1
|
Smith A, Zhang I, Trang P, Liu F. Engineering of RNase P Ribozymes for Therapy against Human Cytomegalovirus Infection. Viruses 2024; 16:1196. [PMID: 39205170 PMCID: PMC11360822 DOI: 10.3390/v16081196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Nucleic acid-based gene interference and editing strategies, such as antisense oligonucleotides, ribozymes, RNA interference (RNAi), and CRISPR/Cas9 coupled with guide RNAs, are exciting research tools and show great promise for clinical applications in treating various illnesses. RNase P ribozymes have been engineered for therapeutic applications against human viruses such as human cytomegalovirus (HCMV). M1 ribozyme, the catalytic RNA subunit of RNase P from Escherichia coli, can be converted into a sequence-specific endonuclease, M1GS ribozyme, which is capable of hydrolyzing an mRNA target base-pairing with the guide sequence. M1GS RNAs have been shown to hydrolyze essential HCMV mRNAs and block viral progeny production in virus-infected cell cultures. Furthermore, RNase P ribozyme variants with enhanced hydrolyzing activity can be generated by employing in vitro selection procedures and exhibit better ability in suppressing HCMV gene expression and replication in cultured cells. Additional studies have also examined the antiviral activity of RNase P ribozymes in mice in vivo. Using cytomegalovirus infection as an example, this review summarizes the principles underlying RNase P ribozyme-mediated gene inactivation, presents recent progress in engineering RNase P ribozymes for applications in vitro and in mice, and discusses the prospects of using M1GS technology for therapeutic applications against HCMV as well as other pathogenic viruses.
Collapse
Affiliation(s)
- Adam Smith
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Isadora Zhang
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Phong Trang
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Kirsebom LA, Liu F, McClain WH. The discovery of a catalytic RNA within RNase P and its legacy. J Biol Chem 2024; 300:107318. [PMID: 38677513 PMCID: PMC11143913 DOI: 10.1016/j.jbc.2024.107318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
Sidney Altman's discovery of the processing of one RNA by another RNA that acts like an enzyme was revolutionary in biology and the basis for his sharing the 1989 Nobel Prize in Chemistry with Thomas Cech. These breakthrough findings support the key role of RNA in molecular evolution, where replicating RNAs (and similar chemical derivatives) either with or without peptides functioned in protocells during the early stages of life on Earth, an era referred to as the RNA world. Here, we cover the historical background highlighting the work of Altman and his colleagues and the subsequent efforts of other researchers to understand the biological function of RNase P and its catalytic RNA subunit and to employ it as a tool to downregulate gene expression. We primarily discuss bacterial RNase P-related studies but acknowledge that many groups have significantly contributed to our understanding of archaeal and eukaryotic RNase P, as reviewed in this special issue and elsewhere.
Collapse
Affiliation(s)
- Leif A Kirsebom
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, California, USA.
| | - William H McClain
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
3
|
Panda K, Parashar D, Viswanathan R. An Update on Current Antiviral Strategies to Combat Human Cytomegalovirus Infection. Viruses 2023; 15:1358. [PMID: 37376657 PMCID: PMC10303229 DOI: 10.3390/v15061358] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Human cytomegalovirus (HCMV) remains an essential global concern due to its distinct life cycle, mutations and latency. As HCMV is a herpesvirus, it establishes a lifelong persistence in the host through a chronic state of infection. Immunocompromised individuals are at risk of significant morbidity and mortality from the virus. Until now, no effective vaccine has been developed to combat HCMV infection. Only a few antivirals targeting the different stages of the virus lifecycle and viral enzymes are licensed to manage the infection. Therefore, there is an urgent need to find alternate strategies to combat the infection and manage drug resistance. This review will provide an insight into the clinical and preclinical antiviral approaches, including HCMV antiviral drugs and nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Kingshuk Panda
- Dengue-Chikungunya Group, Indian Council of Medical Research-National Institute of Virology, Pune 411001, India
| | - Deepti Parashar
- Dengue-Chikungunya Group, Indian Council of Medical Research-National Institute of Virology, Pune 411001, India
| | - Rajlakshmi Viswanathan
- Bacteriology Group, Indian Council of Medical Research-National Institute of Virology, Pune 411001, India
| |
Collapse
|
4
|
Yan B, Liu Y, Chen YC, Liu F. A RNase P Ribozyme Inhibits Gene Expression and Replication of Hepatitis B Virus in Cultured Cells. Microorganisms 2023; 11:microorganisms11030654. [PMID: 36985227 PMCID: PMC10058342 DOI: 10.3390/microorganisms11030654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Hepatitis B virus (HBV), an international public health concern, is a leading viral cause of liver disease, such as hepatocellular carcinoma. Sequence-specific ribozymes derived from ribonuclease P (RNase P) catalytic RNA are being explored for gene targeting applications. In this study, we engineered an active RNase P ribozyme, M1-S-A, targeting the overlapping region of HBV S mRNA, pre-S/L mRNA, and pregenomic RNA (pgRNA), all deemed essential for viral infection. Ribozyme M1-S-A cleaved the S mRNA sequence efficiently in vitro. We studied the effect of RNase P ribozyme on HBV gene expression and replication using the human hepatocyte HepG2.2.15 culture model that harbors an HBV genome and supports HBV replication. In these cultured cells, the expression of M1-S-A resulted in a reduction of more than 80% in both HBV RNA and protein levels and an inhibition of about 300-fold in the capsid-associated HBV DNA levels when compared to the cells that did not express any ribozymes. In control experiments, cells expressing an inactive control ribozyme displayed little impact on HBV RNA and protein levels, and on capsid-associated viral DNA levels. Our study signifies that RNase P ribozyme can suppress HBV gene expression and replication, implying the promise of RNase P ribozymes for anti-HBV therapy.
Collapse
Affiliation(s)
- Bin Yan
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Yujun Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
- Correspondence: ; Tel.: +1-(510)-643-2436; Fax: +1-(510)-643-9955
| |
Collapse
|
5
|
Jarrous N, Liu F. Human RNase P: overview of a ribonuclease of interrelated molecular networks and gene-targeting systems. RNA (NEW YORK, N.Y.) 2023; 29:300-307. [PMID: 36549864 PMCID: PMC9945436 DOI: 10.1261/rna.079475.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/09/2022] [Indexed: 05/14/2023]
Abstract
The seminal discovery of ribonuclease P (RNase P) and its catalytic RNA by Sidney Altman has not only revolutionized our understanding of life, but also opened new fields for scientific exploration and investigation. This review focuses on human RNase P and its use as a gene-targeting tool, two topics initiated in Altman's laboratory. We outline early works on human RNase P as a tRNA processing enzyme and comment on its expanding nonconventional functions in molecular networks of transcription, chromatin remodeling, homology-directed repair, and innate immunity. The important implications and insights from these discoveries on the potential use of RNase P as a gene-targeting tool are presented. This multifunctionality calls to a modified structure-function partitioning of domains in human RNase P, as well as its relative ribonucleoprotein, RNase MRP. The role of these two catalysts in innate immunity is of particular interest in molecular evolution, as this dynamic molecular network could have originated and evolved from primordial enzymes and sensors of RNA, including predecessors of these two ribonucleoproteins.
Collapse
Affiliation(s)
- Nayef Jarrous
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem 9112010, Israel
| | - Fenyong Liu
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, California 94720, USA
| |
Collapse
|
6
|
Challenges, Recent Advances and Perspectives in the Treatment of Human Cytomegalovirus Infections. Trop Med Infect Dis 2022; 7:tropicalmed7120439. [PMID: 36548694 PMCID: PMC9784992 DOI: 10.3390/tropicalmed7120439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Human cytomegalovirus (HCMV) is ubiquitous worldwide and elicits global health problems. The diseases associated with HCMV are a serious threat to humans, especially for the sick, infant, elderly and immunocompromised/immunodeficient individuals. Although traditional antiviral drugs (e.g., ganciclovir, valganciclovir, cidofovir, foscarnet) can be used to treat or prevent acute HCMV infections, their efficacy is limited because of toxicity, resistance issues, side effects and other problems. Fortunately, novel drugs (e.g., letermovir and maribavir) with less toxicity and drug/cross-resistance have been approved and put on the market in recent years. The nucleic acid-based gene-targeting approaches including the external guide sequences (EGSs)-RNase, the clustered regularly interspaced short palindromic repeats (CRISPRs)/CRISPRs-associated protein 9 (Cas9) system and transcription activator-like effector nucleases (TALENs) have been investigated to remove both lytic and latent CMV in vitro and/or in vivo. Cell therapy including the adoptive T cell therapy (ACT) and immunotherapy have been tried against drug-resistant and recurrent HCMV in patients receiving hematopoietic stem cell transplantation (HSCT) or solid organ transplant (SOT), and they have also been used to treat glioblastoma (GBM) associated with HCMV infections. These newly developed antiviral strategies are expected to yield fruitful results and make a significant contribution to the treatment of HCMV infections. Despite this progress, the nucleic acid-based gene-targeting approaches are still under study for basic research, and cell therapy is adopted in a small study population size or only successful in case reports. Additionally, no current drugs have been approved to be indicated for latent infections. Therefore, the next strategy is to develop antiviral strategies to elevate efficacy against acute and/or latent infections and overcome challenges such as toxicity, resistance issues, and side effects. In this review, we would explore the challenges, recent advances and perspectives in the treatment of HCMV infections. Furthermore, the suitable therapeutic strategies as well as the possibility for compassionate use would be evaluated.
Collapse
|
7
|
Potential Therapeutic Approaches Against Brain Diseases Associated with Cytomegalovirus Infections. Int J Mol Sci 2020; 21:ijms21041376. [PMID: 32085671 PMCID: PMC7073089 DOI: 10.3390/ijms21041376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/29/2020] [Accepted: 02/15/2020] [Indexed: 11/28/2022] Open
Abstract
Cytomegalovirus (CMV) is one of the major human health threats worldwide, especially for immunologically comprised patients. CMV may cause opportunistic infections, congenital infections, and brain diseases (e.g., mental retardation and glioblastoma). The etiology of brain diseases associated with human CMV (HCMV) infections is usually complex and it is particularly difficult to treat because HCMV has a life-long infection in its hosts, high mutation rate, and latent infections. Moreover, it is almost impossible to eradicate latent viruses in humans. Although there has been progress in drug discovery recently, current drugs used for treating active CMV infections are still limited in efficacy due to side effects, toxicity, and viral resistance. Fortunately, letermovir which targets the HCMV terminase complex rather than DNA polymerase with fewer adverse reactions has been approved to treat CMV infections in humans. The researchers are focusing on developing approaches against both productive and latent infections of CMV. The gene or RNA targeting approaches including the external guide sequences (EGSs)-RNase, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system and transcription activator-like effector nucleases (TALENs) are being investigated to remove acute and/or latent CMV infections. For the treatment of glioblastoma, vaccine therapy through targeting specific CMV antigens has improved patients’ survival outcomes significantly and immunotherapy has also emerged as an alternative modality. The advanced research for developing anti-CMV agents and approaches is promising to obtain significant outcomes and expecting to have a great impact on the therapy of brain diseases associated with CMV infections.
Collapse
|
8
|
Chen SJ, Wang SC, Chen YC. Antiviral Agents as Therapeutic Strategies Against Cytomegalovirus Infections. Viruses 2019; 12:v12010021. [PMID: 31878068 PMCID: PMC7019738 DOI: 10.3390/v12010021] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022] Open
Abstract
Cytomegalovirus (CMV) is a threat to human health in the world, particularly for immunologically weak patients. CMV may cause opportunistic infections, congenital infections and central nervous system infections. CMV infections are difficult to treat due to their specific life cycles, mutation, and latency characteristic. Despite recent advances, current drugs used for treating active CMV infections are limited in their efficacy, and the eradication of latent infections is impossible. Current antiviral agents which target the UL54 DNA polymerase are restricted because of nephrotoxicity and viral resistance. CMV also cannot be prevented or eliminated with a vaccine. Fortunately, letermovir which targets the human CMV (HCMV) terminase complex has been recently approved to treat CMV infections in humans. The growing point is developing antiviral agents against both lytically and latently infected cells. The nucleic acid-based therapeutic approaches including the external guide sequences (EGSs)-RNase, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system and transcription activator-like effector nucleases (TALENs) are being explored to remove acute and/or latent CMV infections. HCMV vaccine is being developed for prophylaxis. Additionally, adoptive T cell therapy (ACT) has been experimentally used to combate drug-resistant and recurrent CMV in patients after cell and/or organ transplantation. Developing antiviral agents is promising in this area to obtain fruitful outcomes and to have a great impact on humans for the therapy of CMV infections.
Collapse
Affiliation(s)
- Shiu-Jau Chen
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei 10491, Taiwan;
- Department of Medicine, Mackay Medicine College, Taipei 25245, Taiwan
| | - Shao-Cheng Wang
- Jianan Psychiatric Center, Ministry of Health and Welfare, Tainan 71742, Taiwan;
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
- Correspondence:
| |
Collapse
|