1
|
Hiers NM, Li L, Li T, Sheng P, Wang Y, Traugot CM, Yao M, Xie M. An endogenous cluster of target-directed microRNA degradation sites induces decay of distinct microRNA families. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627053. [PMID: 39713366 PMCID: PMC11661237 DOI: 10.1101/2024.12.11.627053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
While much is known about miRNA biogenesis and canonical miRNA targeting, relatively less is understood about miRNA decay. The major miRNA decay pathway in metazoans is mediated through target-directed miRNA degradation (TDMD), in which certain RNAs can "trigger" miRNA decay. All known triggers for TDMD base pair with the miRNA seed, and extensively base pair on the miRNA 3' end, a pattern that supposedly induces a TDMD-competent conformational change of Argonaute (Ago), allowing for miRNA turnover. Here, we utilized Ago1-CLASH to find that the Drosophila transcript Kah contains at least two triggers, a "trigger cluster", against miR-9b and the miR-279 family. One of these triggers contains minimal/non-canonical 3' end base pairing but is still sufficient to induce TDMD of the entire miR-279 family. We found that these clustered triggers likely lack cooperativity, the minimal 3' pairing is required for miR-279 family turnover, and probed the in-cell RNA structure of the Kah trigger cluster. Overall, this study expands the list of endogenous triggers and the unexpectedly complex regulatory network governing miRNA degradation.
Collapse
Affiliation(s)
- Nicholas M. Hiers
- Department of Biochemistry and Molecular Biology, University of
Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL,
32610, USA
| | - Lu Li
- Department of Biochemistry and Molecular Biology, University of
Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL,
32610, USA
| | - Tianqi Li
- Department of Biochemistry and Molecular Biology, University of
Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL,
32610, USA
| | - Peike Sheng
- Department of Biochemistry and Molecular Biology, University of
Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL,
32610, USA
| | - Yuzhi Wang
- Department of Biochemistry and Molecular Biology, University of
Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL,
32610, USA
| | - Conner M. Traugot
- Department of Biochemistry and Molecular Biology, University of
Florida, Gainesville, FL, 32610, USA
- UF Genetics Institute, University of Florida, Gainesville, FL,
32610, USA
| | - Michael Yao
- Department of Biochemistry and Molecular Biology, University of
Florida, Gainesville, FL, 32610, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, University of
Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL,
32610, USA
- UF Genetics Institute, University of Florida, Gainesville, FL,
32610, USA
| |
Collapse
|
2
|
Eich T, O’Leary C, Moss W. Intronic RNA secondary structural information captured for the human MYC pre-mRNA. NAR Genom Bioinform 2024; 6:lqae143. [PMID: 39450312 PMCID: PMC11500451 DOI: 10.1093/nargab/lqae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
To address the lack of intronic reads in secondary structure probing data for the human MYC pre-mRNA, we developed a method that combines spliceosomal inhibition with RNA probing and sequencing. Here, the SIRP-seq method was applied to study the secondary structure of human MYC RNAs by chemically probing HeLa cells with dimethyl sulfate in the presence of the small molecule spliceosome inhibitor pladienolide B. Pladienolide B binds to the SF3B complex of the spliceosome to inhibit intron removal during splicing, resulting in retained intronic sequences. This method was used to increase the read coverage over intronic regions of MYC. The purpose for increasing coverage across introns was to generate complete reactivity profiles for intronic sequences via the DMS-MaPseq approach. Notably, depth was sufficient for analysis by the program DRACO, which was able to deduce distinct reactivity profiles and predict multiple secondary structural conformations as well as their suggested stoichiometric abundances. The results presented here provide a new method for intronic RNA secondary structural analyses, as well as specific structural insights relevant to MYC RNA splicing regulation and therapeutic targeting.
Collapse
Affiliation(s)
- Taylor O Eich
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Collin A O’Leary
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Current Address: Department of Biology and Chemistry, Cornell College, Mount Vernon, IA 52314, USA
| | - Walter N Moss
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Niu X, Zhang J, Hu S, Dang W, Wang K, Bai M. lncRNA Oip5-as1 inhibits excessive mitochondrial fission in myocardial ischemia/reperfusion injury by modulating DRP1 phosphorylation. Cell Mol Biol Lett 2024; 29:72. [PMID: 38745296 PMCID: PMC11092055 DOI: 10.1186/s11658-024-00588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Aberrant mitochondrial fission, a critical pathological event underlying myocardial ischemia/reperfusion (MI/R) injury, has emerged as a potential therapeutic target. The long non-coding RNA (lncRNA) Oip5-as1 is increasingly recognized for its regulatory roles, particularly in MI/R injury. However, its precise mechanistic role in modulating mitochondrial dynamics remains elusive. This study aims to elucidate the mechanistic role of Oip5-as1 in regulating mitochondrial fission and evaluate its therapeutic potential against MI/R injury. METHODS To simulate in vitro MI/R injury, HL-1 cardiomyocytes were subjected to hypoxia/reoxygenation (H/R). Lentiviral vectors were employed to achieve overexpression or knockdown of Oip5-as1 in HL-1 cells by expressing Oip5-as1 or shRNA targeting Oip5-as1, respectively. The impact of Oip5-as1 on mitochondrial dynamics in HL-1 cells was assessed using CCK-8 assay, flow cytometry, immunofluorescence staining, and biochemical assays. MI/R injury was induced in mice by ligating the left anterior descending coronary artery. Conditional knockout mice for Oip5-as1 were generated using the CRISPR/Cas9 genome editing technology, while overexpression of Oip5-as1 in mice was achieved via intramyocardial administration of AAV9 vectors. In mice, the role of Oip5-as1 was evaluated through echocardiographic assessment, histopathological staining, and transmission electron microscopy. Furthermore, Western blotting, RNA pull-down, RNA immunoprecipitation, and co-immunoprecipitation assays were conducted to investigate Oip5-as1's underlying mechanisms. RESULTS The expression levels of Oip5-as1 are significantly decreased in MI/R-injured HL-1 cells and myocardium. In HL-1 cells undergoing H/R injury, overexpression of Oip5-as1 attenuated excessive mitochondrial fission, preserved mitochondrial functionality, and reduced cellular apoptosis, while knockdown of Oip5-as1 exhibited the opposite effects. Furthermore, in a mouse model of MI/R injury, overexpression of Oip5-as1 diminished mitochondrial fission, myocardial infarct size and improved cardiac function. However, knockout of Oip5-as1 exacerbated myocardial injury and cardiac dysfunction, which were significantly reversed by treatment with a mitochondrial division inhibitor-1 (Mdivi-1). Mechanistically, Oip5-as1 selectively interacts with AKAP1 and CaN proteins, inhibiting CaN activation and subsequent DRP1 dephosphorylation at Ser637, thereby constraining DRP1's translocation to the mitochondria and its involvement in mitochondrial fission. CONCLUSIONS Our study underscores the pivotal role of Oip5-as1 in mitigating excessive mitochondrial fission during MI/R injury. The findings not only enhance our comprehension of the molecular mechanisms underlying MI/R injury but also identify Oip5-as1 as a potential therapeutic target for ameliorating MI/R injury.
Collapse
Affiliation(s)
- Xiaowei Niu
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jingjing Zhang
- Medical Genetics Center, Gansu Provincial Central Hospital/Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu, 730000, China
- Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Lanzhou, Gansu, 730000, China
| | - Shuwen Hu
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wenhui Dang
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Kaiwen Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ming Bai
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China.
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China.
- Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China.
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
4
|
Tian R, Ghosh S. Mechanisms and functions of lncRNAs linked to autoimmune disease risk alleles. Adv Immunol 2024; 161:1-15. [PMID: 38763698 DOI: 10.1016/bs.ai.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Recent advances in human genomics technologies have helped uncover genetic risk alleles for many complex autoimmune diseases. Intriguingly, over 90% of genome-wide association study (GWAS) risk alleles reside within the non-coding regions of the genome. An emerging new frontier of functional and mechanistic studies have shed light on the functional relevance of risk alleles that lie within long noncoding RNAs (lncRNAs). Here, we review the mechanisms and functional implications of five evolutionarily conserved lncRNAs that display risk allele association with highly prevalent autoimmune diseases.
Collapse
Affiliation(s)
- Ruxiao Tian
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Sankar Ghosh
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, United States.
| |
Collapse
|
5
|
Zhuang A, Tan Y, Liu Y, Yang C, Kiriazis H, Grigolon K, Walker S, Bond ST, McMullen JR, Calkin AC, Drew BG. Deletion of the muscle enriched lncRNA Oip5os1 induces atrial dysfunction in male mice with diabetes. Physiol Rep 2023; 11:e15869. [PMID: 38054572 PMCID: PMC10698826 DOI: 10.14814/phy2.15869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
Long ncRNAs (lncRNAs) have been shown to play a biological and physiological role in various tissues including the heart. We and others have previously established that the lncRNA Oip5os1 (1700020I14Rik, OIP5-AS1, Cyrano) is enriched in striated muscles, and its deletion in mice leads to defects in both skeletal and cardiac muscle function. In the present study, we investigated the impact of global Oip5os1 deletion on cardiac function in the setting of streptozotocin (STZ)-induced diabetes. Specifically, we studied male WT and KO mice with or without diabetes for 24 weeks, and phenotyped animals for metabolic and cardiac endpoints. Independent of genotype, diabetes was associated with left ventricular diastolic dysfunction based on a fall in E'/A' ratio. Deletion of Oip5os1 in a setting of diabetes had no significant impact on ventricular function or ventricular weight, but was associated with left atrial dysfunction (reduced fractional shortening) and myopathy which was associated with anesthesia intolerance and premature death in the majority of KO mice tested during cardiac functional assessment. This atrial phenotype was not observed in WT diabetic mice. The most striking molecular difference was a reduction in the metabolic regulator ERRalpha in the atria of KO mice compared with WT mice. There was also a trend for a reduction in Serca2a. These findings highlight Oip5os1 as a gene of interest in aspects of atrial function in the setting of diabetes, highlighting an additional functional role for this lncRNA in cardiac pathological settings.
Collapse
Affiliation(s)
- Aowen Zhuang
- Baker Heart & Diabetes InstituteMelbourneVictoriaAustralia
| | - Yanie Tan
- Baker Heart & Diabetes InstituteMelbourneVictoriaAustralia
- Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Yingying Liu
- Baker Heart & Diabetes InstituteMelbourneVictoriaAustralia
| | - Christine Yang
- Baker Heart & Diabetes InstituteMelbourneVictoriaAustralia
| | - Helen Kiriazis
- Baker Heart & Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Kyah Grigolon
- Baker Heart & Diabetes InstituteMelbourneVictoriaAustralia
| | - Shannen Walker
- Baker Heart & Diabetes InstituteMelbourneVictoriaAustralia
- Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Simon T. Bond
- Baker Heart & Diabetes InstituteMelbourneVictoriaAustralia
- Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Julie R. McMullen
- Baker Heart & Diabetes InstituteMelbourneVictoriaAustralia
- Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Anna C. Calkin
- Baker Heart & Diabetes InstituteMelbourneVictoriaAustralia
- Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Brian G. Drew
- Baker Heart & Diabetes InstituteMelbourneVictoriaAustralia
- Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
6
|
Singh M, Kumar S. Effect of single nucleotide polymorphisms on the structure of long noncoding RNAs and their interaction with RNA binding proteins. Biosystems 2023; 233:105021. [PMID: 37703988 DOI: 10.1016/j.biosystems.2023.105021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Long non-coding RNAs (lncRNA) are emerging as a new class of regulatory RNAs with remarkable potential to be utilized as therapeutic targets against many human diseases. Several genome-wide association studies (GWAS) have catalogued Single Nucleotide Polymorphisms (SNPs) present in the noncoding regions of the genome from where lncRNAs originate. In this study, we have selected 67 lncRNAs with GWAS-tagged SNPs and have also investigated their role in affecting the local secondary structures. Majority of the SNPs lead to changes in the secondary structure of lncRNAs to a different extent by altering the base pairing patterns. These structural changes in lncRNA are also manifested in form of alteration in the binding site for RNA binding proteins (RBPs) along with affecting their binding efficacies. Ultimately, these structural modifications may influence the transcriptional and post-transcriptional pathways of these RNAs, leading to the causation of diseases. Hence, it is important to understand the possible underlying mechanism of RBPs in association with GWAS-tagged SNPs in human diseases.
Collapse
Affiliation(s)
- Mandakini Singh
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Santosh Kumar
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
7
|
Gao W, Yang A, Rivas E. Thirteen dubious ways to detect conserved structural RNAs. IUBMB Life 2023; 75:471-492. [PMID: 36495545 PMCID: PMC11234323 DOI: 10.1002/iub.2694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 12/14/2022]
Abstract
Covariation induced by compensatory base substitutions in RNA alignments is a great way to deduce conserved RNA structure, in principle. In practice, success depends on many factors, importantly the quality and depth of the alignment and the choice of covariation statistic. Measuring covariation between pairs of aligned positions is easy. However, using covariation to infer evolutionarily conserved RNA structure is complicated by other extraneous sources of covariation such as that resulting from homologous sequences having evolved from a common ancestor. In order to provide evidence of evolutionarily conserved RNA structure, a method to distinguish covariation due to sources other than RNA structure is necessary. Moreover, there are several sorts of artifactually generated covariation signals that can further confound the analysis. Additionally, some covariation signal is difficult to detect due to incomplete comparative data. Here, we investigate and critically discuss the practice of inferring conserved RNA structure by comparative sequence analysis. We provide new methods on how to approach and decide which of the numerous long non-coding RNAs (lncRNAs) have biologically relevant structures.
Collapse
Affiliation(s)
- William Gao
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ann Yang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Elena Rivas
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
8
|
Ross CJ, Ulitsky I. Discovering functional motifs in long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1708. [PMID: 34981665 DOI: 10.1002/wrna.1708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 12/27/2022]
Abstract
Long noncoding RNAs (lncRNAs) are products of pervasive transcription that closely resemble messenger RNAs on the molecular level, yet function through largely unknown modes of action. The current model is that the function of lncRNAs often relies on specific, typically short, conserved elements, connected by linkers in which specific sequences and/or structures are less important. This notion has fueled the development of both computational and experimental methods focused on the discovery of functional elements within lncRNA genes, based on diverse signals such as evolutionary conservation, predicted structural elements, or the ability to rescue loss-of-function phenotypes. In this review, we outline the main challenges that the different methods need to overcome, describe the recently developed approaches, and discuss their respective limitations. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Caroline Jane Ross
- Biological Regulation and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Ulitsky
- Biological Regulation and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
9
|
Bugnon LA, Edera AA, Prochetto S, Gerard M, Raad J, Fenoy E, Rubiolo M, Chorostecki U, Gabaldón T, Ariel F, Di Persia LE, Milone DH, Stegmayer G. Secondary structure prediction of long noncoding RNA: review and experimental comparison of existing approaches. Brief Bioinform 2022; 23:6606044. [PMID: 35692094 DOI: 10.1093/bib/bbac205] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION In contrast to messenger RNAs, the function of the wide range of existing long noncoding RNAs (lncRNAs) largely depends on their structure, which determines interactions with partner molecules. Thus, the determination or prediction of the secondary structure of lncRNAs is critical to uncover their function. Classical approaches for predicting RNA secondary structure have been based on dynamic programming and thermodynamic calculations. In the last 4 years, a growing number of machine learning (ML)-based models, including deep learning (DL), have achieved breakthrough performance in structure prediction of biomolecules such as proteins and have outperformed classical methods in short transcripts folding. Nevertheless, the accurate prediction for lncRNA still remains far from being effectively solved. Notably, the myriad of new proposals has not been systematically and experimentally evaluated. RESULTS In this work, we compare the performance of the classical methods as well as the most recently proposed approaches for secondary structure prediction of RNA sequences using a unified and consistent experimental setup. We use the publicly available structural profiles for 3023 yeast RNA sequences, and a novel benchmark of well-characterized lncRNA structures from different species. Moreover, we propose a novel metric to assess the predictive performance of methods, exclusively based on the chemical probing data commonly used for profiling RNA structures, avoiding any potential bias incorporated by computational predictions when using dot-bracket references. Our results provide a comprehensive comparative assessment of existing methodologies, and a novel and public benchmark resource to aid in the development and comparison of future approaches. AVAILABILITY Full source code and benchmark datasets are available at: https://github.com/sinc-lab/lncRNA-folding. CONTACT lbugnon@sinc.unl.edu.ar.
Collapse
Affiliation(s)
- L A Bugnon
- Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina
| | - A A Edera
- Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina
| | - S Prochetto
- Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina.,IAL, CONICET, Ciudad Universitaria UNL, (3000) Santa Fe, Argentina
| | - M Gerard
- Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina
| | - J Raad
- Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina
| | - E Fenoy
- Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina
| | - M Rubiolo
- Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina
| | - U Chorostecki
- Barcelona Supercomputing Center (BSC-CNS), Institute of Research in Biomedicine (IRB), Spain
| | - T Gabaldón
- Barcelona Supercomputing Center (BSC-CNS), Institute of Research in Biomedicine (IRB), Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.,Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - F Ariel
- IAL, CONICET, Ciudad Universitaria UNL, (3000) Santa Fe, Argentina
| | - L E Di Persia
- Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina
| | - D H Milone
- Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina
| | - G Stegmayer
- Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina
| |
Collapse
|
10
|
Functional Implications of Intergenic GWAS SNPs in Immune-Related LncRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1363:147-160. [DOI: 10.1007/978-3-030-92034-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Wooten S, Smith KN. Long non-coding RNA OIP5-AS1 (Cyrano): A context-specific regulator of normal and disease processes. Clin Transl Med 2022; 12:e706. [PMID: 35040588 PMCID: PMC8764876 DOI: 10.1002/ctm2.706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
Long non-coding (lnc) RNAs have been implicated in a plethora of normal biological functions, and have also emerged as key molecules in various disease processes. OIP5-AS1, also commonly known by the alias Cyrano, is a lncRNA that displays broad expression across multiple tissues, with significant enrichment in particular contexts including within the nervous system and skeletal muscle. Thus far, this multifaceted lncRNA has been found to have regulatory functions in normal cellular processes including cell proliferation and survival, as well as in the development and progression of a myriad disease states. These widespread effects on normal and disease states have been found to be mediated through context-specific intermolecular interactions with dozens of miRNAs and proteins identified to date. This review explores recent studies to highlight OIP5-AS1's contextual yet pleiotropic roles in normal homeostatic functions as well as disease oetiology and progression, which may influence its utility in the generation of future theranostics.
Collapse
Affiliation(s)
- Serena Wooten
- Department of GeneticsUniversity of North Carolina at Chapel HillNorth CarolinaUSA
| | - Keriayn N. Smith
- Department of GeneticsUniversity of North Carolina at Chapel HillNorth CarolinaUSA
| |
Collapse
|
12
|
Li L, Sheng P, Li T, Fields CJ, Hiers NM, Wang Y, Li J, Guardia CM, Licht JD, Xie M. Widespread microRNA degradation elements in target mRNAs can assist the encoded proteins. Genes Dev 2021; 35:1595-1609. [PMID: 34819352 PMCID: PMC8653786 DOI: 10.1101/gad.348874.121] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022]
Abstract
Binding of microRNAs (miRNAs) to mRNAs normally results in post-transcriptional repression of gene expression. However, extensive base-pairing between miRNAs and target RNAs can trigger miRNA degradation, a phenomenon called target RNA-directed miRNA degradation (TDMD). Here, we systematically analyzed Argonaute-CLASH (cross-linking, ligation, and sequencing of miRNA-target RNA hybrids) data and identified numerous candidate TDMD triggers, focusing on their ability to induce nontemplated nucleotide addition at the miRNA 3' end. When exogenously expressed in various cell lines, eight triggers induce degradation of corresponding miRNAs. Both the TDMD base-pairing and surrounding sequences are essential for TDMD. CRISPR knockout of endogenous trigger or ZSWIM8, a ubiquitin ligase essential for TDMD, reduced miRNA degradation. Furthermore, degradation of miR-221 and miR-222 by a trigger in BCL2L11, which encodes a proapoptotic protein, enhances apoptosis. Therefore, we uncovered widespread TDMD triggers in target RNAs and demonstrated an example that could functionally cooperate with the encoded protein.
Collapse
Affiliation(s)
- Lu Li
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, USA
| | - Peike Sheng
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, USA
| | - Tianqi Li
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, USA
| | - Christopher J Fields
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, USA
| | - Nicholas M Hiers
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, USA
| | - Yuzhi Wang
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, USA
| | - Jianping Li
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, USA
- Division of Hematology/Oncology, University of Florida, Gainesville, Florida 32610, USA
| | - Casey M Guardia
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, USA
| | - Jonathan D Licht
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, USA
- Division of Hematology/Oncology, University of Florida, Gainesville, Florida 32610, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, USA
- UF Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
13
|
Comparative genomics in the search for conserved long noncoding RNAs. Essays Biochem 2021; 65:741-749. [PMID: 33885137 PMCID: PMC8564735 DOI: 10.1042/ebc20200069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/15/2021] [Accepted: 03/15/2021] [Indexed: 12/23/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as prominent regulators of gene expression in eukaryotes. The identification of lncRNA orthologs is essential in efforts to decipher their roles across model organisms, as homologous genes tend to have similar molecular and biological functions. The relatively high sequence plasticity of lncRNA genes compared with protein-coding genes, makes the identification of their orthologs a challenging task. This is why comparative genomics of lncRNAs requires the development of specific and, sometimes, complex approaches. Here, we briefly review current advancements and challenges associated with four levels of lncRNA conservation: genomic sequences, splicing signals, secondary structures and syntenic transcription.
Collapse
|
14
|
Lu P, Li M, Zhang D, Jiang W. Lnc-ing pluripotency maintenance and early differentiation in human pluripotent stem cells. FASEB J 2021; 35:e21438. [PMID: 33749897 DOI: 10.1096/fj.202002278r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/28/2020] [Accepted: 01/29/2021] [Indexed: 01/17/2023]
Abstract
Pluripotency maintenance and lineage differentiation are two major characteristics of human embryonic and induced pluripotent stem cells. The determination of self-renewal or differentiation is under the exquisite control of the gene regulatory network, which is composed of transcription factors, signaling pathways, metabolic factors, chromatin or histone modifiers, miRNAs, and lncRNAs. Growing evidence has shown that long noncoding RNAs (lncRNAs) play important roles in epigenetic, transcriptional, and posttranscriptional gene regulation during the cell fate determination of pluripotent stem cells. Here, we summarize recent reports of lncRNA functions in pluripotency maintenance/exit and the early germ layer specification of human pluripotent stem cells. We also illustrate four major lncRNA functional mechanisms according to different types of cofactors: chromatin or histone modifiers, transcription factors, canonical and noncanonical RNA-binding proteins, and miRNAs. Further understanding of lncRNA-based regulation will provide more insights into the drivers manipulating cell fate and promote the therapeutic and research potential of human embryonic and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Pei Lu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Mao Li
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Wei Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
15
|
Rivas E. Evolutionary conservation of RNA sequence and structure. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1649. [PMID: 33754485 PMCID: PMC8250186 DOI: 10.1002/wrna.1649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/22/2022]
Abstract
An RNA structure prediction from a single‐sequence RNA folding program is not evidence for an RNA whose structure is important for function. Random sequences have plausible and complex predicted structures not easily distinguishable from those of structural RNAs. How to tell when an RNA has a conserved structure is a question that requires looking at the evolutionary signature left by the conserved RNA. This question is important not just for long noncoding RNAs which usually lack an identified function, but also for RNA binding protein motifs which can be single stranded RNAs or structures. Here we review recent advances using sequence and structural analysis to determine when RNA structure is conserved or not. Although covariation measures assess structural RNA conservation, one must distinguish covariation due to RNA structure from covariation due to independent phylogenetic substitutions. We review a statistical test to measure false positives expected under the null hypothesis of phylogenetic covariation alone (specificity). We also review a complementary test that measures power, that is, expected covariation derived from sequence variation alone (sensitivity). Power in the absence of covariation signals the absence of a conserved RNA structure. We analyze artifacts that falsely identify conserved RNA structure such as the misuse of programs that do not assess significance, the use of inappropriate statistics confounded by signals other than covariation, or misalignments that induce spurious covariation. Among artifacts that obscure the signal of a conserved RNA structure, we discuss the inclusion of pseudogenes in alignments which increase power but destroy covariation. This article is categorized under:RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Evolution and Genomics > Computational Analyses of RNA RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution
Collapse
Affiliation(s)
- Elena Rivas
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|