1
|
Aguilar R, Rosenberg M, Levy V, Lee JT. An evolving landscape of PRC2-RNA interactions in chromatin regulation. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00850-3. [PMID: 40307460 DOI: 10.1038/s41580-025-00850-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 05/02/2025]
Abstract
A major unsolved problem in epigenetics is how RNA regulates Polycomb repressive complex 2 (PRC2), a complex that trimethylates histone H3 Lys27 (H3K27me3) to form repressive chromatin. Key questions include how PRC2 binds RNA in vivo and what the functional consequences of binding are. In this Perspective, we expound on the viewpoint that RNA is integral to the stepwise regulation of PRC2 activity. Using the long non-coding RNA XIST and X chromosome inactivation as a model, we discuss evidence indicating that RNA is involved in PRC2 recruitment onto chromatin, in induction of its catalytic activity and in its eviction from chromatin. Studies have also implicated RNA in controlling promoter-proximal pausing of RNA polymerase II. The cumulative data argue that the functional consequences of PRC2-RNA interactions crucially depend on RNA conformation. We recognize that alternative hypotheses exist and therefore we attempt to integrate contrary data. Thus, although an RNA-rich landscape is emerging for Polycomb complexes, additional work is required to resolve a broad range of data interpretations.
Collapse
Affiliation(s)
- Rodrigo Aguilar
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Michael Rosenberg
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Vered Levy
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Shah K, Anastasakou E, Sejour L, Wang Y, Wert-Lamas L, Rauchet C, Studer S, Goller S, Distel RJ, Marasco W, Perera L, Vlachos IS, Novina CD. LncRNA SLNCR phenocopies the E2F1 DNA binding site to promote melanoma progression. Cell Rep 2025; 44:115608. [PMID: 40279246 DOI: 10.1016/j.celrep.2025.115608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 02/20/2025] [Accepted: 04/02/2025] [Indexed: 04/27/2025] Open
Abstract
The long non-coding RNA SLNCR and the transcription factor E2F1 are known melanoma oncogenes. We show that SLNCR binds to E2F1 to promote the proliferation, invasion, and migration of melanoma cells from the bloodstream into the lungs. Blocking SLNCR-E2F1 complex formation without reducing the levels of either SLNCR or E2F1 prevents lung extravasation in mice. A 60-nt fragment of SLNCR contains two RNA analogs of the E2F1 DNA binding site (BS) in opposite orientations and can form a hairpin RNA that phenocopies the E2F1 DNA BS. Molecular dynamics (MD) simulations and biochemical experiments indicate that this fragment of SLNCR binds to the E2F1 DNA-binding domain more effectively than the E2F1 DNA BS. MD simulations predict higher affinity for DNA-E2F1 complex formation but faster kinetics and a greater number of RNA-amino acid contacts for the RNA-E2F1 complex, suggesting that RNA binding to E2F1 is more kinetically favorable.
Collapse
Affiliation(s)
- Kushani Shah
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Eleni Anastasakou
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Leinal Sejour
- Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yufei Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Leon Wert-Lamas
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Christopher Rauchet
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Sabine Studer
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA; Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Simon Goller
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Robert J Distel
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Wayne Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, NIEHS, NIH, Durham, NC 27709, USA
| | - Ioannis S Vlachos
- Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Carl D Novina
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA.
| |
Collapse
|
3
|
Xi S, Shan J, Wu X, Wang H, Zhang MR, Oyetunji S, Xu H, Xiao Z, Tolunay T, Carr SR, Hoang CD, Schrump DS. Repression of ZNFX1 by LncRNA ZFAS1 mediates tobacco-induced pulmonary carcinogenesis. Cell Mol Biol Lett 2025; 30:44. [PMID: 40211119 PMCID: PMC11983736 DOI: 10.1186/s11658-025-00705-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/18/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Despite exhaustive research efforts, integrated genetic and epigenetic mechanisms contributing to tobacco-induced initiation and progression of lung cancers have yet to be fully elucidated. In particular, limited information is available regarding dysregulation of noncoding RNAs during pulmonary carcinogenesis. METHODS We examined correlations and interactions of long noncoding (lnc) RNAs and protein-coding genes in normal respiratory epithelial cells (NREC) and pulmonary tumor cells following exposure to cigarette smoke condensate (CSC) using gene expression arrays, qRT-PCR, western blot, growth assays, transwell assays, and murine xenograft models, as well as methylated DNA immunoprecipitation, RNA cross-link immunoprecipitation, and quantitative chromatin immunoprecipitation techniques with bioinformatics analyses. RESULTS Among diverse alterations of lncRNA and coding gene expression profiles in NREC exposed to CSC, we observed upregulation of lncRNA ZFAS1 and repression of an adjacent protein-coding gene, ZNFX1, and confirmed these findings in primary lung cancers. Phenotypic experiments indicated that ZFAS1 is an oncogene, whereas ZNFX1 functions as a tumor suppressor in lung cancer cells. Mechanistically, CSC induces ZFAS1 expression via SP1 and NFĸB-associated activation of an enhancer linked to ZFAS1. Subsequently, ZFAS1 interacts with DNA methyltransferases and polycomb group proteins to silence ZNFX1. Mithramycin and methysticin repress ZFAS1 and upregulate ZNFX1 in lung cancer cells in vitro and in vivo. CONCLUSION These studies reveal a novel feedforward lncRNA circuit contributing to pulmonary carcinogenesis and suggest that pharmacologic targeting of SP1 and/or NFĸB may be useful strategies for restoring ZNFX1 expression for lung tumor therapy.
Collapse
Affiliation(s)
- Sichuan Xi
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Jigui Shan
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Xinwei Wu
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Haitao Wang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Mary R Zhang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Shakirat Oyetunji
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Hong Xu
- Laboratory of Cancer Prevention, National Cancer Institute, Frederick, MD, 21702, USA
| | - Zuoxiang Xiao
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Tuana Tolunay
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Shamus R Carr
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Chuong D Hoang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Meng Y, Zou L. Building an integrated view of R-loops, transcription, and chromatin. DNA Repair (Amst) 2025; 149:103832. [PMID: 40222192 DOI: 10.1016/j.dnarep.2025.103832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/17/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025]
Abstract
R-loops are dynamic three-stranded nucleic acid structures that form naturally during transcription. These structures typically arise when the newly synthesized RNA hybridizes with the DNA template strand, displacing the non-template DNA strand. R-loops are not only found at protein-coding genes but also in regions producing non-coding RNAs, such as telomeres, centromeres, ribosomal DNA genes, and transfer RNA genes. While R-loops are regulated by both the process of transcription and chromatin structures, they also play a critical role in modulating transcription and influencing the chromatin landscape. Moreover, the interactions between R-loops, transcription, and chromatin are essential for maintaining genome stability and are often disrupted in various human diseases. In this review, we will explore recent insights into the intricate relationship between R-loops and transcription, as well as their crosstalk with chromatin.
Collapse
Affiliation(s)
- Yingying Meng
- Department of Pharmacology and Cancer Biology Duke University School of Medicine, Durham, NC, USA
| | - Lee Zou
- Department of Pharmacology and Cancer Biology Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
5
|
Cortellesi E, Savini I, Veneziano M, Gambacurta A, Catani MV, Gasperi V. Decoding the Epigenome of Breast Cancer. Int J Mol Sci 2025; 26:2605. [PMID: 40141248 PMCID: PMC11942310 DOI: 10.3390/ijms26062605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Breast cancer (BC) is the most prevalent malignancy among women, characterized by extensive heterogeneity stemming from molecular and genetic alterations. This review explores the intricate epigenetic landscape of BC, highlighting the significant role of epigenetic modifications-particularly DNA methylation, histone modifications, and the influence of non-coding RNAs-in the initiation, progression, and prognosis of the disease. Epigenetic alterations drive crucial processes, including gene expression regulation, cell differentiation, and tumor microenvironment interactions, contributing to tumorigenesis and metastatic potential. Notably, aberrations in DNA methylation patterns, including global hypomethylation and hypermethylation of CpG islands, have been associated with distinct BC subtypes, with implications for early detection and risk assessment. Furthermore, histone modifications, such as acetylation and methylation, affect cancer cell plasticity and aggressiveness by profoundly influencing chromatin dynamics and gene transcription. Finally, non-coding RNAs contribute by modulating epigenetic machinery and gene expression. Despite advances in our knowledge, clinical application of epigenetic therapies in BC is still challenging, often yielding limited efficacy when used alone. However, combining epi-drugs with established treatments shows promise for enhancing therapeutic outcomes. This review underscores the importance of integrating epigenetic insights into personalized BC treatment strategies, emphasizing the potential of epigenetic biomarkers for improving diagnosis, prognosis, and therapeutic response in affected patients.
Collapse
Affiliation(s)
- Elisa Cortellesi
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Isabella Savini
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Matteo Veneziano
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Alessandra Gambacurta
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
- NAST Centre (Nanoscience & Nanotechnology & Innovative Instrumentation), Tor Vergata University of Rome, 00133 Rome, Italy
| | - Maria Valeria Catani
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Valeria Gasperi
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| |
Collapse
|
6
|
Yang Q, Zhou Z, Li L, Lu R, Hou G, Huang C, Huang J, Li H, Zhang Y, Li J, Zhang Y, Xu A, Chen R, Wang Y, Zhao X, Huang J, Wang Y, Zhao X, Yu J. The NEXT complex regulates H3K27me3 levels to affect cancer progression by degrading G4/U-rich lncRNAs. Nucleic Acids Res 2025; 53:gkaf107. [PMID: 39988317 PMCID: PMC11840553 DOI: 10.1093/nar/gkaf107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025] Open
Abstract
Polycomb repressive complex 2 (PRC2) is responsible for depositing H3K27me3 and plays essential roles in gene silencing during development and cancer. Meanwhile, the nuclear exosome targeting (NEXT) complex facilitates the degradation of numerous noncoding RNAs in the nucleoplasm. Here we find that the functional deficiency of the NEXT complex leads to an overall decrease in H3K27me3 levels. Specifically, ZCCHC8 depletion results in significant upregulation of nascent long noncoding RNAs (lncRNAs) containing G-quadruplex (G4) and U-Rich motifs (G4/U-Rich lncRNAs). The G4 motif binds to EZH2, blocking the chromatin recruitment of PRC2, while the U-Rich motif is specifically recognized by the NEXT complex for RNA exosome-mediated degradation. In tumor tissues with high ZCCHC8 expression in clear cell renal cell carcinoma (ccRCC) and lung adenocarcinoma (LUAD) patients, the NEXT complex excessively degrades nascent G4/U-Rich lncRNAs. Consequently, PRC2 core subunits are released and recruited to neighboring genomic loci, resulting in increased H3K27me3 levels and downregulation of adjacent genes, including tumor suppressors like SEMA5A and ARID1A. Notably, the EZH2 inhibitor Tazemetostat (EPZ-6438) exhibits greater sensitivity in cells with higher ZCCHC8 expression. Altogether, our findings demonstrate a novel mechanism that the NEXT complex regulates H3K27me3 levels by degrading nascent G4/U-Rich lncRNAs in cancer cells.
Collapse
Affiliation(s)
- Qianqian Yang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Zihan Zhou
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Lian Li
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Runhui Lu
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Guofang Hou
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Jiayi Huang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Hongyan Li
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Yafan Zhang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Junya Li
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Yixin Zhang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Anan Xu
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Yiwei Wang
- Department of Urology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaojing Zhao
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| |
Collapse
|
7
|
Kotey SK, Tan X, Kinser AL, Liu L, Cheng Y. Host Long Noncoding RNAs as Key Players in Mycobacteria-Host Interactions. Microorganisms 2024; 12:2656. [PMID: 39770858 PMCID: PMC11728548 DOI: 10.3390/microorganisms12122656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Mycobacterial infections, caused by various species within the Mycobacterium genus, remain one of the main challenges to global health across the world. Understanding the complex interplay between the host and mycobacterial pathogens is essential for developing effective diagnostic and therapeutic strategies. Host long noncoding RNAs (lncRNAs) have emerged as key regulators in cellular response to bacterial infections within host cells. This review provides an overview of the intricate relationship between mycobacterial infections and host lncRNAs in the context of Mycobacterium tuberculosis and non-tuberculous mycobacterium (NTM) infections. Accumulation of evidence indicates that host lncRNAs play a critical role in regulating cellular response to mycobacterial infection within host cells, such as macrophages, the primary host cells for mycobacterial intracellular survival. The expression of specific host lncRNAs has been implicated in the pathogenesis of mycobacterial infections, providing potential targets for the development of novel host-directed therapies and biomarkers for TB diagnosis. In summary, this review aims to highlight the current state of knowledge regarding the involvement of host lncRNAs in mycobacterial infections. It also emphasizes their potential application as novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Stephen K. Kotey
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (S.K.K.); (X.T.); (A.L.K.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Xuejuan Tan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (S.K.K.); (X.T.); (A.L.K.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Audrey L. Kinser
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (S.K.K.); (X.T.); (A.L.K.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yong Cheng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (S.K.K.); (X.T.); (A.L.K.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
8
|
Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. LncRNAs and the cancer epigenome: Mechanisms and therapeutic potential. Cancer Lett 2024; 605:217297. [PMID: 39424260 DOI: 10.1016/j.canlet.2024.217297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical regulators of epigenome, modulating gene expression through DNA methylation, histone modification, and/or chromosome remodeling. Dysregulated lncRNAs act as oncogenes or tumor suppressors, driving tumor progression by shaping the cancer epigenome. By interacting with the writers, readers, and erasers of the epigenetic script, lncRNAs induce epigenetic modifications that bring about changes in cancer cell proliferation, apoptosis, epithelial-mesenchymal transition, migration, invasion, metastasis, cancer stemness and chemoresistance. This review analyzes and discusses the multifaceted role of lncRNAs in cancer pathobiology, from cancer genesis and progression through metastasis and therapy resistance. It also explores the therapeutic potential of targeting lncRNAs through innovative diagnostic, prognostic, and therapeutic strategies. Understanding the dynamic interplay between lncRNAs and epigenome is crucial for developing personalized therapeutic strategies, offering new avenues for precision cancer medicine.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 151-921, South Korea.
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
9
|
Brinkmeier ML, George AS, Cheung LYM, Mills RE, Melamed P, Camper SA. Long Noncoding RNAs Expressed in Mouse Pituitary Development and Mature Hormone-Producing Cells. Endocrinology 2024; 165:bqae147. [PMID: 39487735 PMCID: PMC11565238 DOI: 10.1210/endocr/bqae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/09/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Mammalian genomes contain thousands of genes for long noncoding RNA (lncRNAs), some of which have been shown to affect protein coding gene expression through diverse mechanisms. The lncRNA transcripts are longer than 200 nucleotides and are often capped, spliced, and polyadenylated, but not translated into protein. Nuclear lncRNAs can modify chromatin structure and transcription in trans or cis by interacting with the DNA, forming R-loops, and recruiting regulatory proteins. Not much is known about the role of lncRNA in pituitary gland differentiation and function. We mined transcriptome data from mouse pituitary glands collected at embryonic days 12.5 and 14.5 and identified over 200 different lncRNA transcripts. To develop a research resource for the study of lncRNA, we used pituitary cre transgenes to tag pituitary cell types in adult mice with fluorescent markers, and enriched for thyrotropes, gonadotropes, and somatotropes using fluorescence-activated cell sorting. We determined the transcriptome of each cell population using RNA sequencing and mined the data for lncRNA. We detected hundreds of lncRNAs in adult pituitary cells; a few were located immediately nearby genes that encode pituitary hormones or lineage-specific transcription factors. The location of these lncRNAs suggests the possibility of a cis-acting regulatory role in pituitary development or function, and we observe coordinated expression of 2 of them with their putative target genes in transgenic mice. This research resource sets the foundation for examining the actions of lncRNAs on their putative target genes and determining whether they have roles during development and in response to physiological demand.
Collapse
Affiliation(s)
| | - Akima Semone George
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 41809-5618, USA
- Graduate Program in Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Leonard Yan Ming Cheung
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 41809-5618, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Ryan Edward Mills
- Graduate Program in Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Philippa Melamed
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Sally Ann Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 41809-5618, USA
| |
Collapse
|
10
|
Song J, Yao L, Gooding AR, Thron V, Kasinath V, Cech TR. Diverse RNA Structures Induce PRC2 Dimerization and Inhibit Histone Methyltransferase Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610323. [PMID: 39257770 PMCID: PMC11383989 DOI: 10.1101/2024.08.29.610323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Methyltransferase PRC2 (Polycomb Repressive Complex 2) introduces histone H3K27 trimethylation, a repressive chromatin mark, to tune the differential expression of genes. PRC2 is precisely regulated by accessory proteins, histone post-translational modifications and, notably, RNA. Research on PRC2-associated RNA has mostly focused on the tight-binding G-quadruplex (G4) RNAs, which inhibit PRC2 enzymatic activity in vitro and in cells. Our recent cryo-EM structure provided a molecular mechanism for G4 RNA inactivating PRC2 via dimerization, but it remained unclear how diverse RNAs associate with and regulate PRC2. Here, we show that a single-stranded G-rich RNA and an atypical G4 structure called pUG-fold unexpectedly also mediate near-identical PRC2 dimerization resulting in inhibition of PRC2 methyltransferase activity. The conformational flexibility of arginine-rich loops within subunits EZH2 and AEBP2 of PRC2 can accommodate diverse RNA secondary structures, resulting in protein-RNA and protein-protein interfaces similar to those observed previously with G4 RNA. Furthermore, we address a recent report that failed to detect PRC2-associated RNAs in living cells by demonstrating the insensitivity of PRC2-RNA interaction to photochemical crosslinking. Our results support the significance of RNA-mediated PRC2 regulation by showing that this interaction is not limited to a single RNA secondary structure, consistent with the broad PRC2 transcriptome containing many G-tract RNAs incapable of folding into G4 structures.
Collapse
|
11
|
Yankey A, Oh M, Lee BL, Desai TK, Somarowthu S. A novel partnership between lncTCF7 and SND1 regulates the expression of the TCF7 gene via recruitment of the SWI/SNF complex. Sci Rep 2024; 14:19384. [PMID: 39169000 PMCID: PMC11339422 DOI: 10.1038/s41598-024-69792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in cellular pathways and disease progression, yet their molecular mechanisms remain largely understudied. The lncRNA lncTCF7 has been shown to promote tumor progression by recruiting the SWI/SNF complex to the TCF7 promoter, activating its expression and the WNT signaling pathway. However, how lncTCF7 recruits SWI/SNF remains to be determined, and lncTCF7-specific binding partners are unknown. Using RNA-pulldown and quantitative mass spectrometry, we identified a novel interacting protein partner for lncTCF7, SND1, a multifunctional RNA binding protein that can also function as a transcription co-activator. Knockdown analysis of lncTCF7 and SND1 reveals that they are both required for the expression of TCF7. Chromatin immunoprecipitation assays suggest that both SND1 and lncTCF7 are required for recruiting the SWI/SNF chromatin remodeling complex, and these functions, in tandem, activate the expression of TCF7. Finally, using structural probing and RNA-pulldown of lncTCF7 and its subdomains, we highlight the potential binding region for SND1 in the 3'-end of lncTCF7. Overall, this study highlights the critical roles lncRNAs play in regulating gene expression and provides new insights into the complex network of interactions that underlie this process.
Collapse
Affiliation(s)
- Allison Yankey
- Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Mihyun Oh
- Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Bo Lim Lee
- Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Tisha Kalpesh Desai
- Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Srinivas Somarowthu
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Poltronieri P. Regulatory RNAs: role as scaffolds assembling protein complexes and their epigenetic deregulation. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:841-876. [PMID: 39280246 PMCID: PMC11390297 DOI: 10.37349/etat.2024.00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/26/2024] [Indexed: 09/18/2024] Open
Abstract
Recently, new data have been added to the interaction between non-coding RNAs (ncRNAs) and epigenetic machinery. Epigenetics includes enzymes involved in DNA methylation, histone modifications, and RNA modifications, and mechanisms underlying chromatin structure, repressive states, and active states operating in transcription. The main focus is on long ncRNAs (lncRNAs) acting as scaffolds to assemble protein complexes. This review does not cover RNA's role in sponging microRNAs, or decoy functions. Several lncRNAs were shown to regulate chromatin activation and repression by interacting with Polycomb repressive complexes and mixed-lineage leukemia (MLL) activating complexes. Various groups reported on enhancer of zeste homolog 2 (EZH2) interactions with regulatory RNAs. Knowledge of the function of these complexes opens the perspective to develop new therapeutics for cancer treatment. Lastly, the interplay between lncRNAs and epitranscriptomic modifications in cancers paves the way for new targets in cancer therapy. The approach to inhibit lncRNAs interaction with protein complexes and perspective to regulate epitrascriptomics-regulated RNAs may bring new compounds as therapeuticals in various types of cancer.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Agrofood Department, National Research Council, CNR-ISPA, 73100 Lecce, Italy
| |
Collapse
|
13
|
Amiard S, Feit L, Vanrobays E, Simon L, Le Goff S, Loizeau L, Wolff L, Butter F, Bourbousse C, Barneche F, Tatout C, Probst AV. The TELOMERE REPEAT BINDING proteins TRB4 and TRB5 function as transcriptional activators of PRC2-controlled genes to regulate plant development. PLANT COMMUNICATIONS 2024; 5:100890. [PMID: 38566416 PMCID: PMC11287191 DOI: 10.1016/j.xplc.2024.100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/07/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Plant-specific transcriptional regulators called TELOMERE REPEAT BINDING proteins (TRBs) combine two DNA-binding domains, the GH1 domain, which binds to linker DNA and is shared with H1 histones, and the Myb/SANT domain, which specifically recognizes the telobox DNA-binding site motif. TRB1, TRB2, and TRB3 proteins recruit Polycomb group complex 2 (PRC2) to deposit H3K27me3 and JMJ14 to remove H3K4me3 at gene promoters containing telobox motifs to repress transcription. Here, we demonstrate that TRB4 and TRB5, two related paralogs belonging to a separate TRB clade conserved in spermatophytes, regulate the transcription of several hundred genes involved in developmental responses to environmental cues. TRB4 binds to several thousand sites in the genome, mainly at transcription start sites and promoter regions of transcriptionally active and H3K4me3-marked genes, but, unlike TRB1, it is not enriched at H3K27me3-marked gene bodies. However, TRB4 can physically interact with the catalytic components of PRC2, SWINGER, and CURLY LEAF (CLF). Unexpectedly, we show that TRB4 and TRB5 are required for distinctive phenotypic traits observed in clf mutant plants and thus function as transcriptional activators of several hundred CLF-controlled genes, including key flowering genes. We further demonstrate that TRB4 shares multiple target genes with TRB1 and physically and genetically interacts with members of both TRB clades. Collectively, these results reveal that TRB proteins engage in both positive and negative interactions with other members of the family to regulate plant development through both PRC2-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Simon Amiard
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France.
| | - Léa Feit
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Emmanuel Vanrobays
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Lauriane Simon
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Samuel Le Goff
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Loriane Loizeau
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Léa Wolff
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Falk Butter
- Institute of Molecular Biology, 55128 Mainz, Germany
| | - Clara Bourbousse
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Fredy Barneche
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Christophe Tatout
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Aline V Probst
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France.
| |
Collapse
|
14
|
Gonzales LR, Blom S, Henriques R, Bachem CWB, Immink RGH. LncRNAs: the art of being influential without protein. TRENDS IN PLANT SCIENCE 2024; 29:770-785. [PMID: 38368122 DOI: 10.1016/j.tplants.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/19/2024]
Abstract
The plant long noncoding (lnc)RNA field is on the brink of transitioning from large-scale identification of lncRNAs to their functional characterization. Due to the cross-kingdom conservation of interaction types and molecular functions, there is much to be learned from mammalian lncRNA research. Here, we discuss the different molecular processes involving lncRNAs from the regulation of chromatin to splicing. Furthermore, we discuss the lncRNA interactome, which includes proteins, other RNAs, and DNA. We explore and discuss how mammalian lncRNA functionalities could be reflected in similar pathways in plants and hypothesize that several breakthroughs in mammalian research could lead to the discovery of novel plant lncRNA molecular functions. Expanding our knowledge of the biological role of lncRNAs and their multiple applications paves the way for future agricultural applications.
Collapse
Affiliation(s)
| | - Suze Blom
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands; Bioscience, Wageningen University and Research, Wageningen, The Netherlands
| | - Rossana Henriques
- School of Biological, Earth, and Environmental Sciences, University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Christian W B Bachem
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands; Bioscience, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
15
|
Gail EH, Healy E, Flanigan SF, Jones N, Ng XH, Uckelmann M, Levina V, Zhang Q, Davidovich C. Inseparable RNA binding and chromatin modification activities of a nucleosome-interacting surface in EZH2. Nat Genet 2024; 56:1193-1202. [PMID: 38744974 PMCID: PMC11176075 DOI: 10.1038/s41588-024-01740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 04/02/2024] [Indexed: 05/16/2024]
Abstract
Polycomb repressive complex 2 (PRC2) interacts with RNA in cells, but there is no consensus on how RNA regulates PRC2 canonical functions, including chromatin modification and the maintenance of transcription programs in lineage-committed cells. We assayed two separation-of-function mutants of the PRC2 catalytic subunit EZH2, defective in RNA binding but functional in methyltransferase activity. We find that part of the RNA-binding surface of EZH2 is required for chromatin modification, yet this activity is independent of RNA. Mechanistically, the RNA-binding surface within EZH2 is required for chromatin modification in vitro and in cells, through interactions with nucleosomal DNA. Contrarily, an RNA-binding-defective mutant exhibited normal chromatin modification activity in vitro and in lineage-committed cells, accompanied by normal gene repression activity. Collectively, we show that part of the RNA-binding surface of EZH2, rather than the RNA-binding activity per se, is required for the histone methylation in vitro and in cells, through interactions with the substrate nucleosome.
Collapse
Affiliation(s)
- Emma H Gail
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Evan Healy
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Sarena F Flanigan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Natasha Jones
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Xiao Han Ng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Michael Uckelmann
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Vitalina Levina
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Qi Zhang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia.
- EMBL-Australia at SAiGENCI, Adelaide, South Australia, Australia.
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
- EMBL-Australia, Clayton, Victoria, Australia.
| |
Collapse
|
16
|
Umapathy VR, Natarajan PM, Swamikannu B. Molecular and Therapeutic Roles of Non-Coding RNAs in Oral Cancer-A Review. Molecules 2024; 29:2402. [PMID: 38792263 PMCID: PMC11123887 DOI: 10.3390/molecules29102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Oral cancer (OC) is among the most common malignancies in the world. Despite advances in therapy, the worst-case scenario for OC remains metastasis, with a 50% survival rate. Therefore, it is critical to comprehend the pathophysiology of the condition and to create diagnostic and treatment plans for OC. The development of high-throughput genome sequencing has revealed that over 90% of the human genome encodes non-coding transcripts, or transcripts that do not code for any proteins. This paper describes the function of these different kinds of non-coding RNAs (ncRNAs) in OC as well as their intriguing therapeutic potential. The onset and development of OC, as well as treatment resistance, are linked to dysregulated ncRNA expression. These ncRNAs' potentially significant roles in diagnosis and prognosis have been suggested by their differing expression in blood or saliva. We have outlined every promising feature of ncRNAs in the treatment of OC in this study.
Collapse
Affiliation(s)
- Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Dr. M.G.R. Educational and Research Institute, Thai Moogambigai Dental College and Hospital, Chennai 600107, Tamil Nadu, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Centre of Medical and Bio-Allied Health Sciences and Research Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Bhuminathan Swamikannu
- Department of Prosthodontics, Sree Balaji Dental College and Hospital, Pallikaranai, BIHER, Chennai 600100, Tamil Nadu, India;
| |
Collapse
|
17
|
Lee YW, Weissbein U, Blum R, Lee JT. G-quadruplex folding in Xist RNA antagonizes PRC2 activity for stepwise regulation of X chromosome inactivation. Mol Cell 2024; 84:1870-1885.e9. [PMID: 38759625 PMCID: PMC11505738 DOI: 10.1016/j.molcel.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/25/2023] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
How Polycomb repressive complex 2 (PRC2) is regulated by RNA remains an unsolved problem. Although PRC2 binds G-tracts with the potential to form RNA G-quadruplexes (rG4s), whether rG4s fold extensively in vivo and whether PRC2 binds folded or unfolded rG4 are unknown. Using the X-inactivation model in mouse embryonic stem cells, here we identify multiple folded rG4s in Xist RNA and demonstrate that PRC2 preferentially binds folded rG4s. High-affinity rG4 binding inhibits PRC2's histone methyltransferase activity, and stabilizing rG4 in vivo antagonizes H3 at lysine 27 (H3K27me3) enrichment on the inactive X chromosome. Surprisingly, mutagenizing the rG4 does not affect PRC2 recruitment but promotes its release and catalytic activation on chromatin. H3K27me3 marks are misplaced, however, and gene silencing is compromised. Xist-PRC2 complexes become entrapped in the S1 chromosome compartment, precluding the required translocation into the S2 compartment. Thus, Xist rG4 folding controls PRC2 activity, H3K27me3 enrichment, and the stepwise regulation of chromosome-wide gene silencing.
Collapse
Affiliation(s)
- Yong Woo Lee
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Uri Weissbein
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Roy Blum
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
18
|
Saha D, Animireddy S, Lee J, Thommen A, Murvin MM, Lu Y, Calabrese JM, Bartholomew B. Enhancer switching in cell lineage priming is linked to eRNA, Brg1's AT-hook, and SWI/SNF recruitment. Mol Cell 2024; 84:1855-1869.e5. [PMID: 38593804 PMCID: PMC11104297 DOI: 10.1016/j.molcel.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/24/2023] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
RNA transcribed from enhancers, i.e., eRNA, has been suggested to directly activate transcription by recruiting transcription factors and co-activators. Although there have been specific examples of eRNA functioning in this way, it is not clear how general this may be. We find that the AT-hook of SWI/SNF preferentially binds RNA and, as part of the esBAF complex, associates with eRNA transcribed from intronic and intergenic regions. Our data suggest that SWI/SNF is globally recruited in cis by eRNA to cell-type-specific enhancers, representative of two distinct stages that mimic early mammalian development, and not at enhancers that are shared between the two stages. In this manner, SWI/SNF facilitates recruitment and/or activation of MLL3/4, p300/CBP, and Mediator to stage-specific enhancers and super-enhancers that regulate the transcription of metabolic and cell lineage priming-related genes. These findings highlight a connection between ATP-dependent chromatin remodeling and eRNA in cell identity and typical- and super-enhancer activation.
Collapse
Affiliation(s)
- Dhurjhoti Saha
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA; UT MD Anderson Cancer, Center for Cancer Epigenetics, Houston, TX 77054, USA
| | - Srinivas Animireddy
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA; UT MD Anderson Cancer, Center for Cancer Epigenetics, Houston, TX 77054, USA
| | - Junwoo Lee
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA; UT MD Anderson Cancer, Center for Cancer Epigenetics, Houston, TX 77054, USA
| | - Anna Thommen
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA; UT MD Anderson Cancer, Center for Cancer Epigenetics, Houston, TX 77054, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - McKenzie M Murvin
- Department of Pharmacology, RNA Discovery Center, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA; Curriculum in Mechanistic, Interdisciplinary Studies in Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA
| | - J Mauro Calabrese
- Department of Pharmacology, RNA Discovery Center, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA; Curriculum in Mechanistic, Interdisciplinary Studies in Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Blaine Bartholomew
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA; UT MD Anderson Cancer, Center for Cancer Epigenetics, Houston, TX 77054, USA.
| |
Collapse
|
19
|
Rubio-Casillas A, Cowley D, Raszek M, Uversky VN, Redwan EM. Review: N1-methyl-pseudouridine (m1Ψ): Friend or foe of cancer? Int J Biol Macromol 2024; 267:131427. [PMID: 38583833 DOI: 10.1016/j.ijbiomac.2024.131427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/09/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Due to the health emergency created by SARS-CoV-2, the virus that causes the COVID-19 disease, the rapid implementation of a new vaccine technology was necessary. mRNA vaccines, being one of the cutting-edge new technologies, attracted significant interest and offered a lot of hope. The potential of these vaccines in preventing admission to hospitals and serious illness in people with comorbidities has recently been called into question due to the vaccines' rapidly waning immunity. Mounting evidence indicates that these vaccines, like many others, do not generate sterilizing immunity, leaving people vulnerable to recurrent infections. Additionally, it has been discovered that the mRNA vaccines inhibit essential immunological pathways, thus impairing early interferon signaling. Within the framework of COVID-19 vaccination, this inhibition ensures an appropriate spike protein synthesis and a reduced immune activation. Evidence is provided that adding 100 % of N1-methyl-pseudouridine (m1Ψ) to the mRNA vaccine in a melanoma model stimulated cancer growth and metastasis, while non-modified mRNA vaccines induced opposite results, thus suggesting that COVID-19 mRNA vaccines could aid cancer development. Based on this compelling evidence, we suggest that future clinical trials for cancers or infectious diseases should not use mRNA vaccines with a 100 % m1Ψ modification, but rather ones with the lower percentage of m1Ψ modification to avoid immune suppression.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan 48900, Jalisco, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan 48900, Jalisco, Mexico.
| | - David Cowley
- University of Lincoln, Brayford Pool, Lincoln, Lincolnshire LN6 7TS, United Kingdom
| | - Mikolaj Raszek
- Merogenomics (Genomic Sequencing Consulting), Edmonton, AB T5J 3R8, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia.
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt.
| |
Collapse
|
20
|
Abdullaev B, Alsaab HO, Hjazi A, Alkhafaji AT, Alawadi AH, Hamzah HF. The mechanisms behind the dual role of long non-coding RNA (lncRNA) metastasis suppressor-1 in human tumors: Shedding light on the molecular mechanisms. Pathol Res Pract 2024; 256:155189. [PMID: 38452581 DOI: 10.1016/j.prp.2024.155189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/09/2024]
Abstract
When the expression levels of metastasis suppressor-1 (MTSS1) were discovered to be downregulated in a metastatic cancer cell line in 2002, it was proposed that MTSS1 functioned as a suppressor of metastasis. The 755 amino acid long protein MTSS1 connects to actin and organizes the cytoskeleton. Its gene is located on human chromosome 8q24. The suppressor of metastasis in metastatic cancer was first found to be MTSS1. Subsequent reports revealed that MTSS1 is linked to the prevention of metastasis in a variety of cancer types, including hematopoietic cancers like diffuse large B cell lymphoma and esophageal, pancreatic, and stomach cancers. Remarkably, conflicting results have also been documented. For instance, it has been reported that MTSS1 expression levels are elevated in a subset of melanomas, hepatocellular carcinoma associated with hepatitis B, head and neck squamous cell carcinoma, and lung squamous cell carcinoma. This article provides an overview of the pathological effects of lncRNA MTSS1 dysregulation in cancer. In order to facilitate the development of MTSS1-based therapeutic targeting, we also shed light on the current understanding of MTS1.
Collapse
Affiliation(s)
- Bekhzod Abdullaev
- Research Department of Biotechnology, New Uzbekistan University, Mustaqillik Avenue 54, Tashkent 100007, Republic ofUzbekistan
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | | | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
21
|
Healy E, Zhang Q, Gail EH, Agius SC, Sun G, Bullen M, Pandey V, Das PP, Polo JM, Davidovich C. The apparent loss of PRC2 chromatin occupancy as an artifact of RNA depletion. Cell Rep 2024; 43:113858. [PMID: 38416645 DOI: 10.1016/j.celrep.2024.113858] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
RNA has been implicated in the recruitment of chromatin modifiers, and previous studies have provided evidence in favor and against this idea. RNase treatment of chromatin is commonly used to study RNA-mediated regulation of chromatin modifiers, but the limitations of this approach remain unclear. RNase A treatment during chromatin immunoprecipitation (ChIP) reduces chromatin occupancy of the H3K27me3 methyltransferase Polycomb repressive complex 2 (PRC2). This led to suggestions of an "RNA bridge" between PRC2 and chromatin. Here, we show that RNase A treatment during ChIP causes the apparent loss of all facultative heterochromatin, including both PRC2 and H3K27me3 genome-wide. We track this observation to a gain of DNA from non-targeted chromatin, sequenced at the expense of DNA from facultative heterochromatin, which reduces ChIP signals. Our results emphasize substantial limitations in using RNase A treatment for mapping RNA-dependent chromatin occupancy and invalidate conclusions that were previously established for PRC2 based on this assay.
Collapse
Affiliation(s)
- Evan Healy
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Qi Zhang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia; South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; EMBL-Australia at SAiGENCI, Adelaide, SA, Australia
| | - Emma H Gail
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Samuel C Agius
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Guizhi Sun
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia
| | - Michael Bullen
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Varun Pandey
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Partha Pratim Das
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Jose M Polo
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Adelaide Centre for Epigenetics and South Australian immunoGENomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia; EMBL-Australia, Clayton, VIC, Australia.
| |
Collapse
|
22
|
Xu M, Senanayaka D, Zhao R, Chigumira T, Tripathi A, Tones J, Lackner RM, Wondisford AR, Moneysmith LN, Hirschi A, Craig S, Alishiri S, O'Sullivan RJ, Chenoweth DM, Reiter NJ, Zhang H. TERRA-LSD1 phase separation promotes R-loop formation for telomere maintenance in ALT cancer cells. Nat Commun 2024; 15:2165. [PMID: 38461301 PMCID: PMC10925046 DOI: 10.1038/s41467-024-46509-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function.
Collapse
Affiliation(s)
- Meng Xu
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Dulmi Senanayaka
- Klingler College of Arts and Sciences, Department of Chemistry, Marquette University, Milwaukee, WI, 53233, USA
| | - Rongwei Zhao
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Tafadzwa Chigumira
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Astha Tripathi
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jason Tones
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Rachel M Lackner
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19014, USA
| | - Anne R Wondisford
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Laurel N Moneysmith
- Klingler College of Arts and Sciences, Department of Chemistry, Marquette University, Milwaukee, WI, 53233, USA
| | - Alexander Hirschi
- Cepheid Diagnostics, 904 E. Caribbean Dr., Sunnyvale, California, 94089, USA
| | - Sara Craig
- Klingler College of Arts and Sciences, Department of Chemistry, Marquette University, Milwaukee, WI, 53233, USA
| | - Sahar Alishiri
- Klingler College of Arts and Sciences, Department of Chemistry, Marquette University, Milwaukee, WI, 53233, USA
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19014, USA
| | - Nicholas J Reiter
- Klingler College of Arts and Sciences, Department of Chemistry, Marquette University, Milwaukee, WI, 53233, USA
| | - Huaiying Zhang
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
23
|
Ito S, Umehara T, Koseki H. Polycomb-mediated histone modifications and gene regulation. Biochem Soc Trans 2024; 52:151-161. [PMID: 38288743 DOI: 10.1042/bst20230336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/29/2024]
Abstract
Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) are transcriptional repressor complexes that play a fundamental role in epigenomic regulation and the cell-fate decision; these complexes are widely conserved in multicellular organisms. PRC1 is an E3 ubiquitin (ub) ligase that generates histone H2A ubiquitinated at lysine (K) 119 (H2AK119ub1), whereas PRC2 is a histone methyltransferase that specifically catalyzes tri-methylation of histone H3K27 (H3K27me3). Genome-wide analyses have confirmed that these two key epigenetic marks highly overlap across the genome and contribute to gene repression. We are now beginning to understand the molecular mechanisms that enable PRC1 and PRC2 to identify their target sites in the genome and communicate through feedback mechanisms to create Polycomb chromatin domains. Recently, it has become apparent that PRC1-induced H2AK119ub1 not only serves as a docking site for PRC2 but also affects the dynamics of the H3 tail, both of which enhance PRC2 activity, suggesting that trans-tail communication between H2A and H3 facilitates the formation of the Polycomb chromatin domain. In this review, we discuss the emerging principles that define how PRC1 and PRC2 establish the Polycomb chromatin domain and regulate gene expression in mammals.
Collapse
Affiliation(s)
- Shinsuke Ito
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takashi Umehara
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Haruhiko Koseki
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
24
|
Amin HM, Abukhairan R, Szabo B, Jacksi M, Varady G, Lozsa R, Schad E, Tantos A. KMT2D preferentially binds mRNAs of the genes it regulates, suggesting a role in RNA processing. Protein Sci 2024; 33:e4847. [PMID: 38058280 PMCID: PMC10731558 DOI: 10.1002/pro.4847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/30/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Histone lysine methyltransferases (HKMTs) perform vital roles in cellular life by controlling gene expression programs through the posttranslational modification of histone tails. Since many of them are intimately involved in the development of different diseases, including several cancers, understanding the molecular mechanisms that control their target recognition and activity is vital for the treatment and prevention of such conditions. RNA binding has been shown to be an important regulatory factor in the function of several HKMTs, such as the yeast Set1 and the human Ezh2. Moreover, many HKMTs are capable of RNA binding in the absence of a canonical RNA binding domain. Here, we explored the RNA binding capacity of KMT2D, one of the major H3K4 monomethyl transferases in enhancers, using RNA immunoprecipitation followed by sequencing. We identified a broad range of coding and non-coding RNAs associated with KMT2D and confirmed their binding through RNA immunoprecipitation and quantitative PCR. We also showed that a separated RNA binding region within KMT2D is capable of binding a similar RNA pool, but differences in the binding specificity indicate the existence of other regulatory elements in the sequence of KMT2D. Analysis of the bound mRNAs revealed that KMT2D preferentially binds co-transcriptionally to the mRNAs of the genes under its control, while also interacting with super enhancer- and splicing-related non-coding RNAs. These observations, together with the nuclear colocalization of KMT2D with differentially phosphorylated forms of RNA Polymerase II suggest a so far unexplored role of KMT2D in the RNA processing of the nascent transcripts.
Collapse
Affiliation(s)
- Harem Muhamad Amin
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
- Doctoral School of Biology and Institute of Biology, ELTE Eötvös Loránd UniversityBudapestHungary
- Department of Biology, College of ScienceUniversity of SulaimaniSulaymaniyahIraq
| | - Rawan Abukhairan
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - Beata Szabo
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - Mevan Jacksi
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
- Doctoral School of Biology and Institute of Biology, ELTE Eötvös Loránd UniversityBudapestHungary
| | - Gyorgy Varady
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - Rita Lozsa
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - Eva Schad
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - Agnes Tantos
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
| |
Collapse
|
25
|
Zhang J, Wang T, Shi R, Zhao Y, Zhang Y, Zhang C, Xing Q, Zhou T, Shan Y, Yao H, Zhang X, Pan G. YTHDF1 facilitates PRC1-mediated H2AK119ub in human ES cells. J Cell Physiol 2024; 239:152-165. [PMID: 37991435 DOI: 10.1002/jcp.31152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/25/2023] [Accepted: 10/18/2023] [Indexed: 11/23/2023]
Abstract
Polycomb repressive complexes (PRCs) play critical roles in cell fate decisions during normal development as well as disease progression through mediating histone modifications such as H3K27me3 and H2AK119ub. How exactly PRCs recruited to chromatin remains to be fully illuminated. Here, we report that YTHDF1, the N6-methyladenine (m6 A) RNA reader that was previously known to be mainly cytoplasmic, associates with RNF2, a PRC1 protein that mediates H2AK119ub in human embryonic stem cells (hESCs). A portion of YTHDF1 localizes in the nuclei and associates with RNF2/H2AK119ub on a subset of gene loci related to neural development functions. Knock-down YTHDF1 attenuates H2AK119ub modification on these genes and promotes neural differentiation in hESCs. Our findings provide a noncanonical mechanism that YTHDF1 participates in PRC1 functions in hESCs.
Collapse
Affiliation(s)
- Jingyuan Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Department of Basic Science Research, Guangzhou Laboratory, Guangzhou, China
| | - Tianyu Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ruona Shi
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Yuan Zhao
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yanqi Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Cong Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qi Xing
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Tiancheng Zhou
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hongjie Yao
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Department of Basic Science Research, Guangzhou Laboratory, Guangzhou, China
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
26
|
El-Ashmawy NE, Khedr EG, Abo-Saif MA, Hamouda SM. Long noncoding RNAs as regulators of epithelial mesenchymal transition in breast cancer: A recent review. Life Sci 2024; 336:122339. [PMID: 38097110 DOI: 10.1016/j.lfs.2023.122339] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
AIMS Breast cancer (BC) is the most frequently occurring cancer in women worldwide. BC patients are often diagnosed at advanced stages which are characterized by low survival rates. Distant metastasis is considered a leading cause of mortalities among BC patients. Epithelial-to-mesenchymal transition (EMT) is a transdifferentiation program that is necessary for cancer cells to acquire metastatic potential. In the last decade, long noncoding RNAs (lncRNAs) proved their significant contribution to different hallmarks of cancer, including EMT and metastasis. The primary aim of our review is to analyze recent studies concerning the molecular mechanisms of lncRNAs implicated in EMT regulation in BC. MATERIALS AND METHODS We adopted a comprehensive search on databases of PubMed, Web of Science, and Google Scholar using the following keywords: lncRNAs, EMT, breast cancer, and therapeutic targeting. KEY FINDINGS The different roles of lncRNAs in the mechanisms and signaling pathways governing EMT in BC were summarized. LncRNAs could induce or inhibit EMT through WNT/β-catenin, transforming growth factor-β (TGF-β), Notch, phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), signal transducer and activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) pathways as well as via their interaction with histone modifying complexes and miRNAs. SIGNIFICANCE LncRNAs are key regulators of EMT and BC metastasis, presenting potential targets for therapeutic interventions. Further research is necessary to investigate the practical application of lncRNAs in clinical therapeutics.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| | - Eman G Khedr
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| | - Mariam A Abo-Saif
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| | - Sara M Hamouda
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| |
Collapse
|
27
|
Yu Y, Wang S, Wang Z, Gao R, Lee J. Arabidopsis thaliana: a powerful model organism to explore histone modifications and their upstream regulations. Epigenetics 2023; 18:2211362. [PMID: 37196184 DOI: 10.1080/15592294.2023.2211362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Histones are subjected to extensive covalent modifications that affect inter-nucleosomal interactions as well as alter chromatin structure and DNA accessibility. Through switching the corresponding histone modifications, the level of transcription and diverse downstream biological processes can be regulated. Although animal systems are widely used in studying histone modifications, the signalling processes that occur outside the nucleus prior to histone modifications have not been well understood due to the limitations including non viable mutants, partial lethality, and infertility of survivors. Here, we review the benefits of using Arabidopsis thaliana as the model organism to study histone modifications and their upstream regulations. Similarities among histones and key histone modifiers such as the Polycomb group (PcG) and Trithorax group (TrxG) in Drosophila, Human, and Arabidopsis are examined. Furthermore, prolonged cold-induced vernalization system has been well-studied and revealed the relationship between the controllable environment input (duration of vernalization), its chromatin modifications of FLOWERING LOCUS C (FLC), following gene expression, and the corresponding phenotypes. Such evidence suggests that research on Arabidopsis can bring insights into incomplete signalling pathways outside of the histone box, which can be achieved through viable reverse genetic screenings based on the phenotypes instead of direct monitoring of histone modifications among individual mutants. The potential upstream regulators in Arabidopsis can provide cues or directions for animal research based on the similarities between them.
Collapse
Affiliation(s)
- Yang Yu
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Sihan Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Ziqin Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Renwei Gao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Joohyun Lee
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| |
Collapse
|
28
|
Gordon JAR, Tye CE, Banerjee B, Ghule PN, van Wijnen AJ, Kabala FS, Page NA, Falcone MM, Stein JL, Stein GS, Lian JB. LINC01638 sustains human mesenchymal stem cell self-renewal and competency for osteogenic cell fate. Sci Rep 2023; 13:20314. [PMID: 37985890 PMCID: PMC10662126 DOI: 10.1038/s41598-023-46202-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023] Open
Abstract
The skeleton forms from multipotent human mesenchymal stem cells (hMSCs) competent to commit to specific lineages. Long noncoding RNAs (lncRNAs) have been identified as key epigenetic regulators of tissue development. However, regulation of osteogenesis by lncRNAs as mediators of commitment to the bone phenotype is largely unexplored. We focused on LINC01638, which is highly expressed in hMSCs and has been studied in cancers, but not in regulating osteogenesis. We demonstrated that LINC01638 promotes initiation of the osteoblast phenotype. Our findings reveal that LINC01638 is present at low levels during the induction of osteoblast differentiation. CRISPRi knockdown of LINC01638 in MSCs prevents osteogenesis and alkaline phosphatase expression, inhibiting osteoblast differentiation. This resulted in decreased MSC growth rate, accompanied by double-strand breaks, DNA damage, and cell senescence. Transcriptome profiling of control and LINC01638-depleted hMSCs identified > 2000 differentially expressed mRNAs related to cell cycle, cell division, spindle formation, DNA repair, and osteogenesis. Using ChIRP-qPCR, molecular mechanisms of chromatin interactions revealed the LINC01638 locus (Chr 22) includes many lncRNAs and bone-related genes. These novel findings identify the obligatory role for LINC01638 to sustain MSC pluripotency regulating osteoblast commitment and growth, as well as for physiological remodeling of bone tissue.
Collapse
Affiliation(s)
- Jonathan A R Gordon
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Coralee E Tye
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | | | - Prachi N Ghule
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Fleur S Kabala
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Natalie A Page
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Michelle M Falcone
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Janet L Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Gary S Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Jane B Lian
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA.
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA.
| |
Collapse
|
29
|
Affiliation(s)
- Yuka W Iwasaki
- Laboratory of Functional Non-coding Genomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Saitama 332-0012, Japan
| | - Haruhiko Koseki
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Shinsuke Ito
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
30
|
Limouse C, Smith OK, Jukam D, Fryer KA, Greenleaf WJ, Straight AF. Global mapping of RNA-chromatin contacts reveals a proximity-dominated connectivity model for ncRNA-gene interactions. Nat Commun 2023; 14:6073. [PMID: 37770513 PMCID: PMC10539311 DOI: 10.1038/s41467-023-41848-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are transcribed throughout the genome and provide regulatory inputs to gene expression through their interaction with chromatin. Yet, the genomic targets and functions of most ncRNAs are unknown. Here we use chromatin-associated RNA sequencing (ChAR-seq) to map the global network of ncRNA interactions with chromatin in human embryonic stem cells and the dynamic changes in interactions during differentiation into definitive endoderm. We uncover general principles governing the organization of the RNA-chromatin interactome, demonstrating that nearly all ncRNAs exclusively interact with genes in close three-dimensional proximity to their locus and provide a model predicting the interactome. We uncover RNAs that interact with many loci across the genome and unveil thousands of unannotated RNAs that dynamically interact with chromatin. By relating the dynamics of the interactome to changes in gene expression, we demonstrate that activation or repression of individual genes is unlikely to be controlled by a single ncRNA.
Collapse
Affiliation(s)
- Charles Limouse
- Department of Biochemistry, Stanford University, Stanford, California, USA
| | - Owen K Smith
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, USA
| | - David Jukam
- Department of Biochemistry, Stanford University, Stanford, California, USA
| | - Kelsey A Fryer
- Department of Biochemistry, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University, Stanford, California, USA
| | | | - Aaron F Straight
- Department of Biochemistry, Stanford University, Stanford, California, USA.
| |
Collapse
|
31
|
Song J, Gooding AR, Hemphill WO, Love BD, Robertson A, Yao L, Zon LI, North TE, Kasinath V, Cech TR. Structural basis for inactivation of PRC2 by G-quadruplex RNA. Science 2023; 381:1331-1337. [PMID: 37733873 PMCID: PMC11191771 DOI: 10.1126/science.adh0059] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Polycomb repressive complex 2 (PRC2) silences genes through trimethylation of histone H3K27. PRC2 associates with numerous precursor messenger RNAs (pre-mRNAs) and long noncoding RNAs (lncRNAs) with a binding preference for G-quadruplex RNA. In this work, we present a 3.3-Å-resolution cryo-electron microscopy structure of PRC2 bound to a G-quadruplex RNA. Notably, RNA mediates the dimerization of PRC2 by binding both protomers and inducing a protein interface composed of two copies of the catalytic subunit EZH2, thereby blocking nucleosome DNA interaction and histone H3 tail accessibility. Furthermore, an RNA-binding loop of EZH2 facilitates the handoff between RNA and DNA, another activity implicated in PRC2 regulation by RNA. We identified a gain-of-function mutation in this loop that activates PRC2 in zebrafish. Our results reveal mechanisms for RNA-mediated regulation of a chromatin-modifying enzyme.
Collapse
Affiliation(s)
- Jiarui Song
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Anne R. Gooding
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Wayne O. Hemphill
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Brittney D. Love
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA 02138, USA
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Anne Robertson
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA 02138, USA
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Liqi Yao
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Leonard I. Zon
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA 02138, USA
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Trista E. North
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA 02138, USA
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Vignesh Kasinath
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Thomas R. Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
32
|
Gimenez J, Spalloni A, Cappelli S, Ciaiola F, Orlando V, Buratti E, Longone P. TDP-43 Epigenetic Facets and Their Neurodegenerative Implications. Int J Mol Sci 2023; 24:13807. [PMID: 37762112 PMCID: PMC10530927 DOI: 10.3390/ijms241813807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
Since its initial involvement in numerous neurodegenerative pathologies in 2006, either as a principal actor or as a cofactor, new pathologies implicating transactive response (TAR) DNA-binding protein 43 (TDP-43) are regularly emerging also beyond the neuronal system. This reflects the fact that TDP-43 functions are particularly complex and broad in a great variety of human cells. In neurodegenerative diseases, this protein is often pathologically delocalized to the cytoplasm, where it irreversibly aggregates and is subjected to various post-translational modifications such as phosphorylation, polyubiquitination, and cleavage. Until a few years ago, the research emphasis has been focused particularly on the impacts of this aggregation and/or on its widely described role in complex RNA splicing, whether related to loss- or gain-of-function mechanisms. Interestingly, recent studies have strengthened the knowledge of TDP-43 activity at the chromatin level and its implication in the regulation of DNA transcription and stability. These discoveries have highlighted new features regarding its own transcriptional regulation and suggested additional mechanistic and disease models for the effects of TPD-43. In this review, we aim to give a comprehensive view of the potential epigenetic (de)regulations driven by (and driving) this multitask DNA/RNA-binding protein.
Collapse
Affiliation(s)
- Juliette Gimenez
- Molecular Neurobiology Laboratory, Experimental Neuroscience, IRCCS Fondazione Santa Lucia (FSL), 00143 Rome, Italy; (A.S.); (P.L.)
| | - Alida Spalloni
- Molecular Neurobiology Laboratory, Experimental Neuroscience, IRCCS Fondazione Santa Lucia (FSL), 00143 Rome, Italy; (A.S.); (P.L.)
| | - Sara Cappelli
- Molecular Pathology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (S.C.); (E.B.)
| | - Francesca Ciaiola
- Molecular Neurobiology Laboratory, Experimental Neuroscience, IRCCS Fondazione Santa Lucia (FSL), 00143 Rome, Italy; (A.S.); (P.L.)
- Department of Systems Medicine, University of Roma Tor Vergata, 00133 Rome, Italy
| | - Valerio Orlando
- KAUST Environmental Epigenetics Program, Biological Environmental Sciences and Engineering Division BESE, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Emanuele Buratti
- Molecular Pathology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (S.C.); (E.B.)
| | - Patrizia Longone
- Molecular Neurobiology Laboratory, Experimental Neuroscience, IRCCS Fondazione Santa Lucia (FSL), 00143 Rome, Italy; (A.S.); (P.L.)
| |
Collapse
|
33
|
García-Caballero D, Hart JR, Vogt PK. Long Non-Coding RNAs as "MYC Facilitators". PATHOPHYSIOLOGY 2023; 30:389-399. [PMID: 37755396 PMCID: PMC10534484 DOI: 10.3390/pathophysiology30030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
In this article, we discuss a class of MYC-interacting lncRNAs (long non-coding RNAs) that share the following criteria: They are direct transcriptional targets of MYC. Their expression is coordinated with the expression of MYC. They are required for sustained MYC-driven cell proliferation, and they are not essential for cell survival. We refer to these lncRNAs as "MYC facilitators" and discuss two representative members of this class of lncRNAs, SNHG17 (small nuclear RNA host gene) and LNROP (long non-coding regulator of POU2F2). We also present a general hypothesis on the role of lncRNAs in MYC-mediated transcriptional regulation.
Collapse
Affiliation(s)
| | | | - Peter K. Vogt
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
34
|
Talotta R. COVID-19 mRNA vaccines as hypothetical epigenetic players: Results from an in silico analysis, considerations and perspectives. Vaccine 2023; 41:5182-5194. [PMID: 37453842 DOI: 10.1016/j.vaccine.2023.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVES To investigate in silico the occurrence of epigenetic crosstalk by nucleotide sequence complementarity between the BNT162b2 mRNA vaccine and whole human genome, including coding and noncoding (nc)RNA genes. To correlate these results with those obtained with the original spike (S) gene of Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2). METHODS The publicly available FASTA sequence of the BNT162b2 mRNA vaccine and the SARS-CoV-2 isolate Wuhan-Hu-1 S gene (NC_045512.2) were used separately as key input to the Ensembl.org library to evaluate base pair match to human GRCh38 genome. Human coding and noncoding genes harboring hits were assessed for functional activity and health effects using bioinformatics tools and GWAS databases. RESULTS The BLAT analysis against the human GRCh38 genome revealed a total of 37 hits for BNT162b2 mRNA and no hits for the SARS-CoV-2 S gene. More specifically, BNT162b2 mRNA matched 19 human genes whose protein products are variously involved in enzyme reactions, nucleotide or cation binding, signaling, and carrier functions. In BLASTN analysis of ncRNA genes, BNT162b2 mRNA and SARS-CoV-2 S gene matched 17 and 24 different human genomic regions, respectively. Overall, characterization of the matched noncoding sequences revealed stronger interference with epigenetic pathways for BNT162b2 mRNA compared with the original S gene. CONCLUSION This pivotal in silico analysis shows that SARS-CoV-2 S gene and the BNT162b2 mRNA vaccine exhibit Watson-Crick nucleotide complementarity with human coding or noncoding genes. Although they do not share the same complementarity pattern, both may disrupt epigenetic mechanisms in target cells, potentially leading to long-term complications.
Collapse
Affiliation(s)
- Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, AOU "Gaetano Martino", University of Messina, Messina, Italy.
| |
Collapse
|
35
|
Hemphill W, Fenske R, Gooding A, Cech T. PRC2 direct transfer from G-quadruplex RNA to dsDNA has implications for RNA-binding chromatin modifiers. Proc Natl Acad Sci U S A 2023; 120:e2220528120. [PMID: 37252986 PMCID: PMC10266057 DOI: 10.1073/pnas.2220528120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/01/2023] [Indexed: 06/01/2023] Open
Abstract
The chromatin-modifying enzyme, Polycomb Repressive Complex 2 (PRC2), deposits the H3K27me3 epigenetic mark to negatively regulate expression at numerous target genes, and this activity has been implicated in embryonic development, cell differentiation, and various cancers. A biological role for RNA binding in regulating PRC2 histone methyltransferase activity is generally accepted, but the nature and mechanism of this relationship remains an area of active investigation. Notably, many in vitro studies demonstrate that RNA inhibits PRC2 activity on nucleosomes through mutually antagonistic binding, while some in vivo studies indicate that PRC2's RNA-binding activity is critical for facilitating its biological function(s). Here we use biochemical, biophysical, and computational approaches to interrogate PRC2's RNA and DNA-binding kinetics. Our findings demonstrate that PRC2-polynucleotide dissociation rates are dependent on the concentration of free ligand, indicating the potential for direct transfer between nucleic acid ligands without a free-enzyme intermediate. Direct transfer explains the variation in previously reported dissociation kinetics, allows reconciliation of prior in vitro and in vivo studies, and expands the potential mechanisms of RNA-mediated PRC2 regulation. Moreover, simulations indicate that such a direct transfer mechanism could be obligatory for RNA to recruit proteins to chromatin.
Collapse
Affiliation(s)
- Wayne O. Hemphill
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- HHMI, University of Colorado Boulder, Boulder, CO80309
| | - Regan Fenske
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- HHMI, University of Colorado Boulder, Boulder, CO80309
| | - Anne R. Gooding
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- HHMI, University of Colorado Boulder, Boulder, CO80309
| | - Thomas R. Cech
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- HHMI, University of Colorado Boulder, Boulder, CO80309
| |
Collapse
|
36
|
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, Gingeras TR, Guttman M, Hirose T, Huarte M, Johnson R, Kanduri C, Kapranov P, Lawrence JB, Lee JT, Mendell JT, Mercer TR, Moore KJ, Nakagawa S, Rinn JL, Spector DL, Ulitsky I, Wan Y, Wilusz JE, Wu M. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 2023; 24:430-447. [PMID: 36596869 PMCID: PMC10213152 DOI: 10.1038/s41580-022-00566-8] [Citation(s) in RCA: 891] [Impact Index Per Article: 445.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia.
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia.
| | - Paulo P Amaral
- INSPER Institute of Education and Research, São Paulo, Brazil
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling-Ling Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra, Pamplona, Spain
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen, China
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joshua T Mendell
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Timothy R Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Kathryn J Moore
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - David L Spector
- Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, USA
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yue Wan
- Laboratory of RNA Genomics and Structure, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
D’Amico G, Santonocito R, Vitale AM, Scalia F, Marino Gammazza A, Campanella C, Bucchieri F, Cappello F, Caruso Bavisotto C. Air Pollution: Role of Extracellular Vesicles-Derived Non-Coding RNAs in Environmental Stress Response. Cells 2023; 12:1498. [PMID: 37296619 PMCID: PMC10252408 DOI: 10.3390/cells12111498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Air pollution has increased over the years, causing a negative impact on society due to the many health-related problems it can contribute to. Although the type and extent of air pollutants are known, the molecular mechanisms underlying the induction of negative effects on the human body remain unclear. Emerging evidence suggests the crucial involvement of different molecular mediators in inflammation and oxidative stress in air pollution-induced disorders. Among these, non-coding RNAs (ncRNAs) carried by extracellular vesicles (EVs) may play an essential role in gene regulation of the cell stress response in pollutant-induced multiorgan disorders. This review highlights EV-transported ncRNAs' roles in physiological and pathological conditions, such as the development of cancer and respiratory, neurodegenerative, and cardiovascular diseases following exposure to various environmental stressors.
Collapse
Affiliation(s)
- Giuseppa D’Amico
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Radha Santonocito
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Alessandra Maria Vitale
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Federica Scalia
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Antonella Marino Gammazza
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Claudia Campanella
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Fabio Bucchieri
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Francesco Cappello
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
38
|
Mattick JS. RNA out of the mist. Trends Genet 2023; 39:187-207. [PMID: 36528415 DOI: 10.1016/j.tig.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/08/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
RNA has long been regarded primarily as the intermediate between genes and proteins. It was a surprise then to discover that eukaryotic genes are mosaics of mRNA sequences interrupted by large tracts of transcribed but untranslated sequences, and that multicellular organisms also express many long 'intergenic' and antisense noncoding RNAs (lncRNAs). The identification of small RNAs that regulate mRNA translation and half-life did not disturb the prevailing view that animals and plant genomes are full of evolutionary debris and that their development is mainly supervised by transcription factors. Gathering evidence to the contrary involved addressing the low conservation, expression, and genetic visibility of lncRNAs, demonstrating their cell-specific roles in cell and developmental biology, and their association with chromatin-modifying complexes and phase-separated domains. The emerging picture is that most lncRNAs are the products of genetic loci termed 'enhancers', which marshal generic effector proteins to their sites of action to control cell fate decisions during development.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW 2052, Australia; UNSW RNA Institute, UNSW, Sydney, NSW 2052, Australia.
| |
Collapse
|
39
|
Jansson-Fritzberg LI, Sousa CI, Smallegan MJ, Song JJ, Gooding AR, Kasinath V, Rinn JL, Cech TR. DNMT1 inhibition by pUG-fold quadruplex RNA. RNA (NEW YORK, N.Y.) 2023; 29:346-360. [PMID: 36574982 PMCID: PMC9945446 DOI: 10.1261/rna.079479.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Aberrant DNA methylation is one of the earliest hallmarks of cancer. DNMT1 is responsible for methylating newly replicated DNA, but the precise regulation of DNMT1 to ensure faithful DNA methylation remains poorly understood. A link between RNA and chromatin-associated proteins has recently emerged, and several studies have shown that DNMT1 can be regulated by a variety of RNAs. In this study, we have confirmed that human DNMT1 indeed interacts with multiple RNAs, including its own nuclear mRNA. Unexpectedly, we found that DNMT1 exhibits a strong and specific affinity for GU-rich RNAs that form a pUG-fold, a noncanonical G-quadruplex. We find that pUG-fold-capable RNAs inhibit DNMT1 activity by inhibiting binding of hemimethylated DNA, and we additionally provide evidence for multiple RNA binding modes with DNMT1. Together, our data indicate that a human chromatin-associated protein binds to and is regulated by pUG-fold RNA.
Collapse
Affiliation(s)
- Linnea I Jansson-Fritzberg
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Camila I Sousa
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Michael J Smallegan
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Jessica J Song
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Anne R Gooding
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Vignesh Kasinath
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - John L Rinn
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Thomas R Cech
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| |
Collapse
|
40
|
Song J, Gooding AR, Hemphill WO, Kasinath V, Cech TR. Structural basis for inactivation of PRC2 by G-quadruplex RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527314. [PMID: 36798278 PMCID: PMC9934548 DOI: 10.1101/2023.02.06.527314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The histone methyltransferase PRC2 (Polycomb Repressive Complex 2) silences genes via successively attaching three methyl groups to lysine 27 of histone H3. PRC2 associates with numerous pre-mRNA and lncRNA transcripts with a binding preference for G-quadruplex RNA. Here, we present a 3.3Ã…-resolution cryo-EM structure of PRC2 bound to a G-quadruplex RNA. Notably, RNA mediates the dimerization of PRC2 by binding both protomers and inducing a protein interface comprised of two copies of the catalytic subunit EZH2, which limits nucleosome DNA interaction and occludes H3 tail accessibility to the active site. Our results reveal an unexpected mechanism for RNA-mediated inactivation of a chromatin-modifying enzyme. Furthermore, the flexible loop of EZH2 that helps stabilize RNA binding also facilitates the handoff between RNA and DNA, an activity implicated in PRC2 regulation by RNA. One-Sentence Summary Cryo-EM structure of RNA-bound PRC2 dimer elucidates an unexpected mechanism of PRC2 inhibition by RNA.
Collapse
|
41
|
Zeng X, Lei Y, Pan S, Sun J, He H, Xiao D, Jamal M, Shen H, Zhou F, Shao L, Zhang Q. LncRNA15691 promotes T-ALL infiltration by upregulating CCR9 via increased MATR3 stability. J Leukoc Biol 2023; 113:203-215. [PMID: 36822174 DOI: 10.1093/jleuko/qiac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 01/18/2023] Open
Abstract
Our previous studies demonstrated that CCR9 plays an important role in several aspects of T-cell acute lymphoblastic leukemia progression and that CCR9 is a potential therapeutic target. However, the underlying mechanism that regulates CCR9 expression remains incompletely understood. In this study, bioinformatics analysis and validation in clinical samples revealed the lncRNA15691 to be positively correlated with CCR9 mRNA expression and significantly upregulated in T-cell acute lymphoblastic leukemia samples and CCR9high T-cell acute lymphoblastic leukemia cell lines. LncRNA15691, a previously uncharacterized lncRNA, was found to be located in both the cytoplasm and the nucleus via fluorescence in situ hybridization assay. In addition, lncRNA15691 upregulated the expression of CCR9 and was involved in T-cell acute lymphoblastic leukemia cell invasion. In vivo experiments showed that lncRNA15691 promoted leukemia cell homing/infiltration into the bone marrow, blood, and spleen, whereas the CCR9 ligand, CCL25, augmented the extramedullary infiltration of CCR9low leukemia cells overexpressing lncRNA15691 into blood, spleen, and liver. Subsequently, RNA protein pull-down assays, coupled with liquid chromatography-tandem mass spectrometry, were used to uncover potential lncRNA15691-interacting proteins, which were then validated by RNA immunoprecipitation. These mechanistic studies revealed that lncRNA15691 upregulated CCR9 expression via directly binding to and stabilizing MATR3 by inhibiting its nuclear degradation mediated by PKA. Collectively, our study revealed a novel mechanism of regulating CCR9 expression and implicated lncRNA15691 as a potential novel biomarker for T-cell acute lymphoblastic leukemia infiltration.
Collapse
Affiliation(s)
- Xingruo Zeng
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Yufei Lei
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Shan Pan
- School of Medicine, Wuhan University of Science and Technology, 947 Heping Avenue, Qingshan District, Wuhan, Hubei 430071, China
| | - Jiaxing Sun
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Hengjing He
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Di Xiao
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Hui Shen
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Quiping Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| |
Collapse
|
42
|
Mangiavacchi A, Morelli G, Orlando V. Behind the scenes: How RNA orchestrates the epigenetic regulation of gene expression. Front Cell Dev Biol 2023; 11:1123975. [PMID: 36760365 PMCID: PMC9905133 DOI: 10.3389/fcell.2023.1123975] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Non-coding DNA accounts for approximately 98.5% of the human genome. Once labeled as "junk DNA", this portion of the genome has undergone a progressive re-evaluation and it is now clear that some of its transcriptional products, belonging to the non-coding RNAs (ncRNAs), are key players in cell regulatory networks. A growing body of evidence demonstrates the crucial impact of regulatory ncRNAs on mammalian gene expression. Here, we focus on the defined relationship between chromatin-interacting RNAs, particularly long non-coding RNA (lncRNA), enhancer RNA (eRNA), non-coding natural antisense transcript (ncNAT), and circular RNA (circRNA) and epigenome, a common ground where both protein and RNA species converge to regulate cellular functions. Through several examples, this review provides an overview of the variety of targets, interactors, and mechanisms involved in the RNA-mediated modulation of loci-specific epigenetic states, a fundamental evolutive strategy to orchestrate mammalian gene expression in a timely and reversible manner. We will discuss how RNA-mediated epigenetic regulation impacts development and tissue homeostasis and how its alteration contributes to the onset and progression of many different human diseases, particularly cancer.
Collapse
|
43
|
Lv N, Shen S, Chen Q, Tong J. Long noncoding RNAs: glycolysis regulators in gynaecologic cancers. Cancer Cell Int 2023; 23:4. [PMID: 36639695 PMCID: PMC9838043 DOI: 10.1186/s12935-023-02849-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The three most common gynaecologic cancers that seriously threaten female lives and health are ovarian cancer, cervical cancer, and endometrial cancer. Glycolysis plays a vital role in gynaecologic cancers. Several long noncoding RNAs (lncRNAs) are known to function as oncogenic molecules. LncRNAs impact downstream target genes by acting as ceRNAs, guides, scaffolds, decoys, or signalling molecules. However, the role of glycolysis-related lncRNAs in regulating gynaecologic cancers remains poorly understood. In this review, we emphasize the functional roles of many lncRNAs that have been found to promote glycolysis in gynaecologic cancers and discuss reasonable strategies for future research.
Collapse
Affiliation(s)
- Nengyuan Lv
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Siyi Shen
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Qianying Chen
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Jinyi Tong
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| |
Collapse
|
44
|
Siri G, Yazdani O, Esbati R, Akhavanfar R, Asadi F, Adili A, Ebrahimzadeh F, Hosseini SME. A comprehensive review of the role of lncRNAs in gastric cancer (GC) pathogenesis, immune regulation, and their clinical applications. Pathol Res Pract 2023; 241:154221. [PMID: 36563559 DOI: 10.1016/j.prp.2022.154221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
Gastric cancer (GC) is the fifth most common malignant tumor and the third leading cause of cancer-related deaths worldwide. Although numerous studies have been conducted on advanced GC, the molecular mechanisms behind it remain obscure. Long non-coding RNAs (lncRNAs) are a family of RNA transcripts capable of regulating target genes at transcriptional, post-transcriptional, and translational stages. They do this by modifying mRNAs, miRNAs, and proteins. These RNAs are critical regulators of many biological processes, including gene epigenetics, transcription, and post-transcriptional levels. This article highlights recent results on lncRNAs involved in drug resistance, proliferation, migration, angiogenesis, apoptosis, autophagy, and immune response in GC. The potential clinical implications of lncRNAs as biomarkers and therapeutic targets in GC are also discussed.
Collapse
Affiliation(s)
- Goli Siri
- Department of Internal Medicine, Amir Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Yazdani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Romina Esbati
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Asadi
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, FL, USA; Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | |
Collapse
|
45
|
Wang N, He J, Feng X, Liao S, Zhao Y, Tang F, Kee K. Single-cell profiling of lncRNAs in human germ cells and molecular analysis reveals transcriptional regulation of LNC1845 on LHX8. eLife 2023; 12:78421. [PMID: 36602025 PMCID: PMC9859043 DOI: 10.7554/elife.78421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Non-coding RNAs exert diverse functions in many cell types. In addition to transcription factors from coding genes, non-coding RNAs may also play essential roles in shaping and directing the fate of germ cells. The presence of many long non-coding RNAs (lncRNAs) which are specifically expressed in the germ cells during human gonadal development were reported and one divergent lncRNA, LNC1845, was functionally characterized. Comprehensive bioinformatic analysis of these lncRNAs indicates that divergent lncRNAs occupied the majority of female and male germ cells. Integrating lncRNA expression into the bioinformatic analysis also enhances the cell-type classification of female germ cells. Functional dissection using in vitro differentiation of human pluripotent stem cells to germ cells revealed the regulatory role of LNC1845 on a transcription factor essential for ovarian follicle development, LHX8, by modulating the levels of histone modifications, H3K4me3 and H3K27Ac. Hence, bioinformatical analysis and experimental verification provide a comprehensive analysis of lncRNAs in developing germ cells and elucidate how an lncRNA function as a cis regulator during human germ cell development.
Collapse
Affiliation(s)
- Nan Wang
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Jing He
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Xiaoyu Feng
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Shengyou Liao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of SciencesBeijingChina
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of SciencesBeijingChina
| | - Fuchou Tang
- Biodynamic Optical Imaging Center & Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking UniversityBeijingChina
| | - Kehkooi Kee
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina,Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua UniversityBeijingChina
| |
Collapse
|
46
|
Oncogenic Roles of Polycomb Repressive Complex 2 in Bladder Cancer and Upper Tract Urothelial Carcinoma. Biomedicines 2022; 10:biomedicines10112925. [PMID: 36428492 PMCID: PMC9687567 DOI: 10.3390/biomedicines10112925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Cancers of the urinary tract are one of the most common malignancies worldwide, causing high morbidity and mortality, and representing a social burden. Upper tract urothelial carcinoma (UTUC) accounts for 5−10% of urinary tract cancers, and its oncogenic mechanisms remain elusive. We postulated that cancers of the lower and the upper urinary tract may share some important oncogenic mechanisms. Therefore, the oncogenic mechanisms discovered in the lower urinary tract may guide the investigation of molecular mechanisms in the upper urinary tract. Based on this strategy, we revisited a high-quality transcriptome dataset of 510 patients with non-muscle invasive bladder cancer (NMIBC), and performed an innovative gene set enrichment analysis of the transcriptome. We discovered that the epigenetic regulation of polycomb repressive complex 2 (PRC2) is responsible for the recurrence and progression of lower-track urinary cancers. Additionally, a PRC2-related gene signature model was discovered to be effective in classifying bladder cancer patients with distinct susceptibility of subsequent recurrence and progression (log-rank p < 0.001 and = 0.001, respectively). We continued to discover that the same model can differentiate stage T3 UTUC patients from stage Ta/T1 patients (p = 0.026). Immunohistochemical staining revealed the presence of PRC2 components (EZH2, EED, and SUZ12) and methylated PRC2 substrates (H3K27me3) in the archived UTUC tissues. The H3K27me3 exhibited higher intensity and area intensity product in stage T3 UTUC tissues than in stage Ta/T1 tissues (p = 0.006 and 0.015, respectively), implicating stronger PRC2 activity in advanced UTUC. The relationship between H3K27 methylation and gene expression is examined using correlations. The H3K27me3 abundance is positively correlated with the expression levels of CDC26, RP11-2B6, MAPK1IP1L, SFR1, RP11-196B3, CDK5RAP2, ANXA5, STX11, PSMD5, and FGFRL1. It is also negatively correlated with CNPY2, KB-1208A12, RP11-175B9, ZNF692, RANP8, RP11-245C17, TMEM266, FBXW9, SUGT1P2, and PRH1. In conclusion, PRC2 and its epigenetic effects are major oncogenic mechanisms underlying both bladder cancer and UTUC. The epigenetically regulated genes of PRC2 in urothelial carcinoma were also elucidated using correlation statistics.
Collapse
|
47
|
Wang G, Ye H, Wang X, Liu B. Polycomb repressive complex 2 controls cardiac cell fate decision via interacting with RNA: Promiscuously or well-ordered. Front Genet 2022; 13:1011228. [PMID: 36313464 PMCID: PMC9614146 DOI: 10.3389/fgene.2022.1011228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
The epigenetic landscape determines cell fate during heart development. Polycomb repressive complex 2 (PRC2) mediates histone methyltransferase activity during cardiac cell differentiation. The PRC2 complex contains the proteins embryonic ectoderm development (EED), suppressor of zeste (SUZ12), the chromatin assembly factor 1 (CAF1) histone-binding proteins RBBP4 and RBBP7, and the histone methyltransferase called enhancer of zeste (EZH2 or EZH1), which incorporates the Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain. Cardiac PRC2-deficient mice display lethal congenital heart malformations. The dynamic process of cardiac cell fate decisions is controlled by PRC2 and the PRC2-mediated epigenetic landscape. Although specific individual long noncoding RNAs (lncRNAs) including Braveheart were widely reported to regulate the recruitments of PRC2 to their specific targets, a promiscuous RNA binding profile by PRC2 was also identified to play an essential role in cardiac cell fate decision. In this review, we focus on RNA-mediated PRC2 recruitment machinery in the process of cardiac cell fate decisions. The roles of individual lncRNAs which recruit PRC2, as well as promiscuous RNA binding by PRC2 in heart development are summarized. Since the binding priority of RNAs with different primary and secondary structures differs in its affinity to PRC2, the competitive relationship between individual lncRNAs binding and promiscuous RNA binding by PRC2 may be important for understanding the machinery by which biding of individual lncRNA and promiscuous RNA by PRC2 coordinately control the well-ordered dynamic cardiac cell lineage differentiation process.
Collapse
Affiliation(s)
- Gang Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Heng Ye
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Xuchao Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Binbin Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
48
|
Shu L, Wang C, Ding Z, Tang J, Zhu Y, Wu L, Wang Z, Zhang T, Wang T, Xu Y, Sun L. A novel regulated network mediated by downregulation HIF1A-AS2 lncRNA impairs placental angiogenesis by promoting ANGPTL4 expression in preeclampsia. Front Cell Dev Biol 2022; 10:837000. [PMID: 36016656 PMCID: PMC9396278 DOI: 10.3389/fcell.2022.837000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/30/2022] [Indexed: 01/17/2023] Open
Abstract
Preeclampsia (PE) is the predominant medical condition leading to maternal and fetal mortality, and the lack of effective treatment increases its risk to the public health. Among the numerous predisposing factors, the ineffectual remodeling of the uterine spiral arteries, which can induce abnormal placental angiogenesis, has been focused to solve the pathogenesis of PE. According to the preceding research results, abnormal expression of long non-coding RNAs (lncRNA)s could be associated with the pathological changes inducing PE. To be more specific, lncRNA HIF1A-AS2 was proposed for its potential to participate in the molecular mechanisms underlying PE. In vitro, in trophoblast cell lines HTR-8/SVneo and human umbilical vein endothelial cells HUVECs, HIF1A-AS2 knockdown inhibited cell proliferation, migration and tube formation. Mechanistically, transcription factor FOXP1 could regulate the expression of HIF1A-AS2. Moreover, a series of assays, including RNA pull down and mass spectrometry, RNA immunoprecipitation and chromatin immunoprecipitation assay, revealed that HIF1A-AS2 interacted with Lamin A/C (LMNA) to inhibit ANGPTL4 expression in trophoblast cells, thus further participating in the progression of PE. Taken together, these findings suggested that further analysis on HIF1A-AS2 could contribute to the development of prospective therapeutic strategy for PE.
Collapse
Affiliation(s)
- Lijun Shu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, JS, China
| | - Cong Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, JS, China
| | - Zhengzheng Ding
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, JS, China
| | - Jianjiao Tang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, JS, China
| | - Yuanyuan Zhu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, JS, China
| | - Liuxin Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, JS, China
| | - Zheyue Wang
- Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, JS, China
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, JS, China
| | - Tianjun Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, JS, China
| | - Yetao Xu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, JS, China
- *Correspondence: Lizhou Sun, ; Yetao Xu,
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, JS, China
- *Correspondence: Lizhou Sun, ; Yetao Xu,
| |
Collapse
|
49
|
Zhang H, Wang SQ, Wang L, Lin H, Zhu JB, Chen R, Li LF, Cheng YD, Duan CJ, Zhang CF. m6A methyltransferase METTL3-induced lncRNA SNHG17 promotes lung adenocarcinoma gefitinib resistance by epigenetically repressing LATS2 expression. Cell Death Dis 2022; 13:657. [PMID: 35902569 PMCID: PMC9334586 DOI: 10.1038/s41419-022-05050-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 01/21/2023]
Abstract
Gefitinib has been widely applied for the treatment of lung adenocarcinoma (LUAD). However, the long-term application of gefitinib usually leads to acquired drug resistance in tumour patients, resulting in clinical treatment failure. Small nucleolar host gene 17 (SNHG17) has been shown to play a regulatory role in LUAD progression. Nevertheless, the role of SNHG17 in LUAD gefitinib resistance remains elusive. The expression pattern of SNHG17 was examined in tissues and cell lines of gefitinib-sensitive and gefitinib-resistant LUAD, respectively. Gain- and loss-of-function experiments were employed to assess the biological functions of SNHG17 in cell proliferation and apoptosis, as well as aggressive phenotypes of LUAD cells. MeRIP-qPCR and colorimetric quantificational analysis were performed to detect m6A modifications and contents. Fluorescence in situ hybridisation (FISH) and subcellular fractionation analysis were used to reveal the distribution of SNHG17. RIP and ChIP assays were performed to further validate the SNHG17/EZH2/LATS2 regulatory axis. A xenograft tumour growth assay was conducted to evaluate the role of SNHG17 in LUAD gefitinib resistance in vivo. SNHG17 was upregulated in gefitinib-resistant LUAD tissues and cell lines. Functional assays showed that SNHG17 aggravated the malignant phenotypes of gefitinib-resistant LUAD cells. In addition, METTL3-mediated N6-methyladenosine modification could induce the upregulation of SNHG17by stabilising its RNA transcript. Mechanistically, SNHG17 epigenetically repressed the expression of LATS2 by recruiting EZH2 to the promoter region of LATS2. The regulatory role of the SNHG17/EZH2/LATS2 axis in LUAD gefitinib resistance was further supported in vivo. Collectively, our findings suggested that SNHG17 induced by METTL3 could promote LUAD gefitinib resistance by epigenetically repressing LATS2 expression.
Collapse
Affiliation(s)
- Heng Zhang
- grid.216417.70000 0001 0379 7164Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan Province P. R. China ,grid.216417.70000 0001 0379 7164Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008 Hunan Province P. R. China ,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagosis&Treatment, 410008 Changsha, Hunan Province P. R. China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008 Hunan Province P. R. China
| | - Shao-Qiang Wang
- grid.449428.70000 0004 1797 7280Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029 Shandong Province P. R. China
| | - Li Wang
- grid.452708.c0000 0004 1803 0208Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan Province P. R. China ,grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan Province P. R. China
| | - Hang Lin
- grid.216417.70000 0001 0379 7164Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan Province P. R. China
| | - Jie-Bo Zhu
- grid.216417.70000 0001 0379 7164Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan Province P. R. China
| | - Ri Chen
- grid.216417.70000 0001 0379 7164Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan Province P. R. China
| | - Lin-Feng Li
- grid.216417.70000 0001 0379 7164Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan Province P. R. China
| | - Yuan-Da Cheng
- grid.216417.70000 0001 0379 7164Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan Province P. R. China
| | - Chao-Jun Duan
- grid.216417.70000 0001 0379 7164Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan Province P. R. China
| | - Chun-Fang Zhang
- grid.216417.70000 0001 0379 7164Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan Province P. R. China ,grid.216417.70000 0001 0379 7164Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008 Hunan Province P. R. China ,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagosis&Treatment, 410008 Changsha, Hunan Province P. R. China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008 Hunan Province P. R. China
| |
Collapse
|
50
|
Huang X, Bashkenova N, Hong Y, Lyu C, Guallar D, Hu Z, Malik V, Li D, Wang H, Shen X, Zhou H, Wang J. A TET1-PSPC1-Neat1 molecular axis modulates PRC2 functions in controlling stem cell bivalency. Cell Rep 2022; 39:110928. [PMID: 35675764 PMCID: PMC9214724 DOI: 10.1016/j.celrep.2022.110928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/29/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
TET1 maintains hypomethylation at bivalent promoters through its catalytic activity in embryonic stem cells (ESCs). However, TET1 catalytic activity-independent function in regulating bivalent genes is not well understood. Using a proteomics approach, we map the TET1 interactome in ESCs and identify PSPC1 as a TET1 partner. Genome-wide location analysis reveals that PSPC1 functionally associates with TET1 and Polycomb repressive complex-2 (PRC2). We establish that PSPC1 and TET1 repress, and the lncRNA Neat1 activates, bivalent gene expression. In ESCs, Neat1 is preferentially bound to PSPC1 alongside its PRC2 association at bivalent promoters. During the ESC-to-epiblast-like stem cell (EpiLC) transition, PSPC1 and TET1 maintain PRC2 chromatin occupancy at bivalent gene promoters, while Neat1 facilitates the activation of certain bivalent genes by promoting PRC2 binding to their mRNAs. Our study demonstrates a TET1-PSPC1-Neat1 molecular axis that modulates PRC2-binding affinity to chromatin and bivalent gene transcripts in controlling stem cell bivalency.
Collapse
Affiliation(s)
- Xin Huang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nazym Bashkenova
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yantao Hong
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Cong Lyu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Diana Guallar
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Zhe Hu
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Vikas Malik
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dan Li
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hailin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaohua Shen
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|