1
|
Hardouin P, Pan N, Lyonnet du Moutier FX, Chamond N, Ponty Y, Will S, Sargueil B. IPANEMAP Suite: a pipeline for probing-informed RNA structure modeling. NAR Genom Bioinform 2025; 7:lqaf028. [PMID: 40134455 PMCID: PMC11934922 DOI: 10.1093/nargab/lqaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/07/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
In addition to their sequence, multiple functions of RNAs are encoded within their structure, which is often difficult to solve using physico-chemical methods. Incorporating low-resolution experimental data such as chemical probing into computational prediction significantly enhances RNA structure modeling accuracy. While medium- and high-throughput RNA structure probing techniques are widely accessible, the subsequent analysis process can be cumbersome, involving multiple software and manual data manipulation. In addition, the relevant interpretation of the data requires proper parameterization of the software and a strict consistency in the analysis pipeline. To streamline such workflows, we introduce IPANEMAP Suite, a comprehensive platform that guides users from chemically probing raw data to visually informative secondary structure models. IPANEMAP Suite seamlessly integrates various experimental datasets and facilitates comparative analysis of RNA structures under different conditions (footprinting), aiding in the study of protein or small molecule interactions with RNA. Here, we show that the unique ability of IPANEMAP Suite to perform integrative modeling using several chemical probing datasets with phylogenetic data can be instrumental in obtaining accurate secondary structure models. The platform's project-based approach ensures full traceability and generates publication-quality outputs, simplifying the entire RNA structure analysis process. IPANEMAP Suite is freely available at https://github.com/Sargueil-CiTCoM/ipasuite under a GPL-3.0 license.
Collapse
Affiliation(s)
- Pierre Hardouin
- CNRS UMR 8038, CiTCoM Cibles Thérapeutiques et Conception de Médicaments, Université Paris Cité, 4 avenue de l’Observatoire, 75270 Paris, France
| | - Nan Pan
- CNRS UMR 7161, LIX, Ecole Polytechnique, 1 rue Estienne d’Orves, 91120 Palaiseau, France
| | - Francois-Xavier Lyonnet du Moutier
- CNRS UMR 8038, CiTCoM Cibles Thérapeutiques et Conception de Médicaments, Université Paris Cité, 4 avenue de l’Observatoire, 75270 Paris, France
| | - Nathalie Chamond
- CNRS UMR 8038, CiTCoM Cibles Thérapeutiques et Conception de Médicaments, Université Paris Cité, 4 avenue de l’Observatoire, 75270 Paris, France
| | - Yann Ponty
- CNRS UMR 7161, LIX, Ecole Polytechnique, 1 rue Estienne d’Orves, 91120 Palaiseau, France
| | - Sebastian Will
- CNRS UMR 7161, LIX, Ecole Polytechnique, 1 rue Estienne d’Orves, 91120 Palaiseau, France
| | - Bruno Sargueil
- CNRS UMR 8038, CiTCoM Cibles Thérapeutiques et Conception de Médicaments, Université Paris Cité, 4 avenue de l’Observatoire, 75270 Paris, France
| |
Collapse
|
2
|
Dadhwal G, Samy H, Bouvette J, El-Azzouzi F, Dagenais P, Legault P. Substrate promiscuity of Dicer toward precursors of the let-7 family and their 3'-end modifications. Cell Mol Life Sci 2024; 81:53. [PMID: 38261114 PMCID: PMC10806991 DOI: 10.1007/s00018-023-05090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
The human let-7 miRNA family consists of thirteen members that play critical roles in many biological processes, including development timing and tumor suppression, and their levels are disrupted in several diseases. Dicer is the endoribonuclease responsible for processing the precursor miRNA (pre-miRNA) to yield the mature miRNA, and thereby plays a crucial role in controlling the cellular levels of let-7 miRNAs. It is well established that the sequence and structural features of pre-miRNA hairpins such as the 5'-phosphate, the apical loop, and the 2-nt 3'-overhang are important for the processing activity of Dicer. Exceptionally, nine precursors of the let-7 family (pre-let-7) contain a 1-nt 3'-overhang and get mono-uridylated in vivo, presumably to allow efficient processing by Dicer. Pre-let-7 are also oligo-uridylated in vivo to promote their degradation and likely prevent their efficient processing by Dicer. In this study, we systematically investigated the impact of sequence and structural features of all human let-7 pre-miRNAs, including their 3'-end modifications, on Dicer binding and processing. Through the combination of SHAPE structural probing, in vitro binding and kinetic studies using purified human Dicer, we show that despite structural discrepancies among pre-let-7 RNAs, Dicer exhibits remarkable promiscuity in binding and cleaving these substrates. Moreover, the 1- or 2-nt 3'-overhang, 3'-mono-uridylation, and 3'-oligo-uridylation of pre-let-7 substrates appear to have little effect on Dicer binding and cleavage rates. Thus, this study extends current knowledge regarding the broad substrate specificity of Dicer and provides novel insight regarding the effect of 3'-modifications on binding and cleavage by Dicer.
Collapse
Affiliation(s)
- Gunjan Dadhwal
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Hebatallah Samy
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Jonathan Bouvette
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
- Molecular Biology Department, Guyot Hall, Princeton University, Princeton, NJ, 08544, USA
| | - Fatima El-Azzouzi
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
- Biochemistry Department, Wake Forest Biotech Place, 575 Patterson Avenue, Winston-Salem, NC, 27101, USA
| | - Pierre Dagenais
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Pascale Legault
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
3
|
Maloney A, Joseph S. Validating the EMCV IRES Secondary Structure with Structure-Function Analysis. Biochemistry 2024; 63:107-115. [PMID: 38081770 PMCID: PMC10896073 DOI: 10.1021/acs.biochem.3c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The encephalomyocarditis virus internal ribosome entry site (EMCV IRES) is a structured RNA sequence found in the 5' UTR of the genomic RNA of the encephalomyocarditis virus. The EMCV IRES structure facilitates efficient translation initiation without needing a 5' m7G cap or the cap-binding protein eIF4E. The secondary structure of IRES has been the subject of several previous studies, and a number of different structural models have been proposed. Though some domains of the IRES are conserved across the different secondary structure models, domain I of the IRES varies greatly across them. A literature comparison led to the identification of three regions of interest that display structural heterogeneity within past secondary structure models. To test the accuracy of the secondary structure models in these regions, we employed mutational analysis and SHAPE probing. Mutational analysis revealed that two helical regions within the identified regions of interest are important for IRES translation. These helical regions are consistent with only one of the structure predictions in the literature and do not form in EMCV IRES structures predicted using modern secondary structure prediction methods. The importance of these regions is further supported by multiple SHAPE protections when probing was performed after in vitro translation, indicating that these regions are involved in the IRES translation complex. This work validates a published structure and demonstrates the importance of domain I during EMCV IRES translation initiation.
Collapse
Affiliation(s)
- Adam Maloney
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314 USA
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314 USA
| |
Collapse
|
4
|
Allouche D, De Bisschop G, Saaidi A, Hardouin P, du Moutier FXL, Ponty Y, Bruno S. RNA Secondary Structure Modeling Following the IPANEMAP Workflow. Methods Mol Biol 2024; 2726:85-104. [PMID: 38780728 DOI: 10.1007/978-1-0716-3519-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The structure of RNA molecules and their complexes are crucial for understanding biology at the molecular level. Resolving these structures holds the key to understanding their manifold structure-mediated functions ranging from regulating gene expression to catalyzing biochemical processes. Predicting RNA secondary structure is a prerequisite and a key step to accurately model their three dimensional structure. Although dedicated modelling software are making fast and significant progresses, predicting an accurate secondary structure from the sequence remains a challenge. Their performance can be significantly improved by the incorporation of experimental RNA structure probing data. Many different chemical and enzymatic probes have been developed; however, only one set of quantitative data can be incorporated as constraints for computer-assisted modelling. IPANEMAP is a recent workflow based on RNAfold that can take into account several quantitative or qualitative data sets to model RNA secondary structure. This chapter details the methods for popular chemical probing (DMS, CMCT, SHAPE-CE, and SHAPE-Map) and the subsequent analysis and structure prediction using IPANEMAP.
Collapse
Affiliation(s)
- Delphine Allouche
- CiTCOM, Cibles Thérapeutiques et conception de médicaments, UMR8038 CNRS, Université de PARIS, Paris, France
- Sanofi mRNA center of excellence 1541, Marcy-l'Etoile, France
| | - Grégoire De Bisschop
- CiTCOM, Cibles Thérapeutiques et conception de médicaments, UMR8038 CNRS, Université de PARIS, Paris, France
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Afaf Saaidi
- Georgia Institute of Technology, School of Mathematics, Atlanta, GA, USA
| | - Pierre Hardouin
- CiTCOM, Cibles Thérapeutiques et conception de médicaments, UMR8038 CNRS, Université de PARIS, Paris, France
| | | | - Yann Ponty
- CNRS UMR 7161, LIX, Ecole Polytechnique, Palaiseau, France.
| | - Sargueil Bruno
- CiTCOM, Cibles Thérapeutiques et conception de médicaments, UMR8038 CNRS, Université de PARIS, Paris, France.
| |
Collapse
|
5
|
Strassler SE, Bowles IE, Krishnamohan A, Kim H, Edgington CB, Kuiper EG, Hancock CJ, Comstock LR, Jackman JE, Conn GL. tRNA m 1G9 modification depends on substrate-specific RNA conformational changes induced by the methyltransferase Trm10. J Biol Chem 2023; 299:105443. [PMID: 37949221 PMCID: PMC10704376 DOI: 10.1016/j.jbc.2023.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
The methyltransferase Trm10 modifies a subset of tRNAs on the base N1 position of the ninth nucleotide in the tRNA core. Trm10 is conserved throughout Eukarya and Archaea, and mutations in the human gene (TRMT10A) have been linked to neurological disorders such as microcephaly and intellectual disability, as well as defects in glucose metabolism. Of the 26 tRNAs in yeast with guanosine at position 9, only 13 are substrates for Trm10. However, no common sequence or other posttranscriptional modifications have been identified among these substrates, suggesting the presence of some other tRNA feature(s) that allow Trm10 to distinguish substrate from nonsubstrate tRNAs. Here, we show that substrate recognition by Saccharomyces cerevisiae Trm10 is dependent on both intrinsic tRNA flexibility and the ability of the enzyme to induce specific tRNA conformational changes upon binding. Using the sensitive RNA structure-probing method SHAPE, conformational changes upon binding to Trm10 in tRNA substrates, but not nonsubstrates, were identified and mapped onto a model of Trm10-bound tRNA. These changes may play an important role in substrate recognition by allowing Trm10 to gain access to the target nucleotide. Our results highlight a novel mechanism of substrate recognition by a conserved tRNA modifying enzyme. Further, these studies reveal a strategy for substrate recognition that may be broadly employed by tRNA-modifying enzymes which must distinguish between structurally similar tRNA species.
Collapse
Affiliation(s)
- Sarah E Strassler
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Isobel E Bowles
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
| | - Aiswarya Krishnamohan
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
| | - Hyejeong Kim
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Catherine B Edgington
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Emily G Kuiper
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Clio J Hancock
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lindsay R Comstock
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA.
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
6
|
Strassler SE, Bowles IE, Krishnamohan A, Kim H, Edgington CB, Kuiper EG, Hancock CJ, Comstock LR, Jackman JE, Conn GL. tRNA m 1G9 modification depends on substrate-specific RNA conformational changes induced by the methyltransferase Trm10. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526536. [PMID: 36778341 PMCID: PMC9915607 DOI: 10.1101/2023.02.01.526536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The methyltransferase Trm10 modifies a subset of tRNAs on the base N1 position of the 9th nucleotide in the tRNA core. Trm10 is conserved throughout Eukarya and Archaea, and mutations in the human gene (TRMT10A) have been linked to neurological disorders such as microcephaly and intellectual disability, as well as defects in glucose metabolism. Of the 26 tRNAs in yeast with guanosine at position 9, only 14 are substrates for Trm10. However, no common sequence or other posttranscriptional modifications have been identified among these substrates, suggesting the presence of some other tRNA feature(s) which allow Trm10 to distinguish substrate from nonsubstrate tRNAs. Here, we show that substrate recognition by Saccharomyces cerevisiae Trm10 is dependent on both intrinsic tRNA flexibility and the ability of the enzyme to induce specific tRNA conformational changes upon binding. Using the sensitive RNA structure-probing method SHAPE, conformational changes upon binding to Trm10 in tRNA substrates, but not nonsubstrates, were identified and mapped onto a model of Trm10-bound tRNA. These changes may play an important role in substrate recognition by allowing Trm10 to gain access to the target nucleotide. Our results highlight a novel mechanism of substrate recognition by a conserved tRNA modifying enzyme. Further, these studies reveal a strategy for substrate recognition that may be broadly employed by tRNA-modifying enzymes which must distinguish between structurally similar tRNA species.
Collapse
Affiliation(s)
- Sarah E. Strassler
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta GA, 30322, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University
| | - Isobel E. Bowles
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12 Avenue, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, 484 W. 12 Avenue, Columbus, OH, 43210, USA
| | - Aiswarya Krishnamohan
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12 Avenue, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, 484 W. 12 Avenue, Columbus, OH, 43210, USA
| | - Hyejeong Kim
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12 Avenue, Columbus, OH, 43210, USA
| | - Catherine B. Edgington
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12 Avenue, Columbus, OH, 43210, USA
| | - Emily G. Kuiper
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta GA, 30322, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University
| | - Clio J. Hancock
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta GA, 30322, USA
| | - Lindsay R. Comstock
- Department of Chemistry, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27106, USA
| | - Jane E. Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12 Avenue, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, 484 W. 12 Avenue, Columbus, OH, 43210, USA
| | - Graeme L. Conn
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta GA, 30322, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University
| |
Collapse
|
7
|
Mukhopadhyay S, Amodeo ME, Lee ASY. eIF3d controls the persistent integrated stress response. Mol Cell 2023; 83:3303-3313.e6. [PMID: 37683648 PMCID: PMC10528100 DOI: 10.1016/j.molcel.2023.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/26/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
Cells respond to intrinsic and extrinsic stresses by reducing global protein synthesis and activating gene programs necessary for survival. Here, we show that the integrated stress response (ISR) is driven by the non-canonical cap-binding protein eIF3d that acts as a critical effector to control core stress response orchestrators, the translation factor eIF2α and the transcription factor ATF4. We find that during persistent stress, eIF3d activates the translation of the kinase GCN2, inducing eIF2α phosphorylation and inhibiting general protein synthesis. In parallel, eIF3d upregulates the m6A demethylase ALKBH5 to drive 5' UTR-specific demethylation of stress response genes, including ATF4. Ultimately, this cascade converges on ATF4 expression by increasing mRNA engagement of translation machinery and enhancing ribosome bypass of upstream open reading frames (uORFs). Our results reveal that eIF3d acts in a life-or-death decision point during chronic stress and uncover a synergistic signaling mechanism in which translational cascades complement transcriptional amplification to control essential cellular processes.
Collapse
Affiliation(s)
- Shaoni Mukhopadhyay
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Maria E Amodeo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Amy S Y Lee
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
8
|
Palasser M, Breuker K. RNA Chemical Labeling with Site-Specific, Relative Quantification by Mass Spectrometry for the Structural Study of a Neomycin-Sensing Riboswitch Aptamer Domain. Chempluschem 2022; 87:e202200256. [PMID: 36220343 PMCID: PMC9828840 DOI: 10.1002/cplu.202200256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Indexed: 01/12/2023]
Abstract
High-resolution mass spectrometry was used for the label-free, direct localization and relative quantification of CMC+ -modifications of a neomycin-sensing riboswitch aptamer domain in the absence and presence of the aminoglycoside ligands neomycin B, ribostamycin, and paromomycin. The chemical probing and MS data for the free riboswitch show high exposure to solvent of the uridine nucleobases U7, U8, U13, U14, U18 as part of the proposed internal and apical loops, but those of U10 and U21 as part of the proposed internal loop were found to be far less exposed than expected. Thus, our data are in better agreement with the proposed secondary structure of the riboswitch in complexes with aminoglycosides than with that of free RNA. For the riboswitch in complexes with neomycin B, ribostamycin, and paromomycin, we found highly similar CMC+ -modification patterns and excellent agreement with previous NMR studies. Differences between the chemical probing and MS data in the absence and presence of the aminoglycoside ligands were quantitative rather than qualitative (i. e., the same nucleobases were labeled, but to different extents) and can be rationalized by stabilization of both the proposed bulge and the apical loop by aminoglycoside binding. Our study shows that chemical probing and mass spectrometry can provide important structural information and complement other techniques such as NMR spectroscopy.
Collapse
Affiliation(s)
- Michael Palasser
- Institut of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Kathrin Breuker
- Institut of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| |
Collapse
|
9
|
Cantara WA, Pathirage C, Hatterschide J, Olson ED, Musier-Forsyth K. Phosphomimetic S207D Lysyl-tRNA Synthetase Binds HIV-1 5'UTR in an Open Conformation and Increases RNA Dynamics. Viruses 2022; 14:1556. [PMID: 35891536 PMCID: PMC9315659 DOI: 10.3390/v14071556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/25/2023] Open
Abstract
Interactions between lysyl-tRNA synthetase (LysRS) and HIV-1 Gag facilitate selective packaging of the HIV-1 reverse transcription primer, tRNALys3. During HIV-1 infection, LysRS is phosphorylated at S207, released from a multi-aminoacyl-tRNA synthetase complex and packaged into progeny virions. LysRS is critical for proper targeting of tRNALys3 to the primer-binding site (PBS) by specifically binding a PBS-adjacent tRNA-like element (TLE), which promotes release of the tRNA proximal to the PBS. However, whether LysRS phosphorylation plays a role in this process remains unknown. Here, we used a combination of binding assays, RNA chemical probing, and small-angle X-ray scattering to show that both wild-type (WT) and a phosphomimetic S207D LysRS mutant bind similarly to the HIV-1 genomic RNA (gRNA) 5'UTR via direct interactions with the TLE and stem loop 1 (SL1) and have a modest preference for binding dimeric gRNA. Unlike WT, S207D LysRS bound in an open conformation and increased the dynamics of both the PBS region and SL1. A new working model is proposed wherein a dimeric phosphorylated LysRS/tRNA complex binds to a gRNA dimer to facilitate tRNA primer release and placement onto the PBS. Future anti-viral strategies that prevent this host factor-gRNA interaction are envisioned.
Collapse
Affiliation(s)
- William A. Cantara
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (C.P.); (J.H.); (E.D.O.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Chathuri Pathirage
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (C.P.); (J.H.); (E.D.O.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua Hatterschide
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (C.P.); (J.H.); (E.D.O.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Erik D. Olson
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (C.P.); (J.H.); (E.D.O.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (C.P.); (J.H.); (E.D.O.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Selective packaging of HIV-1 RNA genome is guided by the stability of 5' untranslated region polyA stem. Proc Natl Acad Sci U S A 2021; 118:2114494118. [PMID: 34873042 DOI: 10.1073/pnas.2114494118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 01/08/2023] Open
Abstract
To generate infectious virus, HIV-1 must package two copies of its full-length RNA into particles. HIV-1 transcription initiates from multiple, neighboring sites, generating RNA species that only differ by a few nucleotides at the 5' end, including those with one (1G) or three (3G) 5' guanosines. Strikingly, 1G RNA is preferentially packaged into virions over 3G RNA. We investigated how HIV-1 distinguishes between these nearly identical RNAs using in-gel chemical probing combined with recently developed computational tools for determining RNA conformational ensembles, as well as cell-based assays to quantify the efficiency of RNA packaging into viral particles. We found that 1G and 3G RNAs fold into distinct structural ensembles. The 1G RNA, but not the 3G RNA, primarily adopts conformations with an intact polyA stem, exposed dimerization initiation site, and multiple, unpaired guanosines known to mediate Gag binding. Furthermore, we identified mutants that exhibited altered genome selectivity and packaged 3G RNA efficiently. In these mutants, both 1G and 3G RNAs fold into similar conformational ensembles, such that they can no longer be distinguished. Our findings demonstrate that polyA stem stability guides RNA-packaging selectivity. These studies also uncover the mechanism by which HIV-1 selects its genome for packaging: 1G RNA is preferentially packaged because it exposes structural elements that promote RNA dimerization and Gag binding.
Collapse
|
11
|
Liu S, Koneru PC, Li W, Pathirage C, Engelman AN, Kvaratskhelia M, Musier-Forsyth K. HIV-1 integrase binding to genomic RNA 5'-UTR induces local structural changes in vitro and in virio. Retrovirology 2021; 18:37. [PMID: 34809662 PMCID: PMC8609798 DOI: 10.1186/s12977-021-00582-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/03/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND During HIV-1 maturation, Gag and Gag-Pol polyproteins are proteolytically cleaved and the capsid protein polymerizes to form the honeycomb capsid lattice. HIV-1 integrase (IN) binds the viral genomic RNA (gRNA) and impairment of IN-gRNA binding leads to mis-localization of the nucleocapsid protein (NC)-condensed viral ribonucleoprotein complex outside the capsid core. IN and NC were previously demonstrated to bind to the gRNA in an orthogonal manner in virio; however, the effect of IN binding alone or simultaneous binding of both proteins on gRNA structure is not yet well understood. RESULTS Using crosslinking-coupled selective 2'-hydroxyl acylation analyzed by primer extension (XL-SHAPE), we characterized the interaction of IN and NC with the HIV-1 gRNA 5'-untranslated region (5'-UTR). NC preferentially bound to the packaging signal (Psi) and a UG-rich region in U5, irrespective of the presence of IN. IN alone also bound to Psi but pre-incubation with NC largely abolished this interaction. In contrast, IN specifically bound to and affected the nucleotide (nt) dynamics of the apical loop of the transactivation response element (TAR) and the polyA hairpin even in the presence of NC. SHAPE probing of the 5'-UTR RNA in virions produced from allosteric IN inhibitor (ALLINI)-treated cells revealed that while the global secondary structure of the 5'-UTR remained unaltered, the inhibitor treatment induced local reactivity differences, including changes in the apical loop of TAR that are consistent with the in vitro results. CONCLUSIONS Overall, the binding interactions of NC and IN with the 5'-UTR are largely orthogonal in vitro. This study, together with previous probing experiments, suggests that IN and NC binding in vitro and in virio lead to only local structural changes in the regions of the 5'-UTR probed here. Accordingly, disruption of IN-gRNA binding by ALLINI treatment results in local rather than global secondary structure changes of the 5'-UTR in eccentric virus particles.
Collapse
Affiliation(s)
- Shuohui Liu
- grid.261331.40000 0001 2285 7943Department of Chemistry and Biochemistry, Centers for RNA Biology and Retroviral Research, The Ohio State University, Columbus, OH USA
| | - Pratibha C. Koneru
- grid.430503.10000 0001 0703 675XDivision of Infectious Diseases, School of Medicine, University of Colorado, Aurora, CO USA
| | - Wen Li
- grid.65499.370000 0001 2106 9910Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA
| | - Chathuri Pathirage
- grid.261331.40000 0001 2285 7943Department of Chemistry and Biochemistry, Centers for RNA Biology and Retroviral Research, The Ohio State University, Columbus, OH USA
| | - Alan N. Engelman
- grid.65499.370000 0001 2106 9910Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA
| | - Mamuka Kvaratskhelia
- grid.430503.10000 0001 0703 675XDivision of Infectious Diseases, School of Medicine, University of Colorado, Aurora, CO USA
| | - Karin Musier-Forsyth
- grid.261331.40000 0001 2285 7943Department of Chemistry and Biochemistry, Centers for RNA Biology and Retroviral Research, The Ohio State University, Columbus, OH USA
| |
Collapse
|
12
|
Gilmer O, Quignon E, Jousset AC, Paillart JC, Marquet R, Vivet-Boudou V. Chemical and Enzymatic Probing of Viral RNAs: From Infancy to Maturity and Beyond. Viruses 2021; 13:1894. [PMID: 34696322 PMCID: PMC8537439 DOI: 10.3390/v13101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
RNA molecules are key players in a variety of biological events, and this is particularly true for viral RNAs. To better understand the replication of those pathogens and try to block them, special attention has been paid to the structure of their RNAs. Methods to probe RNA structures have been developed since the 1960s; even if they have evolved over the years, they are still in use today and provide useful information on the folding of RNA molecules, including viral RNAs. The aim of this review is to offer a historical perspective on the structural probing methods used to decipher RNA structures before the development of the selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) methodology and to show how they have influenced the current probing techniques. Actually, these technological breakthroughs, which involved advanced detection methods, were made possible thanks to the development of next-generation sequencing (NGS) but also to the previous works accumulated in the field of structural RNA biology. Finally, we will also discuss how high-throughput SHAPE (hSHAPE) paved the way for the development of sophisticated RNA structural techniques.
Collapse
Affiliation(s)
| | | | | | | | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France; (O.G.); (E.Q.); (A.-C.J.); (J.-C.P.)
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France; (O.G.); (E.Q.); (A.-C.J.); (J.-C.P.)
| |
Collapse
|
13
|
Abstract
RNA is a pivotal element of the cell which is most of the time found in complex with protein(s) in a cellular environment. RNA can adopt three-dimensional structures that may form specific binding sites not only for proteins but for all sorts of molecules. Since the early days of molecular biology, strategies to probe RNA structure have been developed. Such probes are small molecules or RNases that most of the time specifically react with single strand nucleotides. The precise reaction or cleavage site can be mapped by reverse transcription. It appears that nucleotides in close contact or in proximity of a ligand are no longer reactive to these probes. Carrying the RNA probing experiment in parallel in presence and absence of a ligand yield differences that are known as the ligand "footprint." Such footprints allow for the identification of the precise site of the ligand interaction, but also reveals RNA structural rearrangement upon ligand binding. Here we provide an experimental and analytical workflow to carry RNA footprinting experiments.
Collapse
Affiliation(s)
- Grégoire De Bisschop
- CiTCOM, Cibles Thérapeutiques et conception de médicaments, CNRS, Université de Paris, Paris, France.,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Bruno Sargueil
- CiTCOM, Cibles Thérapeutiques et conception de médicaments, CNRS, Université de Paris, Paris, France.
| |
Collapse
|
14
|
Mapping the RNA Chaperone Activity of the T. brucei Editosome Using SHAPE Chemical Probing. Methods Mol Biol 2021; 2106:161-178. [PMID: 31889257 DOI: 10.1007/978-1-0716-0231-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mitochondrial pre-mRNAs in African trypanosomes adopt intricately folded, highly stable 2D and 3D structures. The RNA molecules are substrates of a U-nucleotide-specific insertion/deletion-type RNA editing reaction, which is catalyzed by a 0.8 MDa protein complex known as the editosome. RNA binding to the editosome is followed by a chaperone-mediated RNA remodeling reaction. The reaction increases the dynamic of specifically U-nucleotides to lower their base-pairing probability and as a consequence generates a simplified RNA folding landscape that is critical for the progression of the editing reaction cycle. Here we describe a chemical mapping method to quantitatively monitor the chaperone-driven structural changes of pre-edited mRNAs upon editosome binding. The method is known as selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE). SHAPE is based on the differential electrophilic modification of ribose 2'-hydroxyl groups in structurally constraint (double-stranded) versus structurally unconstrained (single-stranded) nucleotides. Electrophilic anhydrides such as 1-methyl-7-nitroisatoic anhydride are used as probing reagents, and the ribose 2'-modified nucleotides are mapped as abortive cDNA synthesis products. As a result, SHAPE allows the identification of all single-stranded and base-paired regions in a given RNA, and the data are used to compute experimentally derived RNA 2D structures. A side-by-side comparison of the RNA 2D folds in the pre- and post-chaperone states finally maps the chaperone-induced dynamic of the different pre-mRNAs with single-nucleotide resolution.
Collapse
|
15
|
Moya-Ramírez I, Bouton C, Kontoravdi C, Polizzi K. High resolution biosensor to test the capping level and integrity of mRNAs. Nucleic Acids Res 2021; 48:e129. [PMID: 33152073 PMCID: PMC7736790 DOI: 10.1093/nar/gkaa955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/22/2020] [Accepted: 10/08/2020] [Indexed: 11/21/2022] Open
Abstract
5′ Cap structures are ubiquitous on eukaryotic mRNAs, essential for post-transcriptional processing, translation initiation and stability. Here we describe a biosensor designed to detect the presence of cap structures on mRNAs that is also sensitive to mRNA degradation, so uncapped or degraded mRNAs can be detected in a single step. The biosensor is based on a chimeric protein that combines the recognition and transduction roles in a single molecule. The main feature of this sensor is its simplicity, enabling semi-quantitative analyses of capping levels with minimal instrumentation. The biosensor was demonstrated to detect the capping level on several in vitro transcribed mRNAs. Its sensitivity and dynamic range remained constant with RNAs ranging in size from 250 nt to approximately 2700 nt and the biosensor was able to detect variations in the capping level in increments of at least 20%, with a limit of detection of 2.4 pmol. Remarkably, it also can be applied to more complex analytes, such mRNA vaccines and mRNAs transcribed in vivo. This biosensor is an innovative example of a technology able to detect analytically challenging structures such as mRNA caps. It could find application in a variety of scenarios, from quality analysis of mRNA-based products such as vaccines to optimization of in vitro capping reactions.
Collapse
Affiliation(s)
- Ignacio Moya-Ramírez
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Clement Bouton
- Department of Infectious Disease, Imperial College London, London W2 1NY, UK
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Karen Polizzi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
16
|
Lamper AM, Fleming RH, Ladd KM, Lee ASY. A phosphorylation-regulated eIF3d translation switch mediates cellular adaptation to metabolic stress. Science 2020; 370:853-856. [PMID: 33184215 DOI: 10.1126/science.abb0993] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/20/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022]
Abstract
Shutoff of global protein synthesis is a conserved response to cellular stresses. This general phenomenon is accompanied by the induction of distinct gene programs tailored to each stress. Although the mechanisms driving repression of general protein synthesis are well characterized, how cells reprogram the translation machinery for selective gene expression remains poorly understood. Here, we found that the noncanonical 5' cap-binding protein eIF3d was activated in response to metabolic stress in human cells. Activation required reduced CK2-mediated phosphorylation near the eIF3d cap-binding pocket. eIF3d controls a gene program enriched in factors important for glucose homeostasis, including members of the mammalian target of rapamycin (mTOR) pathway. eIF3d-directed translation adaptation was essential for cell survival during chronic glucose deprivation. Thus, this mechanism of translation reprogramming regulates the cellular response to metabolic stress.
Collapse
Affiliation(s)
- Adam M Lamper
- Department of Biology, Brandeis University, Waltham, MA 02453, USA.
| | | | - Kayla M Ladd
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Amy S Y Lee
- Department of Biology, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
17
|
van Cruchten RTP, Wansink DG. In Vitro Synthesis and RNA Structure Probing of CUG Triplet Repeat RNA. Methods Mol Biol 2020; 2056:187-202. [PMID: 31586349 DOI: 10.1007/978-1-4939-9784-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aberrant RNA structure plays a central role in the molecular mechanisms guided by repeat RNAs in diseases like myotonic dystrophy (DM), C9orf72-linked amyotrophic lateral sclerosis (ALS) and fragile X tremor/ataxia syndrome (FXTAS). Much knowledge remains to be gained about how these repeat-expanded transcripts are actually folded, especially regarding the properties specific to very long and interrupted repeats. RNA structure can be interrogated by chemical as well as enzymatic probes. These probes usually bind or cleave single-stranded nucleotides, which can subsequently be detected using reverse transcriptase primer extension. In this chapter, we describe methodology for in vitro synthesis and structure probing of expanded CUG repeat RNAs associated with DM type 1 and approaches for the associated data analysis.
Collapse
Affiliation(s)
- Remco T P van Cruchten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
18
|
Gumna J, Zok T, Figurski K, Pachulska-Wieczorek K, Szachniuk M. RNAthor - fast, accurate normalization, visualization and statistical analysis of RNA probing data resolved by capillary electrophoresis. PLoS One 2020; 15:e0239287. [PMID: 33002005 PMCID: PMC7529196 DOI: 10.1371/journal.pone.0239287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022] Open
Abstract
RNAs adopt specific structures to perform their functions, which are critical to fundamental cellular processes. For decades, these structures have been determined and modeled with strong support from computational methods. Still, the accuracy of the latter ones depends on the availability of experimental data, for example, chemical probing information that can define pseudo-energy constraints for RNA folding algorithms. At the same time, diverse computational tools have been developed to facilitate analysis and visualization of data from RNA structure probing experiments followed by capillary electrophoresis or next-generation sequencing. RNAthor, a new software tool for the fully automated normalization of SHAPE and DMS probing data resolved by capillary electrophoresis, has recently joined this collection. RNAthor automatically identifies unreliable probing data. It normalizes the reactivity information to a uniform scale and uses it in the RNA secondary structure prediction. Our web server also provides tools for fast and easy RNA probing data visualization and statistical analysis that facilitates the comparison of multiple data sets. RNAthor is freely available at http://rnathor.cs.put.poznan.pl/.
Collapse
Affiliation(s)
- Julita Gumna
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Kacper Figurski
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | | | - Marta Szachniuk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- * E-mail: (KPW); (MS)
| |
Collapse
|
19
|
Rous Sarcoma Virus Genomic RNA Dimerization Capability In Vitro Is Not a Prerequisite for Viral Infectivity. Viruses 2020; 12:v12050568. [PMID: 32455905 PMCID: PMC7291142 DOI: 10.3390/v12050568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/29/2022] Open
Abstract
Retroviruses package their full-length, dimeric genomic RNA (gRNA) via specific interactions between the Gag polyprotein and a “Ψ” packaging signal located in the gRNA 5′-UTR. Rous sarcoma virus (RSV) gRNA has a contiguous, well-defined Ψ element, that directs the packaging of heterologous RNAs efficiently. The simplicity of RSV Ψ makes it an informative model to examine the mechanism of retroviral gRNA packaging, which is incompletely understood. Little is known about the structure of dimerization initiation sites or specific Gag interaction sites of RSV gRNA. Using selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE), we probed the secondary structure of the entire RSV 5′-leader RNA for the first time. We identified a putative bipartite dimerization initiation signal (DIS), and mutation of both sites was required to significantly reduce dimerization in vitro. These mutations failed to reduce viral replication, suggesting that in vitro dimerization results do not strictly correlate with in vivo infectivity, possibly due to additional RNA interactions that maintain the dimers in cells. UV crosslinking-coupled SHAPE (XL-SHAPE) was next used to determine Gag-induced RNA conformational changes, revealing G218 as a critical Gag contact site. Overall, our results suggest that disruption of either of the DIS sequences does not reduce virus replication and reveal specific sites of Gag–RNA interactions.
Collapse
|
20
|
Low-cost and user-friendly biosensor to test the integrity of mRNA molecules suitable for field applications. Biosens Bioelectron 2019; 137:199-206. [PMID: 31100599 DOI: 10.1016/j.bios.2019.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/17/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022]
Abstract
The use of mRNA in biotechnology has expanded with novel applications such as vaccines and therapeutic mRNA delivery recently demonstrated. For mRNA to be used in patients, quality control assays will need to be routinely established. Currently, there is a gap between the highly sophisticated RNA integrity tests available and broader application of mRNA-based products by non-specialist users, e.g. in mass vaccination campaigns. Therefore, the aim of this work was to develop a low-cost biosensor able to test the integrity of a mRNA molecule with low technological requirements and easy end-user application. The biosensor is based on a bi-functional fusion protein, composed by the λN peptide that recognizes its cognate aptamer encoded on the 5' end of the RNA under study and β-lactamase, which is able to produce a colorimetric response through a simple test. We propose two different mechanisms for signal processing adapted to two levels of technological sophistication, one based on spectrophotometric measurements and other on visual inspection. We show that the proposed λN-βLac chimeric protein specifically targets its cognate RNA aptamer, boxB, using both gel shift and biolayer interferometry assays. More importantly, the results presented confirm the biosensor performs reliably, with a wide dynamic range and a proportional response at different percentages of full-length RNA, even when gene-sized mRNAs were used. Thus, the features of the proposed biosensor would allow to end-users of products such as mRNA vaccines to test the integrity of the product before its application in a low-cost fashion, enabling a more reliable application of these products.
Collapse
|
21
|
Mailler E, Paillart JC, Marquet R, Smyth RP, Vivet-Boudou V. The evolution of RNA structural probing methods: From gels to next-generation sequencing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1518. [PMID: 30485688 DOI: 10.1002/wrna.1518] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/13/2018] [Accepted: 10/17/2018] [Indexed: 01/09/2023]
Abstract
RNA molecules are important players in all domains of life and the study of the relationship between their multiple flexible states and the associated biological roles has increased in recent years. For several decades, chemical and enzymatic structural probing experiments have been used to determine RNA structure. During this time, there has been a steady improvement in probing reagents and experimental methods, and today the structural biologist community has a large range of tools at its disposal to probe the secondary structure of RNAs in vitro and in cells. Early experiments used radioactive labeling and polyacrylamide gel electrophoresis as read-out methods. This was superseded by capillary electrophoresis, and more recently by next-generation sequencing. Today, powerful structural probing methods can characterize RNA structure on a genome-wide scale. In this review, we will provide an overview of RNA structural probing methodologies from a historical and technical perspective. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Methods > RNA Analyses in vitro and In Silico RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Elodie Mailler
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | | | - Roland Marquet
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | - Redmond P Smyth
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | - Valerie Vivet-Boudou
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| |
Collapse
|
22
|
Dayeh DM, Cantara WA, Kitzrow JP, Musier-Forsyth K, Nakanishi K. Argonaute-based programmable RNase as a tool for cleavage of highly-structured RNA. Nucleic Acids Res 2018; 46:e98. [PMID: 29897478 PMCID: PMC6144825 DOI: 10.1093/nar/gky496] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/20/2018] [Accepted: 05/22/2018] [Indexed: 12/26/2022] Open
Abstract
The recent identification and development of RNA-guided enzymes for programmable cleavage of target nucleic acids offers exciting possibilities for both therapeutic and biotechnological applications. However, critical challenges such as expensive guide RNAs and inability to predict the efficiency of target recognition, especially for highly-structured RNAs, remain to be addressed. Here, we introduce a programmable RNA restriction enzyme, based on a budding yeast Argonaute (AGO), programmed with cost-effective 23-nucleotide (nt) single-stranded DNAs as guides. DNA guides offer the advantage that diverse sequences can be easily designed and purchased, enabling high-throughput screening to identify optimal recognition sites in the target RNA. Using this DNA-induced slicing complex (DISC) programmed with 11 different guide DNAs designed to span the sequence, sites of cleavage were identified in the 352-nt human immunodeficiency virus type 1 5'-untranslated region. This assay, coupled with primer extension and capillary electrophoresis, allows detection and relative quantification of all DISC-cleavage sites simultaneously in a single reaction. Comparison between DISC cleavage and RNase H cleavage reveals that DISC not only cleaves solvent-exposed sites, but also sites that become more accessible upon DISC binding. This study demonstrates the advantages of the DISC system for programmable cleavage of highly-structured, functional RNAs.
Collapse
Affiliation(s)
- Daniel M Dayeh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - William A Cantara
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan P Kitzrow
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
23
|
Wu W, Hatterschide J, Syu YC, Cantara WA, Blower RJ, Hanson HM, Mansky LM, Musier-Forsyth K. Human T-cell leukemia virus type 1 Gag domains have distinct RNA-binding specificities with implications for RNA packaging and dimerization. J Biol Chem 2018; 293:16261-16276. [PMID: 30217825 DOI: 10.1074/jbc.ra118.005531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/13/2018] [Indexed: 12/14/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the first retrovirus that has conclusively been shown to cause human diseases. In HIV-1, specific interactions between the nucleocapsid (NC) domain of the Gag protein and genomic RNA (gRNA) mediate gRNA dimerization and selective packaging; however, the mechanism for gRNA packaging in HTLV-1, a deltaretrovirus, is unclear. In other deltaretroviruses, the matrix (MA) and NC domains of Gag are both involved in gRNA packaging, but MA binds nucleic acids with higher affinity and has more robust chaperone activity, suggesting that this domain may play a primary role. Here, we show that the MA domain of HTLV-1, but not the NC domain, binds short hairpin RNAs derived from the putative gRNA packaging signal. RNA probing of the HTLV-1 5' leader and cross-linking studies revealed that the primer-binding site and a region within the putative packaging signal form stable hairpins that interact with MA. In addition to a previously identified palindromic dimerization initiation site (DIS), we identified a new DIS in HTLV-1 gRNA and found that both palindromic sequences bind specifically the NC domain. Surprisingly, a mutant partially defective in dimer formation in vitro exhibited a significant increase in RNA packaging into HTLV-1-like particles, suggesting that efficient RNA dimerization may not be strictly required for RNA packaging in HTLV-1. Moreover, the lifecycle of HTLV-1 and other deltaretroviruses may be characterized by NC and MA functions that are distinct from those of the corresponding HIV-1 proteins, but together provide the functions required for viral replication.
Collapse
Affiliation(s)
- Weixin Wu
- From the Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus Ohio 43210 and
| | - Joshua Hatterschide
- From the Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus Ohio 43210 and
| | - Yu-Ci Syu
- From the Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus Ohio 43210 and
| | - William A Cantara
- From the Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus Ohio 43210 and
| | | | - Heather M Hanson
- Institute for Molecular Virology.,Molecular, Cellular, Developmental Biology and Genetics Graduate Program, and
| | - Louis M Mansky
- Institute for Molecular Virology.,Molecular, Cellular, Developmental Biology and Genetics Graduate Program, and.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - Karin Musier-Forsyth
- From the Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus Ohio 43210 and
| |
Collapse
|
24
|
Jayaraman D, Kenyon JC. New windows into retroviral RNA structures. Retrovirology 2018; 15:11. [PMID: 29368653 PMCID: PMC5784592 DOI: 10.1186/s12977-018-0393-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
Background The multiple roles of both viral and cellular RNAs have become increasingly apparent in recent years, and techniques to model them have become significantly more powerful, enabling faster and more accurate visualization of RNA structures. Main body Techniques such as SHAPE (selective 2’OH acylation analysed by primer extension) have revolutionized the field, and have been used to examine RNAs belonging to many and diverse retroviruses. Secondary structure probing reagents such as these have been aided by the development of faster methods of analysis either via capillary or next-generation sequencing, allowing the analysis of entire genomes, and of retroviral RNA structures within virions. Techniques to model the three-dimensional structures of these large RNAs have also recently developed. Conclusions The flexibility of retroviral RNAs, both structural and functional, is clear from the results of these new experimental techniques. Retroviral RNA structures and structural changes control many stages of the lifecycle, and both the RNA structures themselves and their interactions with ligands are potential new drug targets. In addition, our growing understanding of retroviral RNA structures is aiding our knowledge of cellular RNA form and function.
Collapse
Affiliation(s)
- Dhivya Jayaraman
- Department of Medicine, National University of Singapore, 14 Medical Drive, MD 6, Level 15, Singapore, 117599, Singapore
| | - Julia Claire Kenyon
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital Hills Rd, Cambridge, CB2 0QQ, UK. .,Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2 Blk MD4, Level 3, Singapore, 117545, Singapore. .,Homerton College, University of Cambridge, Hills Rd, Cambridge, CB2 8PH, UK.
| |
Collapse
|