1
|
Jang JJ, Lee MJ, Lee MS, Myoung J, Lee HH, Choi BH, Saruuldalai E, Jung YS, Lee HS, Kim Y, Ahn T, Park JL, Kim SY, Park G, Park SJ, Kim SH, Kim JH, Han N, Park EJ, Kang D, Kim IH, Lee YS, Lee YS. The immune sensitivity caused by DUSP11, an RNA 5'-end maturation phosphatase, is adjusted by a human non-coding RNA, nc886. Cell Mol Life Sci 2025; 82:77. [PMID: 39951059 PMCID: PMC11828774 DOI: 10.1007/s00018-025-05607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/10/2025] [Accepted: 01/26/2025] [Indexed: 02/17/2025]
Abstract
All cellular transcripts initially have a tri-phosphate (PPP) group at the 5'-end, recognized as a pathogen-associated molecular pattern (PAMP) by a cell's innate immune system. The removal of 5'-PPP occurs to varying extents, causing immune imbalance. However, how cells manage this situation has not yet been documented. Among 5'-PPP removal mechanisms, recent attention has been towards an RNA phosphatase called Dual Specificity Phosphatase 11 (DUSP11), which acts preferentially on 5'-triphosphorylated (5'-PPP) RNAs transcribed by RNA polymerase III (Pol III) and converts them to a 5'-monophosphorylated (5'-P) form. Here we have elucidated that immune imbalance caused by variable DUSP11 expression in human is controlled by a Pol III-transcribed non-coding RNA (Pol III-ncRNA), nc886. DUSP11 depletion leads to the accumulation of 5'-PPP-Pol III-ncRNAs, making cells respond better to incoming PAMP. Distinctly from other Pol III-ncRNAs, DUSP11 depletion increases the expression of nc886 in a 5'-P form, which mitigates the sensitized immunity. nc886 expression is also increased by infection with Kaposi's sarcoma-associated herpesvirus (KSHV) that suppresses DUSP11, and, in turn, nc886 stimulates KSHV infectivity. DUSP11 levels in normal tissues are relatively constitutive in mice lacking nc886 but are variable in humans. This wide range of DUSP11 expression and the resultant immune imbalance is probably adjusted by nc886. In summary, our study of DUSP11 and nc886 has uncovered a novel mechanism by which human cells control immune sensitivity, which is intrinsically caused by cellular RNA metabolism, allowing different states of equilibrium between immune status and gene expression.
Collapse
Affiliation(s)
- Jiyoung Joan Jang
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
- Fluorescence Core Imaging Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Korea
| | - Myung-Ju Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Korea
| | - Jinjong Myoung
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju, 54531, Korea
| | - Hwi-Ho Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Byung-Han Choi
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Enkhjin Saruuldalai
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Yuh-Seog Jung
- Division of Cancer Immunology, Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Hyun-Sung Lee
- Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yeochan Kim
- Department of Life Science, Handong Global University, Pohang, 37554, Korea
| | - TaeJin Ahn
- Department of Life Science, Handong Global University, Pohang, 37554, Korea
| | - Jong-Lyul Park
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Korea
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Korea
| | - Gaeul Park
- Division of Rare Cancer, Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Sang-Jae Park
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, 10408, Korea
| | - Sung-Hoon Kim
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, 10408, Korea
| | - Ji-Hoon Kim
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, 10408, Korea
| | - Nayoung Han
- Department of Pathology, National Cancer Center, Goyang, 10408, Korea
| | - Eun Jung Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Dongmin Kang
- Fluorescence Core Imaging Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Korea
| | - In-Hoo Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Yeon-Su Lee
- Division of Rare Cancer, Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea.
| |
Collapse
|
2
|
Oliveira-Rizzo C, Colantuono CL, Fernández-Alvarez AJ, Boccaccio GL, Garat B, Sotelo-Silveira JR, Khan S, Ignatchenko V, Lee YS, Kislinger T, Liu SK, Fort RS, Duhagon MA. Multi-Omics Study Reveals Nc886/vtRNA2-1 as a Positive Regulator of Prostate Cancer Cell Immunity. J Proteome Res 2025; 24:433-448. [PMID: 39723625 DOI: 10.1021/acs.jproteome.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Noncoding RNA 886 has emerged as a pivotal regulatory RNA with distinct functions across tissues, acting as a regulator of protein activity by directly binding to protein partners. While it is well recognized as a tumor suppressor in prostate cancer, the underlying molecular mechanisms remain elusive. To discover the principal pathways regulated by nc886 in prostate cancer, we used a transcriptomic and proteomic approach analyzing malignant DU145, LNCaP, PC3, and benign RWPE-1 prostate cell line models transiently transfected with in vitro transcribed nc886 or antisense oligonucleotides. Multiomics revelead a significant enrichment of immune system-related pathways across the cell lines, including cytokines and interferon signaling. The interferon response provoked by nc886 was validated by functional assays. The invariability of PKR phosphorylation and NF-κB activity in the gain/loss of nc886 function experiments and the positive regulation of innate immunity suggest a PKR-independent mechanism of nc886 action. Accordingly, the GSEA of the PRAD-TCGA data set revealed immune stimulation as the nc886 most associated node also in the clinical setting. Our study showed that the reduction of nc886 leads to a blunted immune response in prostate cancer.
Collapse
Affiliation(s)
- Carolina Oliveira-Rizzo
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Camilla L Colantuono
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Ana J Fernández-Alvarez
- Laboratorio de Biología Celular del ARN, Instituto Leloir (FIL) and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires 1405, Argentina
| | - Graciela L Boccaccio
- Laboratorio de Biología Celular del ARN, Instituto Leloir (FIL) and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires 1405, Argentina
- Departamento de Fisiología y Biología Molecular y Celular (FBMyC), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Beatriz Garat
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
| | - José R Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo 11600, Uruguay
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Shahbaz Khan
- Princess Margaret Hospital Cancer Centre, Toronto, Ontario M5G 2C4, Canada
| | | | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do 10408, South Korea
| | - Thomas Kislinger
- Princess Margaret Hospital Cancer Centre, Toronto, Ontario M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Stanley K Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Odette Cancer Centre and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5T 1P5, Canada
| | - Rafael S Fort
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo 11600, Uruguay
| | - María A Duhagon
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
3
|
Raitoharju E, Rajić S, Marttila S. Non-coding 886 ( nc886/ vtRNA2-1), the epigenetic odd duck - implications for future studies. Epigenetics 2024; 19:2332819. [PMID: 38525792 DOI: 10.1080/15592294.2024.2332819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
Non-coding 886 (nc886, vtRNA2-1) is the only human polymorphically imprinted gene, in which the methylation status is not determined by genetics. Existing literature regarding the establishment, stability and consequences of the methylation pattern, as well as the nature and function of the nc886 RNAs transcribed from the locus, are contradictory. For example, the methylation status of the locus has been reported to be stable through life and across somatic tissues, but also susceptible to environmental effects. The nature of the produced nc886 RNA(s) has been redefined multiple times, and in carcinogenesis, these RNAs have been reported to have conflicting roles. In addition, due to the bimodal methylation pattern of the nc886 locus, traditional genome-wide methylation analyses can lead to false-positive results, especially in smaller datasets. Herein, we aim to summarize the existing literature regarding nc886, discuss how the characteristics of nc886 give rise to contradictory results, as well as to reinterpret, reanalyse and, where possible, replicate the results presented in the current literature. We also introduce novel findings on how the distribution of the nc886 methylation pattern is associated with the geographical origins of the population and describe the methylation changes in a large variety of human tumours. Through the example of this one peculiar genetic locus and RNA, we aim to highlight issues in the analysis of DNA methylation and non-coding RNAs in general and offer our suggestions for what should be taken into consideration in future analyses.
Collapse
Affiliation(s)
- Emma Raitoharju
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Sonja Rajić
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Saara Marttila
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
- Gerontology Research Center, Tampere University, Tampere, Finland
| |
Collapse
|
4
|
Lee YS, Lee YS. The mystique of epigenetic regulation: the remarkable case of a human noncoding RNA, nc886. Epigenomics 2024; 16:1389-1405. [PMID: 39466123 PMCID: PMC11728332 DOI: 10.1080/17501911.2024.2415278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
nc886 is a regulatory noncoding RNA that is transcribed by RNA polymerase III (Pol III), is variably expressed in different biological contexts, and plays roles in inflammation and cancer. Epigenetic mechanisms play an intriguing role in regulating nc886 expression. As a maternally imprinted gene and metastable epiallele, nc866 exhibits polymorphic imprinting, with a methylation status that is influenced by environmental and biological factors. Consequently, the promoter DNA methylation status and the different resulting RNA expression levels of nc886 are associated with physiological and pathological conditions. In this review, we summarize the literature and explore the significance in relation to diverse roles of nc886.
Collapse
Affiliation(s)
- Yeon-Su Lee
- Rare Cancer Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| |
Collapse
|
5
|
Bui VNV, Daugaard TF, Sorensen BS, Nielsen AL. Expression of the non-coding RNA nc886 facilitates the development of tyrosine kinase inhibitor resistance in EGFR-mutated non-small-cell lung cancer cells. Biochem Biophys Res Commun 2024; 731:150395. [PMID: 39024976 DOI: 10.1016/j.bbrc.2024.150395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Treatment of non-small-cell lung cancer (NSCLC) patients possessing EGFR-activating mutations with tyrosine kinase inhibitors (TKIs) can confer an initial promising response. However, TKI resistance inevitably arises. Numerous TKI resistance mechanisms are identified including EGFR secondary mutations, bypass receptor tyrosine kinase (RTK) signaling, and cellular transition e.g. epithelial-mesenchymal transition (EMT). To increase the knowledge of TKI resistance we performed an epigenetic screen to identify small non-coding (nc) genes with DNA methylation alterations in HCC827 NSCLC EGFR-mutated cells with acquired TKI resistance. We analyzed Infinium Methylation EPIC 850K Array data for DNA methylation changes present in both TKI-resistant HCC827 cells with EMT and MET-amplification. Hereby, we identified that the polymorphic maternal imprinted gene nc886 (vtRNA2-1) has a decrease in promoter DNA methylation in TKI-resistant cells. This epigenetic change was associated with an increase in the expression of nc886. The induction of EMT did not affect nc886 expression. CRISPR/Cas9-mediated distortion of the nc886 sequence increased the sensitivity of HCC827 cells towards TKI. Finally, nc886 sequence distortion hindered MET RTK activation and instead was EMT the endpoint TKI resistance mechanism. In conclusion, the expression of nc886 contributes to TKI resistance in the HCC827 NSCLC cell line by supporting cell survival and selection of the endpoint TKI resistance mechanism. We propose DNA methylation and expression changes for nc886 to constitute a novel TKI resistance contributing mechanism in NSCLC.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Line, Tumor
- DNA Methylation
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Epithelial-Mesenchymal Transition/drug effects
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Lung Neoplasms/genetics
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Mutation
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Tyrosine Kinase Inhibitors/pharmacology
- Tyrosine Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Vivian N V Bui
- Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark.
| | - Tina F Daugaard
- Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark.
| | - Boe S Sorensen
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, 8200, Aarhus, Denmark.
| | - Anders L Nielsen
- Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
6
|
Shin GJ, Choi BH, Eum HH, Jo A, Kim N, Kang H, Hong D, Jang JJ, Lee HH, Lee YS, Lee YS, Lee HO. Single-cell RNA sequencing of nc886, a non-coding RNA transcribed by RNA polymerase III, with a primer spike-in strategy. PLoS One 2024; 19:e0301562. [PMID: 39190696 DOI: 10.1371/journal.pone.0301562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/06/2024] [Indexed: 08/29/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has emerged as a versatile tool in biology, enabling comprehensive genomic-level characterization of individual cells. Currently, most scRNA-seq methods generate barcoded cDNAs by capturing the polyA tails of mRNAs, which exclude many non-coding RNAs (ncRNAs), especially those transcribed by RNA polymerase III (Pol III). Although previously thought to be expressed constitutively, Pol III-transcribed ncRNAs are expressed variably in healthy and disease states and play important roles therein, necessitating their profiling at the single-cell level. In this study, we developed a measurement protocol for nc886 as a model case and initial step for scRNA-seq for Pol III-transcribed ncRNAs. Specifically, we spiked in an oligo-tagged nc886-specific primer during the polyA tail capture process for the 5'scRNA-seq. We then produced sequencing libraries for standard 5' gene expression and oligo-tagged nc886 separately, to accommodate different cDNA sizes and ensure undisturbed transcriptome analysis. We applied this protocol in three cell lines that express high, low, and zero levels of nc886. Our results show that the identification of oligo tags exhibited limited target specificity, and sequencing reads of nc886 enabled the correction of non-specific priming. These findings suggest that gene-specific primers (GSPs) can be employed to capture RNAs lacking a polyA tail, with subsequent sequence verification ensuring accurate gene expression counting. Moreover, we embarked on an analysis of differentially expressed genes in cell line sub-clusters with differential nc886 expression, demonstrating variations in gene expression phenotypes. Collectively, the primer spike-in strategy allows combined analysis of ncRNAs and gene expression phenotype.
Collapse
Affiliation(s)
- Gyeong-Jin Shin
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul, Korea
| | - Byung-Han Choi
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Hye Hyeon Eum
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
| | - Areum Jo
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
| | - Nayoung Kim
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
| | - Huiram Kang
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul, Korea
| | - Dongwan Hong
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul, Korea
- Department of Medical Informatics, The Catholic University of Korea, Seoul, Korea
| | - Jiyoung Joan Jang
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Hwi-Ho Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Yeon-Su Lee
- Division of Rare Cancer, Research Institute, National Cancer Center, Goyang, Korea
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Hae-Ock Lee
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
7
|
Koul A, Hui LT, Lubna N, McKenna SA. Distinct domain organization and diversity of 2'-5'-oligoadenylate synthetases. Biochem Cell Biol 2024; 102:305-318. [PMID: 38603810 DOI: 10.1139/bcb-2023-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
The 2'-5'-oligoadenylate synthetases (OAS) are important components of the innate immune system that recognize viral double-stranded RNA (dsRNA). Upon dsRNA binding, OAS generate 2'-5'-linked oligoadenylates (2-5A) that activate ribonuclease L (RNase L), halting viral replication. The OAS/RNase L pathway is thus an important antiviral pathway and viruses have devised strategies to circumvent OAS activation. OAS enzymes are divided into four classes according to size: small (OAS1), medium (OAS2), and large (OAS3) that consist of one, two, and three OAS domains, respectively, and the OAS-like protein (OASL) that consists of one OAS domain and tandem domains similar to ubiquitin. Early investigation of the OAS enzymes hinted at the recognition of dsRNA by OAS, but due to size differences amongst OAS family members combined with the lack of structural information on full-length OAS2 and OAS3, the regulation of OAS catalytic activity by dsRNA was not well understood. However, the recent biophysical studies of OAS have highlighted overall structure and domain organization. In this review, we present a detailed examination of the OAS literature and summarized the investigation on 2'-5'-oligoadenylate synthetases.
Collapse
Affiliation(s)
- Amit Koul
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lok Tin Hui
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| | - Nikhat Lubna
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| |
Collapse
|
8
|
Sallustio F, Picerno A, Cimmarusti MT, Montenegro F, Curci C, De Palma G, Sivo C, Annese F, Fontò G, Stasi A, Pesce F, Tafuri S, Di Leo V, Gesualdo L. Elevated levels of IL-6 in IgA nephropathy patients are induced by an epigenetically driven mechanism modulated by viral and bacterial RNA. Eur J Intern Med 2023; 118:108-117. [PMID: 37550110 DOI: 10.1016/j.ejim.2023.07.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN) is the most frequent primary glomerulonephritis and the role of IL-6 in pathogenesis is becoming increasingly important. A recent whole genome DNA methylation screening in IgAN patients identified a hypermethylated region comprising the non-coding RNA Vault RNA 2-1 (VTRNA2-1) that could explain the high IL-6 levels. METHODS The pathway leading to IL-6 secretion controlled by VTRNA2-1, PKR, and CREB was analyzed in peripheral blood mononuclear cells (PBMCs) isolated from healthy subjects (HS), IgAN patients, transplanted patients with or without IgAN. The role of double and single-strand RNA in controlling the pathway was investigated. RESULTS VTRNA2-1 was downregulated in IgAN compared to HS and in transplanted IgAN patients (TP-IgAN) compared to non-IgAN transplanted (TP). The loss of the VTRNA2-1 natural restrain in IgAN patients caused PKR hyperphosphorylation, and consequently the activation of CREB by PKR, which, in turn, led to high IL-6 production, both in IgAN and in TP-IgAN patients. IL-6 levels could be decreased by the PKR inhibitor imoxin. In addition, PKR is normally activated by bacterial and viral RNA, and we found that both the RNA poly(I:C), and the COVID-19 RNA-vaccine stimulation significantly increased the IL-6 levels in PBMCs from HS but had an opposite effect in those from IgAN patients. CONCLUSION The discovery of the upregulated VTRNA2-1/PKR/CREB/IL-6 pathway in IgAN patients may provide a novel approach to treating the disease and may be useful for the development of precision nephrology and personalized therapy by checking the VTRNA2-1 methylation level in IgAN patients.
Collapse
Affiliation(s)
- Fabio Sallustio
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare, Bari 11 70124, Italy.
| | - Angela Picerno
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Teresa Cimmarusti
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare, Bari 11 70124, Italy
| | - Francesca Montenegro
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Claudia Curci
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare, Bari 11 70124, Italy
| | - Giuseppe De Palma
- Institutional Biobank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori Bari Giovanni Paolo II, Bari, Italy
| | - Carmen Sivo
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare, Bari 11 70124, Italy
| | - Francesca Annese
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare, Bari 11 70124, Italy
| | - Giulia Fontò
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare, Bari 11 70124, Italy
| | - Alessandra Stasi
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare, Bari 11 70124, Italy
| | - Francesco Pesce
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare, Bari 11 70124, Italy
| | - Silvio Tafuri
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Vincenzo Di Leo
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare, Bari 11 70124, Italy
| | - Loreto Gesualdo
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare, Bari 11 70124, Italy
| |
Collapse
|
9
|
Zhou S, Van Bortle K. The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1782. [PMID: 36754845 PMCID: PMC10498592 DOI: 10.1002/wrna.1782] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
The RNA polymerase III (Pol III) transcriptome is universally comprised of short, highly structured noncoding RNA (ncRNA). Through RNA-protein interactions, the Pol III transcriptome actuates functional activities ranging from nuclear gene regulation (7SK), splicing (U6, U6atac), and RNA maturation and stability (RMRP, RPPH1, Y RNA), to cytoplasmic protein targeting (7SL) and translation (tRNA, 5S rRNA). In higher eukaryotes, the Pol III transcriptome has expanded to include additional, recently evolved ncRNA species that effectively broaden the footprint of Pol III transcription to additional cellular activities. Newly evolved ncRNAs function as riboregulators of autophagy (vault), immune signaling cascades (nc886), and translation (Alu, BC200, snaR). Notably, upregulation of Pol III transcription is frequently observed in cancer, and multiple ncRNA species are linked to both cancer progression and poor survival outcomes among cancer patients. In this review, we outline the basic features and functions of the Pol III transcriptome, and the evidence for dysregulation and dysfunction for each ncRNA in cancer. When taken together, recurrent patterns emerge, ranging from shared functional motifs that include molecular scaffolding and protein sequestration, overlapping protein interactions, and immunostimulatory activities, to the biogenesis of analogous small RNA fragments and noncanonical miRNAs, augmenting the function of the Pol III transcriptome and further broadening its role in cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
10
|
Lee YS, Lee YS. nc886, an RNA Polymerase III-Transcribed Noncoding RNA Whose Expression Is Dynamic and Regulated by Intriguing Mechanisms. Int J Mol Sci 2023; 24:ijms24108533. [PMID: 37239877 DOI: 10.3390/ijms24108533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
nc886 is a medium-sized non-coding RNA that is transcribed by RNA polymerase III (Pol III) and plays diverse roles in tumorigenesis, innate immunity, and other cellular processes. Although Pol III-transcribed ncRNAs were previously thought to be expressed constitutively, this concept is evolving, and nc886 is the most notable example. The transcription of nc886 in a cell, as well as in human individuals, is controlled by multiple mechanisms, including its promoter CpG DNA methylation and transcription factor activity. Additionally, the RNA instability of nc886 contributes to its highly variable steady-state expression levels in a given situation. This comprehensive review discusses nc886's variable expression in physiological and pathological conditions and critically examines the regulatory factors that determine its expression levels.
Collapse
Affiliation(s)
- Yeon-Su Lee
- Rare Cancer Branch, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| |
Collapse
|
11
|
Yang R, Zuo L, Ma H, Zhou Y, Zhou P, Wang L, Wang M, Latif M, Kong L. Downregulation of nc886 contributes to prostate cancer cell invasion and TGFβ1-induced EMT. Genes Dis 2022; 9:1086-1098. [PMID: 35685460 PMCID: PMC9170576 DOI: 10.1016/j.gendis.2020.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) activation is important in cancer progression and metastasis. Evidence indicates that nc886 is a representative Pol III gene that processes microRNA products via Dicer and further downregulates its target gene transforming growth factor- β1 (TGF-β1), which is the most prominent inducer of EMT in prostate cancer (PC). Consistent with the previous literature, we found that nc886 downregulation was strongly associated with metastatic behavior and showed worse outcomes in PC patients. However, little is known about the association between nc886 and the EMT signaling pathway. We developed a PC cell model with stable overexpression of nc886 and found that nc886 changed cellular morphology and drove MET. The underlying mechanism may be related to its promotion of SNAIL protein degradation via ubiquitination, but not to its neighboring genes, TGFβ-induced protein (TGFBI) and SMAD5, which are Pol II-transcribed. TGF-β1 also override nc886 promotion of MET via transient suppression the transcription of nc886, promotion of TGFBI or increase in SMAD5 phosphorylation. Both nc886 inhibition and TGFBI activation occur regardless of their methylation status. The literature suggests that MYC inhibition by TGF-β1 is attributed to nc886 downregulation. We incidentally identified MYC-associated zinc finger protein (MAZ) as a suppressive transcription factor of TGFBI, which is controlled by TGF-β1. We elucidate a new mechanism of TGF-β1 differential control of Pol II and the transcription of its neighboring Pol III gene and identify a new EMT unit consisting of nc886 and its neighboring genes.
Collapse
Affiliation(s)
- Ronghui Yang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, PR China
| | - Lingkun Zuo
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, PR China
| | - Hui Ma
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, PR China
| | - Ying Zhou
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, PR China
| | - Ping Zhou
- Biomedical Engineering Institute of Capital Medical University, Capital Medical University, Beijing 100069, PR China
| | - Liyong Wang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, PR China
| | - Miao Wang
- Department of Pathology, Beijing Friendship Hospital, The Second Clinical Medical College of Capital Medical University, Beijing 100050, PR China
| | - Mahrukh Latif
- Department of Nuclear Medicine, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050010, PR China
| | - Lu Kong
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, PR China
| |
Collapse
|
12
|
Lee YS. Are We Studying Non-Coding RNAs Correctly? Lessons from nc886. Int J Mol Sci 2022; 23:ijms23084251. [PMID: 35457068 PMCID: PMC9027504 DOI: 10.3390/ijms23084251] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Non-coding RNAs (ncRNAs), such as microRNAs or long ncRNAs, have brought about a new paradigm in the regulation of gene expression. Sequencing technologies have detected transcripts with tremendous sensitivity and throughput and revealed that the majority of them lack protein-coding potential. Myriad articles have investigated numerous ncRNAs and many of them claim that ncRNAs play gene-regulatory roles. However, it is questionable whether all these articles draw conclusions through cautious gain- and loss-of function experiments whose design was reasonably based on an ncRNA's correct identity and features. In this review, these issues are discussed with a regulatory ncRNA, nc886, as an example case to represent cautions and guidelines when studying ncRNAs.
Collapse
Affiliation(s)
- Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| |
Collapse
|
13
|
Saruuldalai E, Park J, Kang D, Shin SP, Im WR, Lee HH, Jang JJ, Park JL, Kim SY, Hwang JA, Kim YD, Lee JH, Park EJ, Lee YS, Kim IH, Lee SJ, Lee YS. A host non-coding RNA, nc886, plays a pro-viral role by promoting virus trafficking to the nucleus. Mol Ther Oncolytics 2022; 24:683-694. [PMID: 35284627 PMCID: PMC8904404 DOI: 10.1016/j.omto.2022.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/15/2022] [Indexed: 12/01/2022] Open
Abstract
Elucidation of the interplay between viruses and host cells is crucial for taming viruses to benefit human health. Cancer therapy using adenovirus, called oncolytic virotherapy, is a promising treatment option but is not robust in all patients. In addition, inefficient replication of human adenovirus in mouse hampered the development of an in vivo model for preclinical evaluation of therapeutically engineered adenovirus. nc886 is a human non-coding RNA that suppresses Protein Kinase R (PKR), an antiviral protein. In this study, we have found that nc886 greatly promotes adenoviral gene expression and replication. Remarkably, the stimulatory effect of nc886 is not dependent on its function to inhibit PKR. Rather, nc886 facilitates the nuclear entry of adenovirus via modulating the kinesin pathway. nc886 is not conserved in mouse and, when xenogeneically expressed in mouse cells, promotes adenovirus replication. Our investigation has discovered a novel mechanism of how a host ncRNA plays a pro-adenoviral role. Given that nc886 expression is silenced in a subset of cancer cells, our study highlights that oncolytic virotherapy might be inefficient in those cells. Furthermore, our findings open future possibilities of harnessing nc886 to improve the efficacy of oncolytic adenovirus and to construct nc886-expressing transgenic mice as an animal model.
Collapse
|
14
|
Oocyte age and preconceptual alcohol use are highly correlated with epigenetic imprinting of a noncoding RNA ( nc886). Proc Natl Acad Sci U S A 2021; 118:2026580118. [PMID: 33723081 PMCID: PMC8000112 DOI: 10.1073/pnas.2026580118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Genomic imprinting occurs before fertilization, impacts every cell of the developing child, and may be sensitive to environmental perturbations. The noncoding RNA, nc886 (also called VTRNA2-1) is the only known example of the ∼100 human genes imprinted by DNA methylation, that shows polymorphic imprinting in the population. The nc886 gene is part of an ∼1.6-kb differentially methylated region (DMR) that is methylated in the oocyte and silenced on the maternal allele in about 75% of humans worldwide. Here, we show that the presence or absence of imprinting at the nc886 DMR in an individual is consistent across different tissues, confirming that the imprint is established before cellular differentiation and is maintained into adulthood. We investigated the relationships between the frequency of imprinting in newborns and maternal age, alcohol consumption and cigarette smoking before conception in more than 1,100 mother/child pairs from South Africa. The probability of imprinting in newborns was increased in older mothers and decreased in mothers who drank alcohol before conception. On the other hand, cigarette smoking had no apparent relationship with the frequency of imprinting. These data show an epigenetic change during oocyte maturation which is potentially subject to environmental influence. Much focus has been placed on avoiding alcohol consumption during pregnancy, but our data suggest that drinking before conception may affect the epigenome of the newborn.
Collapse
|
15
|
Cesaro T, Hayashi Y, Borghese F, Vertommen D, Wavreil F, Michiels T. PKR activity modulation by phosphomimetic mutations of serine residues located three aminoacids upstream of double-stranded RNA binding motifs. Sci Rep 2021; 11:9188. [PMID: 33911136 PMCID: PMC8080564 DOI: 10.1038/s41598-021-88610-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/12/2021] [Indexed: 11/28/2022] Open
Abstract
Eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2), better known as PKR, plays a key role in the response to viral infections and cellular homeostasis by regulating mRNA translation. Upon binding dsRNA, PKR is activated through homodimerization and subsequent autophosphorylation on residues Thr446 and Thr451. In this study, we identified a novel PKR phosphorylation site, Ser6, located 3 amino acids upstream of the first double-stranded RNA binding motif (DRBM1). Another Ser residue occurs in PKR at position 97, the very same position relative to the DRBM2. Ser or Thr residues also occur 3 amino acids upstream DRBMs of other proteins such as ADAR1 or DICER. Phosphoinhibiting mutations (Ser-to-Ala) introduced at Ser6 and Ser97 spontaneously activated PKR. In contrast, phosphomimetic mutations (Ser-to-Asp) inhibited PKR activation following either poly (I:C) transfection or virus infection. These mutations moderately affected dsRNA binding or dimerization, suggesting a model where negative charges occurring at position 6 and 97 tighten the interaction of DRBMs with the kinase domain, thus keeping PKR in an inactive closed conformation even in the presence of dsRNA. This study provides new insights on PKR regulation mechanisms and identifies Ser6 and Ser97 as potential targets to modulate PKR activity for therapeutic purposes.
Collapse
Affiliation(s)
- Teresa Cesaro
- de Duve Institute, Université Catholique de Louvain, VIRO B1.74.07, 74, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Yohei Hayashi
- de Duve Institute, Université Catholique de Louvain, VIRO B1.74.07, 74, Avenue Hippocrate, 1200, Brussels, Belgium.,Frontier Sciences Unit, Department of Medical Innovations, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Fabian Borghese
- de Duve Institute, Université Catholique de Louvain, VIRO B1.74.07, 74, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Didier Vertommen
- PHOS Unit and MASSPROT Platform, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Fanny Wavreil
- de Duve Institute, Université Catholique de Louvain, VIRO B1.74.07, 74, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Thomas Michiels
- de Duve Institute, Université Catholique de Louvain, VIRO B1.74.07, 74, Avenue Hippocrate, 1200, Brussels, Belgium.
| |
Collapse
|
16
|
VTRNA2-1: Genetic Variation, Heritable Methylation and Disease Association. Int J Mol Sci 2021; 22:ijms22052535. [PMID: 33802562 PMCID: PMC7961504 DOI: 10.3390/ijms22052535] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/28/2022] Open
Abstract
VTRNA2-1 is a metastable epiallele with accumulating evidence that methylation at this region is heritable, modifiable and associated with disease including risk and progression of cancer. This study investigated the influence of genetic variation and other factors such as age and adult lifestyle on blood DNA methylation in this region. We first sequenced the VTRNA2-1 gene region in multiple-case breast cancer families in which VTRNA2-1 methylation was identified as heritable and associated with breast cancer risk. Methylation quantitative trait loci (mQTL) were investigated using a prospective cohort study (4500 participants with genotyping and methylation data). The cis-mQTL analysis (334 variants ± 50 kb of the most heritable CpG site) identified 43 variants associated with VTRNA2-1 methylation (p < 1.5 × 10−4); however, these explained little of the methylation variation (R2 < 0.5% for each of these variants). No genetic variants elsewhere in the genome were found to strongly influence VTRNA2-1 methylation. SNP-based heritability estimates were consistent with the mQTL findings (h2 = 0, 95%CI: −0.14 to 0.14). We found no evidence that age, sex, country of birth, smoking, body mass index, alcohol consumption or diet influenced blood DNA methylation at VTRNA2-1. Genetic factors and adult lifestyle play a minimal role in explaining methylation variability at the heritable VTRNA2-1 cluster.
Collapse
|
17
|
Kelly JA, Woodside MT, Dinman JD. Programmed -1 Ribosomal Frameshifting in coronaviruses: A therapeutic target. Virology 2021; 554:75-82. [PMID: 33387787 PMCID: PMC7833279 DOI: 10.1016/j.virol.2020.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/15/2023]
Abstract
Human population growth, climate change, and globalization are accelerating the emergence of novel pathogenic viruses. In the past two decades alone, three such members of the coronavirus family have posed serious threats, spurring intense efforts to understand their biology as a way to identify targetable vulnerabilities. Coronaviruses use a programmed -1 ribosomal frameshift (-1 PRF) mechanism to direct synthesis of their replicase proteins. This is a critical switch in their replication program that can be therapeutically targeted. Here, we discuss how nearly half a century of research into -1 PRF have provided insight into the virological importance of -1 PRF, the molecular mechanisms that drive it, and approaches that can be used to manipulate it towards therapeutic outcomes with particular emphasis on SARS-CoV-2.
Collapse
Affiliation(s)
- Jamie A Kelly
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
18
|
Eiermann N, Haneke K, Sun Z, Stoecklin G, Ruggieri A. Dance with the Devil: Stress Granules and Signaling in Antiviral Responses. Viruses 2020; 12:v12090984. [PMID: 32899736 PMCID: PMC7552005 DOI: 10.3390/v12090984] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Cells have evolved highly specialized sentinels that detect viral infection and elicit an antiviral response. Among these, the stress-sensing protein kinase R, which is activated by double-stranded RNA, mediates suppression of the host translation machinery as a strategy to limit viral replication. Non-translating mRNAs rapidly condensate by phase separation into cytosolic stress granules, together with numerous RNA-binding proteins and components of signal transduction pathways. Growing evidence suggests that the integrated stress response, and stress granules in particular, contribute to antiviral defense. This review summarizes the current understanding of how stress and innate immune signaling act in concert to mount an effective response against virus infection, with a particular focus on the potential role of stress granules in the coordination of antiviral signaling cascades.
Collapse
Affiliation(s)
- Nina Eiermann
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Katharina Haneke
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Zhaozhi Sun
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
- Correspondence:
| |
Collapse
|
19
|
Suarez B, Prats-Mari L, Unfried JP, Fortes P. LncRNAs in the Type I Interferon Antiviral Response. Int J Mol Sci 2020; 21:E6447. [PMID: 32899429 PMCID: PMC7503479 DOI: 10.3390/ijms21176447] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
The proper functioning of the immune system requires a robust control over a delicate equilibrium between an ineffective response and immune overactivation. Poor responses to viral insults may lead to chronic or overwhelming infection, whereas unrestrained activation can cause autoimmune diseases and cancer. Control over the magnitude and duration of the antiviral immune response is exerted by a finely tuned positive or negative regulation at the DNA, RNA, and protein level of members of the type I interferon (IFN) signaling pathways and on the expression and activity of antiviral and proinflammatory factors. As summarized in this review, committed research during the last decade has shown that several of these processes are exquisitely regulated by long non-coding RNAs (lncRNAs), transcripts with poor coding capacity, but highly versatile functions. After infection, viruses, and the antiviral response they trigger, deregulate the expression of a subset of specific lncRNAs that function to promote or repress viral replication by inactivating or potentiating the antiviral response, respectively. These IFN-related lncRNAs are also highly tissue- and cell-type-specific, rendering them as promising biomarkers or therapeutic candidates to modulate specific stages of the antiviral immune response with fewer adverse effects.
Collapse
Affiliation(s)
- Beatriz Suarez
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
| | - Laura Prats-Mari
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
| | - Juan P. Unfried
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
| | - Puri Fortes
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| |
Collapse
|
20
|
Elhence PA. An invited commentary on "Differential hypermethylation of the VTRNA2-1 promoter in hepatocellular carcinoma as a prognostic factor: Tumor marker prognostic study" [Int. J. Surg. 79 (2020) 282-289]. Int J Surg 2020; 80:45-46. [PMID: 32553725 DOI: 10.1016/j.ijsu.2020.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Poonam A Elhence
- Department of Pathology & Lab Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India.
| |
Collapse
|
21
|
Abstract
Protein kinase R (PKR) is a key antiviral component of the innate immune pathway and is activated by viral double-stranded RNAs (dsRNAs). Adenovirus-associated RNA 1 (VAI) is an abundant, noncoding viral RNA that functions as a decoy by binding PKR but not inducing activation, thereby inhibiting the antiviral response. In VAI, coaxial stacking produces an extended helix that mediates high-affinity PKR binding but is too short to result in activation. Like adenovirus, Epstein-Barr virus produces high concentrations of a noncoding RNA, EBER1. Here, we compare interactions of PKR with VAI and EBER1 and present a structural model of EBER1. Both RNAs function as inhibitors of dsRNA-mediated PKR activation. However, EBER1 weakly activates PKR whereas VAI does not. PKR binds EBER1 more weakly than VAI. Assays at physiological ion concentrations indicate that both RNAs can accommodate two PKR monomers and induce PKR dimerization. A structural model of EBER1 was obtained using constraints derived from chemical structure probing and small-angle X-ray scattering experiments. The central stem of EBER1 coaxially stacks with stem loop 4 and stem loop 1 to form an extended RNA duplex of ∼32 bp that binds PKR and promotes activation. Our observations that EBER1 binds PKR much more weakly than VAI and exhibits weak PKR activation suggest that EBER1 is less well suited to function as an RNA decoy.
Collapse
|
22
|
Abstract
The innate immune system can distinguish between RNAs of viral and cellular origin, but the basis for this discrimination is not known. A new paper by Calderon and Conn demonstrates that conformational plasticity determines the ability of one RNA sequence to bind to and activate the pattern recognition receptor OAS1/RNase L. In identifying a novel mode through which the immune response is naturally controlled, this finding opens new avenues toward developing approaches for the management of a wide range of viral infections.
Collapse
Affiliation(s)
- Jonathan D Dinman
- From the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
23
|
Fort RS, Garat B, Sotelo-Silveira JR, Duhagon MA. vtRNA2-1/nc886 Produces a Small RNA That Contributes to Its Tumor Suppression Action through the microRNA Pathway in Prostate Cancer. Noncoding RNA 2020; 6:E7. [PMID: 32093270 PMCID: PMC7151618 DOI: 10.3390/ncrna6010007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
vtRNA2-1 is a vault RNA initially classified as microRNA precursor hsa-mir-886 and recently proposed as "nc886", a new type of non-coding RNA involved in cancer progression acting as an oncogene and tumor suppressor gene in different tissues. We have shown that vtRNA2-1/nc886 is epigenetically repressed in neoplastic cells, increasing cell proliferation and invasion in prostate tissue. Here we investigate the ability of vtRNA2-1/nc886 to produce small-RNAs and their biological effect in prostate cells. The interrogation of public small-RNA transcriptomes of prostate and other tissues uncovered two small RNAs, snc886-3p and snc886-5p, derived from vtRNA2-1/nc886 (previously hsa-miR-886-3p and hsa-miR-886-5p). Re-analysis of PAR-CLIP and knockout of microRNA biogenesis enzymes data showed that these small RNAs are products of DICER, independent of DROSHA, and associate with Argonaute proteins, satisfying microRNA attributes. In addition, the overexpression of snc886-3p provokes the downregulation of mRNAs bearing sequences complementary to its "seed" in their 3'-UTRs. Microarray and in vitro functional assays in DU145, LNCaP and PC3 cell lines revealed that snc886-3p reduced cell cycle progression and increases apoptosis, like its precursor vtRNA2-1/nc886. Finally, we found a list of direct candidate targets genes of snc886-3p upregulated and associated with disease condition and progression in PRAD-TCGA data. Overall, our findings suggest that vtRNA2-1/nc886 and its processed product snc886-3p are synthesized in prostate cells, exerting a tumor suppressor action.
Collapse
Affiliation(s)
- Rafael Sebastián Fort
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Beatriz Garat
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - José Roberto Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
- Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - María Ana Duhagon
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
24
|
Ortega-García MB, Mesa A, Moya EL, Rueda B, Lopez-Ordoño G, García JÁ, Conde V, Redondo-Cerezo E, Lopez-Hidalgo JL, Jiménez G, Peran M, Martínez-González LJ, del Val C, Zwir I, Marchal JA, García MÁ. Uncovering Tumour Heterogeneity through PKR and nc886 Analysis in Metastatic Colon Cancer Patients Treated with 5-FU-Based Chemotherapy. Cancers (Basel) 2020; 12:379. [PMID: 32045987 PMCID: PMC7072376 DOI: 10.3390/cancers12020379] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer treatment has advanced over the past decade. The drug 5-fluorouracil is still used with a wide percentage of patients who do not respond. Therefore, a challenge is the identification of predictive biomarkers. The protein kinase R (PKR also called EIF2AK2) and its regulator, the non-coding pre-mir-nc886, have multiple effects on cells in response to numerous types of stress, including chemotherapy. In this work, we performed an ambispective study with 197 metastatic colon cancer patients with unresectable metastases to determine the relative expression levels of both nc886 and PKR by qPCR, as well as the location of PKR by immunohistochemistry in tumour samples and healthy tissues (plasma and colon epithelium). As primary end point, the expression levels were related to the objective response to first-line chemotherapy following the response evaluation criteria in solid tumours (RECIST) and, as the second end point, with survival at 18 and 36 months. Hierarchical agglomerative clustering was performed to accommodate the heterogeneity and complexity of oncological patients' data. High expression levels of nc886 were related to the response to treatment and allowed to identify clusters of patients. Although the PKR mRNA expression was not associated with chemotherapy response, the absence of PKR location in the nucleolus was correlated with first-line chemotherapy response. Moreover, a relationship between survival and the expression of both PKR and nc886 in healthy tissues was found. Therefore, this work evaluated the best way to analyse the potential biomarkers PKR and nc886 in order to establish clusters of patients depending on the cancer outcomes using algorithms for complex and heterogeneous data.
Collapse
Affiliation(s)
- María Belén Ortega-García
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Oncology, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
| | - Alberto Mesa
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), 18014 Granada, Spain
| | - Elisa L.J. Moya
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Beatriz Rueda
- Department of Pathology, San Cecilio University Hospital, 18016 Granada, Spain
| | | | - Javier Ángel García
- Department of Oncology, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| | - Verónica Conde
- Department of Oncology, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| | - Eduardo Redondo-Cerezo
- Department of Gastroenterology, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| | | | - Gema Jiménez
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
| | - Macarena Peran
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Health Sciences, University of Jaén, 23071 Jaen, Spain
| | - Luis J. Martínez-González
- GENYO: Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18007 Granada, Spain
| | - Coral del Val
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), 18014 Granada, Spain
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain
| | - Igor Zwir
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), 18014 Granada, Spain
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Juan Antonio Marchal
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
| | - María Ángel García
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Biochemistry and Molecular Biology III, University of Granada, 18016 Granada, Spain
| |
Collapse
|
25
|
Hood IV, Gordon JM, Bou-Nader C, Henderson FE, Bahmanjah S, Zhang J. Crystal structure of an adenovirus virus-associated RNA. Nat Commun 2019; 10:2871. [PMID: 31253805 PMCID: PMC6599070 DOI: 10.1038/s41467-019-10752-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022] Open
Abstract
Adenovirus Virus-Associated (VA) RNAs are the first discovered viral noncoding RNAs. By mimicking double-stranded RNAs (dsRNAs), the exceptionally abundant, multifunctional VA RNAs sabotage host machineries that sense, transport, process, or edit dsRNAs. How VA-I suppresses PKR activation despite its strong dsRNA character, and inhibits the crucial antiviral kinase to promote viral translation, remains largely unknown. Here, we report a 2.7 Å crystal structure of VA-I RNA. The acutely bent VA-I features an unusually structured apical loop, a wobble-enriched, coaxially stacked apical and tetra-stems necessary and sufficient for PKR inhibition, and a central domain pseudoknot that resembles codon-anticodon interactions and prevents PKR activation by VA-I. These global and local structural features collectively define VA-I as an archetypal PKR inhibitor made of RNA. The study provides molecular insights into how viruses circumnavigate cellular rules of self vs non-self RNAs to not only escape, but further compromise host innate immunity.
Collapse
Affiliation(s)
- Iris V Hood
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Room 4503, Bethesda, MD, 20892, USA
| | - Jackson M Gordon
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Room 4503, Bethesda, MD, 20892, USA
| | - Charles Bou-Nader
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Room 4503, Bethesda, MD, 20892, USA
| | - Frances E Henderson
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Room 4503, Bethesda, MD, 20892, USA
| | - Soheila Bahmanjah
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Room 4503, Bethesda, MD, 20892, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Room 4503, Bethesda, MD, 20892, USA.
| |
Collapse
|
26
|
Lee YS, Kunkeaw N, Lee YS. Protein kinase R and its cellular regulators in cancer: An active player or a surveillant? WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1558. [PMID: 31231984 DOI: 10.1002/wrna.1558] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
Protein kinase R (PKR), originally known as an antiviral protein, senses various stresses as well as pathogen-driven double-stranded RNAs. Thereby activated PKR provokes diverse downstream events, including eIF2α phosphorylation and nuclear factor kappa-light-chain-enhancer of activated B cells activation. Consequently, PKR induces apoptosis and inflammation, both of which are highly important in cancer as much as its original antiviral role. Therefore, cellular proteins and RNAs should tightly control PKR activity. PKR and its regulators are often dysregulated in cancer and it is undoubted that such dysregulation contributes to tumorigenesis. However, PKR's precise role in cancer is still in debate, due to incomprehensible and even contradictory data. In this review, we introduce important cellular PKR regulators and discuss about their roles in cancer. Among them, we pay particular attention to nc886, a PKR repressor noncoding RNA that has been identified relatively recently, because its expression pattern in cancer can explain interesting yet obscure oncologic aspects of PKR. Based on nc886 and its regulation of PKR, we have proposed a tumor surveillance model, which reconciles contradictory data about PKR in cancer. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Nawapol Kunkeaw
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Yeon-Su Lee
- Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea
| |
Collapse
|
27
|
Bou-Nader C, Gordon JM, Henderson FE, Zhang J. The search for a PKR code-differential regulation of protein kinase R activity by diverse RNA and protein regulators. RNA (NEW YORK, N.Y.) 2019; 25:539-556. [PMID: 30770398 PMCID: PMC6467004 DOI: 10.1261/rna.070169.118] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The interferon-inducible protein kinase R (PKR) is a key component of host innate immunity that restricts viral replication and propagation. As one of the four eIF2α kinases that sense diverse stresses and direct the integrated stress response (ISR) crucial for cell survival and proliferation, PKR's versatile roles extend well beyond antiviral defense. Targeted by numerous host and viral regulators made of RNA and proteins, PKR is subject to multiple layers of endogenous control and external manipulation, driving its rapid evolution. These versatile regulators include not only the canonical double-stranded RNA (dsRNA) that activates the kinase activity of PKR, but also highly structured viral, host, and artificial RNAs that exert a full spectrum of effects. In this review, we discuss our deepening understanding of the allosteric mechanism that connects the regulatory and effector domains of PKR, with an emphasis on diverse structured RNA regulators in comparison to their protein counterparts. Through this analysis, we conclude that much of the mechanistic details that underlie this RNA-regulated kinase await structural and functional elucidation, upon which we can then describe a "PKR code," a set of structural and chemical features of RNA that are both descriptive and predictive for their effects on PKR.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Jackson M Gordon
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Frances E Henderson
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| |
Collapse
|
28
|
Schwartz SL, Conn GL. RNA regulation of the antiviral protein 2'-5'-oligoadenylate synthetase. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1534. [PMID: 30989826 DOI: 10.1002/wrna.1534] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/25/2022]
Abstract
The innate immune system is a broad collection of critical intra- and extra-cellular processes that limit the infectivity of diverse pathogens. The 2'-5'-oligoadenylate synthetase (OAS) family of enzymes are important sensors of cytosolic double-stranded RNA (dsRNA) that play a critical role in limiting viral infection by activating the latent ribonuclease (RNase L) to halt viral replication and establish an antiviral state. Attesting to the importance of the OAS/RNase L pathway, diverse viruses have developed numerous distinct strategies to evade the effects of OAS activation. How OAS proteins are regulated by viral or cellular RNAs is not fully understood but several recent studies have provided important new insights into the molecular mechanisms of OAS activation by dsRNA. Other studies have revealed unanticipated features of RNA sequence and structure that strongly enhance activation of at least one OAS family member. While these discoveries represent important advances, they also underscore the fact that much remains to be learned about RNA-mediated regulation of the OAS/RNase L pathway. In particular, defining the full complement of RNA molecular signatures that activate OAS is essential to our understanding of how these proteins maximize their protective role against pathogens while still accurately discriminating host molecules to avoid inadvertent activation by cellular RNAs. A more complete knowledge of OAS regulation may also serve as a foundation for the development of novel antiviral therapeutic strategies and lead the way to a deeper understanding of currently unappreciated cellular functions of the OAS/RNase L pathway in the absence of infection. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation.
Collapse
Affiliation(s)
- Samantha L Schwartz
- Department of Biochemistry, Emory University School of Medicine and Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Atlanta, Georgia
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine and Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Atlanta, Georgia
| |
Collapse
|
29
|
Mother-child transmission of epigenetic information by tunable polymorphic imprinting. Proc Natl Acad Sci U S A 2018; 115:E11970-E11977. [PMID: 30509985 PMCID: PMC6304996 DOI: 10.1073/pnas.1815005115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
First, our work provides critical biological interpretation of intermediate DNA methylation readouts at the nc886 differentially methylated region (DMR). nc886 was identified in multiple large-scale epigenome-wide association studies (EWAS) that did not recognize that this region acts as a contiguous DMR imposed by genomic imprinting, highlighting the need to reexamine several 450k data sets. Second, strict control of genomic imprinting was thought to be required for organismal viability. Reports of polymorphic imprinting are limited to specific tissue types such as placenta and brain. In blood and somatic tissues, we show nc886 imprinting is mosaic in the population and influenced by maternal environment. Genomic imprinting mediated by DNA methylation restricts gene expression to a single allele determined by parental origin and is not generally considered to be under genetic or environmental influence. Here, we focused on a differentially methylated region (DMR) of approximately 1.9 kb that includes a 101-bp noncoding RNA gene (nc886/VTRNA2-1), which is maternally imprinted in ∼75% of humans. This is unlike other imprinted genes, which demonstrate monoallelic methylation in 100% of individuals. The DMR includes a CTCF binding site on the centromeric side defining the DMR boundary and is flanked by a CTCF binding site on the telomeric side. The centromeric CTCF binding site contains an A/C polymorphism (rs2346018); the C allele is associated with less imprinting. The frequency of imprinting of the nc886 DMR in infants was linked to at least two nongenetic factors, maternal age at delivery and season of conception. In a separate cohort, nc886 imprinting was associated with lower body mass index in children at 5 y of age. Thus, we propose that the imprinting status of the nc886 DMR is “tunable” in that it is associated with maternal haplotype and prenatal environment. This provides a potential mechanism for transmitting information, with phenotypic consequences, from mother to child.
Collapse
|
30
|
Calderon BM, Conn GL. A human cellular noncoding RNA activates the antiviral protein 2'-5'-oligoadenylate synthetase 1. J Biol Chem 2018; 293:16115-16124. [PMID: 30126839 DOI: 10.1074/jbc.ra118.004747] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/10/2018] [Indexed: 12/16/2022] Open
Abstract
The 2'-5'-oligoadenylate synthetase (OAS) family of enzymes sense cytosolic dsRNA, a potent signal of viral infection. In response to dsRNA binding, OAS proteins synthesize the second messenger 2'-5'-linked oligoadenylate that activates the latent ribonuclease L (RNase L). RNase L-mediated degradation of viral and cellular RNAs effectively halts viral replication and further stimulates innate immune responses by inducing type I interferon. The OAS/RNase L pathway is therefore central in innate immune recognition and promotion of antiviral host responses. However, the potential for specific RNA sequences or structures to drive OAS1 activation and the molecular mechanisms by which they act are not currently fully understood. Moreover, the cellular regulators of OAS activity are not well defined. Here, we demonstrate that the human cellular noncoding RNA 886 (nc886) activates OAS1 both in vitro and in human A549 cells. We show that a unique structure present only in one of the two structural conformers adopted by nc886 drives potent OAS1 activation. In contrast, the conformer lacking this unique structure activated OAS1 only very weakly. We also found that formation of this OAS1-activating structural motif depends on the nucleotides in the apical-most loop of nc886 and the adjacent helix. These findings identify a cellular RNA capable of activating the OAS/RNase L pathway in human cells and illustrate the importance of structural elements, and their context, in potentiating OAS1 activity.
Collapse
Affiliation(s)
- Brenda M Calderon
- From the Department of Biochemistry and.,Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Emory University School of Medicine, Atlanta, Georgia 30322
| | | |
Collapse
|