1
|
Chen S, Jiang Q, Fan J, Cheng H. Nuclear mRNA export. Acta Biochim Biophys Sin (Shanghai) 2024; 57:84-100. [PMID: 39243141 PMCID: PMC11802349 DOI: 10.3724/abbs.2024145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/17/2024] [Indexed: 09/09/2024] Open
Abstract
In eukaryotic cells, gene expression begins with transcription in the nucleus, followed by the maturation of messenger RNAs (mRNAs). These mRNA molecules are then exported to the cytoplasm through the nuclear pore complex (NPC), a process that serves as a critical regulatory phase of gene expression. The export of mRNA is intricately linked to precursor mRNA (pre-mRNA) processing, ensuring that only properly processed mRNA reaches the cytoplasm. This coordination is essential, as recent studies have revealed that mRNA export factors not only assist in transport but also influence upstream processing steps, adding a layer of complexity to gene regulation. Furthermore, the export process competes with RNA processing and degradation pathways, maintaining a delicate balance vital for accurate gene expression. While these mechanisms are generally conserved across eukaryotes, significant differences exist between yeast and higher eukaryotic cells, particularly due to the more genome complexity of the latter. This review delves into the current research on mRNA export in higher eukaryotic cells, focusing on its role in the broader context of gene expression regulation and highlighting how it interacts with other gene expression processes to ensure precise and efficient gene functionality in complex organisms.
Collapse
Affiliation(s)
- Suli Chen
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Qingyi Jiang
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Jing Fan
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- The Key Laboratory of Developmental Genes and Human DiseaseSchool of Life Science and TechnologySoutheast UniversityNanjing210096China
| | - Hong Cheng
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| |
Collapse
|
2
|
Araki S, Ohori M, Yugami M. Targeting pre-mRNA splicing in cancers: roles, inhibitors, and therapeutic opportunities. Front Oncol 2023; 13:1152087. [PMID: 37342192 PMCID: PMC10277747 DOI: 10.3389/fonc.2023.1152087] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/09/2023] [Indexed: 06/22/2023] Open
Abstract
Accumulating evidence has indicated that pre-mRNA splicing plays critical roles in a variety of physiological processes, including development of multiple diseases. In particular, alternative splicing is profoundly involved in cancer progression through abnormal expression or mutation of splicing factors. Small-molecule splicing modulators have recently attracted considerable attention as a novel class of cancer therapeutics, and several splicing modulators are currently being developed for the treatment of patients with various cancers and are in the clinical trial stage. Novel molecular mechanisms modulating alternative splicing have proven to be effective for treating cancer cells resistant to conventional anticancer drugs. Furthermore, molecular mechanism-based combination strategies and patient stratification strategies for cancer treatment targeting pre-mRNA splicing must be considered for cancer therapy in the future. This review summarizes recent progress in the relationship between druggable splicing-related molecules and cancer, highlights small-molecule splicing modulators, and discusses future perspectives of splicing modulation for personalized and combination therapies in cancer treatment.
Collapse
|
3
|
Cerulo L, Pezzella N, Caruso FP, Parente P, Remo A, Giordano G, Forte N, Busselez J, Boschi F, Galiè M, Franco B, Pancione M. Single-cell proteo-genomic reveals a comprehensive map of centrosome-associated spliceosome components. iScience 2023; 26:106602. [PMID: 37250316 PMCID: PMC10214398 DOI: 10.1016/j.isci.2023.106602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 01/16/2023] [Accepted: 03/29/2023] [Indexed: 05/31/2023] Open
Abstract
Ribonucleoprotein (RNP) condensates are crucial for controlling RNA metabolism and splicing events in animal cells. We used spatial proteomics and transcriptomic to elucidate RNP interaction networks at the centrosome, the main microtubule-organizing center in animal cells. We found a number of cell-type specific centrosome-associated spliceosome interactions localized in subcellular structures involved in nuclear division and ciliogenesis. A component of the nuclear spliceosome BUD31 was validated as an interactor of the centriolar satellite protein OFD1. Analysis of normal and disease cohorts identified the cholangiocarcinoma as target of centrosome-associated spliceosome alterations. Multiplexed single-cell fluorescent microscopy for the centriole linker CEP250 and spliceosome components including BCAS2, BUD31, SRSF2 and DHX35 recapitulated bioinformatic predictions on the centrosome-associated spliceosome components tissue-type specific composition. Collectively, centrosomes and cilia act as anchor for cell-type specific spliceosome components, and provide a helpful reference for explore cytoplasmic condensates functions in defining cell identity and in the origin of rare diseases.
Collapse
Affiliation(s)
- Luigi Cerulo
- Bioinformatics Laboratory, BIOGEM scrl, Ariano Irpino, Avellino, Italy
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Nunziana Pezzella
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, Pozzuoli, 80078 Naples, Italy
- School for Advanced Studies, Genomics and Experimental Medicine Program, Naples, Italy
| | - Francesca Pia Caruso
- Bioinformatics Laboratory, BIOGEM scrl, Ariano Irpino, Avellino, Italy
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Paola Parente
- Unit of Pathology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Andrea Remo
- Pathology Unit, Mater Salutis Hospital AULSS9, “Scaligera”, 37122 Verona, Italy
| | - Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122 Foggia, Italy
| | - Nicola Forte
- Department of Clinical Pathology, Fatebenefratelli Hospital, 82100 Benevento, Italy
| | - Johan Busselez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Federico Boschi
- Department of Computer Science, University of Verona, Strada Le Grazie 8, Verona, Italy
| | - Mirco Galiè
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, Pozzuoli, 80078 Naples, Italy
- School for Advanced Studies, Genomics and Experimental Medicine Program, Naples, Italy
- Medical Genetics, Department of Translational Medicine, University of Naples “Federico II”, Via Sergio Pansini, 80131 Naples, Italy
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Yuan GH, Wang Y, Wang GZ, Yang L. RNAlight: a machine learning model to identify nucleotide features determining RNA subcellular localization. Brief Bioinform 2022; 24:6868526. [PMID: 36464487 PMCID: PMC9851306 DOI: 10.1093/bib/bbac509] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 12/12/2022] Open
Abstract
Different RNAs have distinct subcellular localizations. However, nucleotide features that determine these distinct distributions of lncRNAs and mRNAs have yet to be fully addressed. Here, we develop RNAlight, a machine learning model based on LightGBM, to identify nucleotide k-mers contributing to the subcellular localizations of mRNAs and lncRNAs. With the Tree SHAP algorithm, RNAlight extracts nucleotide features for cytoplasmic or nuclear localization of RNAs, indicating the sequence basis for distinct RNA subcellular localizations. By assembling k-mers to sequence features and subsequently mapping to known RBP-associated motifs, different types of sequence features and their associated RBPs were additionally uncovered for lncRNAs and mRNAs with distinct subcellular localizations. Finally, we extended RNAlight to precisely predict the subcellular localizations of other types of RNAs, including snRNAs, snoRNAs and different circular RNA transcripts, suggesting the generality of using RNAlight for RNA subcellular localization prediction.
Collapse
Affiliation(s)
| | | | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Yang
- Corresponding author. Li Yang, Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Dong-An Road, 131, Shanghai, China. Tel: +86-021-54237325; E-mail:
| |
Collapse
|
5
|
A Truncated Form of the p27 Cyclin-Dependent Kinase Inhibitor Translated from Pre-mRNA Causes G 2-Phase Arrest. Mol Cell Biol 2022; 42:e0021722. [PMID: 36317925 PMCID: PMC9671031 DOI: 10.1128/mcb.00217-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pre-mRNA splicing is an indispensable mechanism for eukaryotic gene expression. Splicing inhibition causes cell cycle arrest at the G1 and G2/M phases, and this is thought to be one of the reasons for the potent antitumor activity of splicing inhibitors. However, the molecular mechanisms underlying the cell cycle arrest have many unknown aspects. In particular, the mechanism of G2/M-phase arrest caused by splicing inhibition is completely unknown. Here, we found that lower and higher concentrations of pladienolide B caused M-phase and G2-phase arrest, respectively. We analyzed protein levels of cell cycle regulators and found that a truncated form of the p27 cyclin-dependent kinase inhibitor, named p27*, accumulated in G2-arrested cells. Overexpression of p27* caused partial G2-phase arrest. Conversely, knockdown of p27* accelerated exit from G2/M phase after washout of splicing inhibitor. These results suggest that p27* contributes to G2/M-phase arrest caused by splicing inhibition. We also found that p27* bound to and inhibited M-phase cyclins, although it is well known that p27 regulates the G1/S transition. Intriguingly, p27*, but not full-length p27, was resistant to proteasomal degradation and remained in G2/M phase. These results suggest that p27*, which is a very stable truncated protein in G2/M phase, contributes to G2-phase arrest caused by splicing inhibition.
Collapse
|
6
|
Nakashima N, Nakashima A, Nakashima K, Takano M. Olfactory marker protein contains a leucine-rich domain in the Ω-loop important for nuclear export. Mol Brain 2022; 15:89. [PMID: 36333725 PMCID: PMC9636679 DOI: 10.1186/s13041-022-00973-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Olfactory marker protein (OMP) is a cytosolic protein expressed in mature olfactory receptor neurons (ORNs). OMP modulates cAMP signalling and regulates olfactory sensation and axonal targeting. OMP is a small soluble protein, and passive diffusion between nucleus and cytoplasm is expected. However, OMP is mostly situated in the cytosol and is only sparsely detected in the nuclei of a subset of ORNs, hypothalamic neurons and heterologously OMP-expressing cultured cells. OMP can enter the nucleus in association with transcription factors. However, how OMP is retained in the cytosol at rest is unclear. Because OMP is proposed to affect cell differentiation, it is important to understand how OMP is distributed between cytoplasm and nucleus. To elucidate the structural profile of OMP, we applied several bioinformatics methods to a multiple sequence alignment (MSA) of OMP protein sequences and ranked the evolutionarily conserved residues. In addition to the previously reported cAMP-binding domain, we identified a leucine-rich domain in the Ω-loop of OMP. We introduced mutations into the leucine-rich region and heterologously expressed the mutant OMP in HEK293T cells. Mutations into alanine increased the nuclear distribution of OMP quantified by immunocytochemistry and western blotting. Therefore, we concluded that OMP contains a leucine-rich domain important for nuclear transport.
Collapse
Affiliation(s)
- Noriyuki Nakashima
- grid.410781.b0000 0001 0706 0776Department of Physiology, Kurume University School of Medicine, 67 Asahi-Machi, Kurume-Shi, Fukuoka 830-0011 Japan
| | - Akiko Nakashima
- grid.410781.b0000 0001 0706 0776Department of Physiology, Kurume University School of Medicine, 67 Asahi-Machi, Kurume-Shi, Fukuoka 830-0011 Japan
| | - Kie Nakashima
- grid.31432.370000 0001 1092 3077Department of Physiology and Cell Biology, Kobe University School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017 Japan
| | - Makoto Takano
- grid.410781.b0000 0001 0706 0776Department of Physiology, Kurume University School of Medicine, 67 Asahi-Machi, Kurume-Shi, Fukuoka 830-0011 Japan
| |
Collapse
|
7
|
Cilloni D, Itri F, Bonuomo V, Petiti J. SF3B1 Mutations in Hematological Malignancies. Cancers (Basel) 2022; 14:4927. [PMID: 36230848 PMCID: PMC9563056 DOI: 10.3390/cancers14194927] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, mutations in the genes involved in the spliceosome have attracted considerable interest in different neoplasms. Among these, SF3B1 mutations have acquired great interest, especially in myelodysplastic syndromes, as they identify a subgroup of patients who can benefit from personalized therapy. The SF3B1 gene encodes the largest subunit of the splicing factor 3b protein complex and is critical for spliceosome assembly and mRNA splicing. The mutated SF3B1 gene encodes for a protein with a different mRNA processing mechanism that results in the aberrant splicing of many mRNAs, which can be downregulated. Although there are many mRNAs affected by a splicing alteration, only a few of these have been directly related to the pathogenesis of several diseases. In this review, we took a snapshot of the current knowledge on the implications of SF3B1 mutations in different hematological malignancies.
Collapse
Affiliation(s)
- Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| | - Federico Itri
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| | - Valentina Bonuomo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| | - Jessica Petiti
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
- Division of Advanced Materials Metrology and Life Sciences, Istituto Nazionale di Ricerca Metrologica (INRiM), 10135 Turin, Italy
| |
Collapse
|
8
|
Petrić Howe M, Crerar H, Neeves J, Harley J, Tyzack GE, Klein P, Ramos A, Patani R, Luisier R. Physiological intron retaining transcripts in the cytoplasm abound during human motor neurogenesis. Genome Res 2022; 32:1808-1825. [PMID: 36180233 PMCID: PMC9712626 DOI: 10.1101/gr.276898.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022]
Abstract
Intron retention (IR) is now recognized as a dominant splicing event during motor neuron (MN) development; however, the role and regulation of intron-retaining transcripts (IRTs) localized to the cytoplasm remain particularly understudied. Here we show that IR is a physiological process that is spatiotemporally regulated during MN lineage restriction and that IRTs in the cytoplasm are detected in as many as 13% (n = 2297) of the genes expressed during this process. We identify a major class of cytoplasmic IRTs that are not associated with reduced expression of their own genes but instead show a high capacity for RNA-binding protein and miRNA occupancy. Finally, we show that ALS-causing VCP mutations lead to a selective increase in cytoplasmic abundance of this particular class of IRTs, which in turn temporally coincides with an increase in the nuclear expression level of predicted miRNA target genes. Altogether, our study identifies a previously unrecognized class of cytoplasmic intronic sequences with potential regulatory function beyond gene expression.
Collapse
Affiliation(s)
- Marija Petrić Howe
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Hamish Crerar
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Jacob Neeves
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Jasmine Harley
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Giulia E Tyzack
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Pierre Klein
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Research Department of Structural and Molecular Biology, University College London, London WC1E 6XA, United Kingdom
| | - Andres Ramos
- Research Department of Structural and Molecular Biology, University College London, London WC1E 6XA, United Kingdom
| | - Rickie Patani
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Raphaëlle Luisier
- Idiap Research Institute, Genomics and Health Informatics, CH-1920 Martigny, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Lelong EIJ, Khelifi G, Adjibade P, Joncas FH, Grenier St-Sauveur V, Paquette V, Gris T, Zoubeidi A, Audet-Walsh E, Lambert JP, Toren P, Mazroui R, Hussein SMI. Prostate cancer resistance leads to a global deregulation of translation factors and unconventional translation. NAR Cancer 2022; 4:zcac034. [PMID: 36348939 PMCID: PMC9634437 DOI: 10.1093/narcan/zcac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Emerging evidence associates translation factors and regulators to tumorigenesis. However, our understanding of translational changes in cancer resistance is still limited. Here, we generated an enzalutamide-resistant prostate cancer (PCa) model, which recapitulated key features of clinical enzalutamide-resistant PCa. Using this model and poly(ribo)some profiling, we investigated global translation changes that occur during acquisition of PCa resistance. We found that enzalutamide-resistant cells exhibit an overall decrease in mRNA translation with a specific deregulation in the abundance of proteins involved in mitochondrial processes and in translational regulation. However, several mRNAs escape this translational downregulation and are nonetheless bound to heavy polysomes in enzalutamide-resistant cells suggesting active translation. Moreover, expressing these corresponding genes in enzalutamide-sensitive cells promotes resistance to enzalutamide treatment. We also found increased association of long non-coding RNAs (lncRNAs) with heavy polysomes in enzalutamide-resistant cells, suggesting that some lncRNAs are actively translated during enzalutamide resistance. Consistent with these findings, expressing the predicted coding sequences of known lncRNAs JPX, CRNDE and LINC00467 in enzalutamide-sensitive cells drove resistance to enzalutamide. Taken together, this suggests that aberrant translation of specific mRNAs and lncRNAs is a strong indicator of PCa enzalutamide resistance, which points towards novel therapeutic avenues that may target enzalutamide-resistant PCa.
Collapse
Affiliation(s)
- Emeline I J Lelong
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Gabriel Khelifi
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Pauline Adjibade
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - France-Hélène Joncas
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Valérie Grenier St-Sauveur
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Virginie Paquette
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Endocrinology and Nephrology Division , Quebec City, Québec G1V 4G2, Canada
| | - Typhaine Gris
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia V6H 3Z6, Canada
| | - Etienne Audet-Walsh
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Endocrinology and Nephrology Division , Quebec City, Québec G1V 4G2, Canada
| | - Jean-Philippe Lambert
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Endocrinology and Nephrology Division , Quebec City, Québec G1V 4G2, Canada
| | - Paul Toren
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Rachid Mazroui
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Samer M I Hussein
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| |
Collapse
|
10
|
Lin X, Liu F, Meng K, Liu H, Zhao Y, Chen Y, Hu W, Luo D. Comprehensive Transcriptome Analysis Reveals Sex-Specific Alternative Splicing Events in Zebrafish Gonads. Life (Basel) 2022; 12:life12091441. [PMID: 36143477 PMCID: PMC9501657 DOI: 10.3390/life12091441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
Alternative splicing is an important way of regulating gene functions in eukaryotes. Several key genes involved in sex determination and gonadal differentiation, such as nr5a1 and ddx4, have sex-biased transcripts between males and females, suggesting a potential regulatory role of alternative splicing in gonads. Currently, the sex-specific alternative splicing events and genes have not been comprehensively studied at the genome-wide level in zebrafish. In this study, through global splicing analysis on three independent sets of RNA-seq data from matched zebrafish testes and ovaries, we identified 120 differentially spliced genes shared by the three datasets, most of which haven’t been reported before. Functional enrichment analysis showed that the GO terms of mRNA processing, mRNA metabolism and microtubule-based process were strongly enriched. The testis- and ovary-biased alternative splicing genes were identified, and part of them (tp53bp1, tpx2, mapre1a, kif2c, and ncoa5) were further validated by RT-PCR. Sequence characteristics analysis suggested that the lengths, GC contents, and splice site strengths of the alternative exons or introns may have different influences in different types of alternative splicing events. Interestingly, we identified an unexpected high proportion (over 70%) of non-frameshift exon-skipping events, suggesting that in these cases the two protein isoforms derived from alternative splicing may both have functions. Furthermore, as a representative example, we found that the alternative splicing of ncoa5 causes the loss of a conserved RRM domain in the short transcript predominantly produced in testes. Our study discovers novel sex-specific alternative splicing events and genes with high reliabilities in zebrafish testes and ovaries, which would provide attractive targets for follow-up studies to reveal the biological significances of alternative splicing events and genes in sex determination and gonadal differentiation.
Collapse
Affiliation(s)
- Xing Lin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (F.L.); (D.L.)
| | - Kaifeng Meng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hairong Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuanli Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuanyuan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Daji Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, University of Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
- Correspondence: (F.L.); (D.L.)
| |
Collapse
|
11
|
González-Blanco G, García-Rivera G, Talmás-Rohana P, Orozco E, Galindo-Rosales JM, Vélez C, Salucedo-Cárdenas O, Azuara-Liceaga E, Rodríguez-Rodríguez MA, Nozaki T, Valdés J. An Unusual U2AF2 Inhibits Splicing and Attenuates the Virulence of the Human Protozoan Parasite Entamoeba histolytica. Front Cell Infect Microbiol 2022; 12:888428. [PMID: 35782149 PMCID: PMC9247205 DOI: 10.3389/fcimb.2022.888428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
E. histolytica is the etiological agent of intestinal amebiasis and liver abscesses, which still poses public health threat globally. Metronidazole is the drug of choice against amebiasis. However, metronidazole-resistant amoebic clinical isolates and strains have been reported recently, challenging the efforts for amebiasis eradication. In search of alternative treatments, E. histolytica transcriptomes have shown the association of genes involved in RNA metabolism with the virulence of the parasite. Among the upregulated genes in amoebic liver abscesses are the splicing factors EhU2AF2 and a paralog of EhSF3B1. For this reason and because EhU2AF2 contains unusual KH-QUA2 (84KQ) motifs in its lengthened C-terminus domain, here we investigated how the role of EhU2AF2 in pre-mRNA processing impacts the virulence of the parasite. We found that 84KQ is involved in splicing inhibition/intron retention of several virulence and non-virulence-related genes. The 84KQ domain interacts with the same domain of the constitutive splicing factor SF1 (SF1KQ), both in solution and when SF1KQ is bound to branchpoint signal RNA probes. The 84KQ–SF1KQ interaction prevents splicing complex E to A transition, thus inhibiting splicing. Surprisingly, the deletion of the 84KQ domain in EhU2AF2 amoeba transformants increased splicing and enhanced the in vitro and in vivo virulence phenotypes. We conclude that the interaction of the 84KQ and SF1KQ domains, probably involving additional factors, tunes down Entamoeba virulence by favoring intron retention.
Collapse
Affiliation(s)
- Gretter González-Blanco
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Patricia Talmás-Rohana
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Ester Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - José Manuel Galindo-Rosales
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Cristina Vélez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Odila Salucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX, Mexico
| | - Mario Alberto Rodríguez-Rodríguez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Tomoyoshi Nozaki
- Laboratory of Biomedical Chemistry, Department of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
- *Correspondence: Jesús Valdés,
| |
Collapse
|
12
|
Sellin M, Mack R, Rhodes MC, Zhang L, Berg S, Joshi K, Liu S, Wei W, S. J. PB, Larsen P, Taylor RE, Zhang J. Molecular mechanisms by which splice modulator GEX1A inhibits leukaemia development and progression. Br J Cancer 2022; 127:223-236. [PMID: 35422078 PMCID: PMC9296642 DOI: 10.1038/s41416-022-01796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Splice modulators have been assessed clinically in treating haematologic malignancies exhibiting splice factor mutations and acute myeloid leukaemia. However, the mechanisms by which such modulators repress leukaemia remain to be elucidated. OBJECTIVES The primary goal of this assessment was to assess the molecular mechanism by which the natural splice modulator GEX1A kills leukaemic cells in vitro and within in vivo mouse models. METHODS Using human leukaemic cell lines, we assessed the overall sensitivity these cells have to GEX1A via EC50 analysis. We subsequently analysed its effects using in vivo xenograft mouse models and examined whether cell sensitivities were correlated to genetic characteristics or protein expression levels. We also utilised RT-PCR and RNAseq analyses to determine splice change and RNA expression level differences between sensitive and resistant leukaemic cell lines. RESULTS We found that, in vitro, GEX1A induced an MCL-1 isoform shift to pro-apoptotic MCL-1S in all leukaemic cell types, though sensitivity to GEX1A-induced apoptosis was negatively associated with BCL-xL expression. In BCL-2-expressing leukaemic cells, GEX1A induced BCL-2-dependent apoptosis by converting pro-survival BCL-2 into a cell killer. Thus, GEX1A + selective BCL-xL inhibition induced synergism in killing leukaemic cells, while GEX1A + BCL-2 inhibition showed antagonism in BCL-2-expressing leukaemic cells. In addition, GEX1A sensitised FLT3-ITD+ leukaemic cells to apoptosis by inducing aberrant splicing and repressing the expression of FLT3-ITD. Consistently, in in vivo xenografts, GEX1A killed the bulk of leukaemic cells via apoptosis when combined with BCL-xL inhibition. Furthermore, GEX1A repressed leukaemia development by targeting leukaemia stem cells through inhibiting FASTK mitochondrial isoform expression across sensitive and non-sensitive leukaemia types. CONCLUSION Our study suggests that GEX1A is a potent anti-leukaemic agent in combination with BCL-xL inhibitors, which targets leukaemic blasts and leukaemia stem cells through distinct mechanisms.
Collapse
|
13
|
Sette C, Paronetto MP. Somatic Mutations in Core Spliceosome Components Promote Tumorigenesis and Generate an Exploitable Vulnerability in Human Cancer. Cancers (Basel) 2022; 14:cancers14071827. [PMID: 35406598 PMCID: PMC8997811 DOI: 10.3390/cancers14071827] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary High throughput exome sequencing approaches have disclosed recurrent cancer-associated mutations in spliceosomal components, which drive aberrant pre-mRNA processing events and support the tumor phenotype. At the same time, mutations in spliceosome genes and aberrant splicing regulation establish a selective vulnerability of cancer cells to splicing-targeting approaches, which could be exploited therapeutically. It is conceivable that a better understanding of the mechanisms and roles of abnormal splicing in tumor metabolism will facilitate the development of a novel generation of tumor-targeting drugs. In this review, we describe recent advances in the elucidation of the biological impact and biochemical effects of somatic mutations in core spliceosome components on splicing choices and their associated targetable vulnerabilities. Abstract Alternative pre-mRNA processing enables the production of distinct mRNA and protein isoforms from a single gene, thus greatly expanding the coding potential of eukaryotic genomes and fine-tuning gene expression programs. Splicing is carried out by the spliceosome, a complex molecular machinery which assembles step-wise on mRNA precursors in the nucleus of eukaryotic cells. In the last decade, exome sequencing technologies have allowed the identification of point mutations in genes encoding splicing factors as a recurrent hallmark of human cancers, with higher incidence in hematological malignancies. These mutations lead to production of splicing factors that reduce the fidelity of the splicing process and yield splicing variants that are often advantageous for cancer cells. However, at the same time, these mutations increase the sensitivity of transformed cells to splicing inhibitors, thus offering a therapeutic opportunity for novel targeted strategies. Herein, we review the recent literature documenting cancer-associated mutations in components of the early spliceosome complex and discuss novel therapeutic strategies based on small-molecule spliceosome inhibitors that exhibit strong anti-tumor effects, particularly against cancer cells harboring mutations in spliceosomal components.
Collapse
Affiliation(s)
- Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- GSTEP-Organoids Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis, 6, 00135 Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, IRCCS, Via del Fosso di Fiorano 64, 00143 Rome, Italy
- Correspondence:
| |
Collapse
|
14
|
Yamanaka Y, Ishizuka T, Fujita KI, Fujiwara N, Kurata M, Masuda S. CHERP Regulates the Alternative Splicing of pre-mRNAs in the Nucleus. Int J Mol Sci 2022; 23:ijms23052555. [PMID: 35269695 PMCID: PMC8910253 DOI: 10.3390/ijms23052555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
Calcium homeostasis endoplasmic reticulum protein (CHERP) is colocalized with the inositol 1,4,5-trisphosphate receptor (IP3R) in the endoplasmic reticulum or perinuclear region, and has been involved in intracellular calcium signaling. Structurally, CHERP carries the nuclear localization signal and arginine/serine-dipeptide repeats, like domain, and interacts with the spliceosome. However, the exact function of CHERP in the nucleus remains unknown. Here, we showed that poly(A)+ RNAs accumulated in the nucleus of CHERP-depleted U2OS cells. Our global analysis revealed that CHERP regulated alternative mRNA splicing events by interaction with U2 small nuclear ribonucleoproteins (U2 snRNPs) and U2 snRNP-related proteins. Among the five alternative splicing patterns analyzed, intron retention was the most frequently observed event. This was in accordance with the accumulation of poly(A)+ RNAs in the nucleus. Furthermore, intron retention and cassette exon choices were influenced by the strength of the 5′ or 3′ splice site, the branch point site, GC content, and intron length. In addition, CHERP depletion induced anomalies in the cell cycle progression into the M phase, and abnormal cell division. These results suggested that CHERP is involved in the regulation of alternative splicing.
Collapse
Affiliation(s)
- Yasutaka Yamanaka
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; (Y.Y.); (T.I.); (K.-i.F.); (N.F.); (M.K.)
| | - Takaki Ishizuka
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; (Y.Y.); (T.I.); (K.-i.F.); (N.F.); (M.K.)
| | - Ken-ichi Fujita
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; (Y.Y.); (T.I.); (K.-i.F.); (N.F.); (M.K.)
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| | - Naoko Fujiwara
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; (Y.Y.); (T.I.); (K.-i.F.); (N.F.); (M.K.)
| | - Masashi Kurata
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; (Y.Y.); (T.I.); (K.-i.F.); (N.F.); (M.K.)
| | - Seiji Masuda
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; (Y.Y.); (T.I.); (K.-i.F.); (N.F.); (M.K.)
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan
- Correspondence: ; Tel.: +81-742-43-1713
| |
Collapse
|
15
|
Chhipi-Shrestha JK, Schneider-Poetsch T, Suzuki T, Mito M, Khan K, Dohmae N, Iwasaki S, Yoshida M. Splicing modulators elicit global translational repression by condensate-prone proteins translated from introns. Cell Chem Biol 2022; 29:259-275.e10. [PMID: 34520743 PMCID: PMC8857039 DOI: 10.1016/j.chembiol.2021.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/10/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022]
Abstract
Chemical splicing modulators that bind to the spliceosome have provided an attractive avenue for cancer treatment. Splicing modulators induce accumulation and subsequent translation of a subset of intron-retained mRNAs. However, the biological effect of proteins containing translated intron sequences remains unclear. Here, we identify a number of truncated proteins generated upon treatment with the splicing modulator spliceostatin A (SSA) via genome-wide ribosome profiling and bio-orthogonal noncanonical amino acid tagging (BONCAT) mass spectrometry. A subset of these truncated proteins has intrinsically disordered regions, forms insoluble cellular condensates, and triggers the proteotoxic stress response through c-Jun N-terminal kinase (JNK) phosphorylation, thereby inhibiting the mTORC1 pathway. In turn, this reduces global translation. These findings indicate that creating an overburden of condensate-prone proteins derived from introns represses translation and prevents further production of harmful truncated proteins. This mechanism appears to contribute to the antiproliferative and proapoptotic activity of splicing modulators.
Collapse
Affiliation(s)
- Jagat K. Chhipi-Shrestha
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan,Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tilman Schneider-Poetsch
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Khalid Khan
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Wako, Saitama 351-0198, Japan.
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
16
|
Zou X, Schaefke B, Li Y, Jia F, Sun W, Li G, Liang W, Reif T, Heyd F, Gao Q, Tian S, Li Y, Tang Y, Fang L, Hu Y, Chen W. Mammalian splicing divergence is shaped by drift, buffering in trans, and a scaling law. Life Sci Alliance 2022; 5:5/4/e202101333. [PMID: 34969779 PMCID: PMC8739531 DOI: 10.26508/lsa.202101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022] Open
Abstract
This study globally investigates the allelic splicing pattern in multiple tissues of an F1 hybrid mouse and reveals the underlying driving forces shaping such tissue-dependent splicing divergence. Alternative splicing is ubiquitous, but the mechanisms underlying its pattern of evolutionary divergence across mammalian tissues are still underexplored. Here, we investigated the cis-regulatory divergences and their relationship with tissue-dependent trans-regulation in multiple tissues of an F1 hybrid between two mouse species. Large splicing changes between tissues are highly conserved and likely reflect functional tissue-dependent regulation. In particular, micro-exons frequently exhibit this pattern with high inclusion levels in the brain. Cis-divergence of splicing appears to be largely non-adaptive. Although divergence is in general associated with higher densities of sequence variants in regulatory regions, events with high usage of the dominant isoform apparently tolerate more mutations, explaining why their exon sequences are highly conserved but their intronic splicing site flanking regions are not. Moreover, we demonstrate that non-adaptive mutations are often masked in tissues where accurate splicing likely is more important, and experimentally attribute such buffering effect to trans-regulatory splicing efficiency.
Collapse
Affiliation(s)
- Xudong Zou
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Bernhard Schaefke
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Yisheng Li
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Fujian Jia
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wei Sun
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Guipeng Li
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Weizheng Liang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Tristan Reif
- Institute for Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Florian Heyd
- Institute for Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Qingsong Gao
- Laboratory for Systems Biology and Functional Genomics, Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Shuye Tian
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yanping Li
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yisen Tang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Liang Fang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Yuhui Hu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wei Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China .,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
17
|
Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of mRNA splicing relevant proteins in aging HSPCs. Aging Clin Exp Res 2021; 33:3123-3134. [PMID: 32141009 DOI: 10.1007/s40520-020-01509-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/10/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND HSPC (hematopoietic stem/progenitor cell) aging was closely associated with the organism aging, senile diseases and hematopoietic related diseases. Therefore, study on HSPC aging is of great significance to further elucidate the mechanisms of aging and to treat hematopoietic disease resulting from HSPC aging. Little attention had been paid to mRNA splicing as a mechanism underlying HSPC senescence. RESULTS We used our lab's patented in vitro aging model of HSPCs to analyze mRNA splicing relevant protein alterations with iTRAQ-based proteomic analysis. We found that not only the notable mRNA splicing genes such as SR, hnRNP, WBP11, Sf3b1, Ptbp1 and U2AF1 but also the scarcely reported mRNA splicing relevant genes such as Rbmxl1, Dhx16, Pcbp2, Pabpc1 were significantly down-regulated. We further verified their gene expressions by qRT-PCR. In addition, we reported the effect of Spliceostatin A (SSA), which inhibits mRNA splicing in vivo and in vitro, on HSPC aging. CONCLUSIONS It was concluded that mRNA splicing emerged as an important factor for the vulnerability of HSPC aging. This study improved our understanding of the role of mRNA splicing in the HSPC aging process.
Collapse
|
18
|
Fukumura K, Yoshimoto R, Sperotto L, Kang HS, Hirose T, Inoue K, Sattler M, Mayeda A. SPF45/RBM17-dependent, but not U2AF-dependent, splicing in a distinct subset of human short introns. Nat Commun 2021; 12:4910. [PMID: 34389706 PMCID: PMC8363638 DOI: 10.1038/s41467-021-24879-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 07/06/2021] [Indexed: 11/11/2022] Open
Abstract
Human pre-mRNA introns vary in size from under fifty to over a million nucleotides. We searched for essential factors involved in the splicing of human short introns by screening siRNAs against 154 human nuclear proteins. The splicing activity was assayed with a model HNRNPH1 pre-mRNA containing short 56-nucleotide intron. We identify a known alternative splicing regulator SPF45 (RBM17) as a constitutive splicing factor that is required to splice out this 56-nt intron. Whole-transcriptome sequencing of SPF45-deficient cells reveals that SPF45 is essential in the efficient splicing of many short introns. To initiate the spliceosome assembly on a short intron with the truncated poly-pyrimidine tract, the U2AF-homology motif (UHM) of SPF45 competes out that of U2AF65 (U2AF2) for binding to the UHM-ligand motif (ULM) of the U2 snRNP protein SF3b155 (SF3B1). We propose that splicing in a distinct subset of human short introns depends on SPF45 but not U2AF heterodimer. The length distribution of human pre-mRNA introns is very extensive. The authors demonstrate that splicing in a subset of short introns is dependent on SPF45 (RBM17), which replaces authentic U2AF-heterodimer on the truncated poly-pyrimidine tracts and interacts with the U2 snRNP protein SF3b155.
Collapse
Affiliation(s)
- Kazuhiro Fukumura
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan.
| | - Rei Yoshimoto
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan.,Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka, Japan
| | - Luca Sperotto
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Bavarian NMR Center (BNMRZ), Chemistry Department, Technical University of Munich, Garching, Germany
| | - Hyun-Seo Kang
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Bavarian NMR Center (BNMRZ), Chemistry Department, Technical University of Munich, Garching, Germany
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Kunio Inoue
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, Japan
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Bavarian NMR Center (BNMRZ), Chemistry Department, Technical University of Munich, Garching, Germany
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan.
| |
Collapse
|
19
|
Cretu C, Gee P, Liu X, Agrawal A, Nguyen TV, Ghosh AK, Cook A, Jurica M, Larsen NA, Pena V. Structural basis of intron selection by U2 snRNP in the presence of covalent inhibitors. Nat Commun 2021; 12:4491. [PMID: 34301950 PMCID: PMC8302644 DOI: 10.1038/s41467-021-24741-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/01/2021] [Indexed: 12/27/2022] Open
Abstract
Intron selection during the formation of prespliceosomes is a critical event in pre-mRNA splicing. Chemical modulation of intron selection has emerged as a route for cancer therapy. Splicing modulators alter the splicing patterns in cells by binding to the U2 snRNP (small nuclear ribonucleoprotein)—a complex chaperoning the selection of branch and 3′ splice sites. Here we report crystal structures of the SF3B module of the U2 snRNP in complex with spliceostatin and sudemycin FR901464 analogs, and the cryo-electron microscopy structure of a cross-exon prespliceosome-like complex arrested with spliceostatin A. The structures reveal how modulators inactivate the branch site in a sequence-dependent manner and stall an E-to-A prespliceosome intermediate by covalent coupling to a nucleophilic zinc finger belonging to the SF3B subunit PHF5A. These findings support a mechanism of intron recognition by the U2 snRNP as a toehold-mediated strand invasion and advance an unanticipated drug targeting concept. Chemical modulation of intron selection has emerged as a route for cancer therapy. Here, structures of the U2 snRNP’s SF3B module and of prespliceosome- both in complexes with splicing modulators- provide insight into the mechanisms of intron recognition and branch site inactivation.
Collapse
Affiliation(s)
- Constantin Cretu
- Research Group Mechanisms and Regulation of Splicing, The Institute of Cancer Research, London, UK.,Cluster of Excellence Multiscale Bioimaging (MBExC), Universitätsmedizin Göttingen, Göttingen, Germany
| | | | - Xiang Liu
- H3 Biomedicine, Inc, Cambridge, MA, USA
| | | | | | - Arun K Ghosh
- Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, IN, USA
| | | | - Melissa Jurica
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | | | - Vladimir Pena
- Research Group Mechanisms and Regulation of Splicing, The Institute of Cancer Research, London, UK.
| |
Collapse
|
20
|
Biology of the mRNA Splicing Machinery and Its Dysregulation in Cancer Providing Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22105110. [PMID: 34065983 PMCID: PMC8150589 DOI: 10.3390/ijms22105110] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of messenger RNA (mRNA) processing—in particular mRNA splicing—is a hallmark of cancer. Compared to normal cells, cancer cells frequently present aberrant mRNA splicing, which promotes cancer progression and treatment resistance. This hallmark provides opportunities for developing new targeted cancer treatments. Splicing of precursor mRNA into mature mRNA is executed by a dynamic complex of proteins and small RNAs called the spliceosome. Spliceosomes are part of the supraspliceosome, a macromolecular structure where all co-transcriptional mRNA processing activities in the cell nucleus are coordinated. Here we review the biology of the mRNA splicing machinery in the context of other mRNA processing activities in the supraspliceosome and present current knowledge of its dysregulation in lung cancer. In addition, we review investigations to discover therapeutic targets in the spliceosome and give an overview of inhibitors and modulators of the mRNA splicing process identified so far. Together, this provides insight into the value of targeting the spliceosome as a possible new treatment for lung cancer.
Collapse
|
21
|
Yoshimoto R, Chhipi-Shrestha JK, Schneider-Poetsch T, Furuno M, Burroughs AM, Noma S, Suzuki H, Hayashizaki Y, Mayeda A, Nakagawa S, Kaida D, Iwasaki S, Yoshida M. Spliceostatin A interaction with SF3B limits U1 snRNP availability and causes premature cleavage and polyadenylation. Cell Chem Biol 2021; 28:1356-1365.e4. [PMID: 33784500 DOI: 10.1016/j.chembiol.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/07/2021] [Accepted: 03/09/2021] [Indexed: 12/01/2022]
Abstract
RNA splicing, a highly conserved process in eukaryotic gene expression, is seen as a promising target for anticancer agents. Splicing is associated with other RNA processing steps, such as transcription and nuclear export; however, our understanding of the interaction between splicing and other RNA regulatory mechanisms remains incomplete. Moreover, the impact of chemical splicing inhibition on long non-coding RNAs (lncRNAs) has been poorly understood. Here, we demonstrate that spliceostatin A (SSA), a chemical splicing modulator that binds to the SF3B subcomplex of the U2 small nuclear ribonucleoprotein particle (snRNP), limits U1 snRNP availability in splicing, resulting in premature cleavage and polyadenylation of MALAT1, a nuclear lncRNA, as well as protein-coding mRNAs. Therefore, truncated transcripts are exported into the cytoplasm and translated, resulting in aberrant protein products. Our work demonstrates that active recycling of the splicing machinery maintains homeostasis of RNA processing beyond intron excision.
Collapse
Affiliation(s)
- Rei Yoshimoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Jagat K Chhipi-Shrestha
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Department of Biotechnology, Graduate School of Agricultural Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tilman Schneider-Poetsch
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Masaaki Furuno
- RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama 230-0045, Japan
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Shohei Noma
- RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yoshihide Hayashizaki
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Saitama 351-0198, Japan
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Daisuke Kaida
- Department of Gene Expression and Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004 Japan.
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Department of Biotechnology, Graduate School of Agricultural Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
22
|
Bowling EA, Wang JH, Gong F, Wu W, Neill NJ, Kim IS, Tyagi S, Orellana M, Kurley SJ, Dominguez-Vidaña R, Chung HC, Hsu TYT, Dubrulle J, Saltzman AB, Li H, Meena JK, Canlas GM, Chamakuri S, Singh S, Simon LM, Olson CM, Dobrolecki LE, Lewis MT, Zhang B, Golding I, Rosen JM, Young DW, Malovannaya A, Stossi F, Miles G, Ellis MJ, Yu L, Buonamici S, Lin CY, Karlin KL, Zhang XHF, Westbrook TF. Spliceosome-targeted therapies trigger an antiviral immune response in triple-negative breast cancer. Cell 2021; 184:384-403.e21. [PMID: 33450205 PMCID: PMC8635244 DOI: 10.1016/j.cell.2020.12.031] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/29/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Many oncogenic insults deregulate RNA splicing, often leading to hypersensitivity of tumors to spliceosome-targeted therapies (STTs). However, the mechanisms by which STTs selectively kill cancers remain largely unknown. Herein, we discover that mis-spliced RNA itself is a molecular trigger for tumor killing through viral mimicry. In MYC-driven triple-negative breast cancer, STTs cause widespread cytoplasmic accumulation of mis-spliced mRNAs, many of which form double-stranded structures. Double-stranded RNA (dsRNA)-binding proteins recognize these endogenous dsRNAs, triggering antiviral signaling and extrinsic apoptosis. In immune-competent models of breast cancer, STTs cause tumor cell-intrinsic antiviral signaling, downstream adaptive immune signaling, and tumor cell death. Furthermore, RNA mis-splicing in human breast cancers correlates with innate and adaptive immune signatures, especially in MYC-amplified tumors that are typically immune cold. These findings indicate that dsRNA-sensing pathways respond to global aberrations of RNA splicing in cancer and provoke the hypothesis that STTs may provide unexplored strategies to activate anti-tumor immune pathways.
Collapse
Affiliation(s)
- Elizabeth A Bowling
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jarey H Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fade Gong
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - William Wu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicholas J Neill
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ik Sun Kim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Siddhartha Tyagi
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mayra Orellana
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah J Kurley
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rocio Dominguez-Vidaña
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hsiang-Ching Chung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tiffany Y-T Hsu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Julien Dubrulle
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander B Saltzman
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Heyuan Li
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jitendra K Meena
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gino M Canlas
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Srinivas Chamakuri
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Swarnima Singh
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lukas M Simon
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Calla M Olson
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lacey E Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bing Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ido Golding
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Damian W Young
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA; Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - George Miles
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lihua Yu
- H3Biomedicine, Cambridge, MA 02139, USA
| | | | - Charles Y Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kristen L Karlin
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas F Westbrook
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Schneider-Poetsch T, Chhipi-Shrestha JK, Yoshida M. Splicing modulators: on the way from nature to clinic. J Antibiot (Tokyo) 2021; 74:603-616. [PMID: 34345042 PMCID: PMC8472923 DOI: 10.1038/s41429-021-00450-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Over the course of more than two decades, natural products isolated from various microorganisms and plants have built the foundation for chemical biology research into the mechanism of pre-mRNA splicing. Hand in hand with advances in scientific methodology small molecule splicing modulators have become powerful tools for investigating, not just the splicing mechanism, but also the cellular effect of altered mRNA processing. Based on thorough structure-activity studies, synthetic analogues have moved on from scientific tool compounds to experimental drugs. With current advances in drug discovery methodology and new means of attacking targets previously thought undruggable, we can expect further advances in both research and therapeutics based on small molecule splicing modulators.
Collapse
Affiliation(s)
- Tilman Schneider-Poetsch
- grid.509461.fChemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama Japan
| | | | - Minoru Yoshida
- grid.509461.fChemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo Japan ,grid.26999.3d0000 0001 2151 536XCollaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo Japan
| |
Collapse
|
24
|
López-Cánovas JL, Del Rio-Moreno M, García-Fernandez H, Jiménez-Vacas JM, Moreno-Montilla MT, Sánchez-Frias ME, Amado V, L-López F, Fondevila MF, Ciria R, Gómez-Luque I, Briceño J, Nogueiras R, de la Mata M, Castaño JP, Rodriguez-Perálvarez M, Luque RM, Gahete MD. Splicing factor SF3B1 is overexpressed and implicated in the aggressiveness and survival of hepatocellular carcinoma. Cancer Lett 2021; 496:72-83. [PMID: 33038489 DOI: 10.1016/j.canlet.2020.10.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
Splicing alterations represent an actionable cancer hallmark. Splicing factor 3B subunit 1 (SF3B1) is a crucial splicing factor that can be targeted pharmacologically (e.g. pladienolide-B). Here, we show that SF3B1 is overexpressed (RNA/protein) in hepatocellular carcinoma (HCC) in two retrospective (n = 154 and n = 172 samples) and in five in silico cohorts (n > 900 samples, including TCGA) and that its expression is associated with tumor aggressiveness, oncogenic splicing variants expression (KLF6-SV1, BCL-XL) and decreased overall survival. In vitro, SF3B1 silencing reduced cell viability, proliferation and migration and its pharmacological blockade with pladienolide-B inhibited proliferation, migration, and formation of tumorspheres and colonies in liver cancer cell lines (HepG2, Hep3B, SNU-387), whereas its effects on normal-like hepatocyte-derived THLE-2 proliferation were negligible. Pladienolide-B also reduced the in vivo growth and the expression of tumor-markers in Hep3B-induced xenograft tumors. Moreover, SF3B1 silencing and/or blockade markedly modulated the activation of key signaling pathways (PDK1, GSK3b, ERK, JNK, AMPK) and the expression of cancer-associated genes (CDK4, CD24) and oncogenic SVs (KLF6-SV1). Therefore, the genetic and/or pharmacological inhibition of SF3B1 may represent a promising novel therapeutic strategy worth to be explored through randomized controlled trials.
Collapse
Affiliation(s)
- Juan L López-Cánovas
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Mercedes Del Rio-Moreno
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Helena García-Fernandez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Juan M Jiménez-Vacas
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - M Trinidad Moreno-Montilla
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Marina E Sánchez-Frias
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain
| | - Víctor Amado
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Hepatic and Digestive Diseases (CIBERehd), Córdoba, 14004, Spain
| | - Fernando L-López
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Marcos F Fondevila
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain; Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Rubén Ciria
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Unit of Hepatobiliary Surgery and Liver Transplantation, Reina Sofía University Hospital, Cordoba, 14004, Spain
| | - Irene Gómez-Luque
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Unit of Hepatobiliary Surgery and Liver Transplantation, Reina Sofía University Hospital, Cordoba, 14004, Spain
| | - Javier Briceño
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Unit of Hepatobiliary Surgery and Liver Transplantation, Reina Sofía University Hospital, Cordoba, 14004, Spain
| | - Rubén Nogueiras
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain; Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Manuel de la Mata
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Hepatic and Digestive Diseases (CIBERehd), Córdoba, 14004, Spain
| | - Justo P Castaño
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Manuel Rodriguez-Perálvarez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Hepatic and Digestive Diseases (CIBERehd), Córdoba, 14004, Spain
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Manuel D Gahete
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain.
| |
Collapse
|
25
|
Kim Guisbert KS, Mossiah I, Guisbert E. Titration of SF3B1 Activity Reveals Distinct Effects on the Transcriptome and Cell Physiology. Int J Mol Sci 2020; 21:ijms21249641. [PMID: 33348896 PMCID: PMC7766730 DOI: 10.3390/ijms21249641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
SF3B1 is a core component of the U2 spliceosome that is frequently mutated in cancer. We have previously shown that titrating the activity of SF3B1, using the inhibitor pladienolide B (PB), affects distinct steps of the heat shock response (HSR). Here, we identify other genes that are sensitive to different levels of SF3B1 (5 vs. 100 nM PB) using RNA sequencing. Significant changes to mRNA splicing were identified at both low PB and high PB concentrations. Changes in expression were also identified in the absence of alternative splicing, suggesting that SF3B1 influences other gene expression pathways. Surprisingly, gene expression changes identified in low PB are not predictive of changes in high PB. Specific pathways were identified with differential sensitivity to PB concentration, including nonsense-mediated decay and protein-folding homeostasis, both of which were validated using independent reporter constructs. Strikingly, cells exposed to low PB displayed enhanced protein-folding capacity relative to untreated cells. These data reveal that the transcriptome is exquisitely sensitive to SF3B1 and suggests that the activity of SF3B1 is finely regulated to coordinate mRNA splicing, gene expression and cellular physiology.
Collapse
|
26
|
Ortega MA, Fraile-Martínez O, García-Honduvilla N, Coca S, Álvarez-Mon M, Buján J, Teus MA. Update on uveal melanoma: Translational research from biology to clinical practice (Review). Int J Oncol 2020; 57:1262-1279. [PMID: 33173970 PMCID: PMC7646582 DOI: 10.3892/ijo.2020.5140] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Uveal melanoma is the most common type of intraocular cancer with a low mean annual incidence of 5‑10 cases per million. Tumours are located in the choroid (90%), ciliary body (6%) or iris (4%) and of 85% are primary tumours. As in cutaneous melanoma, tumours arise in melanocytes; however, the characteristics of uveal melanoma differ, accounting for 3‑5% of melanocytic cancers. Among the numerous risk factors are age, sex, genetic and phenotypic predisposition, the work environment and dermatological conditions. Management is usually multidisciplinary, including several specialists such as ophthalmologists, oncologists and maxillofacial surgeons, who participate in the diagnosis, treatment and complex follow‑up of these patients, without excluding the management of the immense emotional burden. Clinically, uveal melanoma generates symptoms that depend as much on the affected ocular globe site as on the tumour size. The anatomopathological study of uveal melanoma has recently benefited from developments in molecular biology. In effect, disease classification or staging according to molecular profile is proving useful for the assessment of this type of tumour. Further, the improved knowledge of tumour biology is giving rise to a more targeted approach to diagnosis, prognosis and treatment development; for example, epigenetics driven by microRNAs as a target for disease control. In the present study, the main epidemiological, clinical, physiopathological and molecular features of this disease are reviewed, and the associations among all these factors are discussed.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Santiago Coca
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
- Internal and Oncology Service (CIBER-EHD), University Hospital Príncipe de Asturias, Alcalá de Henares, 28805 Madrid
| | - Julia Buján
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Miguel A. Teus
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ophthalmology Service, University Hospital Príncipe de Asturias, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
27
|
Synergistic apoptotic effects in cancer cells by the combination of CLK and Bcl-2 family inhibitors. PLoS One 2020; 15:e0240718. [PMID: 33064779 PMCID: PMC7567398 DOI: 10.1371/journal.pone.0240718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 10/01/2020] [Indexed: 02/03/2023] Open
Abstract
Emerging evidence indicates that alternative splicing plays a critical role in cancer progression through abnormal expression or mutation of splicing factors. Small-molecule splicing modulators have recently attracted considerable attention as a novel class of cancer therapeutics. CDC-like kinases (CLKs) are central to exon recognition in mRNA splicing and CLK inhibitors exhibit anti-tumour activities. Most importantly, molecular mechanism-based combination strategies for cancer therapy must be considered. However, it remains unclear whether CLK inhibitors modulate expression and splicing of apoptosis-related genes, and whether CLK inhibitors enhance cytotoxicity in combination with apoptosis inducers. Here we report an appropriate mechanism-based drug combination approach. Unexpectedly, we found that the CLK inhibitor T3 rapidly induced apoptosis in A2780 cells and G2/M cell cycle arrest in HCT116 cells. Regardless of the different phenotypes of the two cancer cell types, T3 decreased the levels of anti-apoptotic proteins (cIAP1, cIAP2, XIAP, cFLIP and Mcl-1) for a short period of exposure and altered the splicing of the anti-apoptotic MCL1L and CFLAR isoform in A2780 and HCT116 cells. In contrast, other members of the Bcl-2 family (i.e., Bcl-xL and Bcl-2) were resistant to T3-induced expression and splicing modulation. T3 and a Bcl-xL/Bcl-2 inhibitor synergistically induced apoptosis. Taken together, the use of a CLK inhibitor is a novel therapeutic approach to sensitise cancer cells to Bcl-xL/Bcl-2 inhibitors.
Collapse
|
28
|
Yoshimoto R, Rahimi K, Hansen TB, Kjems J, Mayeda A. Biosynthesis of Circular RNA ciRS-7/CDR1as Is Mediated by Mammalian-wide Interspersed Repeats. iScience 2020; 23:101345. [PMID: 32683316 PMCID: PMC7371899 DOI: 10.1016/j.isci.2020.101345] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 04/18/2020] [Accepted: 07/02/2020] [Indexed: 01/07/2023] Open
Abstract
Circular RNAs (circRNAs) are stable non-coding RNAs with a closed circular structure. One of the best studied circRNAs is ciRS-7 (CDR1as), which acts as a regulator of the microRNA miR-7; however, its biosynthetic pathway has remained an enigma. Here we delineate the biosynthetic pathway of ciRS-7. The back-splicing events that form circRNAs are often facilitated by flanking inverted repeats of the primate-specific Alu elements. The ciRS-7 gene lacks these elements, but, instead, we identified a set of flanking inverted elements belonging to the mammalian-wide interspersed repeat (MIR) family. Splicing reporter assays in HEK293 cells demonstrated that these inverted MIRs are required to generate ciRS-7 through back-splicing, and CRISPR/Cas9-mediated deletions confirmed the requirement of the endogenous MIR elements in SH-SY5Y cells. Using bioinformatic searches, we identified several other MIR-dependent circRNAs and confirmed them experimentally. We propose that MIR-mediated RNA circularization is used to generate a subset of mammalian circRNAs. The circular RNA, ciRS-7 (CDR1as), functions as a regulator of miR-7 ciRS-7 is generated by back-splicing, not via intra-lariat splicing Back-splicing of ciRS-7 is promoted by the flanking inverted MIR elements The biosynthesis of a subset of mammalian circRNAs could be mediated by MIRs
Collapse
Affiliation(s)
- Rei Yoshimoto
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| | - Karim Rahimi
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus C, Denmark; Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Thomas B Hansen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus C, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus C, Denmark; Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
29
|
Wu KE, Parker KR, Fazal FM, Chang HY, Zou J. RNA-GPS predicts high-resolution RNA subcellular localization and highlights the role of splicing. RNA (NEW YORK, N.Y.) 2020; 26:851-865. [PMID: 32220894 PMCID: PMC7297119 DOI: 10.1261/rna.074161.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
Subcellular localization is essential to RNA biogenesis, processing, and function across the gene expression life cycle. However, the specific nucleotide sequence motifs that direct RNA localization are incompletely understood. Fortunately, new sequencing technologies have provided transcriptome-wide atlases of RNA localization, creating an opportunity to leverage computational modeling. Here we present RNA-GPS, a new machine learning model that uses nucleotide-level features to predict RNA localization across eight different subcellular locations-the first to provide such a wide range of predictions. RNA-GPS's design enables high-throughput sequence ablation and feature importance analyses to probe the sequence motifs that drive localization prediction. We find localization informative motifs to be concentrated on 3'-UTRs and scattered along the coding sequence, and motifs related to splicing to be important drivers of predicted localization, even for cytotopic distinctions for membraneless bodies within the nucleus or for organelles within the cytoplasm. Overall, our results suggest transcript splicing is one of many elements influencing RNA subcellular localization.
Collapse
Affiliation(s)
- Kevin E Wu
- Department of Computer Science, Stanford University, Stanford, California 94305, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California 94305, USA
- Center for Personal and Dynamic Regulomes, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kevin R Parker
- Center for Personal and Dynamic Regulomes, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Furqan M Fazal
- Center for Personal and Dynamic Regulomes, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Howard Y Chang
- Center for Personal and Dynamic Regulomes, Stanford University School of Medicine, Stanford, California 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - James Zou
- Department of Computer Science, Stanford University, Stanford, California 94305, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
30
|
Zuo S, Li X, Bao W, Li S. Pre-mRNA processing factor 3 enhances the progression of keratinocyte-derived cutaneous squamous cell carcinoma by regulating the JAK2/STAT3 pathway. Sci Rep 2020; 10:8863. [PMID: 32483193 PMCID: PMC7264194 DOI: 10.1038/s41598-020-65928-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022] Open
Abstract
The precise role of pre-mRNA processing factors (PRPs) in human tumorigenesis has not been yet explored. The object of the present study was to explore the effects of PRP3 in a common metastatic skin cancer, keratinocyte-derived cutaneous squamous cell carcinoma (cSCCs). RT-qPCR and western blotting were conducted to measure the expression levels of PRP3 in various cSCC cell lines and cSCC tissues. A benign epidermal keratinocyte cell line was transfected with a eukaryotic expression plasmid to overexpress PRP3. In addition, the endogenous expression level of PRP3 in cSCC cells was silenced using a short hairpin RNA method, and the role of PRP3 on cell proliferation and migration was examined by Cell Counting Kit-8, colony formation, wound healing assay and Transwell assays following knockdown in cSCC cells, and overexpression in keratinovcyte cells. Elevated levels of PRP3 mRNA and protein were noted in cSCC cell lines or cSCC tissues compared with actinic keratosis (AK) or benign epidermal keratinocyte cell line, respectively. Upregulation of PRP3 expression was found to be associated with poor clinical outcomes in patients with cSCCs. The upregulation of PRP3 promoted cell viability, metastasis and the activity of the JAK2/STAT3 pathway in epidermal keratinocyte cells. Interestingly, loss of PRP3 had no obvious impact on cell viability and migration in benign epidermal keratinocyte cells. Functionally, the inhibition of the JAK2/STAT3 pathway reversed the increased cell viability and migration of cSCC cells induced by PRP3. Taken together, the present observations indicated that PRP3 served as a tumor active factor in cSCCs by targeting the JAK2/STAT3 pathway. Moreover, it is implied that impeding the PRP3 activity may selectively constrain cancer cell growth and migration with limited effect on normal skin cells.
Collapse
Affiliation(s)
- Siyao Zuo
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, China
| | - Xin Li
- Department of Infectious Disease, The First Hospital of Jilin University, Changchun, China
| | - Wanguo Bao
- Department of Infectious Disease, The First Hospital of Jilin University, Changchun, China.
| | - Shanshan Li
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
31
|
Wang S, Wang M, Wang B, Chen J, Cheng X, Sun X. Pre-mRNA Processing Factor 8 Accelerates the Progression of Hepatocellular Carcinoma by Regulating the PI3K/Akt Pathway. Onco Targets Ther 2020; 13:4717-4730. [PMID: 32547101 PMCID: PMC7263830 DOI: 10.2147/ott.s241214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/02/2020] [Indexed: 12/22/2022] Open
Abstract
Background The specific function of pre-mRNA processing factors (Prps) in human malignancies has not been yet investigated. The aim of the present study was to determine the impacts of Prp8 in a common human malignancy, hepatocellular carcinoma (HCC). Materials and Methods RT-qPCR and Western blotting were performed to measure the expression levels of Prp8 in various HCC cell lines and HCC tissues. A hepatic astrocyte line was transfected with a eukaryotic expression plasmid to overexpress Prp8. In addition, the endogenous expression level of Prp8 in HCC cells was silenced using a short hairpin RNA method, and the role of Prp8 on cell proliferation and migration was examined by Cell Counting Kit-8, wound healing assay and Transwell assays following knockdown in HCC cells, and overexpression in astrocytes. Results Upregulation of Prp8 expression was found to be associated with poor clinical outcomes in patients with HCC. The upregulation of Prp8 promoted cell viability, metastasis and the activity of the PI3K/Akt pathway in hepatic astrocytes cells and HCC cells. Interestingly, loss of Prp8 had no obvious impact on cell viability and migration in hepatic astrocytes, but significantly inhibit the cell malignancy of HCC cells. Functionally, the inhibition of the PI3K/Akt pathway reversed the increased cell viability and migration of HCC cells induced by Prp8 via inhibiting EMT process. Conclusion Collectively, the present results suggested that Prp8 served as a tumor promoter in HCC by targeting and regulating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Shouhan Wang
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Jilin Province, Changchun, People's Republic of China
| | - Min Wang
- Department of Pathology, Cancer Hospital of Jilin Province, Changchun, People's Republic of China
| | - Bin Wang
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Jilin Province, Changchun, People's Republic of China
| | - Jiaqi Chen
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Jilin Province, Changchun, People's Republic of China
| | - Xianbin Cheng
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Jilin Province, Changchun, People's Republic of China
| | - Xiaodan Sun
- Department of 2nd Gynecologic Oncology Surgery, Cancer Hospital of Jilin Province, Changchun, People's Republic of China
| |
Collapse
|
32
|
Sebbag-Sznajder N, Brody Y, Hochberg-Laufer H, Shav-Tal Y, Sperling J, Sperling R. Dynamic Supraspliceosomes Are Assembled on Different Transcripts Regardless of Their Intron Number and Splicing State. Front Genet 2020; 11:409. [PMID: 32499811 PMCID: PMC7243799 DOI: 10.3389/fgene.2020.00409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/31/2020] [Indexed: 11/13/2022] Open
Abstract
Splicing and alternative splicing of pre-mRNA are key sources in the formation of diversity in the human proteome. These processes have a central role in the regulation of the gene expression pathway. Yet, how spliceosomes are assembled on a multi-intronic pre-mRNA is at present not well understood. To study the spliceosomes assembled in vivo on transcripts with variable number of introns, we examined a series of three related transcripts derived from the β-globin gene, where two transcript types contained increasing number of introns, while one had only an exon. Each transcript had multiple MS2 sequence repeats that can be bound by the MS2 coat protein. Using our protocol for isolation of endogenous spliceosomes under native conditions from cell nuclei, we show that all three transcripts are found in supraspliceosomes – 21 MDa dynamic complexes, sedimenting at 200S in glycerol gradients, and composed of four native spliceosomes connected by the transcript. Affinity purification of complexes assembled on the transcript with most introns (termed E6), using the MS2 tag, confirmed the assembly of E6 in supraspliceosomes with components such as Sm proteins and PSF. Furthermore, splicing inhibition by spliceostatin A did not inhibit the assembly of supraspliceosomes on the E6 transcript, yet increased the percentage of E6 pre-mRNA supraspliceosomes. These findings were corroborated in intact cells, using RNA FISH to detect the MS2-tagged E6 mRNA, together with GFP-tagged splicing factors, showing the assembly of splicing factors SRSF2, U1-70K, and PRP8 onto the E6 transcripts under normal conditions and also when splicing was inhibited. This study shows that different transcripts with different number of introns, or lacking an intron, are assembled in supraspliceosomes even when splicing is inhibited. This assembly starts at the site of transcription and can continue during the life of the transcript in the nucleoplasm. This study further confirms the dynamic and universal nature of supraspliceosomes that package RNA polymerase II transcribed pre-mRNAs into complexes composed of four native spliceosomes connected by the transcript, independent of their length, number of introns, or splicing state.
Collapse
Affiliation(s)
| | - Yehuda Brody
- The Mina and Everard Goodman Faculty of Life Sciences and The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Hodaya Hochberg-Laufer
- The Mina and Everard Goodman Faculty of Life Sciences and The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences and The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Joseph Sperling
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Sperling
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
33
|
Tavanez JP, Caetano R, Branco C, Brito IM, Miragaia-Pereira A, Vassilevskaia T, Quina AS, Cunha C. Hepatitis delta virus interacts with splicing factor SF3B155 and alters pre-mRNA splicing of cell cycle control genes. FEBS J 2020; 287:3719-3732. [PMID: 32352217 DOI: 10.1111/febs.15352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/14/2019] [Accepted: 04/28/2020] [Indexed: 11/28/2022]
Abstract
Hepatitis delta virus (HDV) is the agent responsible for the most severe form of human viral hepatitis. The HDV genome consists of a single-stranded circular RNA molecule that encodes for one single protein, the delta antigen. Given its simplicity, HDV must make use of several host cellular proteins to accomplish its life cycle processes, including transcription, replication, post-transcriptional, and post-translational modifications. Consequently, identification of the interactions established between HDV components and host proteins assumes a pivotal interest in the search of novel therapeutic targets. Here, we used the yeast three-hybrid system to screen a human liver cDNA library to identify host proteins that interact with the HDV genomic RNA. One of the identified proteins corresponded to the splicing factor SF3B155, a component of the U2snRNP complex that is essential for the early recognition of 3' splice sites in the pre-mRNAs of human genes. We show that the interaction between the HDV genomic RNA and SF3B155 occurs in vivo and that the expression of HDV promotes changes in splicing of human genes whose alternative splicing is SF3B155-dependent. We further show that expression of HDV triggers alterations in several constitutive and alternative splicing events in the tumor suppressor RBM5 transcript, with consequent reduction of its protein levels. This is the first description that HDV expression promotes changes in the splicing of human genes, and we suggest that the HDV-induced alternative splicing changes, through SF3B155 sequester, may contribute for the early progression to hepatocellular carcinoma characteristic of HDV-infected patients.
Collapse
Affiliation(s)
- João Paulo Tavanez
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Rafael Caetano
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Cristina Branco
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Inês Margarida Brito
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Ana Miragaia-Pereira
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Tatiana Vassilevskaia
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Ana Sofia Quina
- CESAM - Centre for Environmental and Marine Studies, Universidade de Aveiro, Portugal.,Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - Celso Cunha
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| |
Collapse
|
34
|
Fujita KI, Ishizuka T, Mitsukawa M, Kurata M, Masuda S. Regulating Divergent Transcriptomes through mRNA Splicing and Its Modulation Using Various Small Compounds. Int J Mol Sci 2020; 21:ijms21062026. [PMID: 32188117 PMCID: PMC7139312 DOI: 10.3390/ijms21062026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022] Open
Abstract
Human transcriptomes are more divergent than genes and contribute to the sophistication of life. This divergence is derived from various isoforms arising from alternative splicing. In addition, alternative splicing regulated by spliceosomal factors and RNA structures, such as the RNA G-quadruplex, is important not only for isoform diversity but also for regulating gene expression. Therefore, abnormal splicing leads to serious diseases such as cancer and neurodegenerative disorders. In the first part of this review, we describe the regulation of divergent transcriptomes using alternative mRNA splicing. In the second part, we present the relationship between the disruption of splicing and diseases. Recently, various compounds with splicing inhibitor activity were established. These splicing inhibitors are recognized as a biological tool to investigate the molecular mechanism of splicing and as a potential therapeutic agent for cancer treatment. Food-derived compounds with similar functions were found and are expected to exhibit anticancer effects. In the final part, we describe the compounds that modulate the messenger RNA (mRNA) splicing process and their availability for basic research and future clinical potential.
Collapse
|
35
|
Zhang L, Zhang X, Zhang H, Liu F, Bi Y, Zhang Y, Cheng C, Liu J. Knockdown of SF3B1 inhibits cell proliferation, invasion and migration triggering apoptosis in breast cancer via aberrant splicing. Breast Cancer 2020; 27:464-476. [PMID: 31919642 DOI: 10.1007/s12282-020-01045-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Splicing factor 3b subunit 1 (SF3B1) was frequently reported to be significantly mutated in breast cancer. However, the status of SF3B1 expression, its function and molecular consequence in breast cancer remained unreported. METHODS Immunohistochemistry was used to assess SF3B1expression in 110 breast cancer samples. SF3B1 knock‑down in ZR-75-30 and MDA-MB-231 cells was performed by shRNA transfection. The expression of SF3B1 in cells was detected by quantitative real‑time PCR and western blot. Cell proliferation ability was determined by MTT and colony formation assay. Migration and invasion were determined by transwell assay. Flow cytometry was performed to investigate cell cycle and apoptosis. RNA-sequencing was performed to examine differentially expressed genes and affected alternative splicing events. RESULTS SF3B1 is overexpressed in breast cancer tissues compared with normal tissues. Overexpression of SF3B1 is associated with lymph node metastasis. SF3B1 knockdown in MDA-MB-231 and ZR-75-30 breast cancer cells significantly induced the suppression of proliferation, migration, invasion and also enhancement of apoptosis. RNA-sequencing data revealed that 860 genes were significantly up-regulated and 776 genes were significantly down-regulated upon SF3B1 knockdown. Differentially expressed genes enriched in the signaling pathways including Ras signaling pathway; cytokine receptor interaction; tight junction; MAPK signaling pathway, Glycine, serine and threonine metabolism. Alternative splicing analysis revealed that exon skipping (SKIP) and cassette exons (MSKIP) were the most common molecular effect upon SF3B1 knockdown. CONCLUSIONS Our study suggests that SF3B1 may be an important molecular target for breast cancer treatment and provides a new clue for clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China.,Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Xiaojuan Zhang
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China.,Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Haitao Zhang
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Feng Liu
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yanghui Bi
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China.,Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yanyan Zhang
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Caixia Cheng
- Department of Pathology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jing Liu
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| |
Collapse
|
36
|
Kurata M, Fujiwara N, Fujita KI, Yamanaka Y, Seno S, Kobayashi H, Miyamae Y, Takahashi N, Shibuya Y, Masuda S. Food-Derived Compounds Apigenin and Luteolin Modulate mRNA Splicing of Introns with Weak Splice Sites. iScience 2019; 22:336-352. [PMID: 31809999 PMCID: PMC6909097 DOI: 10.1016/j.isci.2019.11.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/23/2019] [Accepted: 11/15/2019] [Indexed: 01/08/2023] Open
Abstract
Cancer cells often exhibit extreme sensitivity to splicing inhibitors. We identified food-derived flavonoids, apigenin and luteolin, as compounds that modulate mRNA splicing at the genome-wide level, followed by proliferation inhibition. They bind to mRNA splicing-related proteins to induce a widespread change of splicing patterns in treated cells. Their inhibitory activity on splicing is relatively moderate, and introns with weak splice sites tend to be sensitive to them. Such introns remain unspliced, and the resulting intron-containing mRNAs are retained in the nucleus, resulting in the nuclear accumulation of poly(A)+ RNAs in these flavonoid-treated cells. Tumorigenic cells are more susceptible to these flavonoids than nontumorigenic cells, both for the nuclear poly(A)+ RNA-accumulating phenotype and cell viability. This study illustrates the possible mechanism of these flavonoids to suppress tumor progression in vivo that were demonstrated by previous studies and provides the potential of daily intake of moderate splicing inhibitors to prevent cancer development. Food-derived compounds, apigenin and luteolin, modulate mRNA splicing The treatment of these flavonoids causes numerous alternative splicing events Splicing of introns with weak splice sites tend to be inhibited by these flavonoids Tumorigenic cells are more sensitive to these flavonoids than non-tumorigenic cells
Collapse
Affiliation(s)
- Masashi Kurata
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Naoko Fujiwara
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ken-Ichi Fujita
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yasutaka Yamanaka
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan
| | - Hisato Kobayashi
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Yusaku Miyamae
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Nobuyuki Takahashi
- Department of Nutritional Science and Food Safety, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Yasuyuki Shibuya
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Seiji Masuda
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
37
|
Soheilypour M, Mofrad MRK. Quality control of mRNAs at the entry of the nuclear pore: Cooperation in a complex molecular system. Nucleus 2019; 9:202-211. [PMID: 29431587 PMCID: PMC5973141 DOI: 10.1080/19491034.2018.1439304] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Despite extensive research on how mRNAs are quality controlled prior to export into the cytoplasm, the exact underlying mechanisms are still under debate. Specifically, it is unclear how quality control proteins at the entry of the nuclear pore complex (NPC) distinguish normal and aberrant mRNAs. While some of the involved components are suggested to act as switches and recruit different factors to normal versus aberrant mRNAs, some experimental and computational evidence suggests that the combined effect of the regulated stochastic interactions between the involved components could potentially achieve an efficient quality control of mRNAs. In this review, we present a state-of-the-art portrait of the mRNA quality control research and discuss the current hypotheses proposed for dynamics of the cooperation between the involved components and how it leads to their shared goal: mRNA quality control prior to export into the cytoplasm.
Collapse
Affiliation(s)
- Mohammad Soheilypour
- a Molecular Cell Biomechanics Laboratory , Departments of Bioengineering and Mechanical Engineering, University of California , Berkeley
| | - Mohammad R K Mofrad
- a Molecular Cell Biomechanics Laboratory , Departments of Bioengineering and Mechanical Engineering, University of California , Berkeley
| |
Collapse
|
38
|
Michalski D, Ontiveros JG, Russo J, Charley PA, Anderson JR, Heck AM, Geiss BJ, Wilusz J. Zika virus noncoding sfRNAs sequester multiple host-derived RNA-binding proteins and modulate mRNA decay and splicing during infection. J Biol Chem 2019; 294:16282-16296. [PMID: 31519749 DOI: 10.1074/jbc.ra119.009129] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Insect-borne flaviviruses produce a 300-500-base long noncoding RNA, termed subgenomic flavivirus RNA (sfRNA), by stalling the cellular 5'-3'-exoribonuclease 1 (XRN1) via structures located in their 3' UTRs. In this study, we demonstrate that sfRNA production by Zika virus represses XRN1 analogous to what we have previously shown for other flaviviruses. Using protein-RNA reconstitution and a stringent RNA pulldown assay with human choriocarcinoma (JAR) cells, we demonstrate that the sfRNAs from both dengue type 2 and Zika viruses interact with a common set of 21 RNA-binding proteins that contribute to the regulation of post-transcriptional processes in the cell, including splicing, RNA stability, and translation. We found that four of these sfRNA-interacting host proteins, DEAD-box helicase 6 (DDX6) and enhancer of mRNA decapping 3 (EDC3) (two RNA decay factors), phosphorylated adaptor for RNA export (a regulator of the biogenesis of the splicing machinery), and apolipoprotein B mRNA-editing enzyme catalytic subunit 3C (APOBEC3C, a nucleic acid-editing deaminase), inherently restrict Zika virus infection. Furthermore, we demonstrate that the regulations of cellular mRNA decay and RNA splicing are compromised by Zika virus infection as well as by sfRNA alone. Collectively, these results reveal the large extent to which Zika virus-derived sfRNAs interact with cellular RNA-binding proteins and highlight the potential for widespread dysregulation of post-transcriptional control that likely limits the effective response of these cells to viral infection.
Collapse
Affiliation(s)
- Daniel Michalski
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | - J Gustavo Ontiveros
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523
| | - Joseph Russo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | - Phillida A Charley
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | - John R Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | - Adam M Heck
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523
| | - Brian J Geiss
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523 .,Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
39
|
Azam S, Hou S, Zhu B, Wang W, Hao T, Bu X, Khan M, Lei H. Nuclear retention element recruits U1 snRNP components to restrain spliced lncRNAs in the nucleus. RNA Biol 2019; 16:1001-1009. [PMID: 31107149 DOI: 10.1080/15476286.2019.1620061] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
In contrast to cytoplasmic localization of spliced mRNAs, many spliced lncRNAs are localized in the nucleus. To investigate the mechanism, we used lncRNA MEG3 as a reporter and mapped a potent nuclear retention element (NRE), deletion of this element led to striking export of MEG3 from the nucleus to the cytoplasm. Insertion of the NRE resulted in nuclear retention of spliced lncRNA as well as spliced mRNA. We further purified RNP assembled on the NRE in vitro and identified the proteins by mass spectrometry. Screen using siRNA revealed depletion of U1 snRNP components SNRPA, SNRNP70 or SNRPD2 caused significant cytoplasmic localization of MEG3 reporter transcripts. Co-knockdown these factors in HFF1 cells resulted in an increased cytoplasmic distribution of endogenous lncRNAs. Together, these data support a model that U1 snRNP components restrain spliced lncRNAs in the nucleus via the interaction with nuclear retention element.
Collapse
Affiliation(s)
- Sikandar Azam
- a Institute of Cancer Stem Cell, Cancer Center , Dalian Medical University , Dalian , P.R. China
| | - Shuai Hou
- a Institute of Cancer Stem Cell, Cancer Center , Dalian Medical University , Dalian , P.R. China
| | - Baohui Zhu
- a Institute of Cancer Stem Cell, Cancer Center , Dalian Medical University , Dalian , P.R. China
| | - Weijie Wang
- a Institute of Cancer Stem Cell, Cancer Center , Dalian Medical University , Dalian , P.R. China
| | - Tian Hao
- a Institute of Cancer Stem Cell, Cancer Center , Dalian Medical University , Dalian , P.R. China
| | - Xiangxue Bu
- a Institute of Cancer Stem Cell, Cancer Center , Dalian Medical University , Dalian , P.R. China
| | - Misbah Khan
- a Institute of Cancer Stem Cell, Cancer Center , Dalian Medical University , Dalian , P.R. China
| | - Haixin Lei
- a Institute of Cancer Stem Cell, Cancer Center , Dalian Medical University , Dalian , P.R. China
| |
Collapse
|
40
|
Viphakone N, Sudbery I, Griffith L, Heath CG, Sims D, Wilson SA. Co-transcriptional Loading of RNA Export Factors Shapes the Human Transcriptome. Mol Cell 2019; 75:310-323.e8. [PMID: 31104896 PMCID: PMC6675937 DOI: 10.1016/j.molcel.2019.04.034] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 02/25/2019] [Accepted: 04/29/2019] [Indexed: 11/29/2022]
Abstract
During gene expression, RNA export factors are mainly known for driving nucleo-cytoplasmic transport. While early studies suggested that the exon junction complex (EJC) provides a binding platform for them, subsequent work proposed that they are only recruited by the cap binding complex to the 5′ end of RNAs, as part of TREX. Using iCLIP, we show that the export receptor Nxf1 and two TREX subunits, Alyref and Chtop, are recruited to the whole mRNA co-transcriptionally via splicing but before 3′ end processing. Consequently, Alyref alters splicing decisions and Chtop regulates alternative polyadenylation. Alyref is recruited to the 5′ end of RNAs by CBC, and our data reveal subsequent binding to RNAs near EJCs. We demonstrate that eIF4A3 stimulates Alyref deposition not only on spliced RNAs close to EJC sites but also on single-exon transcripts. Our study reveals mechanistic insights into the co-transcriptional recruitment of mRNA export factors and how this shapes the human transcriptome. 5′ cap binding complex CBC acts as a transient landing pad for Alyref Alyref is deposited upstream of the exon-exon junction next to the EJC Alyref can be deposited on introns and regulate splicing Chtop is mainly deposited on 3′ UTRs and influences poly(A) site choices
Collapse
Affiliation(s)
- Nicolas Viphakone
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| | - Ian Sudbery
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Llywelyn Griffith
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Catherine G Heath
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - David Sims
- MRC Computational Genomics Analysis and Training Programme (CGAT), MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS UK
| | - Stuart A Wilson
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
41
|
Zuckerman B, Ulitsky I. Predictive models of subcellular localization of long RNAs. RNA (NEW YORK, N.Y.) 2019; 25:557-572. [PMID: 30745363 PMCID: PMC6467007 DOI: 10.1261/rna.068288.118] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 02/07/2019] [Indexed: 05/14/2023]
Abstract
Export to the cytoplasm is a key regulatory junction for both protein-coding mRNAs and long noncoding RNAs (lncRNAs), and cytoplasmic enrichment varies dramatically both within and between those groups. We used a new computational approach and RNA-seq data from human and mouse cells to quantify the genome-wide association between cytoplasmic/nuclear ratios of both gene groups and various factors, including expression levels, splicing efficiency, gene architecture, chromatin marks, and sequence elements. Splicing efficiency emerged as the main predictive factor, explaining up to a third of the variability in localization. Combination with other features allowed predictive models that could explain up to 45% of the variance for protein-coding genes and up to 34% for lncRNAs. Factors associated with localization were similar between lncRNAs and mRNAs with some important differences. Readily accessible features can thus be used to predict RNA localization.
Collapse
Affiliation(s)
- Binyamin Zuckerman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
42
|
Abstract
To ensure efficient and accurate gene expression, pre-mRNA processing and mRNA export need to be balanced. However, how this balance is ensured remains largely unclear. Here, we found that SF3b, a component of U2 snRNP that participates in splicing and 3' processing of pre-mRNAs, interacts with the key mRNA export adaptor THO in vivo and in vitro. Depletion of SF3b reduces THO binding with the mRNA and causes nuclear mRNA retention. Consistently, introducing SF3b binding sites into the mRNA enhances THO recruitment and nuclear export in a dose-dependent manner. These data demonstrate a role of SF3b in promoting mRNA export. In support of this role, SF3b binds with mature mRNAs in the cells. Intriguingly, disruption of U2 snRNP by using a U2 antisense morpholino oligonucleotide does not inhibit, but promotes, the role of SF3b in mRNA export as a result of enhanced SF3b-THO interaction and THO recruitment to the mRNA. Together, our study uncovers a U2-snRNP-independent role of SF3b in mRNA export and suggests that SF3b contributes to balancing pre-mRNA processing and mRNA export.
Collapse
|
43
|
Araki S, Nakayama Y, Sano O, Nakao S, Shimizu-Ogasawara M, Toyoshiba H, Nakanishi A, Aparicio S. Decoding Transcriptome Dynamics of Genome-Encoded Polyadenylation and Autoregulation with Small-Molecule Modulators of Alternative Polyadenylation. Cell Chem Biol 2018; 25:1470-1484.e5. [PMID: 30293940 DOI: 10.1016/j.chembiol.2018.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/19/2018] [Accepted: 09/11/2018] [Indexed: 01/07/2023]
Abstract
Alternative polyadenylation (APA) plays a critical role in regulating gene expression. However, the balance between genome-encoded APA processing and autoregulation by APA modulating RNA binding protein (RBP) factors is not well understood. We discovered two potent small-molecule modulators of APA (T4 and T5) that promote distal-to-proximal (DtoP) APA usage in multiple transcripts. Monotonically responsive APA events, induced by short exposure to T4 or T5, were defined in the transcriptome, allowing clear isolation of the genomic sequence features and RBP motifs associated with DtoP regulation. We found that longer vulnerable introns, enriched with distinctive A-rich motifs, were preferentially affected by DtoP APA, thus defining a core set of genes with genomically encoded DtoP regulation. Through APA response pattern and compound-small interfering RNA epistasis analysis of APA-associated RBP factors, we further demonstrated that DtoP APA usage is partly modulated by altered autoregulation of polyadenylate binding nuclear protein-1 signaling.
Collapse
Affiliation(s)
- Shinsuke Araki
- Research Department, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Yusuke Nakayama
- Research Department, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Osamu Sano
- Research Department, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shoichi Nakao
- Research Department, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mari Shimizu-Ogasawara
- Research Department, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroyoshi Toyoshiba
- Research Department, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Atsushi Nakanishi
- Research Department, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Samuel Aparicio
- Molecular Oncology, BC Cancer Agency, 675 W 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
44
|
Wu G, Fan L, Edmonson MN, Shaw T, Boggs K, Easton J, Rusch MC, Webb TR, Zhang J, Potter PM. Inhibition of SF3B1 by molecules targeting the spliceosome results in massive aberrant exon skipping. RNA (NEW YORK, N.Y.) 2018; 24:1056-1066. [PMID: 29844105 PMCID: PMC6049506 DOI: 10.1261/rna.065383.117] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/14/2018] [Indexed: 05/22/2023]
Abstract
The recent identification of compounds that interact with the spliceosome (sudemycins, spliceostatin A, and meayamycin) indicates that these molecules modulate aberrant splicing via SF3B1 inhibition. Through whole transcriptome sequencing, we have demonstrated that treatment of Rh18 cells with sudemycin leads to exon skipping as the predominant aberrant splicing event. This was also observed following reanalysis of published RNA-seq data sets derived from HeLa cells after spliceostatin A exposure. These results are in contrast to previous reports that indicate that intron retention was the major consequence of SF3B1 inhibition. Analysis of the exon junctions up-regulated by these small molecules indicated that these sequences were absent in annotated human genes, suggesting that aberrant splicing events yielded novel RNA transcripts. Interestingly, the length of preferred downstream exons was significantly longer than the skipped exons, although there was no difference between the lengths of introns flanking skipped exons. The reading frame of the aberrantly skipped exons maintained a ratio of 2:1:1, close to that of the cassette exons (3:1:1) present in naturally occurring isoforms, suggesting negative selection by the nonsense-mediated decay (NMD) machinery for out-of-frame transcripts. Accordingly, genes involved in NMD and RNAs encoding proteins involved in the splicing process were enriched in both data sets. Our findings, therefore, further elucidate the mechanisms by which SF3B1 inhibition modulates pre-mRNA splicing.
Collapse
Affiliation(s)
- Gang Wu
- Department of Computational Biology
| | - Liying Fan
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, USA
| | | | | | | | | | | | - Thomas R Webb
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, USA
| | | | - Philip M Potter
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, USA
| |
Collapse
|
45
|
Anufrieva KS, Shender VО, Arapidi GP, Pavlyukov MS, Shakhparonov MI, Shnaider PV, Butenko IO, Lagarkova MA, Govorun VM. Therapy-induced stress response is associated with downregulation of pre-mRNA splicing in cancer cells. Genome Med 2018; 10:49. [PMID: 29950180 PMCID: PMC6020472 DOI: 10.1186/s13073-018-0557-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/07/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Abnormal pre-mRNA splicing regulation is common in cancer, but the effects of chemotherapy on this process remain unclear. METHODS To evaluate the effect of chemotherapy on slicing regulation, we performed meta-analyses of previously published transcriptomic, proteomic, phosphoproteomic, and secretome datasets. Our findings were verified by LC-MS/MS, western blotting, immunofluorescence, and FACS analyses of multiple cancer cell lines treated with cisplatin and pladienolide B. RESULTS Our results revealed that different types of chemotherapy lead to similar changes in alternative splicing by inducing intron retention in multiple genes. To determine the mechanism underlying this effect, we analyzed gene expression in 101 cell lines affected by ɣ-irradiation, hypoxia, and 10 various chemotherapeutic drugs. Strikingly, оnly genes involved in the cell cycle and pre-mRNA splicing regulation were changed in a similar manner in all 335 tested samples regardless of stress stimuli. We revealed significant downregulation of gene expression levels in these two pathways, which could be explained by the observed decrease in splicing efficiency and global intron retention. We showed that the levels of active spliceosomal proteins might be further post-translationally decreased by phosphorylation and export into the extracellular space. To further explore these bioinformatics findings, we performed proteomic analysis of cisplatin-treated ovarian cancer cells. Finally, we demonstrated that the splicing inhibitor pladienolide B impairs the cellular response to DNA damage and significantly increases the sensitivity of cancer cells to chemotherapy. CONCLUSIONS Decreased splicing efficiency and global intron retention is a novel stress response mechanism that may promote survival of malignant cells following therapy. We found that this mechanism can be inhibited by pladienolide B, which significantly increases the sensitivity of cancer cells to cisplatin which makes it a good candidate drug for improving the efficiency of cancer therapy.
Collapse
Affiliation(s)
- Ksenia S Anufrieva
- Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia.
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia.
- Systems Biology Lab, Moscow Institute of Physics and Technology (State University), Moscow, Region, 141701, Russia.
| | - Victoria О Shender
- Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia.
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia.
| | - Georgij P Arapidi
- Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
- Systems Biology Lab, Moscow Institute of Physics and Technology (State University), Moscow, Region, 141701, Russia
| | - Marat S Pavlyukov
- Laboratory of Membrane Bioenergetics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| | - Michail I Shakhparonov
- Laboratory of Membrane Bioenergetics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| | - Polina V Shnaider
- Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Ivan O Butenko
- Laboratory of Proteomic Analysis, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Vadim M Govorun
- Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
- Laboratory of Proteomic Analysis, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| |
Collapse
|
46
|
Molecular basis of differential 3' splice site sensitivity to anti-tumor drugs targeting U2 snRNP. Nat Commun 2017; 8:2100. [PMID: 29235465 PMCID: PMC5727392 DOI: 10.1038/s41467-017-02007-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/30/2017] [Indexed: 01/21/2023] Open
Abstract
Several splicing-modulating compounds, including Sudemycins and Spliceostatin A, display anti-tumor properties. Combining transcriptome, bioinformatic and mutagenesis analyses, we delineate sequence determinants of the differential sensitivity of 3′ splice sites to these drugs. Sequences 5′ from the branch point (BP) region strongly influence drug sensitivity, with additional functional BPs reducing, and BP-like sequences allowing, drug responses. Drug-induced retained introns are typically shorter, displaying higher GC content and weaker polypyrimidine-tracts and BPs. Drug-induced exon skipping preferentially affects shorter alternatively spliced regions with weaker BPs. Remarkably, structurally similar drugs display both common and differential effects on splicing regulation, SSA generally displaying stronger effects on intron retention, and Sudemycins more acute effects on exon skipping. Collectively, our results illustrate how splicing modulation is exquisitely sensitive to the sequence context of 3′ splice sites and to small structural differences between drugs. Several families of natural compounds target core components of the pre-mRNA splicing machinery and display anti-tumor activity. Here the authors show that particular sequence features can be linked to drug response, and that drugs with very similar chemical structures display substantially different effects on splicing regulation.
Collapse
|
47
|
Wegener M, Müller-McNicoll M. Nuclear retention of mRNAs - quality control, gene regulation and human disease. Semin Cell Dev Biol 2017; 79:131-142. [PMID: 29102717 DOI: 10.1016/j.semcdb.2017.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022]
Abstract
Nuclear retention of incompletely spliced or mature mRNAs emerges as a novel, previously underappreciated layer of gene regulation, which enables the cell to rapidly respond to stress, viral infection, differentiation cues or changing environmental conditions. Focusing on mammalian cells, we discuss recent insights into the mechanisms and functions of nuclear retention, describe retention-promoting features in protein-coding transcripts and propose mechanisms for their regulated release into the cytoplasm. Moreover, we discuss examples of how aberrant nuclear retention of mRNAs may lead to human diseases.
Collapse
Affiliation(s)
- Marius Wegener
- RNA Regulation Group, Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany
| | - Michaela Müller-McNicoll
- RNA Regulation Group, Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany.
| |
Collapse
|
48
|
Huang D, Fletcher S, Wilton SD, Palmer N, McLenachan S, Mackey DA, Chen FK. Inherited Retinal Disease Therapies Targeting Precursor Messenger Ribonucleic Acid. Vision (Basel) 2017; 1:vision1030022. [PMID: 31740647 PMCID: PMC6836112 DOI: 10.3390/vision1030022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/24/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023] Open
Abstract
Inherited retinal diseases are an extremely diverse group of genetically and phenotypically heterogeneous conditions characterized by variable maturation of retinal development, impairment of photoreceptor cell function and gradual loss of photoreceptor cells and vision. Significant progress has been made over the last two decades in identifying the many genes implicated in inherited retinal diseases and developing novel therapies to address the underlying genetic defects. Approximately one-quarter of exonic mutations related to human inherited diseases are likely to induce aberrant splicing products, providing opportunities for the development of novel therapeutics that target splicing processes. The feasibility of antisense oligomer mediated splice intervention to treat inherited diseases has been demonstrated in vitro, in vivo and in clinical trials. In this review, we will discuss therapeutic approaches to treat inherited retinal disease, including strategies to correct splicing and modify exon selection at the level of pre-mRNA. The challenges of clinical translation of this class of emerging therapeutics will also be discussed.
Collapse
Affiliation(s)
- Di Huang
- Molecular Therapy Laboratory, Murdoch University, Murdoch 6150, Australia
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Sue Fletcher
- Molecular Therapy Laboratory, Murdoch University, Murdoch 6150, Australia
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Steve D. Wilton
- Molecular Therapy Laboratory, Murdoch University, Murdoch 6150, Australia
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Norman Palmer
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
| | - David A. Mackey
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth 6000, Australia
- Correspondence: ; Tel.: +61-8-9381-0817
| |
Collapse
|
49
|
Milek M, Imami K, Mukherjee N, Bortoli FD, Zinnall U, Hazapis O, Trahan C, Oeffinger M, Heyd F, Ohler U, Selbach M, Landthaler M. DDX54 regulates transcriptome dynamics during DNA damage response. Genome Res 2017; 27:1344-1359. [PMID: 28596291 PMCID: PMC5538551 DOI: 10.1101/gr.218438.116] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
The cellular response to genotoxic stress is mediated by a well-characterized network of DNA surveillance pathways. The contribution of post-transcriptional gene regulatory networks to the DNA damage response (DDR) has not been extensively studied. Here, we systematically identified RNA-binding proteins differentially interacting with polyadenylated transcripts upon exposure of human breast carcinoma cells to ionizing radiation (IR). Interestingly, more than 260 proteins, including many nucleolar proteins, showed increased binding to poly(A)+ RNA in IR-exposed cells. The functional analysis of DDX54, a candidate genotoxic stress responsive RNA helicase, revealed that this protein is an immediate-to-early DDR regulator required for the splicing efficacy of its target IR-induced pre-mRNAs. Upon IR exposure, DDX54 acts by increased interaction with a well-defined class of pre-mRNAs that harbor introns with weak acceptor splice sites, as well as by protein-protein contacts within components of U2 snRNP and spliceosomal B complex, resulting in lower intron retention and higher processing rates of its target transcripts. Because DDX54 promotes survival after exposure to IR, its expression and/or mutation rate may impact DDR-related pathologies. Our work indicates the relevance of many uncharacterized RBPs potentially involved in the DDR.
Collapse
Affiliation(s)
- Miha Milek
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Koshi Imami
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Neelanjan Mukherjee
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Francesca De Bortoli
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, 14195 Berlin, Germany
| | - Ulrike Zinnall
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Orsalia Hazapis
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Christian Trahan
- Institut de Recherches Cliniques de Montréal, H2W 1R7 Montréal, Quebec, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, H3A 1A3 Montréal, Quebec, Canada
| | - Marlene Oeffinger
- Institut de Recherches Cliniques de Montréal, H2W 1R7 Montréal, Quebec, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, H3A 1A3 Montréal, Quebec, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, H3T 1J4 Montréal, Quebec, Canada
| | - Florian Heyd
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, 14195 Berlin, Germany
| | - Uwe Ohler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
- Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Department of Computer Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Matthias Selbach
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
- Charite-Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
- IRI Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
50
|
Carvalho T, Martins S, Rino J, Marinho S, Carmo-Fonseca M. Pharmacological inhibition of the spliceosome subunit SF3b triggers exon junction complex-independent nonsense-mediated decay. J Cell Sci 2017; 130:1519-1531. [PMID: 28302904 DOI: 10.1242/jcs.202200] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/06/2017] [Indexed: 12/12/2022] Open
Abstract
Spliceostatin A, meayamycin, and pladienolide B are small molecules that target the SF3b subunit of the spliceosomal U2 small nuclear ribonucleoprotein (snRNP). These compounds are attracting much attention as tools to manipulate splicing and for use as potential anti-cancer drugs. We investigated the effects of these inhibitors on mRNA transport and stability in human cells. Upon splicing inhibition, unspliced pre-mRNAs accumulated in the nucleus, particularly within enlarged nuclear speckles. However, a small fraction of the pre-mRNA molecules were exported to the cytoplasm. We identified the export adaptor ALYREF as being associated with intron-containing transcripts and show its requirement for the nucleo-cytoplasmic transport of unspliced pre-mRNA. In contrast, the exon junction complex (EJC) core protein eIF4AIII failed to form a stable complex with intron-containing transcripts. Despite the absence of EJC, unspliced transcripts in the cytoplasm were degraded by nonsense-mediated decay (NMD), suggesting that unspliced transcripts are degraded by an EJC-independent NMD pathway. Collectively, our results indicate that although blocking the function of SF3b elicits a massive accumulation of unspliced pre-mRNAs in the nucleus, intron-containing transcripts can still bind the ALYREF export factor and be transported to the cytoplasm, where they trigger an alternative NMD pathway.
Collapse
Affiliation(s)
- Teresa Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Sandra Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - José Rino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Sérgio Marinho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| |
Collapse
|