrating how profoundly these technologies are modifying genetic testing and assessment. As RNU4ATAC has a single non-coding exon, the bioinformatic prediction algorithms assessing the effect of sequence variants on splicing or protein function are irrelevant, which makes variant interpretation challenging to molecular diagnostic laboratories. In order to facilitate and improve clinical diagnostic assessment and genetic counseling, we present i) an update of the previously reported RNU4ATAC mutations and an analysis of the genetic variations affecting this gene using the Genome Aggregation Database (gnomAD) resource; ii) the pathogenicity prediction performances of scores computed based on an RNA structure prediction tool and of those produced by the Combined Annotation Dependent Depletion tool for the 285 RNU4ATAC variants identified in patients or in large-scale sequencing projects; iii) a method, based on a cellular assay, that allows to measure the effect of RNU4ATAC variants on splicing efficiency of a minor (U12-type) reporter intron. Lastly, the concordance of bioinformatic predictions and cellular assay results was investigated.
Collapse
|
13
|
Beauchamp MC, Alam SS, Kumar S, Jerome-Majewska LA. Spliceosomopathies and neurocristopathies: Two sides of the same coin? Dev Dyn 2020; 249:924-945. [PMID: 32315467 DOI: 10.1002/dvdy.183] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in core components of the spliceosome are responsible for a group of syndromes collectively known as spliceosomopathies. Patients exhibit microcephaly, micrognathia, malar hypoplasia, external ear anomalies, eye anomalies, psychomotor delay, intellectual disability, limb, and heart defects. Craniofacial malformations in these patients are predominantly found in neural crest cells-derived structures of the face and head. Mutations in eight genes SNRPB, RNU4ATAC, SF3B4, PUF60, EFTUD2, TXNL4, EIF4A3, and CWC27 are associated with craniofacial spliceosomopathies. In this review, we provide a brief description of the normal development of the head and the face and an overview of mutations identified in genes associated with craniofacial spliceosomopathies. We also describe a model to explain how and when these mutations are most likely to impact neural crest cells. We speculate that mutations in a subset of core splicing factors lead to disrupted splicing in neural crest cells because these cells have increased sensitivity to inefficient splicing. Hence, disruption in splicing likely activates a cellular stress response that includes increased skipping of regulatory exons in genes such as MDM2 and MDM4, key regulators of P53. This would result in P53-associated death of neural crest cells and consequently craniofacial malformations associated with spliceosomopathies.
Collapse
Affiliation(s)
- Marie-Claude Beauchamp
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada.,McGill University Health Centre at Glen Site, Montreal, Quebec, Canada
| | - Sabrina Shameen Alam
- McGill University Health Centre at Glen Site, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Shruti Kumar
- McGill University Health Centre at Glen Site, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Loydie Anne Jerome-Majewska
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada.,McGill University Health Centre at Glen Site, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Heremans J, Garcia-Perez JE, Turro E, Schlenner SM, Casteels I, Collin R, de Zegher F, Greene D, Humblet-Baron S, Lesage S, Matthys P, Penkett CJ, Put K, Stirrups K, Thys C, Van Geet C, Van Nieuwenhove E, Wouters C, Meyts I, Freson K, Liston A. Abnormal differentiation of B cells and megakaryocytes in patients with Roifman syndrome. J Allergy Clin Immunol 2018; 142:630-646. [DOI: 10.1016/j.jaci.2017.11.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/28/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022]
|
15
|
Andrade AC, Jee YH, Nilsson O. New Genetic Diagnoses of Short Stature Provide Insights into Local Regulation of Childhood Growth
. Horm Res Paediatr 2018; 88:22-37. [PMID: 28334714 DOI: 10.1159/000455850] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022] Open
Abstract
Idiopathic short stature is a common condition with a heterogeneous etiology. Advances in genetic methods, including genome sequencing techniques and bioinformatics approaches, have emerged as important tools to identify the genetic defects in families with monogenic short stature. These findings have contributed to the understanding of growth regulation and indicate that growth plate chondrogenesis, and therefore linear growth, is governed by a large number of genes important for different signaling pathways and cellular functions, including genetic defects in hormonal regulation, paracrine signaling, cartilage matrix, and fundamental cellular processes. In addition, mutations in the same gene can cause a wide phenotypic spectrum depending on the severity and mode of inheritance of the mutation.
.
Collapse
Affiliation(s)
- Anenisia C Andrade
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Youn Hee Jee
- Section of Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Ola Nilsson
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Örebro University and University Hospital, Örebro, Sweden
| |
Collapse
|
16
|
Lackey L, Coria A, Woods C, McArthur E, Laederach A. Allele-specific SHAPE-MaP assessment of the effects of somatic variation and protein binding on mRNA structure. RNA (NEW YORK, N.Y.) 2018; 24:513-528. [PMID: 29317542 PMCID: PMC5855952 DOI: 10.1261/rna.064469.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/04/2018] [Indexed: 05/22/2023]
Abstract
The impact of inherited and somatic mutations on messenger RNA (mRNA) structure remains poorly understood. Recent technological advances that leverage next-generation sequencing to obtain experimental structure data, such as SHAPE-MaP, can reveal structural effects of mutations, especially when these data are incorporated into structure modeling. Here, we analyze the ability of SHAPE-MaP to detect the relatively subtle structural changes caused by single-nucleotide mutations. We find that allele-specific sorting greatly improved our detection ability. Thus, we used SHAPE-MaP with a novel combination of clone-free robotic mutagenesis and allele-specific sorting to perform a rapid, comprehensive survey of noncoding somatic and inherited riboSNitches in two cancer-associated mRNAs, TPT1 and LCP1 Using rigorous thermodynamic modeling of the Boltzmann suboptimal ensemble, we identified a subset of mutations that change TPT1 and LCP1 RNA structure, with approximately 14% of all variants identified as riboSNitches. To confirm that these in vitro structures were biologically relevant, we tested how dependent TPT1 and LCP1 mRNA structures were on their environments. We performed SHAPE-MaP on TPT1 and LCP1 mRNAs in the presence or absence of cellular proteins and found that both mRNAs have similar overall folds in all conditions. RiboSNitches identified within these mRNAs in vitro likely exist under biological conditions. Overall, these data reveal a robust mRNA structural landscape where differences in environmental conditions and most sequence variants do not significantly alter RNA structural ensembles. Finally, predicting riboSNitches in mRNAs from sequence alone remains particularly challenging; these data will provide the community with benchmarks for further algorithmic development.
Collapse
Affiliation(s)
- Lela Lackey
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Aaztli Coria
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Chanin Woods
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Evonne McArthur
- School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
17
|
Norppa AJ, Kauppala TM, Heikkinen HA, Verma B, Iwaï H, Frilander MJ. Mutations in the U11/U12-65K protein associated with isolated growth hormone deficiency lead to structural destabilization and impaired binding of U12 snRNA. RNA (NEW YORK, N.Y.) 2018; 24:396-409. [PMID: 29255062 PMCID: PMC5824358 DOI: 10.1261/rna.062844.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/12/2017] [Indexed: 05/09/2023]
Abstract
Mutations in the components of the minor spliceosome underlie several human diseases. A subset of patients with isolated growth hormone deficiency (IGHD) harbors mutations in the RNPC3 gene, which encodes the minor spliceosome-specific U11/U12-65K protein. Although a previous study showed that IGHD patient cells have defects in U12-type intron recognition, the biochemical effects of these mutations on the 65K protein have not been characterized. Here, we show that a proline-to-threonine missense mutation (P474T) and a nonsense mutation (R502X) in the C-terminal RNA recognition motif (C-RRM) of the 65K protein impair the binding of 65K to U12 and U6atac snRNAs. We further show that the nonsense allele is targeted to the nonsense-mediated decay (NMD) pathway, but in an isoform-specific manner, with the nuclear-retained 65K long-3'UTR isoform escaping the NMD pathway. In contrast, the missense P474T mutation leads, in addition to the RNA-binding defect, to a partial defect in the folding of the C-RRM and reduced stability of the full-length protein, thus reducing the formation of U11/U12 di-snRNP complexes. We propose that both the C-RRM folding defect and NMD-mediated decrease in the levels of the U11/U12-65K protein reduce formation of the U12-type intron recognition complex and missplicing of a subset of minor introns leading to pituitary hypoplasia and a subsequent defect in growth hormone secretion.
Collapse
Affiliation(s)
- Antto J Norppa
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Tuuli M Kauppala
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Harri A Heikkinen
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Bhupendra Verma
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Hideo Iwaï
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Mikko J Frilander
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| |
Collapse
|
18
|
Minor spliceosome and disease. Semin Cell Dev Biol 2017; 79:103-112. [PMID: 28965864 DOI: 10.1016/j.semcdb.2017.09.036] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 01/09/2023]
Abstract
The U12-dependent (minor) spliceosome excises a rare group of introns that are characterized by a highly conserved 5' splice site and branch point sequence. Several new congenital or somatic diseases have recently been associated with mutations in components of the minor spliceosome. A common theme in these diseases is the detection of elevated levels of transcripts containing U12-type introns, of which a subset is associated with other splicing defects. Here we review the present understanding of minor spliceosome diseases, particularly those associated with the specific components of the minor spliceosome. We also present a model for interpreting the molecular-level consequences of the different diseases.
Collapse
|
19
|
Abstract
Much evidence is now accumulating that, in addition to their general role in splicing, the components of the core splicing machinery have extensive regulatory potential. In particular, recent evidence has demonstrated that de-regulation of these factors cause the highest extent of alternative splicing changes compared to de-regulation of the classical splicing regulators. This lack of a general inhibition of splicing resonates the differential splicing effects observed in different disease pathologies associated with specific mutations targeting core spliceosomal components. In this review we will summarize what is currently known regarding the involvement of core spliceosomal U-snRNP complexes in perturbed tissue development and human diseases and argue for the existence of a compensatory mechanism enabling cells to cope with drastic perturbations in core splicing components. This system maintains the correct balance of spliceosomal snRNPs through differential expression of variant (v)U-snRNPs.
Collapse
Affiliation(s)
- Pilar Vazquez-Arango
- a Nuffield Department of Obstetrics and Gynaecology, Level 3 , Women's Centre, John Radcliffe Hospital , Oxford , England
| | - Dawn O'Reilly
- b Sir William Dunn School of pathology , University of Oxford , South Parks Road, Oxford , England
| |
Collapse
|
20
|
Non-coding RNAs and disease: the classical ncRNAs make a comeback. Biochem Soc Trans 2017; 44:1073-8. [PMID: 27528754 DOI: 10.1042/bst20160089] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Indexed: 01/16/2023]
Abstract
Many human diseases have been attributed to mutation in the protein coding regions of the human genome. The protein coding portion of the human genome, however, is very small compared with the non-coding portion of the genome. As such, there are a disproportionate number of diseases attributed to the coding compared with the non-coding portion of the genome. It is now clear that the non-coding portion of the genome produces many functional non-coding RNAs and these RNAs are slowly being linked to human diseases. Here we discuss examples where mutation in classical non-coding RNAs have been attributed to human disease and identify the future potential for the non-coding portion of the genome in disease biology.
Collapse
|
21
|
A homozygous mutation in the stem II domain of RNU4ATAC causes typical Roifman syndrome. NPJ Genom Med 2017; 2:23. [PMID: 29263834 PMCID: PMC5677950 DOI: 10.1038/s41525-017-0024-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 11/09/2022] Open
Abstract
Roifman syndrome (OMIM# 616651) is a complex syndrome encompassing skeletal dysplasia, immunodeficiency, retinal dystrophy and developmental delay, and is caused by compound heterozygous mutations involving the Stem II region and one of the other domains of the RNU4ATAC gene. This small nuclear RNA gene is essential for minor intron splicing. The Canadian Centre for Primary Immunodeficiency Registry and Repository were used to derive patient information as well as tissues. Utilising RNA sequencing methodologies, we analysed samples from patients with Roifman syndrome and assessed intron retention. We demonstrate that a homozygous mutation in Stem II is sufficient to cause the full spectrum of features associated with typical Roifman syndrome. Further, we demonstrate the same pattern of aberration in minor intron retention as found in cases with compound heterozygous mutations.
Collapse
|
22
|
Deep intronic mutations and human disease. Hum Genet 2017; 136:1093-1111. [DOI: 10.1007/s00439-017-1809-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022]
|
23
|
Shukla S, Parker R. Hypo- and Hyper-Assembly Diseases of RNA-Protein Complexes. Trends Mol Med 2016; 22:615-628. [PMID: 27263464 DOI: 10.1016/j.molmed.2016.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 12/14/2022]
Abstract
A key aspect of cellular function is the proper assembly and utilization of ribonucleoproteins (RNPs). Recent studies have shown that hyper- or hypo-assembly of various RNPs can lead to human diseases. Defects in the formation of RNPs lead to 'RNP hypo-assembly diseases', which can be caused by RNA degradation outcompeting RNP assembly. By contrast, excess RNP assembly, either in higher order RNP granules, or due to the expression of repeat-containing RNAs, can lead to 'RNP hyper-assembly diseases'. Here, we discuss the most recent advances in understanding the cause of disease onset, as well as potential therapies from the aspect of modulating RNP assembly in the cell, which presents a novel route to the treatment of these diseases.
Collapse
Affiliation(s)
- Siddharth Shukla
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Roy Parker
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
24
|
Putoux A, Alqahtani A, Pinson L, Paulussen ADC, Michel J, Besson A, Mazoyer S, Borg I, Nampoothiri S, Vasiljevic A, Uwineza A, Boggio D, Champion F, de Die-Smulders CE, Gardeitchik T, van Putten WK, Perez MJ, Musizzano Y, Razavi F, Drunat S, Verloes A, Hennekam R, Guibaud L, Alix E, Sanlaville D, Lesca G, Edery P. Refining the phenotypical and mutational spectrum of Taybi-Linder syndrome. Clin Genet 2016; 90:550-555. [PMID: 27040866 DOI: 10.1111/cge.12781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 02/04/2023]
Abstract
Taybi-Linder syndrome (TALS, OMIM 210710) is a rare autosomal recessive disorder belonging to the group of microcephalic osteodysplastic primordial dwarfisms (MOPD). This syndrome is characterized by short stature, skeletal anomalies, severe microcephaly with brain malformations and facial dysmorphism, and is caused by mutations in RNU4ATAC. RNU4ATAC is transcribed into a non-coding small nuclear RNA which is a critical component of the minor spliceosome. We report here four foetuses and four unrelated patients with RNU4ATAC mutations. We provide antenatal descriptions of this rare syndrome including unusual features found in two twin foetuses with compound heterozygosity for two rare mutations who presented with mild intrauterine growth retardation and atypical dysmorphic facial features. We also carried out a literature review of the patients described up to now with RNU4ATAC mutations, affected either with TALS or Roifman syndrome, a recently described allelic disorder.
Collapse
Affiliation(s)
- A Putoux
- Service de Génétique, Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Neurosciences de Lyon, INSERM U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - A Alqahtani
- Service de Génétique, Hospices Civils de Lyon, Lyon, France
| | - L Pinson
- Département de Génétique Médicale, Centre Hospitalier Universitaire, Montpellier, France
| | - A D C Paulussen
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands.,School for Oncology & Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - J Michel
- Service de Génétique, Hospices Civils de Lyon, Lyon, France
| | - A Besson
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - S Mazoyer
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - I Borg
- Department of Pathology, University of Malta, Medical Genetics Unit, Mater Dei Hospital, Malta
| | - S Nampoothiri
- Department of Paediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Cochin, India
| | - A Vasiljevic
- Centre de Pathologie et Neuropathologie Est, Hospices Civils de Lyon, Lyon, France
| | - A Uwineza
- Centre for Medical Genetics, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - D Boggio
- Service de Génétique, Hospices Civils de Lyon, Lyon, France
| | - F Champion
- Service de Gynécologie-Obstétrique, Hospices Civils de Lyon, Lyon, France
| | - C E de Die-Smulders
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands.,School for Oncology & Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - T Gardeitchik
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - W K van Putten
- Paediatric Intensive Care Unit, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - M J Perez
- Département de Génétique Médicale, Unité de fœtopathologie, Centre Hospitalier Universitaire, Montpellier, France
| | - Y Musizzano
- Département de Pathologie Tissulaire et Cellulaire des tumeurs, Pôle Biologie Pathologie, Centre Hospitalier Universitaire, Montpellier, France
| | - F Razavi
- Département de Génétique Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfant Malade, Paris, France
| | - S Drunat
- Department of Genetics, APHP-Robert DEBRE University Hospital, and Paris-Diderot University, Paris, France
| | - A Verloes
- Department of Genetics, APHP-Robert DEBRE University Hospital, and Paris-Diderot University, Paris, France
| | - R Hennekam
- Department of Paediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - L Guibaud
- Département d'Imagerie Pédiatrique et Fœtale, Centre Pluridisciplinaire de Diagnostic Prénatal, Hôpital Femme Mère Enfant, Lyon-Bron, France
| | - E Alix
- Service de Génétique, Hospices Civils de Lyon, Lyon, France
| | - D Sanlaville
- Service de Génétique, Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Neurosciences de Lyon, INSERM U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - G Lesca
- Service de Génétique, Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Neurosciences de Lyon, INSERM U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - P Edery
- Service de Génétique, Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Neurosciences de Lyon, INSERM U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
25
|
Reber S, Stettler J, Filosa G, Colombo M, Jutzi D, Lenzken SC, Schweingruber C, Bruggmann R, Bachi A, Barabino SM, Mühlemann O, Ruepp MD. Minor intron splicing is regulated by FUS and affected by ALS-associated FUS mutants. EMBO J 2016; 35:1504-21. [PMID: 27252488 DOI: 10.15252/embj.201593791] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/29/2016] [Indexed: 12/11/2022] Open
Abstract
Fused in sarcoma (FUS) is a ubiquitously expressed RNA-binding protein proposed to function in various RNA metabolic pathways, including transcription regulation, pre-mRNA splicing, RNA transport and microRNA processing. Mutations in the FUS gene were identified in patients with amyotrophic lateral sclerosis (ALS), but the pathomechanisms by which these mutations cause ALS are not known. Here, we show that FUS interacts with the minor spliceosome constituent U11 snRNP, binds preferentially to minor introns and directly regulates their removal. Furthermore, a FUS knockout in neuroblastoma cells strongly disturbs the splicing of minor intron-containing mRNAs, among them mRNAs required for action potential transmission and for functional spinal motor units. Moreover, an ALS-associated FUS mutant that forms cytoplasmic aggregates inhibits splicing of minor introns by trapping U11 and U12 snRNAs in these aggregates. Collectively, our findings suggest a possible pathomechanism for ALS in which mutated FUS inhibits correct splicing of minor introns in mRNAs encoding proteins required for motor neuron survival.
Collapse
Affiliation(s)
- Stefan Reber
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jolanda Stettler
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Giuseppe Filosa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Martino Colombo
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Daniel Jutzi
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Silvia C Lenzken
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Christoph Schweingruber
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Silvia Ml Barabino
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|
26
|
Xu T, Kim BM, Kwak KJ, Jung HJ, Kang H. The Arabidopsis homolog of human minor spliceosomal protein U11-48K plays a crucial role in U12 intron splicing and plant development. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3397-406. [PMID: 27091878 PMCID: PMC4892727 DOI: 10.1093/jxb/erw158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The minor U12 introns are removed from precursor mRNAs by the U12 intron-specific minor spliceosome. Among the seven ribonucleoproteins unique to the minor spliceosome, denoted as U11/U12-20K, U11/U12-25K, U11/U12-31K, U11/U12-65K, U11-35K, U11-48K, and U11-59K, the roles of only U11/U12-31K and U11/U12-65K have been demonstrated in U12 intron splicing and plant development. Here, the functional role of the Arabidopsis homolog of human U11-48K in U12 intron splicing and the development of Arabidopsis thaliana was examined using transgenic knockdown plants. The u11-48k mutants exhibited several defects in growth and development, such as severely arrested primary inflorescence stems, formation of serrated leaves, production of many rosette leaves after bolting, and delayed senescence. The splicing of most U12 introns analyzed was impaired in the u11-48k mutants. Comparative analysis of the splicing defects and phenotypes among the u11/u12-31k, u11-48k, and u11/12-65k mutants showed that the severity of abnormal development was closely correlated with the degree of impairment in U12 intron splicing. Taken together, these results provide compelling evidence that the Arabidopsis homolog of human U11-48K protein, as well as U11/U12-31K and U11/U12-65K proteins, is necessary for correct splicing of U12 introns and normal plant growth and development.
Collapse
Affiliation(s)
- Tao Xu
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Bo Mi Kim
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, South Korea
| | - Kyung Jin Kwak
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, South Korea
| | - Hyun Ju Jung
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, South Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, South Korea
| |
Collapse
|
27
|
Abstract
The human transcriptome is composed of a vast RNA population that undergoes further diversification by splicing. Detecting specific splice sites in this large sequence pool is the responsibility of the major and minor spliceosomes in collaboration with numerous splicing factors. This complexity makes splicing susceptible to sequence polymorphisms and deleterious mutations. Indeed, RNA mis-splicing underlies a growing number of human diseases with substantial societal consequences. Here, we provide an overview of RNA splicing mechanisms followed by a discussion of disease-associated errors, with an emphasis on recently described mutations that have provided new insights into splicing regulation. We also discuss emerging strategies for splicing-modulating therapy.
Collapse
Affiliation(s)
- Marina M Scotti
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida 32610-3610 USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida 32610-3610 USA
| |
Collapse
|
28
|
Merico D, Roifman M, Braunschweig U, Yuen RKC, Alexandrova R, Bates A, Reid B, Nalpathamkalam T, Wang Z, Thiruvahindrapuram B, Gray P, Kakakios A, Peake J, Hogarth S, Manson D, Buncic R, Pereira SL, Herbrick JA, Blencowe BJ, Roifman CM, Scherer SW. Compound heterozygous mutations in the noncoding RNU4ATAC cause Roifman Syndrome by disrupting minor intron splicing. Nat Commun 2015; 6:8718. [PMID: 26522830 PMCID: PMC4667643 DOI: 10.1038/ncomms9718] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 09/25/2015] [Indexed: 11/09/2022] Open
Abstract
Roifman Syndrome is a rare congenital disorder characterized by growth retardation, cognitive delay, spondyloepiphyseal dysplasia and antibody deficiency. Here we utilize whole-genome sequencing of Roifman Syndrome patients to reveal compound heterozygous rare variants that disrupt highly conserved positions of the RNU4ATAC small nuclear RNA gene, a minor spliceosome component that is essential for minor intron splicing. Targeted sequencing confirms allele segregation in six cases from four unrelated families. RNU4ATAC rare variants have been recently reported to cause microcephalic osteodysplastic primordial dwarfism, type I (MOPD1), whose phenotype is distinct from Roifman Syndrome. Strikingly, all six of the Roifman Syndrome cases have one variant that overlaps MOPD1-implicated structural elements, while the other variant overlaps a highly conserved structural element not previously implicated in disease. RNA-seq analysis confirms extensive and specific defects of minor intron splicing. Available allele frequency data suggest that recessive genetic disorders caused by RNU4ATAC rare variants may be more prevalent than previously reported. Roifman Syndrome is a rare disorder whose disease manifestations include growth retardation, spondyloepiphyseal dysplasia and immunodeficiency. Here, the authors use whole-genome sequencing to discover that rare compound heterozygous variants disrupting the small nuclear RNA gene RNU4ATAC cause Roifman Syndrome.
Collapse
Affiliation(s)
- Daniele Merico
- The Centre for Applied Genomics (TCAG), Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Maian Roifman
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1Z5.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | | | - Ryan K C Yuen
- The Centre for Applied Genomics (TCAG), Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Roumiana Alexandrova
- The Centre for Applied Genomics (TCAG), Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Andrea Bates
- Division for Immunology and Allergy, Canadian Center for Primary Immunodeficiency, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Brenda Reid
- Division for Immunology and Allergy, Canadian Center for Primary Immunodeficiency, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics (TCAG), Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Zhuozhi Wang
- The Centre for Applied Genomics (TCAG), Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Bhooma Thiruvahindrapuram
- The Centre for Applied Genomics (TCAG), Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Paul Gray
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Sydney, New South Wales 2031, Australia
| | - Alyson Kakakios
- Department of Allergy and Immunology, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Jane Peake
- Queensland Paediatric Immunology and Allergy Service, The Lady Cilento Children's Hospital, South Brisbane, Queensland 4101, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland 4006, Australia
| | - Stephanie Hogarth
- Queensland Paediatric Immunology and Allergy Service, The Lady Cilento Children's Hospital, South Brisbane, Queensland 4101, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland 4006, Australia
| | - David Manson
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Raymond Buncic
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Sergio L Pereira
- The Centre for Applied Genomics (TCAG), Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Jo-Anne Herbrick
- The Centre for Applied Genomics (TCAG), Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada M5S 3E1.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Chaim M Roifman
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada M5G 1X8.,Division for Immunology and Allergy, Canadian Center for Primary Immunodeficiency, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Stephen W Scherer
- The Centre for Applied Genomics (TCAG), Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada M5G 0A4.,Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| |
Collapse
|
29
|
Niemelä EH, Frilander MJ. Regulation of gene expression through inefficient splicing of U12-type introns. RNA Biol 2015; 11:1325-9. [PMID: 25692230 PMCID: PMC4615840 DOI: 10.1080/15476286.2014.996454] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
U12-type introns are a rare class of nuclear introns that are removed by a dedicated U12-dependent spliceosome and are thought to regulate the expression of their target genes owing through their slower splicing reaction. Recent genome-wide studies on the splicing of U12-type introns are now providing new insights on the biological significance of this parallel splicing machinery. The new studies cover multiple different organisms and experimental systems, including human patient cells with mutations in the components of the minor spliceosome, zebrafish with similar mutations and various experimentally manipulated human cells and Arabidopsis plants. Here, we will discuss the potential implications of these studies on the understanding of the mechanism and regulation of the minor spliceosome, as well as their medical implications.
Collapse
Affiliation(s)
- Elina H Niemelä
- a Institute of Biotechnology; Genome Biology Research Program ; University of Helsinki ; Helsinki , Finland
| | | |
Collapse
|
30
|
Abdel-Salam GMH, Emam BA, Khalil YM, Abdel-Hamid MS. Long-term survival in microcephalic osteodysplastic primordial dwarfism type I: Evaluation of an 18-year-old male with g.55G>A homozygous mutation in RNU4ATAC. Am J Med Genet A 2015; 170A:277-82. [PMID: 26419500 DOI: 10.1002/ajmg.a.37409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/16/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Ghada M H Abdel-Salam
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Bayoumi A Emam
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Yasmin M Khalil
- Department of Orodental Genetics, Orodental Research Division, National Research Centre, Cairo, Egypt
| | - Mohamed S Abdel-Hamid
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
31
|
Primordial dwarfism: overview of clinical and genetic aspects. Mol Genet Genomics 2015; 291:1-15. [PMID: 26323792 DOI: 10.1007/s00438-015-1110-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/21/2015] [Indexed: 01/16/2023]
Abstract
Primordial dwarfism is a group of genetic disorders which include Seckel Syndrome, Silver-Russell Syndrome, Microcephalic Osteodysplastic Primordial Dwarfism types I/III, II and Meier-Gorlin Syndrome. This genetic disorder group is characterized by intra-uterine growth retardation and post-natal growth abnormalities which occur as a result of disorganized molecular and genomic changes in embryonic stage and, thus, it represents a unique area to study growth and developmental abnormalities. Lot of research has been carried out on different aspects; however, a consolidated review that discusses an overall spectrum of this disorder is not accessible. Recent research in this area points toward important molecular and cellular mechanisms in human body that regulate the complexity of growth process. Studies have emerged that have clearly associated with a number of abnormal chromosomal, genetic and epigenetic alterations that can predispose an embryo to develop PD-associated developmental defects. Finding and associating such fundamental changes to its subtypes will help in re-examination of alleged functions at both cellular and developmental levels and thus reveal the intrinsic mechanism that leads to a balanced growth. Although such findings have unraveled a subtle understanding of growth process, we further require active research in terms of identification of reliable biomarkers for different subtypes as an immediate requirement for clinical utilization. It is hoped that further study will advance the understanding of basic mechanisms regulating growth relevant to human health. Therefore, this review has been written with an aim to present an overview of chromosomal, molecular and epigenetic modifications reported to be associated with different subtypes of this heterogenous disorder. Further, latest findings with respect to clinical and molecular genetics research have been summarized to aid the medical fraternity in their clinical utility, for diagnosing disorders where there are overlapping physical attributes and simultaneously inform about the latest developments in PD biology.
Collapse
|
32
|
Solem AC, Halvorsen M, Ramos SBV, Laederach A. The potential of the riboSNitch in personalized medicine. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:517-32. [PMID: 26115028 PMCID: PMC4543445 DOI: 10.1002/wrna.1291] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/25/2015] [Accepted: 05/13/2015] [Indexed: 01/28/2023]
Abstract
RNA conformation plays a significant role in stability, ligand binding, transcription, and translation. Single nucleotide variants (SNVs) have the potential to disrupt specific structural elements because RNA folds in a sequence-specific manner. A riboSNitch is an element of RNA structure with a specific function that is disrupted by an SNV or a single nucleotide polymorphism (SNP; or polymorphism; SNVs occur with low frequency in the population, <1%). The riboSNitch is analogous to a riboswitch, where binding of a small molecule rather than mutation alters the structure of the RNA to control gene regulation. RiboSNitches are particularly relevant to interpreting the results of genome-wide association studies (GWAS). Often GWAS identify SNPs associated with a phenotype mapping to noncoding regions of the genome. Because a majority of the human genome is transcribed, significant subsets of GWAS SNPs are putative riboSNitches. The extent to which the transcriptome is tolerant of SNP-induced structure change is still poorly understood. Recent advances in ultra high-throughput structure probing begin to reveal the structural complexities of mutation-induced structure change. This review summarizes our current understanding of SNV and SNP-induced structure change in the human transcriptome and discusses the importance of riboSNitch discovery in interpreting GWAS results and massive sequencing projects.
Collapse
Affiliation(s)
- Amanda C Solem
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew Halvorsen
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA.,Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Silvia B V Ramos
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA.,Bioinformatics and Computational Biology Program, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
33
|
Szabo L, Morey R, Palpant NJ, Wang PL, Afari N, Jiang C, Parast MM, Murry CE, Laurent LC, Salzman J. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol 2015; 16:126. [PMID: 26076956 PMCID: PMC4506483 DOI: 10.1186/s13059-015-0690-5] [Citation(s) in RCA: 425] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 06/08/2015] [Indexed: 02/06/2023] Open
Abstract
Background The pervasive expression of circular RNA is a recently discovered feature of gene expression in highly diverged eukaryotes, but the functions of most circular RNAs are still unknown. Computational methods to discover and quantify circular RNA are essential. Moreover, discovering biological contexts where circular RNAs are regulated will shed light on potential functional roles they may play. Results We present a new algorithm that increases the sensitivity and specificity of circular RNA detection by discovering and quantifying circular and linear RNA splicing events at both annotated and un-annotated exon boundaries, including intergenic regions of the genome, with high statistical confidence. Unlike approaches that rely on read count and exon homology to determine confidence in prediction of circular RNA expression, our algorithm uses a statistical approach. Using our algorithm, we unveiled striking induction of general and tissue-specific circular RNAs, including in the heart and lung, during human fetal development. We discover regions of the human fetal brain, such as the frontal cortex, with marked enrichment for genes where circular RNA isoforms are dominant. Conclusions The vast majority of circular RNA production occurs at major spliceosome splice sites; however, we find the first examples of developmentally induced circular RNAs processed by the minor spliceosome, and an enriched propensity of minor spliceosome donors to splice into circular RNA at un-annotated, rather than annotated, exons. Together, these results suggest a potentially significant role for circular RNA in human development. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0690-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linda Szabo
- Stanford Department of Biochemistry and Stanford Cancer Institute, Stanford, CA, USA.
| | - Robert Morey
- UC San Diego Department of Reproductive Medicine, San Diego, CA, USA.
| | - Nathan J Palpant
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, Departments of Pathology, Bioengineering and Medicine/Cardiology, University of Washington, Seattle, WA, 98109, USA.
| | - Peter L Wang
- Stanford Department of Biochemistry and Stanford Cancer Institute, Stanford, CA, USA.
| | - Nastaran Afari
- UC San Diego Department of Reproductive Medicine, San Diego, CA, USA.
| | - Chuan Jiang
- UC San Diego Department of Reproductive Medicine, San Diego, CA, USA.
| | - Mana M Parast
- UC San Diego Department of Pathology, San Diego, CA, USA.
| | - Charles E Murry
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, Departments of Pathology, Bioengineering and Medicine/Cardiology, University of Washington, Seattle, WA, 98109, USA.
| | - Louise C Laurent
- UC San Diego Department of Reproductive Medicine, San Diego, CA, USA.
| | - Julia Salzman
- Stanford Department of Biochemistry and Stanford Cancer Institute, Stanford, CA, USA.
| |
Collapse
|
34
|
Quality control of assembly-defective U1 snRNAs by decapping and 5'-to-3' exonucleolytic digestion. Proc Natl Acad Sci U S A 2014; 111:E3277-86. [PMID: 25071210 DOI: 10.1073/pnas.1412614111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The accurate biogenesis of RNA-protein complexes is a key aspect of eukaryotic cells. Defects in Sm protein complex binding to snRNAs are known to reduce levels of snRNAs, suggesting an unknown quality control system for small nuclear ribonucleoprotein (snRNP) assembly. snRNA quality control may also be relevant in spinal muscular atrophy, which is caused by defects in the survival motor neuron (SMN)1 gene, an assembly factor for loading the Sm complex on snRNAs and, when severely reduced, can lead to reduced levels of snRNAs and splicing defects. To determine how assembly-defective snRNAs are degraded, we first demonstrate that yeast U1 Sm-mutant snRNAs are degraded either by Rrp6- or by Dcp2-dependent decapping/5'-to-3' decay. Knockdown of the decapping enzyme DCP2 in mammalian cells also increases the levels of assembly-defective snRNAs and suppresses some splicing defects seen in SMN-deficient cells. These results identify a conserved mechanism of snRNA quality control, and also suggest a general paradigm wherein the phenotype of an "RNP assembly disease" might be suppressed by inhibition of a competing RNA quality control mechanism.
Collapse
|