1
|
Imamura K, Garland W, Schmid M, Jakobsen L, Sato K, Rouvière JO, Jakobsen KP, Burlacu E, Lopez ML, Lykke-Andersen S, Andersen JS, Jensen TH. A functional connection between the Microprocessor and a variant NEXT complex. Mol Cell 2024; 84:4158-4174.e6. [PMID: 39515294 DOI: 10.1016/j.molcel.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/26/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
In mammalian cells, primary miRNAs are cleaved at their hairpin structures by the Microprocessor complex, whose core is composed of DROSHA and DGCR8. Here, we show that 5' flanking regions, resulting from Microprocessor cleavage, are targeted by the RNA exosome in mouse embryonic stem cells (mESCs). This is facilitated by a physical link between DGCR8 and the nuclear exosome targeting (NEXT) component ZCCHC8. Surprisingly, however, both biochemical and mutagenesis studies demonstrate that a variant NEXT complex, containing the RNA helicase MTR4 but devoid of the RNA-binding protein RBM7, is the active entity. This Microprocessor-NEXT variant also targets stem-loop-containing RNAs expressed from other genomic regions, such as enhancers. By contrast, Microprocessor does not contribute to the turnover of less structured NEXT substrates. Our results therefore demonstrate that MTR4-ZCCHC8 can link to either RBM7 or DGCR8/DROSHA to target different RNA substrates depending on their structural context.
Collapse
Affiliation(s)
- Katsutoshi Imamura
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark; Department of Systems Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - William Garland
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Manfred Schmid
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Lis Jakobsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, Denmark
| | - Kengo Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Jérôme O Rouvière
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Kristoffer Pors Jakobsen
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Elena Burlacu
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Marta Loureiro Lopez
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, Denmark
| | - Søren Lykke-Andersen
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
2
|
Rouvière JO, Salerno-Kochan A, Lykke-Andersen S, Garland W, Dou Y, Rathore O, Molska EŠ, Wu G, Schmid M, Bugai A, Jakobsen L, Žumer K, Cramer P, Andersen JS, Conti E, Jensen TH. ARS2 instructs early transcription termination-coupled RNA decay by recruiting ZC3H4 to nascent transcripts. Mol Cell 2023:S1097-2765(23)00384-2. [PMID: 37329882 DOI: 10.1016/j.molcel.2023.05.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/29/2023] [Accepted: 05/18/2023] [Indexed: 06/19/2023]
Abstract
The RNA-binding ARS2 protein is centrally involved in both early RNA polymerase II (RNAPII) transcription termination and transcript decay. Despite its essential nature, the mechanisms by which ARS2 enacts these functions have remained unclear. Here, we show that a conserved basic domain of ARS2 binds a corresponding acidic-rich, short linear motif (SLiM) in the transcription restriction factor ZC3H4. This interaction recruits ZC3H4 to chromatin to elicit RNAPII termination, independent of other early termination pathways defined by the cleavage and polyadenylation (CPA) and Integrator (INT) complexes. We find that ZC3H4, in turn, forms a direct connection to the nuclear exosome targeting (NEXT) complex, hereby facilitating rapid degradation of the nascent RNA. Hence, ARS2 instructs the coupled transcription termination and degradation of the transcript onto which it is bound. This contrasts with ARS2 function at CPA-instructed termination sites where the protein exclusively partakes in RNA suppression via post-transcriptional decay.
Collapse
Affiliation(s)
- Jérôme O Rouvière
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Anna Salerno-Kochan
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Søren Lykke-Andersen
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - William Garland
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Yuhui Dou
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Om Rathore
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Ewa Šmidová Molska
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Guifen Wu
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Manfred Schmid
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Andrii Bugai
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Lis Jakobsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Kristina Žumer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Zinoviev A, Ayupov RK, Abaeva IS, Hellen CUT, Pestova TV. Extraction of mRNA from Stalled Ribosomes by the Ski Complex. Mol Cell 2020; 77:1340-1349.e6. [PMID: 32006463 DOI: 10.1016/j.molcel.2020.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/13/2019] [Accepted: 01/07/2020] [Indexed: 11/26/2022]
Abstract
The evolutionarily conserved Ski2-Ski3-Ski8 (Ski) complex containing the 3'→5' RNA helicase Ski2 binds to 80S ribosomes near the mRNA entrance and facilitates 3'→5' exosomal degradation of mRNA during ribosome-associated mRNA surveillance pathways. Here, we assayed Ski's activity using an in vitro reconstituted translation system and report that this complex efficiently extracts mRNA from 80S ribosomes in the 3'→5' direction in a nucleotide-by-nucleotide manner. The process is ATP dependent and can occur on pre- and post-translocation ribosomal complexes. The Ski complex can engage productively with mRNA and extract it from 80S complexes containing as few as 19 (but not 13) 3'-terminal mRNA nucleotides starting from the P site. The mRNA-extracting activity of the Ski complex suggests that its role in mRNA quality control pathways is not limited to acceleration of exosomal degradation and could include clearance of stalled ribosomes from mRNA, poising mRNA for degradation and rendering stalled ribosomes recyclable by Pelota/Hbs1/ABCE1.
Collapse
Affiliation(s)
- Alexandra Zinoviev
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Rustam K Ayupov
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Irina S Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA.
| |
Collapse
|
4
|
Abstract
We describe procedures to clone, express, and reconstitute an active human nuclear RNA exosome. Individual recombinant subunits are expressed from E. coli and successfully reconstituted into the nuclear complex, which contains the noncatalytic nine-subunit exosome core, the endoribonuclease and exoribonuclease DIS3, the distributive exoribonuclease EXOSC10, the cofactors C1D and MPP6, and the RNA helicase MTR4.
Collapse
Affiliation(s)
- Kurt Januszyk
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eva-Maria Weick
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
5
|
Abstract
The RNA exosome is a ribonucleolytic multiprotein complex that is conserved and essential in all eukaryotes. Although we tend to speak of "the" exosome complex, it should be more correctly viewed as several different subtypes that share a common core. Subtypes of the exosome complex are present in the cytoplasm, the nucleus and the nucleolus of all eukaryotic cells, and carry out the 3'-5' processing and/or degradation of a wide range of RNA substrates.Because the substrate specificity of the exosome complex is determined by cofactors, the system is highly adaptable, and different organisms have adjusted the machinery to their specific needs. Here, we present an overview of exosome complexes and their cofactors that have been described in different eukaryotes.
Collapse
Affiliation(s)
- Cornelia Kilchert
- Institut für Biochemie, Justus-Liebig-Universität Gießen, Gießen, Germany.
| |
Collapse
|
6
|
Zinoviev A, Hellen CUT, Pestova TV. In Vitro Characterization of the Activity of the Mammalian RNA Exosome on mRNAs in Ribosomal Translation Complexes. Methods Mol Biol 2020; 2062:327-354. [PMID: 31768984 DOI: 10.1007/978-1-4939-9822-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The RNA exosome is a multisubunit protein complex that exhibits a 3' to 5' exoribonuclease activity, endoribonuclease activity, and participates in a variety of RNA processing and degradation pathways in both the nucleus and the cytoplasm. Exosomes interact with various cofactors which target them to specific RNA substrates and processes. Investigation of the mechanisms by which mammalian RNA exosomes are targeted to specific RNA substrates requires the development of in vitro approaches for purification of exosomes and their co-factors, assembly of substrates and monitoring of the exosomal activity. Here, we describe protocols for in vitro reconstitution of ribosomal 80S elongation complexes on cap-labeled mRNAs and for assaying exosomal degradation of mRNAs in such complexes depending on the presence of GTPBP1, which has previously been implicated in directing the exosome to mRNA targets.
Collapse
Affiliation(s)
- Alexandra Zinoviev
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA.
| |
Collapse
|
7
|
Weick EM, Zinder JC, Lima CD. Strategies for Generating RNA Exosome Complexes from Recombinant Expression Hosts. Methods Mol Biol 2020; 2062:417-425. [PMID: 31768988 PMCID: PMC8565498 DOI: 10.1007/978-1-4939-9822-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The eukaryotic RNA exosome is a conserved and ubiquitous multiprotein complex that possesses multiple RNase activities and is involved in a diverse array of RNA degradation and processing events. While much of our current understanding of RNA exosome function has been elucidated using genetics and cell biology based studies of protein functions, in particular in S. cerevisiae, many important contributions in the field have been enabled through use of in vitro reconstituted complexes. Here, we present an overview of our approach to purify exosome components from recombinant sources and reconstitute them into functional complexes. Three chapters following this overview provide detailed protocols for reconstituting exosome complexes from S. cerevisiae, S. pombe, and H. sapiens. We additionally provide insight on some of the drawbacks of these methods and highlight several important discoveries that have been achieved using reconstituted complexes.
Collapse
Affiliation(s)
- Eva-Maria Weick
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John C Zinder
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Training Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
8
|
Winczura K, Domanski M, LaCava J. Affinity Proteomic Analysis of the Human Exosome and Its Cofactor Complexes. Methods Mol Biol 2020; 2062:291-325. [PMID: 31768983 DOI: 10.1007/978-1-4939-9822-7_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In humans, the RNA exosome consists of an enzymatically inactive nine-subunit core, with ribonucleolytic activity contributed by additional components. Several cofactor complexes also interact with the exosome-these enable the recruitment of, and specify the activity upon, diverse substrates. Affinity capture coupled with mass spectrometry has proven to be an effective means to identify the compositions of RNA exosomes and their cofactor complexes: here, we describe a general experimental strategy for proteomic characterization of macromolecular complexes, applied to the exosome and an affiliated adapter protein, ZC3H18.
Collapse
Affiliation(s)
- Kinga Winczura
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Michal Domanski
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA.
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, AV, The Netherlands.
| |
Collapse
|
9
|
Zinoviev A, Goyal A, Jindal S, LaCava J, Komar AA, Rodnina MV, Hellen CUT, Pestova TV. Functions of unconventional mammalian translational GTPases GTPBP1 and GTPBP2. Genes Dev 2018; 32:1226-1241. [PMID: 30108131 PMCID: PMC6120710 DOI: 10.1101/gad.314724.118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/06/2018] [Indexed: 02/02/2023]
Abstract
In this study, Zinoviev et al. investigated how translational GTPases (GTPBPs) function in mRNA surveillance and ribosome-associated quality control. They demonstrate that GTPBP1 possesses eEF1A-like elongation activity, delivering cognate aa-tRNA to the ribosomal A site in a GTP-dependent manner, and that GTPBP2's binding to GTP was stimulated by Phe-tRNAPhe, lacked elongation activity, and did not stimulate exosomal degradation. Their results indicate that GTPBP1 and GTPBP2 have different functions. GTP-binding protein 1 (GTPBP1) and GTPBP2 comprise a divergent group of translational GTPases with obscure functions, which are most closely related to eEF1A, eRF3, and Hbs1. Although recent reports implicated GTPBPs in mRNA surveillance and ribosome-associated quality control, how they perform these functions remains unknown. Here, we demonstrate that GTPBP1 possesses eEF1A-like elongation activity, delivering cognate aminoacyl-transfer RNA (aa-tRNA) to the ribosomal A site in a GTP-dependent manner. It also stimulates exosomal degradation of mRNAs in elongation complexes. The kinetics of GTPBP1-mediated elongation argues against its functioning in elongation per se but supports involvement in mRNA surveillance. Thus, GTP hydrolysis by GTPBP1 is not followed by rapid peptide bond formation, suggesting that after hydrolysis, GTPBP1 retains aa-tRNA, delaying its accommodation in the A site. In physiological settings, this would cause ribosome stalling, enabling GTPBP1 to elicit quality control programs; e.g., by recruiting the exosome. GTPBP1 can also deliver deacylated tRNA to the A site, indicating that it might function via interaction with deacylated tRNA, which accumulates during stresses. Although GTPBP2's binding to GTP was stimulated by Phe-tRNAPhe, suggesting that its function might also involve interaction with aa-tRNA, GTPBP2 lacked elongation activity and did not stimulate exosomal degradation, indicating that GTPBP1 and GTPBP2 have different functions.
Collapse
Affiliation(s)
- Alexandra Zinoviev
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | - Akanksha Goyal
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Supriya Jindal
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York 10065, USA
| | - Anton A Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Christopher U T Hellen
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| |
Collapse
|
10
|
Zinder JC, Lima CD. Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its cofactors. Genes Dev 2017; 31:88-100. [PMID: 28202538 PMCID: PMC5322736 DOI: 10.1101/gad.294769.116] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, Zinder and Lima highlight recent advances that have illuminated roles for the RNA exosome and its cofactors in specific biological pathways, alongside studies that attempted to dissect these activities through structural and biochemical characterization of nuclear and cytoplasmic RNA exosome complexes. The eukaryotic RNA exosome is an essential and conserved protein complex that can degrade or process RNA substrates in the 3′-to-5′ direction. Since its discovery nearly two decades ago, studies have focused on determining how the exosome, along with associated cofactors, achieves the demanding task of targeting particular RNAs for degradation and/or processing in both the nucleus and cytoplasm. In this review, we highlight recent advances that have illuminated roles for the RNA exosome and its cofactors in specific biological pathways, alongside studies that attempted to dissect these activities through structural and biochemical characterization of nuclear and cytoplasmic RNA exosome complexes.
Collapse
Affiliation(s)
- John C Zinder
- Tri-Institutional Training Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Structural Biology Program, Sloan Kettering Institute, New York, New York, 10065, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, New York, New York, 10065, USA.,Howard Hughes Medical Institute, New York, New York, 10065 USA
| |
Collapse
|
11
|
Domanski M, LaCava J. Affinity Purification of the RNA Degradation Complex, the Exosome, from HEK-293 Cells. Bio Protoc 2017; 7:e2238. [PMID: 28691041 DOI: 10.21769/bioprotoc.2238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The RNA exosome complex plays a central role in RNA processing and regulated turnover. Present both in cytoplasm and nucleus, the exosome functions through associations with ribonucleases and various adapter proteins (reviewed in [Kilchert et al., 2016]). The following protocol describes an approach to purify RNA exosome complexes from HEK-293 cells, making use of inducible ectopic expression, affinity capture, and rate-zonal centrifugation. The obtained RNA exosomes have been used successfully for proteomic, structural, and enzymatic studies (Domanski et al., 2016).
Collapse
Affiliation(s)
- Michal Domanski
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, USA.,Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA
| |
Collapse
|
12
|
Domanski M, LaCava J. RNA Degradation Assay Using RNA Exosome Complexes, Affinity-purified from HEK-293 Cells. Bio Protoc 2017; 7:e2239. [PMID: 28670604 DOI: 10.21769/bioprotoc.2239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The RNA exosome complex plays a central role in RNA processing and regulated turnover. Present both in cytoplasm and nucleus, the exosome functions through associations with ribonucleases and various adapter proteins (reviewed in [Kilchert et al., 2016]). The RNA exosome-associated EXOSC10 protein is a distributive, 3'-5' exoribonuclease. The following protocol describes an approach to monitor the ribonucleolytic activity of affinity-purified EXOSC10-containing RNA exosomes, originating from HEK-293 cells, as reported in (Domanski et al., 2016) and further detailed in the companion bio-protocol to this one (Domanski and LaCava, 2017).
Collapse
Affiliation(s)
- Michal Domanski
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - John LaCava
- Laboratory of Cellular and Structural Biology, the Rockefeller University, New York, USA.,Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA
| |
Collapse
|
13
|
Zinder JC, Wasmuth EV, Lima CD. Nuclear RNA Exosome at 3.1 Å Reveals Substrate Specificities, RNA Paths, and Allosteric Inhibition of Rrp44/Dis3. Mol Cell 2016; 64:734-745. [PMID: 27818140 DOI: 10.1016/j.molcel.2016.09.038] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/12/2016] [Accepted: 09/28/2016] [Indexed: 01/24/2023]
Abstract
The eukaryotic RNA exosome is an essential and conserved 3'-to-5' exoribonuclease complex that degrades or processes nearly every class of cellular RNA. The nuclear RNA exosome includes a 9-subunit non-catalytic core that binds Rrp44 (Dis3) and Rrp6 subunits to modulate their processive and distributive 3'-to-5' exoribonuclease activities, respectively. Here we utilize an engineered RNA with two 3' ends to obtain a crystal structure of an 11-subunit nuclear exosome bound to RNA at 3.1 Å. The structure reveals an extended RNA path to Rrp6 that penetrates into the non-catalytic core; contacts between the non-catalytic core and Rrp44, which inhibit exoribonuclease activity; and features of the Rrp44 exoribonuclease site that support its ability to degrade 3' phosphate RNA substrates. Using reconstituted exosome complexes, we show that 3' phosphate RNA is not a substrate for Rrp6 but is readily degraded by Rrp44 in the nuclear exosome.
Collapse
Affiliation(s)
- John C Zinder
- Tri-Institutional Training Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Structural Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Elizabeth V Wasmuth
- Structural Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|