1
|
Zhang M, Lu Z. tRNA modifications: greasing the wheels of translation and beyond. RNA Biol 2025; 22:1-25. [PMID: 39723662 DOI: 10.1080/15476286.2024.2442856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Transfer RNA (tRNA) is one of the most abundant RNA types in cells, acting as an adaptor to bridge the genetic information in mRNAs with the amino acid sequence in proteins. Both tRNAs and small fragments processed from them play many nonconventional roles in addition to translation. tRNA molecules undergo various types of chemical modifications to ensure the accuracy and efficiency of translation and regulate their diverse functions beyond translation. In this review, we discuss the biogenesis and molecular mechanisms of tRNA modifications, including major tRNA modifications, writer enzymes, and their dynamic regulation. We also summarize the state-of-the-art technologies for measuring tRNA modification, with a particular focus on 2'-O-methylation (Nm), and discuss their limitations and remaining challenges. Finally, we highlight recent discoveries linking dysregulation of tRNA modifications with genetic diseases.
Collapse
Affiliation(s)
- Minjie Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Medical Epigenetics, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Xie Y, Brás-Costa C, Lin Z, Garcia BA. Mass Spectrometry Analysis of Nucleic Acid Modifications: From Beginning to Future. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39308031 PMCID: PMC11928337 DOI: 10.1002/mas.21907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 10/05/2024]
Abstract
Nucleic acids are fundamental biological molecules that encode and convey genetic information within living organisms. Over 150 modifications have been found in nucleic acids, which are involved in critical biological functions, including regulating gene expression, stabilizing nucleic acid structure, modulating protein translation, and so on. The dysregulation of nucleic acid modifications is correlated with many diseases such as cancers and neurological disorders. However, it is still challenging to simultaneously characterize and quantify diverse modifications using traditional genomic methods. Mass spectrometry (MS) has served as a crucial tool to solve this issue, and can directly identify the modified species through their distinct mass differences compared to the canonical ones and provide accurate quantitative information. This review surveys the history of nucleic acid modification discovery, advancements in MS-based methods, nucleic acid sample preparation, and applications in biological and medical research. We expect the high-throughput and valuable quantitative information from MS analysis will be more broadly applied to studying nucleic acid modification status in different pathological conditions, which is key to filling gaps in traditional genomics and transcriptomics research and enabling researchers to gain insights into epigenetics and epitranscriptomics.
Collapse
Affiliation(s)
- Yixuan Xie
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Carolina Brás-Costa
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Guimaraes GJ, Kim J, Bartlett MG. Characterization of mRNA therapeutics. MASS SPECTROMETRY REVIEWS 2024; 43:1066-1090. [PMID: 37401740 DOI: 10.1002/mas.21856] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 07/05/2023]
Abstract
Therapeutic messenger RNAs (mRNAs) have emerged as powerful tools in the treatment of complex diseases, especially for conditions that lack efficacious treatment. The successful application of this modality can be attributed to its ability to encode entire proteins. While the large nature of these molecules has supported their success as therapeutics, its extended size creates several analytical challenges. To further support therapeutic mRNA development and its deployment in clinical trials, appropriate methods to support their characterization must be developed. In this review, we describe current analytical methods that have been used in the characterization of RNA quality, identity, and integrity. Advantages and limitations from several analytical techniques ranging from gel electrophoresis to liquid chromatography-mass spectrometry and from shotgun sequencing to intact mass measurements are discussed. We comprehensively describe the application of analytical methods in the measurements of capping efficiency, poly A tail analysis, as well as their applicability in stability studies.
Collapse
Affiliation(s)
- Guilherme J Guimaraes
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Jaeah Kim
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
Yang HC, Scruggs SS, Chai M, Mathai G, Taylor JS, Gross ML. Distinguishing Isomeric Cyclobutane Thymidine Dimers by Ion Mobility and Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1768-1774. [PMID: 38952267 PMCID: PMC11305913 DOI: 10.1021/jasms.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Irradiation of the major conformation of duplex DNA found in cells (B form) produces cyclobutane pyrimidine dimers (CPDs) from adjacent pyrimidines in a head-to-head orientation (syn) with the C5 substituents in a cis stereochemistry. These CPDs have crucial implications in skin cancer. Irradiation of G-quadruplexes and other non-B DNA conformations in vitro produces, however, CPDs between nonadjacent pyrimidines in nearby loops with syn and head-to-tail orientations (anti) with both cis and trans stereochemistry to yield a mixture of six possible isomers of the T=T dimer. This outcome is further complicated by formation of mixtures of nonadjacent CPDs of C=T, T=C, and C=C, and successful analysis depends on development of specific and sensitive methods. Toward meeting this need, we investigated whether ion mobility mass spectrometry (IMMS) and MS/MS can distinguish the cis,syn and trans,anti T=T CPDs. Ion mobility can afford baseline separation and give relative mobilities that are in accord with predicted cross sections. Complementing this ability to distinguish isomers is MS/MS collisional activation where fragmentation also distinguishes the two isomers and confirms conclusions drawn from ion mobility analysis. The observations offer early support that ion mobility and MS/MS can enable the distinction of DNA photoproduct isomers.
Collapse
Affiliation(s)
- Hsin-Chieh Yang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Savannah S. Scruggs
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Mengqi Chai
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - George Mathai
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - John-Stephen Taylor
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
5
|
Rollo D, Kulkarni A, Yu K, Fabris D. Investigating the Merits of Microfluidic Capillary Zone Electrophoresis-Mass Spectrometry (CZE-MS) in the Bottom-Up Characterization of Larger RNAs. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:561-574. [PMID: 38350102 DOI: 10.1021/jasms.3c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Established bottom-up approaches for the characterization of nucleic acids (NAs) rely on the strand-cleavage activity of nucleotide-specific endonucleases to generate smaller oligonucleotides amenable to gas-phase sequencing. The complexity of these hydrolytic mixtures calls for the utilization of a front-end separation to facilitate full mass spectrometric (MS) characterization. This report explored the merits of microfluidic capillary zone electrophoresis (CZE) as a possible alternative to common liquid chromatography techniques. An oligonucleotide ladder was initially employed to investigate the roles of fundamental analyte features and experimental parameters in determining the outcome of CZE-MS analyses. The results demonstrated the ability to fully resolve the various rungs into discrete electrophoretic peaks with full-width half-height (FWHH) resolution that was visibly affected by the overall amount of material injected into the system. Analogous results were obtained from a digestion mixture prepared by treating yeast tRNAPhe (75 nt) with RNase T1, which provided several well-resolved peaks in spite of the increasing sample heterogeneity. The regular shapes of such peaks, however, belied the fact that most of them contained sets of comigrating species, as shown by the corresponding MS spectra. Even though it was not possible to segregate each species into an individual electrophoretic peak, the analysis still proved capable of unambiguously identifying a total of 29 hydrolytic products, which were sufficient to cover 96% of the tRNAPhe's sequence. Their masses accurately reflected the presence of modified nucleotides characteristic of this type of substrate. The analysis of a digestion mixture obtained from the 364 nt HIV-1 5'-UTR proved to be more challenging. The electropherogram displayed fewer well-resolved peaks and significantly greater incidence of product comigration. In this case, fractionating the highly heterogeneous mixture into discrete bands helped reduce signal suppression and detection bias. As a result, the corresponding MS data enabled the assignment of 248 products out of the possible 513 predicted from the 5'-UTR sequence, which afforded 100% sequence coverage. This figure represented a significant improvement over the 36 total products identified earlier under suboptimal conditions, which afforded only 57% coverage, or the 83 observed by direct infusion nanospray-MS (72%). These results provided a measure of the excellent potential of the technique to support the bottom-up characterization of progressively larger NA samples, such as putative NA therapeutics and mRNA vaccines.
Collapse
Affiliation(s)
- Daniele Rollo
- University of Connecticut, Storrs, Connecticut 06269, United States
| | | | - Kate Yu
- 908 Devices, Boston, Massachusetts 02210, United States
| | - Daniele Fabris
- University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
6
|
Deng L, Kumar J, Rose R, McIntyre W, Fabris D. Analyzing RNA posttranscriptional modifications to decipher the epitranscriptomic code. MASS SPECTROMETRY REVIEWS 2024; 43:5-38. [PMID: 36052666 DOI: 10.1002/mas.21798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The discovery of RNA silencing has revealed that non-protein-coding sequences (ncRNAs) can cover essential roles in regulatory networks and their malfunction may result in severe consequences on human health. These findings have prompted a general reassessment of the significance of RNA as a key player in cellular processes. This reassessment, however, will not be complete without a greater understanding of the distribution and function of the over 170 variants of the canonical ribonucleotides, which contribute to the breathtaking structural diversity of natural RNA. This review surveys the analytical approaches employed for the identification, characterization, and detection of RNA posttranscriptional modifications (rPTMs). The merits of analyzing individual units after exhaustive hydrolysis of the initial biopolymer are outlined together with those of identifying their position in the sequence of parent strands. Approaches based on next generation sequencing and mass spectrometry technologies are covered in depth to provide a comprehensive view of their respective merits. Deciphering the epitranscriptomic code will require not only mapping the location of rPTMs in the various classes of RNAs, but also assessing the variations of expression levels under different experimental conditions. The fact that no individual platform is currently capable of meeting all such demands implies that it will be essential to capitalize on complementary approaches to obtain the desired information. For this reason, the review strived to cover the broadest possible range of techniques to provide readers with the fundamental elements necessary to make informed choices and design the most effective possible strategy to accomplish the task at hand.
Collapse
Affiliation(s)
- L Deng
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - J Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - R Rose
- Department of Advanced Research Technologies, New York University Langone Health Center, New York, USA
| | - W McIntyre
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Daniele Fabris
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
7
|
Breznak SM, Peng Y, Deng L, Kotb NM, Flamholz Z, Rapisarda IT, Martin ET, LaBarge KA, Fabris D, Gavis ER, Rangan P. H/ACA snRNP-dependent ribosome biogenesis regulates translation of polyglutamine proteins. SCIENCE ADVANCES 2023; 9:eade5492. [PMID: 37343092 PMCID: PMC10284551 DOI: 10.1126/sciadv.ade5492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
Stem cells in many systems, including Drosophila germline stem cells (GSCs), increase ribosome biogenesis and translation during terminal differentiation. Here, we show that the H/ACA small nuclear ribonucleoprotein (snRNP) complex that promotes pseudouridylation of ribosomal RNA (rRNA) and ribosome biogenesis is required for oocyte specification. Reducing ribosome levels during differentiation decreased the translation of a subset of messenger RNAs that are enriched for CAG trinucleotide repeats and encode polyglutamine-containing proteins, including differentiation factors such as RNA-binding Fox protein 1. Moreover, ribosomes were enriched at CAG repeats within transcripts during oogenesis. Increasing target of rapamycin (TOR) activity to elevate ribosome levels in H/ACA snRNP complex-depleted germlines suppressed the GSC differentiation defects, whereas germlines treated with the TOR inhibitor rapamycin had reduced levels of polyglutamine-containing proteins. Thus, ribosome biogenesis and ribosome levels can control stem cell differentiation via selective translation of CAG repeat-containing transcripts.
Collapse
Affiliation(s)
- Shane M. Breznak
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
| | - Yingshi Peng
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Limin Deng
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
- Department of Chemistry, University of Connecticut, 55N Eagleville Rd, Storrs, CT 06269, USA
| | - Noor M. Kotb
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY 12144, USA
| | - Zachary Flamholz
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ian T. Rapisarda
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
- Lake Erie College of Osteopathic Medicine, College of Medicine, 1858 W Grandview Blvd, Erie, PA 16509, USA
| | - Elliot T. Martin
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
| | - Kara A. LaBarge
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
| | - Dan Fabris
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
- Department of Chemistry, University of Connecticut, 55N Eagleville Rd, Storrs, CT 06269, USA
| | - Elizabeth R. Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Prashanth Rangan
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
8
|
Lauman R, Kim HJ, Pino LK, Scacchetti A, Xie Y, Robison F, Sidoli S, Bonasio R, Garcia BA. Expanding the Epitranscriptomic RNA Sequencing and Modification Mapping Mass Spectrometry Toolbox with Field Asymmetric Waveform Ion Mobility and Electrochemical Elution Liquid Chromatography. Anal Chem 2023; 95:5187-5195. [PMID: 36916610 PMCID: PMC10190205 DOI: 10.1021/acs.analchem.2c04114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Post-transcriptional modifications of RNA strongly influence the RNA structure and function. Recent advances in RNA sequencing and mass spectrometry (MS) methods have identified over 140 of these modifications on a wide variety of RNA species. Most next-generation sequencing approaches can only map one RNA modification at a time, and while MS can assign multiple modifications simultaneously in an unbiased manner, MS cannot accurately catalog and assign RNA modifications in complex biological samples due to limitations in the fragment length and coverage depth. Thus, a facile method to identify novel RNA modifications while simultaneously locating them in the context of their RNA sequences is still lacking. We combined two orthogonal modes of RNA ion separation before MS identification: high-field asymmetric ion mobility separation (FAIMS) and electrochemically modulated liquid chromatography (EMLC). FAIMS RNA MS increases both coverage and throughput, while EMLC LC-MS orthogonally separates RNA molecules of different lengths and charges. The combination of the two methods offers a broadly applicable platform to improve the length and depth of MS-based RNA sequencing while providing contextual access to the analysis of RNA modifications.
Collapse
Affiliation(s)
- Richard Lauman
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetic Institute and Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsay K. Pino
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Alessandro Scacchetti
- Epigenetic Institute and Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yixuan Xie
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Faith Robison
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Roberto Bonasio
- Epigenetic Institute and Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
9
|
Espadas G, Morales-Sanfrutos J, Medina R, Lucas MC, Novoa EM, Sabidó E. High-performance nano-flow liquid chromatography column combined with high- and low-collision energy data-independent acquisition enables targeted and discovery identification of modified ribonucleotides by mass spectrometry. J Chromatogr A 2022; 1665:462803. [PMID: 35042139 DOI: 10.1016/j.chroma.2022.462803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 01/10/2023]
Abstract
Over 170 post-transcriptional RNA modifications have been described and are common in all kingdoms of life. These modifications range from methylation to complex chemical structures, with methylation being the most abundant. RNA modifications play a key role in RNA folding and function and their dysregulation in humans has been linked to several diseases such as cancer, metabolic diseases or neurological disorder. Nowadays, liquid chromatography-tandem mass spectrometry is considered the gold standard method for the identification and quantification of these modifications due to its sensitivity and accuracy. However, the analysis of modified ribonucleosides by mass spectrometry is complex due to the presence of positional isomers. In this scenario, optimal separation of these compounds by highly sensitive liquid chromatography combined with the generation of high-information spectra is critical to unequivocally identify them, especially in high-complex mixtures. Here we present an analytical method that comprises a new type of mixed-mode nano-flow liquid chromatography column combined with high- and low-collision energy data-independent mass spectrometric acquisition for the identification and quantitation of modified ribonucleosides. The method produces content-rich spectra and combines targeted and screening capabilities thus enabling the identification of a variety of modified nucleosides in biological matrices by single-shot liquid chromatographic analysis coupled to mass spectrometry.
Collapse
Affiliation(s)
- Guadalupe Espadas
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain; Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Julia Morales-Sanfrutos
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain; Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Rebeca Medina
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain
| | - Morghan C Lucas
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain; Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Eva Maria Novoa
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain; Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Eduard Sabidó
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain; Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| |
Collapse
|
10
|
BH +/MH +-matching method for discovery of cis-diol-containing modified nucleosides in urine by ribose-targeted solid phase extraction followed by dual-mass spectrometry platform identification. J Pharm Biomed Anal 2021; 210:114555. [PMID: 34974239 DOI: 10.1016/j.jpba.2021.114555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 12/18/2022]
Abstract
Profiling of new modified nucleosides from urine plays an important role in exploring biomarkers for cancer. However, limitations from the nature of the compound, bio-sample, instrumentation, and analytical method pose great challenges to achieving a comprehensive analysis of urinary nucleosides. Herein, a method of BH+/MH+-matching (BH+, protonated nucleobase ion; MH+, protonated precursor ion) was developed to discover novel modified nucleosides from human urine samples based on solid phase extraction targeted toward specific modified nucleosides combined with ultra-performance liquid chromatography coupled with dual-mass spectrometry platforms. Firstly, nucleosides containing 2,3-diol structure on ribose were effectively enriched by PBA (Phenylboronic Acid) cartridges. Secondly, a novel method, "BH+/MH+-matching" was established to achieve rapid screening of modified nucleosides. Based on the in-source fragmentation pattern of nucleosides, a series of putative modified nucleosides were rationally designed and characterized by matching the daughter ion BH+ and its parent ion MH+ in UPLC-MSE spectra. Finally, as a complement to UPLC Q-TOF/MS, UPLC Q-Trap/MS was employed to validate the structure of putative compounds by MRM-IDA-EPI mode. Using the strategy, 12 new cis-diol-containing nucleoside analogs were successfully characterized, which were formed by modified base (m1A, m6A, m2,2,7G, ac4C) and modified ribose containing C5'-O-formylation or C5'-O-methylation. Taken together, the results demonstrated our strategy could efficiently support the rapid discovery of cis-diol-containing nucleosides with modifications on either ribose or base moiety (or both), which exhibited a promising perspective in the future application of biochemical analysis and clinical diagnosis.
Collapse
|
11
|
McIntyre WD, Nemati R, Salehi M, Aldrich CC, FitzGibbon M, Deng L, Pazos MA, Rose RE, Toro B, Netzband RE, Pager CT, Robinson IP, Bialosuknia SM, Ciota AT, Fabris D. Agnostic Framework for the Classification/Identification of Organisms Based on RNA Post-Transcriptional Modifications. Anal Chem 2021; 93:7860-7869. [PMID: 34043326 PMCID: PMC8351319 DOI: 10.1021/acs.analchem.1c00359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We propose a novel approach for building a classification/identification framework based on the full complement of RNA post-transcriptional modifications (rPTMs) expressed by an organism at basal conditions. The approach relies on advanced mass spectrometry techniques to characterize the products of exonuclease digestion of total RNA extracts. Sample profiles comprising identities and relative abundances of all detected rPTM were used to train and test the capabilities of different machine learning (ML) algorithms. Each algorithm proved capable of identifying rigorous decision rules for differentiating closely related classes and correctly assigning unlabeled samples. The ML classifiers resolved different members of the Enterobacteriaceae family, alternative Escherichia coli serotypes, a series of Saccharomyces cerevisiae knockout mutants, and primary cells of the Homo sapiens central nervous system, which shared very similar genetic backgrounds. The excellent levels of accuracy and resolving power achieved by training on a limited number of classes were successfully replicated when the number of classes was significantly increased to escalate complexity. A dendrogram generated from ML-curated data exhibited a hierarchical organization that closely resembled those afforded by established taxonomic systems. Finer clustering patterns revealed the extensive effects induced by the deletion of a single pivotal gene. This information provided a putative roadmap for exploring the roles of rPTMs in their respective regulatory networks, which will be essential to decipher the epitranscriptomics code. The ubiquitous presence of RNA in virtually all living organisms promises to enable the broadest possible range of applications, with significant implications in the diagnosis of RNA-related diseases.
Collapse
Affiliation(s)
| | - Reza Nemati
- Dept. of Chemistry, University at Albany (SUNY), Albany, NY 12222, USA
| | - Mehraveh Salehi
- Dept. of Electrical Engineering, Yale University, New Haven, CT 06520, USA
| | - Colin C. Aldrich
- Dept. of Chemistry, University at Albany (SUNY), Albany, NY 12222, USA
| | - Molly FitzGibbon
- Dept. of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Limin Deng
- Dept. of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Manuel A. Pazos
- Dept. of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Rebecca E. Rose
- Dept. of Chemistry, University at Albany (SUNY), Albany, NY 12222, USA
| | - Botros Toro
- Dept. of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Rachel E. Netzband
- Dept. of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Cara T. Pager
- Dept. of Biological Sciences, University at Albany, Albany, NY 12222, USA
- RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Ingrid P. Robinson
- Dept. of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | | | | | - Daniele Fabris
- Dept. of Chemistry, University of Connecticut, Storrs, CT 06269, USA
- RNA Institute, University at Albany, Albany, NY 12222, USA
| |
Collapse
|
12
|
Netzband R, Pager CT. Viral Epitranscriptomics. Virology 2021. [DOI: 10.1002/9781119818526.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Waldern JM, Smith D, Piazza CL, Bailey EJ, Schiraldi NJ, Nemati R, Fabris D, Belfort M, Novikova O. Methylation of rRNA as a host defense against rampant group II intron retrotransposition. Mob DNA 2021; 12:9. [PMID: 33678171 PMCID: PMC7938551 DOI: 10.1186/s13100-021-00237-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/22/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Group II introns are mobile retroelements, capable of invading new sites in DNA. They are self-splicing ribozymes that complex with an intron-encoded protein to form a ribonucleoprotein that targets DNA after splicing. These molecules can invade DNA site-specifically, through a process known as retrohoming, or can invade ectopic sites through retrotransposition. Retrotransposition, in particular, can be strongly influenced by both environmental and cellular factors. RESULTS To investigate host factors that influence retrotransposition, we performed random insertional mutagenesis using the ISS1 transposon to generate a library of over 1000 mutants in Lactococcus lactis, the native host of the Ll.LtrB group II intron. By screening this library, we identified 92 mutants with increased retrotransposition frequencies (RTP-ups). We found that mutations in amino acid transport and metabolism tended to have increased retrotransposition frequencies. We further explored a subset of these RTP-up mutants, the most striking of which is a mutant in the ribosomal RNA methyltransferase rlmH, which exhibited a reproducible 20-fold increase in retrotransposition frequency. In vitro and in vivo experiments revealed that ribosomes in the rlmH mutant were defective in the m3Ψ modification and exhibited reduced binding to the intron RNA. CONCLUSIONS Taken together, our results reinforce the importance of the native host organism in regulating group II intron retrotransposition. In particular, the evidence from the rlmH mutant suggests a role for ribosome modification in limiting rampant retrotransposition.
Collapse
Affiliation(s)
- Justin M. Waldern
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
- Current address: Department of Biology, University of North Carolina, 270 Bell Tower Drive, Chapel Hill, NC 27599 USA
| | - Dorie Smith
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| | - Carol Lyn Piazza
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| | - E. Jake Bailey
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| | - Nicholas J. Schiraldi
- Academic and Research Computing Center, Information Technology Services, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| | - Reza Nemati
- Department of Chemistry, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
- Current address: Biogen, 125 Broadway, Cambridge, MA 02142 USA
| | - Dan Fabris
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
- Department of Chemistry, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
- Current address: Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, CT 06268 USA
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| | - Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
- Current address: Biology Department, SUNY Buffalo State College, 1300 Elmwood Avenue, Buffalo, NY 14222 USA
| |
Collapse
|
14
|
Santos IC, Brodbelt JS. Recent developments in the characterization of nucleic acids by liquid chromatography, capillary electrophoresis, ion mobility, and mass spectrometry (2010-2020). J Sep Sci 2021; 44:340-372. [PMID: 32974962 PMCID: PMC8378248 DOI: 10.1002/jssc.202000833] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022]
Abstract
The development of new strategies for the analysis of nucleic acids has gained momentum due to the increased interest in using these biomolecules as drugs or drug targets. The application of new mass spectrometry ion activation techniques and the optimization of separation methods including liquid chromatography, capillary electrophoresis, and ion mobility have allowed more detailed characterization of nucleic acids and oligonucleotide therapeutics including confirmation of sequence, localization of modifications and interaction sites, and structural analysis as well as identification of failed sequences and degradation products. This review will cover tandem mass spectrometry methods as well as the recent developments in liquid chromatography, capillary electrophoresis, and ion mobility coupled to mass spectrometry for the analysis of nucleic acids and oligonucleotides.
Collapse
Affiliation(s)
- Inês C Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
15
|
Strzelecka D, Smietanski M, Sikorski PJ, Warminski M, Kowalska J, Jemielity J. Phosphodiester modifications in mRNA poly(A) tail prevent deadenylation without compromising protein expression. RNA (NEW YORK, N.Y.) 2020; 26:1815-1837. [PMID: 32820035 PMCID: PMC7668260 DOI: 10.1261/rna.077099.120] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/13/2020] [Indexed: 06/07/2023]
Abstract
Chemical modifications enable preparation of mRNAs with augmented stability and translational activity. In this study, we explored how chemical modifications of 5',3'-phosphodiester bonds in the mRNA body and poly(A) tail influence the biological properties of eukaryotic mRNA. To obtain modified and unmodified in vitro transcribed mRNAs, we used ATP and ATP analogs modified at the α-phosphate (containing either O-to-S or O-to-BH3 substitutions) and three different RNA polymerases-SP6, T7, and poly(A) polymerase. To verify the efficiency of incorporation of ATP analogs in the presence of ATP, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantitative assessment of modification frequency based on exhaustive degradation of the transcripts to 5'-mononucleotides. The method also estimated the average poly(A) tail lengths, thereby providing a versatile tool for establishing a structure-biological property relationship for mRNA. We found that mRNAs containing phosphorothioate groups within the poly(A) tail were substantially less susceptible to degradation by 3'-deadenylase than unmodified mRNA and were efficiently expressed in cultured cells, which makes them useful research tools and potential candidates for future development of mRNA-based therapeutics.
Collapse
Affiliation(s)
- Dominika Strzelecka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | | | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
16
|
Wang H, Todd DA, Chiu NHL. Enhanced differentiation of isomeric RNA modifications by reducing the size of ions in ion mobility mass spectrometric measurements. J Anal Sci Technol 2020. [DOI: 10.1186/s40543-020-00243-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractWith the ability to differentiate different molecular sizes, ion mobility spectrometry (IMS) has great potentials in the analysis of isomeric compounds. However, due to the lack of sensitivity and resolution, IMS has not been commonly used. To address the issue on resolution, the goals of this study are to explore a more effective way to perform IMS by reducing the size of ions prior to the IM measurements, and apply the new approach to the differentiation of isomeric RNA modifications. The size reduction of ribonucleoside ions was effectively accomplished by using the collision-induced dissociation process, in which the N-glycosidic bond in ribonucleoside was cleaved and split the ions into two parts—a smaller nucleobase ion and a neutral molecule of ribose sugar. Since the chemical group that corresponds to most of the RNA modifications makes up a relatively small part of the molecular structure of nucleobases, the differentiation of the dissociated nucleobase ions is expected to require a lower ion mobility resolution than the differentiation of bigger isomeric ribonucleoside ions. By using RNA methylation as a model in this study, the proposed method lowered the required resolution by 16% for the differentiation of 1-methyladenosine and N6-methyladenosine. Similar results were also obtained from the differentiation of methylated cytidine isomers. In comparison to the results obtained from using the conventional tandem mass spectrometric method, there was no significant loss of signals when the proposed method was used. The proposed method is expected to be applicable to other types of isomeric compounds. Also, the same approach is applicable on other IMS platforms.
Collapse
|
17
|
Borchardt EK, Martinez NM, Gilbert WV. Regulation and Function of RNA Pseudouridylation in Human Cells. Annu Rev Genet 2020; 54:309-336. [PMID: 32870730 DOI: 10.1146/annurev-genet-112618-043830] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent advances in pseudouridine detection reveal a complex pseudouridine landscape that includes messenger RNA and diverse classes of noncoding RNA in human cells. The known molecular functions of pseudouridine, which include stabilizing RNA conformations and destabilizing interactions with varied RNA-binding proteins, suggest that RNA pseudouridylation could have widespread effects on RNA metabolism and gene expression. Here, we emphasize how much remains to be learned about the RNA targets of human pseudouridine synthases, their basis for recognizing distinct RNA sequences, and the mechanisms responsible for regulated RNA pseudouridylation. We also examine the roles of noncoding RNA pseudouridylation in splicing and translation and point out the potential effects of mRNA pseudouridylation on protein production, including in the context of therapeutic mRNAs.
Collapse
Affiliation(s)
- Erin K Borchardt
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , ,
| | - Nicole M Martinez
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , ,
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , ,
| |
Collapse
|
18
|
Abstract
The discovery and analysis of modifications on proteins and nucleic acids has provided functional information that has rapidly accelerated the field of epigenetics. While protein post-translational modifications (PTMs), especially on histones, have been highlighted as critical components of epigenetics, the post-transcriptional modification of RNA has been a subject of more recently emergent interest. Multiple RNA modifications have been known to be present in tRNA and rRNA since the 1960s, but the exploration of mRNA, small RNA, and inducible tRNA modifications remains nascent. Sequencing-based methods have been essential to the field by creating the first epitranscriptome maps of m6A, m5C, hm5C, pseudouridine, and inosine; however, these methods possess significant limitations. Here, we discuss the past, present, and future of the application of mass spectrometry (MS) to the study of RNA modifications.
Collapse
MESH Headings
- Animals
- Humans
- Mass Spectrometry
- Molecular Structure
- Nucleosides
- Nucleotides
- Protein Processing, Post-Translational
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
Collapse
Affiliation(s)
- Richard Lauman
- Biochemistry and Molecular Biophysics Graduate Group, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
19
|
Cui Y, Yuan J, Wang P, Wu J, Yu Y, Wang Y. Collision-Induced Dissociation Studies of Protonated Ions of Alkylated Thymidine and 2'-Deoxyguanosine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:927-937. [PMID: 32134268 PMCID: PMC7362892 DOI: 10.1021/jasms.9b00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mass spectrometry and tandem MS (MS/MS) have been widely employed for the identification and quantification of damaged nucleosides in DNA, including those induced by alkylating agents. Upon collisional activation, protonated ions of alkylated nucleosides frequently undergo facile neutral loss of a 2-deoxyribose in MS/MS, and further cleavage of the resulting protonated nucleobases in MS3 can sometimes be employed for differentiating regioisomeric alkylated DNA lesions. Herein, we investigated systematically the collision-induced dissociation (CID) of the protonated ions of O4-alkylthymidine (O4-alkyldT), O2-alkyldT, O6-alkyl-2'-deoxyguanosine (O6-alkyldG), and N2-alkyldG through MS3 analysis. The MS3 of O2- and O4-MedT exhibit different fragmentation patterns from each other and from other O2- and O4-alkyldT adducts carrying larger alkyl groups. Meanwhile, elimination of alkene via a six-membered ring transition state is the dominant fragmentation pathway for O2-alkyldT, O4-alkyldT, and O6-alkyldG adducts carrying larger alkyl groups, whereas O6-MedG mainly undergoes elimination of ammonia. The breakdown of N2-alkyldG is substantially influenced by the structure of the alkyl group, where the relative ease in eliminating ammonia and alkene is modulated by the chain length and branching of the alkyl groups. We also rationalize our observations with density functional theory (DFT) calculations.
Collapse
|
20
|
2'-O-ribose methylation of transfer RNA promotes recovery from oxidative stress in Saccharomyces cerevisiae. PLoS One 2020; 15:e0229103. [PMID: 32053677 PMCID: PMC7018073 DOI: 10.1371/journal.pone.0229103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/29/2020] [Indexed: 11/19/2022] Open
Abstract
Chemical modifications that regulate protein expression at the translational level are emerging as vital components of the cellular stress response. Transfer RNAs (tRNAs) are significant targets for methyl-based modifications, which are catalyzed by tRNA methyltransferases (Trms). Here, Saccharomyces cerevisiae served as a model eukaryote system to investigate the role of 2'-O-ribose tRNA methylation in the cell's response to oxidative stress. Using 2'-O-ribose deletion mutants for trms 3, 7, 13, and 44, in acute and chronic exposure settings, we demonstrate a broad cell sensitivity to oxidative stress-inducing toxicants (i.e., hydrogen peroxide, rotenone, and acetic acid). A global analysis of hydrogen peroxide-induced tRNA modifications shows a complex profile of decreased, or undetectable, 2'-O-ribose modification events in 2’-O-ribose trm mutant strains, providing a critical link between this type of modification event and Trm status post-exposure. Based on the pronounced oxidative stress sensitivity observed for trm7 mutants, we used a bioinformatic tool to identify transcripts as candidates for regulation by Trm7-catalyzed modifications (i.e., enriched in UUC codons decoded by tRNAPheGmAA). This screen identified transcripts linked to diverse biological processes that promote cellular recovery after oxidative stress exposure, including DNA repair, chromatin remodeling, and nutrient acquisition (i.e., CRT10, HIR3, HXT2, and GNP1); moreover, these mutants were also oxidative stress-sensitive. Together, these results solidify a role for TRM3, 7, 13, and 44, in the cellular response to oxidative stress, and implicate 2'-O-ribose tRNA modification as an epitranscriptomic strategy for oxidative stress recovery.
Collapse
|
21
|
McIntyre W, Netzband R, Bonenfant G, Biegel JM, Miller C, Fuchs G, Henderson E, Arra M, Canki M, Fabris D, Pager CT. Positive-sense RNA viruses reveal the complexity and dynamics of the cellular and viral epitranscriptomes during infection. Nucleic Acids Res 2019; 46:5776-5791. [PMID: 29373715 PMCID: PMC6009648 DOI: 10.1093/nar/gky029] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/15/2018] [Indexed: 12/26/2022] Open
Abstract
More than 140 post-transcriptional modifications (PTMs) are known to decorate cellular RNAs, but their incidence, identity and significance in viral RNA are still largely unknown. We have developed an agnostic analytical approach to comprehensively survey PTMs on viral and cellular RNAs. Specifically, we used mass spectrometry to analyze PTMs on total RNA isolated from cells infected with Zika virus, Dengue virus, hepatitis C virus (HCV), poliovirus and human immunodeficiency virus type 1. All five RNA viruses significantly altered global PTM landscapes. Examination of PTM profiles of individual viral genomes isolated by affinity capture revealed a plethora of PTMs on viral RNAs, which far exceeds the handful of well-characterized modifications. Direct comparison of viral epitranscriptomes identified common and virus-specific PTMs. In particular, specific dimethylcytosine modifications were only present in total RNA from virus-infected cells, and in intracellular HCV RNA, and viral RNA from Zika and HCV virions. Moreover, dimethylcytosine abundance during viral infection was modulated by the cellular DEAD-box RNA helicase DDX6. By opening the Pandora's box on viral PTMs, this report presents numerous questions and hypotheses on PTM function and strongly supports PTMs as a new tier of regulation by which RNA viruses subvert the host and evade cellular surveillance systems.
Collapse
Affiliation(s)
- Will McIntyre
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Rachel Netzband
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Gaston Bonenfant
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Jason M Biegel
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Clare Miller
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Gabriele Fuchs
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Eric Henderson
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Manoj Arra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Mario Canki
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Daniele Fabris
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Cara T Pager
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| |
Collapse
|
22
|
Lagies S, Schlimpert M, Braun LM, Kather M, Plagge J, Erbes T, Wittel UA, Kammerer B. Unraveling altered RNA metabolism in pancreatic cancer cells by liquid-chromatography coupling to ion mobility mass spectrometry. Anal Bioanal Chem 2019; 411:6319-6328. [PMID: 31037374 DOI: 10.1007/s00216-019-01814-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/27/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022]
Abstract
Ion mobility coupling to mass spectrometry facilitates enhanced identification certitude. Further coupling to liquid chromatography results in multi-dimensional analytical methods, especially suitable for complex matrices with structurally similar compounds. Modified nucleosides represent a large group of very similar members linked to aberrant proliferation. Besides basal production under physiological conditions, they are increasingly excreted by transformed cells and subsequently discussed as putative biomarkers for various cancer types. Here, we report a method for modified nucleosides covering 37 species. We determined collisional cross-sections with high reproducibility from pure analytical standards. For sample purification, we applied an optimized phenylboronic acid solid-phase extraction on media obtained from four different pancreatic cancer cell lines. Our analysis could discriminate different subtypes of pancreatic cancer cell lines. Importantly, they could clearly be separated from a pancreatic control cell line as well as blank medium. m1A, m27G, and Asm were the most important features discriminating cancer cell lines derived from well-differentiated and poorly differentiated cancers. Eventually, we suggest the analytical method reported here for future tumor-marker identification studies. Graphical abstract.
Collapse
Affiliation(s)
- Simon Lagies
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, Habsburgerstr. 49, 79104, Freiburg, Germany.,Institute of Biology II, Albert-Ludwigs-University Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, Albertstr. 19A, 79104, Freiburg, Germany
| | - Manuel Schlimpert
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, Habsburgerstr. 49, 79104, Freiburg, Germany.,Institute of Biology II, Albert-Ludwigs-University Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, Albertstr. 19A, 79104, Freiburg, Germany
| | - Lukas M Braun
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, Habsburgerstr. 49, 79104, Freiburg, Germany.,Department of General- and Visceral Surgery, University of Freiburg Medical Center, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Michel Kather
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, Habsburgerstr. 49, 79104, Freiburg, Germany.,Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University Freiburg, Hebelstr. 27, 79104, Freiburg, Germany.,Hermann Staudinger Graduate School, University of Freiburg, Hebelstr. 27, 79104, Freiburg, Germany
| | - Johannes Plagge
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, Habsburgerstr. 49, 79104, Freiburg, Germany
| | - Thalia Erbes
- Department of Gynecology and Obstetrics, Faculty of Medicine and Medical Center, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Uwe A Wittel
- Department of General- and Visceral Surgery, University of Freiburg Medical Center, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Bernd Kammerer
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, Habsburgerstr. 49, 79104, Freiburg, Germany. .,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 16, 79104, Freiburg, Germany.
| |
Collapse
|
23
|
Detection of ribonucleoside modifications by liquid chromatography coupled with mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:280-290. [PMID: 30414470 DOI: 10.1016/j.bbagrm.2018.10.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/20/2018] [Accepted: 10/27/2018] [Indexed: 12/21/2022]
Abstract
A small set of ribonucleoside modifications have been found in different regions of mRNA including the open reading frame. Accurate detection of these specific modifications is critical to understanding their modulatory roles in facilitating mRNA maturation, translation and degradation. While transcriptome-wide next-generation sequencing (NGS) techniques could provide exhaustive information about the sites of one specific or class of modifications at a time, recent investigations strongly indicate cautionary interpretation due to the appearance of false positives. Therefore, it is suggested that NGS-based modification data can only be treated as predicted sites and their existence need to be validated by orthogonal methods. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is an analytical technique that can yield accurate and reproducible information about the qualitative and quantitative characteristics of ribonucleoside modifications. Here, we review the recent advancements in LC-MS/MS technology that could help in securing accurate, gold-standard quality information about the resident post-transcriptional modifications of mRNA.
Collapse
|
24
|
Affiliation(s)
- Bei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
25
|
Jora M, Burns AP, Ross RL, Lobue PA, Zhao R, Palumbo CM, Beal PA, Addepalli B, Limbach PA. Differentiating Positional Isomers of Nucleoside Modifications by Higher-Energy Collisional Dissociation Mass Spectrometry (HCD MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1745-1756. [PMID: 29949056 PMCID: PMC6062210 DOI: 10.1007/s13361-018-1999-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 05/03/2023]
Abstract
The analytical identification of positional isomers (e.g., 3-, N4-, 5-methylcytidine) within the > 160 different post-transcriptional modifications found in RNA can be challenging. Conventional liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) approaches rely on chromatographic separation for accurate identification because the collision-induced dissociation (CID) mass spectra of these isomers nearly exclusively yield identical nucleobase ions (BH2+) from the same molecular ion (MH+). Here, we have explored higher-energy collisional dissociation (HCD) as an alternative fragmentation technique to generate more informative product ions that can be used to differentiate positional isomers. LC-MS/MS of modified nucleosides characterized using HCD led to the creation of structure- and HCD energy-specific fragmentation patterns that generated unique fingerprints, which can be used to identify individual positional isomers even when they cannot be separated chromatographically. While particularly useful for identifying positional isomers, the fingerprinting capabilities enabled by HCD also offer the potential to generate HPLC-independent spectral libraries for the rapid analysis of modified ribonucleosides. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Manasses Jora
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Andrew P Burns
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Robert L Ross
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Peter A Lobue
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Ruoxia Zhao
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Cody M Palumbo
- Department of Chemistry, University of California, Davis, California, 95616, USA
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, California, 95616, USA
| | - Balasubrahmanyam Addepalli
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA.
| |
Collapse
|
26
|
Jacob R, Zander S, Gutschner T. The Dark Side of the Epitranscriptome: Chemical Modifications in Long Non-Coding RNAs. Int J Mol Sci 2017; 18:ijms18112387. [PMID: 29125541 PMCID: PMC5713356 DOI: 10.3390/ijms18112387] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
The broad application of next-generation sequencing technologies in conjunction with improved bioinformatics has helped to illuminate the complexity of the transcriptome, both in terms of quantity and variety. In humans, 70–90% of the genome is transcribed, but only ~2% carries the blueprint for proteins. Hence, there is a huge class of non-translated transcripts, called long non-coding RNAs (lncRNAs), which have received much attention in the past decade. Several studies have shown that lncRNAs are involved in a plethora of cellular signaling pathways and actively regulate gene expression via a broad selection of molecular mechanisms. Only recently, sequencing-based, transcriptome-wide studies have characterized different types of post-transcriptional chemical modifications of RNAs. These modifications have been shown to affect the fate of RNA and further expand the variety of the transcriptome. However, our understanding of their biological function, especially in the context of lncRNAs, is still in its infancy. In this review, we will focus on three epitranscriptomic marks, namely pseudouridine (Ψ), N6-methyladenosine (m6A) and 5-methylcytosine (m5C). We will introduce writers, readers, and erasers of these modifications, and we will present methods for their detection. Finally, we will provide insights into the distribution and function of these chemical modifications in selected, cancer-related lncRNAs.
Collapse
Affiliation(s)
- Roland Jacob
- Faculty of Medicine, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Sindy Zander
- Faculty of Medicine, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Tony Gutschner
- Faculty of Medicine, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| |
Collapse
|
27
|
Glasner H, Riml C, Micura R, Breuker K. Label-free, direct localization and relative quantitation of the RNA nucleobase methylations m6A, m5C, m3U, and m5U by top-down mass spectrometry. Nucleic Acids Res 2017; 45:8014-8025. [PMID: 28549193 PMCID: PMC5570050 DOI: 10.1093/nar/gkx470] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/23/2017] [Indexed: 01/28/2023] Open
Abstract
Nucleobase methylations are ubiquitous posttranscriptional modifications of ribonucleic acids (RNA) that can substantially increase the structural diversity of RNA in a highly dynamic fashion with implications for gene expression and human disease. However, high throughput, deep sequencing does not generally provide information on posttranscriptional modifications (PTMs). A promising alternative approach for the characterization of PTMs, i.e. their identification, localization, and relative quantitation, is top-down mass spectrometry (MS). In this study, we have investigated how specific nucleobase methylations affect RNA ionization in electrospray ionization (ESI), and backbone cleavage in collisionally activated dissociation (CAD) and electron detachment dissociation (EDD). For this purpose, we have developed two new approaches for the characterization of RNA methylations in mixtures of either isomers of RNA or nonisomeric RNA forms. Fragment ions from dissociation experiments were analyzed to identify the modification type, to localize the modification sites, and to reveal the site-specific, relative extent of modification for each site.
Collapse
Affiliation(s)
- Heidelinde Glasner
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christian Riml
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
28
|
Yu N, Lobue PA, Cao X, Limbach PA. RNAModMapper: RNA Modification Mapping Software for Analysis of Liquid Chromatography Tandem Mass Spectrometry Data. Anal Chem 2017; 89:10744-10752. [PMID: 28942636 DOI: 10.1021/acs.analchem.7b01780] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Liquid chromatography tandem mass spectrometry (LC-MS/MS) has proven to be a powerful analytical tool for the characterization of modified ribonucleic acids (RNAs). The typical approach for analyzing modified nucleosides within RNA sequences by mass spectrometry involves ribonuclease digestion followed by LC-MS/MS analysis and data interpretation. Here we describe a new software tool, RNAModMapper (RAMM), to assist in the interpretation of LC-MS/MS data. RAMM is a stand-alone package that requires user-submitted DNA or RNA sequences to create a local database against which collision-induced dissociation (CID) data of modified oligonucleotides can be compared. RAMM can interpret MS/MS data containing modified nucleosides in two modes: fixed and variable. In addition, RAMM can also utilize interpreted MS/MS data for RNA modification mapping back against the input sequence(s). The applicability of RAMM was first tested using total tRNA isolated from Escherichia coli. It was then applied to map modifications found in 16S and 23S rRNA from Streptomyces griseus.
Collapse
Affiliation(s)
- Ningxi Yu
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati , P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Peter A Lobue
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati , P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Xiaoyu Cao
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati , P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati , P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
29
|
van Delft P, Akay A, Huber SM, Bueschl C, Rudolph KLM, Di Domenico T, Schuhmacher R, Miska EA, Balasubramanian S. The Profile and Dynamics of RNA Modifications in Animals. Chembiochem 2017; 18:979-984. [PMID: 28449301 PMCID: PMC5784800 DOI: 10.1002/cbic.201700093] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Indexed: 12/28/2022]
Abstract
More than a hundred distinct modified nucleosides have been identified in RNA, but little is known about their distribution across different organisms, their dynamic nature and their response to cellular and environmental stress. Mass-spectrometry-based methods have been at the forefront of identifying and quantifying modified nucleosides. However, they often require synthetic reference standards, which do not exist in the case of many modified nucleosides, and this therefore impedes their analysis. Here we use a metabolic labelling approach to achieve rapid generation of bio-isotopologues of the complete Caenorhabditis elegans transcriptome and its modifications and use them as reference standards to characterise the RNA modification profile in this multicellular organism through an untargeted liquid-chromatography tandem high-resolution mass spectrometry (LC-HRMS) approach. We furthermore show that several of these RNA modifications have a dynamic response to environmental stress and that, in particular, changes in the tRNA wobble base modification 5-methoxycarbonylmethyl-2-thiouridine (mcm5 s2 U) lead to codon-biased gene-expression changes in starved animals.
Collapse
Affiliation(s)
- Pieter van Delft
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Alper Akay
- Gurdon InstituteUniversity of CambridgeTennis Court RoadCambridgeCB2 1QNUK
- Department of GeneticsUniversity of CambridgeDowning StreetCambridgeCB2 3EHUK
| | - Sabrina M. Huber
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Christoph Bueschl
- Center for Analytical ChemistryDepartment of AgrobiotechnologyUniversity of Natural Resources and Life SciencesViennaKonrad-Lorenz-Strasse 203430Tulln an der DonauAustria
| | - Konrad L. M. Rudolph
- Gurdon InstituteUniversity of CambridgeTennis Court RoadCambridgeCB2 1QNUK
- Department of GeneticsUniversity of CambridgeDowning StreetCambridgeCB2 3EHUK
- Wellcome Trust Sanger InstituteWellcome Trust Genome CampusCambridgeCB10 1SAUK
| | - Tomás Di Domenico
- Gurdon InstituteUniversity of CambridgeTennis Court RoadCambridgeCB2 1QNUK
- Department of GeneticsUniversity of CambridgeDowning StreetCambridgeCB2 3EHUK
- Wellcome Trust Sanger InstituteWellcome Trust Genome CampusCambridgeCB10 1SAUK
| | - Rainer Schuhmacher
- Center for Analytical ChemistryDepartment of AgrobiotechnologyUniversity of Natural Resources and Life SciencesViennaKonrad-Lorenz-Strasse 203430Tulln an der DonauAustria
| | - Eric A. Miska
- Gurdon InstituteUniversity of CambridgeTennis Court RoadCambridgeCB2 1QNUK
- Department of GeneticsUniversity of CambridgeDowning StreetCambridgeCB2 3EHUK
- Wellcome Trust Sanger InstituteWellcome Trust Genome CampusCambridgeCB10 1SAUK
| | - Shankar Balasubramanian
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Cancer Research UK Cambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| |
Collapse
|
30
|
Mapping Post-Transcriptional Modifications onto Transfer Ribonucleic Acid Sequences by Liquid Chromatography Tandem Mass Spectrometry. Biomolecules 2017; 7:biom7010021. [PMID: 28241457 PMCID: PMC5372733 DOI: 10.3390/biom7010021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/15/2017] [Indexed: 01/07/2023] Open
Abstract
Liquid chromatography, coupled with tandem mass spectrometry, has become one of the most popular methods for the analysis of post-transcriptionally modified transfer ribonucleic acids (tRNAs). Given that the information collected using this platform is entirely determined by the mass of the analyte, it has proven to be the gold standard for accurately assigning nucleobases to the sequence. For the past few decades many labs have worked to improve the analysis, contiguous to instrumentation manufacturers developing faster and more sensitive instruments. With biological discoveries relating to ribonucleic acid happening more frequently, mass spectrometry has been invaluable in helping to understand what is happening at the molecular level. Here we present a brief overview of the methods that have been developed and refined for the analysis of modified tRNAs by liquid chromatography tandem mass spectrometry.
Collapse
|
31
|
tRNAmodpred: A computational method for predicting posttranscriptional modifications in tRNAs. Methods 2016; 107:34-41. [PMID: 27016142 DOI: 10.1016/j.ymeth.2016.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 11/20/2022] Open
Abstract
tRNA molecules contain numerous chemically altered nucleosides, which are formed by enzymatic modification of the primary transcripts during the complex tRNA maturation process. Some of the modifications are introduced by single reactions, while other require complex series of reactions carried out by several different enzymes. The location and distribution of various types of modifications vary greatly between different tRNA molecules, organisms and organelles. We have developed a computational method tRNAmodpred, for predicting modifications in tRNA sequences. Briefly, our method takes as an input one or more unmodified tRNA sequences and a set of protein sequences corresponding to a proteome of a cell. Subsequently it identifies homologs of known tRNA modification enzymes in the proteome, predicts tRNA modification activities and maps them onto known pathways of RNA modification from the MODOMICS database. Thereby, theoretically possible modification pathways are identified, and products of these modification reactions are proposed for query tRNAs. This method allows for predicting modification patterns for newly sequenced genomes as well as for checking tentative modification status of tRNAs from one species treated with enzymes from another source, e.g. to predict the possible modifications of eukaryotic tRNAs expressed in bacteria. tRNAmodpred is freely available as a web server at http://genesilico.pl/trnamodpred/.
Collapse
|
32
|
Abstract
A common feature of ribonucleic acids (RNAs) is that they can undergo a variety of chemical modifications. As nearly all of these chemical modifications result in an increase in the mass of the canonical nucleoside, mass spectrometry has long been a powerful approach for identifying and characterizing modified RNAs. Over the past several years, significant advances have been made in method development and software for interpreting tandem mass spectra resulting in approaches that can yield qualitative and quantitative information on RNA modifications, often at the level of sequence specificity. We discuss these advances along with instrumentation developments that have increased our ability to extract such information from relatively complex biological samples. With the increasing interest in how these modifications impact the epitranscriptome, mass spectrometry will continue to play an important role in bioanalytical investigations revolving around RNA.
Collapse
Affiliation(s)
- Collin Wetzel
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, PO Box 210172. and University of Cincinnati, Cincinnati, OH 45221-0172, USA.
| | | |
Collapse
|
33
|
Rose RE, Pazos MA, Curcio MJ, Fabris D. Global Epitranscriptomics Profiling of RNA Post-Transcriptional Modifications as an Effective Tool for Investigating the Epitranscriptomics of Stress Response. Mol Cell Proteomics 2016; 15:932-44. [PMID: 26733207 DOI: 10.1074/mcp.m115.054718] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 02/01/2023] Open
Abstract
The simultaneous detection of all the post-transcriptional modifications (PTMs) that decorate cellular RNA can provide comprehensive information on the effects of changing environmental conditions on the entire epitranscriptome. To capture this type of information, we performed the analysis of ribonucleotide mixtures produced by hydrolysis of total RNA extracts from S. cerevisiae that was grown under hyperosmotic and heat shock conditions. Their global PTM profiles clearly indicated that the cellular responses to these types of stresses involved profound changes in the production of specific PTMs. The observed changes involved not only up-/down-regulation of typical PTMs, but also the outright induction of new ones that were absent under normal conditions, or the elimination of others that were normally present. Pointing toward the broad involvement of different classes of RNAs, many of the newly observed PTMs differed from those engaged in the known tRNA-based mechanism of translational recoding, which is induced by oxidative stress. Some of the expression effects were stress-specific, whereas others were not, thus suggesting that RNA PTMs may perform multifaceted activities in stress response, which are subjected to distinctive regulatory pathways. To explore their signaling networks, we implemented a strategy based on the systematic deletion of genes that connect established response genes with PTM biogenetic enzymes in a putative interactomic map. The results clearly identified PTMs that were under direct HOG control, a well-known protein kinase pathway involved in stress response in eukaryotes. Activation of this signaling pathway has been shown to result in the stabilization of numerous mRNAs and the induction of selected lncRNAs involved in chromatin remodeling. The fact that PTMs are capable of altering the activity of the parent RNAs suggest their possible participation in feedback mechanisms aimed at modulating the regulatory functions of such RNAs. This tantalizing hypothesis will be the object of future studies.
Collapse
Affiliation(s)
- Rebecca E Rose
- From the ‡The RNA Institute, University at Albany (SUNY), Albany, New York 12222
| | - Manuel A Pazos
- From the ‡The RNA Institute, University at Albany (SUNY), Albany, New York 12222
| | - M Joan Curcio
- From the ‡The RNA Institute, University at Albany (SUNY), Albany, New York 12222; ‖Laboratory of Molecular Genetics, Wadsworth Center, Albany, New York 12208
| | - Daniele Fabris
- From the ‡The RNA Institute, University at Albany (SUNY), Albany, New York 12222;
| |
Collapse
|
34
|
Post-Transcriptional Modifications of RNA: Impact on RNA Function and Human Health. MODIFIED NUCLEIC ACIDS IN BIOLOGY AND MEDICINE 2016. [DOI: 10.1007/978-3-319-34175-0_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Basanta-Sanchez M, Temple S, Ansari SA, D'Amico A, Agris PF. Attomole quantification and global profile of RNA modifications: Epitranscriptome of human neural stem cells. Nucleic Acids Res 2015; 44:e26. [PMID: 26438536 PMCID: PMC4756851 DOI: 10.1093/nar/gkv971] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/15/2015] [Indexed: 01/09/2023] Open
Abstract
Exploration of the epitranscriptome requires the development of highly sensitive and accurate technologies in order to elucidate the contributions of the more than 100 RNA modifications to cell processes. A highly sensitive and accurate ultra-high performance liquid chromatography—tandem mass spectrometry method was developed to simultaneously detect and quantify 28 modified and four major nucleosides in less than 20 min. Absolute concentrations were calculated using extinction coefficients of each of the RNA modifications studied. A comprehensive RNA modifications database of UV profiles and extinction coefficient is reported within a 2.3–5.2 % relative standard deviation. Excellent linearity was observed 0.99227–0.99999 and limit of detection values ranged from 63.75 attomoles to 1.21 femtomoles. The analytical performance was evaluated by analyzing RNA modifications from 100 ng of RNA from human pluripotent stem cell-derived neural cells. Modifications were detected at concentrations four orders of magnitude lower than the corresponding parental nucleosides, and as low as 23.01 femtograms, 64.09 attomoles. Direct and global quantitative analysis of RNA modifications are among the advantages of this new approach.
Collapse
Affiliation(s)
| | | | | | - Anna D'Amico
- The RNA Institute, University at Albany, Albany, NY, USA
| | - Paul F Agris
- The RNA Institute, University at Albany, Albany, NY, USA
| |
Collapse
|