1
|
Rodriguez‐Algarra F, Whittaker E, del Castillo del Rio S, Rakyan VK. Assessing Human Ribosomal DNA Variation and Its Association With Phenotypic Outcomes. Bioessays 2025; 47:e202400232. [PMID: 39834111 PMCID: PMC11931683 DOI: 10.1002/bies.202400232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Although genome-scale analyses have provided insights into the connection between genetic variability and complex human phenotypes, much trait variation is still not fully understood. Genetic variation within repetitive elements, such as the multi-copy, multi-locus ribosomal DNA (rDNA), has emerged as a potential contributor to trait variation. Whereas rDNA was long believed to be largely uniform within a species, recent studies have revealed substantial variability in the locus, both within and across individuals. This variation, which takes the form of copy number, structural arrangement, and sequence differences, has been found to be associated with human phenotypes. This review summarizes what is currently known about human rDNA variation, its causes, and its association with phenotypic outcomes, highlighting the technical challenges the field faces and the solutions proposed to address them. Finally, we suggest experimental approaches that can help clarify the elusive mechanisms underlying the phenotypic consequences of rDNA variation.
Collapse
Affiliation(s)
| | - Elliott Whittaker
- The Blizard InstituteSchool of Medicine and DentistryQueen Mary University of LondonLondonUK
| | | | - Vardhman K. Rakyan
- The Blizard InstituteSchool of Medicine and DentistryQueen Mary University of LondonLondonUK
| |
Collapse
|
2
|
Faucher-Giguère L, de Préval BS, Rivera A, Scott MS, Elela SA. Small nucleolar RNAs: the hidden precursors of cancer ribosomes. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230376. [PMID: 40045787 PMCID: PMC11883439 DOI: 10.1098/rstb.2023.0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 03/09/2025] Open
Abstract
Ribosomes are heterogeneous in terms of their constituent proteins, structural RNAs and ribosomal RNA (rRNA) modifications, resulting in diverse potential translatomes. rRNA modifications, guided by small nucleolar RNAs (snoRNAs), enable fine-tuning of ribosome function and translation profiles. Recent studies have begun linking dysregulation of snoRNAs, via rRNA modifications, to tumourigenesis. Deciphering the specific contributions of individual rRNA modifications to cancer hallmarks and identifying snoRNAs with oncogenic potential could lead to novel therapeutic strategies. These strategies might target snoRNAs or exploit the dependence of cancer cells on specific rRNA modification sites, potentially disrupting aberrant ribosomal translation programs and hindering tumour growth. This review discusses current evidence and challenges in linking changes in snoRNA expression to rRNA modification and cancer biology.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Laurence Faucher-Giguère
- Department of Microbiology and Infectiology, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| | - Baudouin S. de Préval
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| | - Andrea Rivera
- Department of Microbiology and Infectiology, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| | - Michelle S. Scott
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| | - Sherif Abou Elela
- Department of Microbiology and Infectiology, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| |
Collapse
|
3
|
Welfer GA, Brady RA, Natchiar SK, Watson ZL, Rundlet EJ, Alejo JL, Singh AP, Mishra NK, Altman RB, Blanchard SC. Impacts of ribosomal RNA sequence variation on gene expression and phenotype. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230379. [PMID: 40045785 PMCID: PMC11883441 DOI: 10.1098/rstb.2023.0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/19/2024] [Accepted: 01/06/2025] [Indexed: 03/09/2025] Open
Abstract
Since the framing of the Central Dogma, it has been speculated that physically distinct ribosomes within cells may influence gene expression and cellular physiology. While heterogeneity in ribosome composition has been reported in bacteria, protozoans, fungi, zebrafish, mice and humans, its functional implications remain actively debated. Here, we review recent evidence demonstrating that expression of conserved variant ribosomal DNA (rDNA) alleles in bacteria, mice and humans renders their actively translating ribosome pool intrinsically heterogeneous at the level of ribosomal RNA (rRNA). In this context, we discuss reports that nutrient limitation-induced stress in Escherichia coli leads to changes in variant rRNA allele expression, programmatically altering transcription and cellular phenotype. We highlight that cells expressing ribosomes from distinct operons exhibit distinct drug sensitivities, which can be recapitulated in vitro and potentially rationalized by subtle perturbations in ribosome structure or in their dynamic properties. Finally, we discuss evidence that differential expression of variant rDNA alleles results in different populations of ribosome subtypes within mammalian tissues. These findings motivate further research into the impacts of rRNA heterogeneities on ribosomal function and predict that strategies targeting distinct ribosome subtypes may hold therapeutic potential.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Griffin A. Welfer
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Ryan A. Brady
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - S. Kundhavai Natchiar
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Zoe L. Watson
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Emily J. Rundlet
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712, USA
| | - Jose L. Alejo
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Anand P. Singh
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Nitish K. Mishra
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Roger B. Altman
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Scott C. Blanchard
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| |
Collapse
|
4
|
Kyei-Baffour ES, Lin QC, Alkan F, Faller WJ. High-throughput approaches for the identification of ribosome heterogeneity. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230381. [PMID: 40045778 PMCID: PMC11883430 DOI: 10.1098/rstb.2023.0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 03/09/2025] Open
Abstract
Recent advances in the fields of RNA translation and ribosome biology have demonstrated the heterogeneous nature of ribosomes. This manifests not only across different cellular contexts but also within the same cell. Such variations in ribosomal composition, be it in ribosomal RNAs or proteins, can significantly influence cellular processes and responses by altering the mRNAs being translated or the dynamics of ribosomes during the translation process. Therefore, identifying this heterogeneity is crucial for unravelling the complexity of gene expression across different fields of biology. Here we provide an overview of recent advances in high-throughput techniques for identifying ribosomal heterogeneity. We cover methodologies for probing both rRNA and protein components of the ribosome and encompass the most recent next-generation sequencing and computational analyses, as well as a diverse array of mass spectrometry techniques.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Edwin S. Kyei-Baffour
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam1066CX, The Netherlands
| | - Qi Chang Lin
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Ferhat Alkan
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam1066CX, The Netherlands
| | - William J. Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam1066CX, The Netherlands
| |
Collapse
|
5
|
Rodriguez-Algarra F, Cooper M, Mardakheh FK, Evans DM, Rakyan VK. Germline sequence variation within the ribosomal DNA is associated with human complex traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.635840. [PMID: 39975292 PMCID: PMC11839076 DOI: 10.1101/2025.02.06.635840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The ribosome is one of the core macromolecules in the cell. The ribosomal RNAs (rRNA), which are essential components of the ribosome, are coded by the multi-copy ribosomal DNA (rDNA). Despite its highly conserved function, the rDNA displays substantial variation within all species analysed to date. This variation comprises both inter-individual differences in total copy number (CN) as well as inter- and intragenomic sequence variation in the form of single nucleotide variants (SNV) and insertions/deletions (INDELs) across rDNA copies. Whether germline variation of rDNA sequence associates with phenotypic traits in humans is, to date, unknown. Here, using the UK Biobank whole genome sequencing data, we first derive a high confidence list of rDNA-associated SNVs and INDELs that we validate in multiple ways. Using this list, we show that specific rDNA variants associate with several human traits. In particular, traits associated with body size appear enriched in variants within the Expansion Segment 15L region in the 28S rRNA. The strength of these associations does not diminish when accounting for the total rDNA CN of each individual. Our work represents the first large-scale association analysis of human traits with germline sequence variation in the rDNA, a source of human complex trait-relevant genetic variation that has thus far been largely ignored.
Collapse
Affiliation(s)
- Francisco Rodriguez-Algarra
- The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
- Centre for Epigenetics, Queen Mary University of London, London E1 2AT, UK
| | - Maia Cooper
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - David M Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
| | - Vardhman K Rakyan
- The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
- Centre for Epigenetics, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
6
|
Sehgal E, Wohlenberg C, Soukup EM, Viscardi MJ, Serrão VHB, Arribere JA. High-resolution reconstruction of a C. elegans ribosome sheds light on evolutionary dynamics and tissue specificity. RNA (NEW YORK, N.Y.) 2024; 30:1513-1528. [PMID: 39209556 PMCID: PMC11482609 DOI: 10.1261/rna.080103.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Caenorhabditis elegans is an important model organism for human health and disease, with foundational contributions to the understanding of gene expression and tissue patterning in animals. An invaluable tool in modern gene expression research is the presence of a high-resolution ribosome structure, though no such structure exists for C. elegans Here, we present a high-resolution single-particle cryogenic electron microscopy (cryo-EM) reconstruction and molecular model of a C. elegans ribosome, revealing a significantly streamlined animal ribosome. Many facets of ribosome structure are conserved in C. elegans, including overall ribosomal architecture and the mechanism of cycloheximide, whereas other facets, such as expansion segments and eL28, are rapidly evolving. We identify uL5 and uL23 as two instances of tissue-specific ribosomal protein paralog expression conserved in Caenorhabditis, suggesting that C. elegans ribosomes vary across tissues. The C. elegans ribosome structure will provide a basis for future structural, biochemical, and genetic studies of translation in this important animal system.
Collapse
Affiliation(s)
- Enisha Sehgal
- Department of MCD Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Chloe Wohlenberg
- Department of MCD Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Evan M Soukup
- Department of MCD Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Marcus J Viscardi
- Department of MCD Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Vitor Hugo Balasco Serrão
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, California 95064, USA
- Biomolecular Cryoelectron Microscopy Facility, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Joshua A Arribere
- Department of MCD Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
- RNA Center, University of California at Santa Cruz, Santa Cruz, California 95064, USA
- Genomics Institute, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
7
|
Potapova T, Kostos P, McKinney S, Borchers M, Haug J, Guarracino A, Solar S, Gogol M, Monfort Anez G, de Lima LG, Wang Y, Hall K, Hoffman S, Garrison E, Phillippy AM, Gerton JL. Epigenetic control and inheritance of rDNA arrays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612795. [PMID: 39372739 PMCID: PMC11451732 DOI: 10.1101/2024.09.13.612795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Ribosomal RNA (rRNA) genes exist in multiple copies arranged in tandem arrays known as ribosomal DNA (rDNA). The total number of gene copies is variable, and the mechanisms buffering this copy number variation remain unresolved. We surveyed the number, distribution, and activity of rDNA arrays at the level of individual chromosomes across multiple human and primate genomes. Each individual possessed a unique fingerprint of copy number distribution and activity of rDNA arrays. In some cases, entire rDNA arrays were transcriptionally silent. Silent rDNA arrays showed reduced association with the nucleolus and decreased interchromosomal interactions, indicating that the nucleolar organizer function of rDNA depends on transcriptional activity. Methyl-sequencing of flow-sorted chromosomes, combined with long read sequencing, showed epigenetic modification of rDNA promoter and coding region by DNA methylation. Silent arrays were in a closed chromatin state, as indicated by the accessibility profiles derived from Fiber-seq. Removing DNA methylation restored the transcriptional activity of silent arrays. Array activity status remained stable through the iPS cell re-programming. Family trio analysis demonstrated that the inactive rDNA haplotype can be traced to one of the parental genomes, suggesting that the epigenetic state of rDNA arrays may be heritable. We propose that the dosage of rRNA genes is epigenetically regulated by DNA methylation, and these methylation patterns specify nucleolar organizer function and can propagate transgenerationally.
Collapse
Affiliation(s)
- Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Paxton Kostos
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Jeff Haug
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steven Solar
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | - Yan Wang
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Kate Hall
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adam M. Phillippy
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
8
|
Rothschild D, Susanto TT, Sui X, Spence JP, Rangan R, Genuth NR, Sinnott-Armstrong N, Wang X, Pritchard JK, Barna M. Diversity of ribosomes at the level of rRNA variation associated with human health and disease. CELL GENOMICS 2024; 4:100629. [PMID: 39111318 PMCID: PMC11480859 DOI: 10.1016/j.xgen.2024.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/07/2024] [Accepted: 07/14/2024] [Indexed: 09/14/2024]
Abstract
With hundreds of copies of rDNA, it is unknown whether they possess sequence variations that form different types of ribosomes. Here, we developed an algorithm for long-read variant calling, termed RGA, which revealed that variations in human rDNA loci are predominantly insertion-deletion (indel) variants. We developed full-length rRNA sequencing (RIBO-RT) and in situ sequencing (SWITCH-seq), which showed that translating ribosomes possess variation in rRNA. Over 1,000 variants are lowly expressed. However, tens of variants are abundant and form distinct rRNA subtypes with different structures near indels as revealed by long-read rRNA structure probing coupled to dimethyl sulfate sequencing. rRNA subtypes show differential expression in endoderm/ectoderm-derived tissues, and in cancer, low-abundance rRNA variants can become highly expressed. Together, this study identifies the diversity of ribosomes at the level of rRNA variants, their chromosomal location, and unique structure as well as the association of ribosome variation with tissue-specific biology and cancer.
Collapse
Affiliation(s)
- Daphna Rothschild
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Xin Sui
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeffrey P Spence
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ramya Rangan
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Naomi R Genuth
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Xiao Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Maria Barna
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Kostos P, Galligos A, Gerton JL. Ribosomes unraveled: The path from variant to impact. CELL GENOMICS 2024; 4:100658. [PMID: 39265527 PMCID: PMC11480852 DOI: 10.1016/j.xgen.2024.100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024]
Abstract
In this issue of Cell Genomics, Rothschild et al.1 reveal how ribosomal RNA diversity impacts ribosome structure and its implications for health and disease. Their innovative methodologies uncover distinct ribosome subtypes with significant structural variations and expression patterns. This work reveals connections to tissue-specific biology and cancer, positing new research avenues.
Collapse
Affiliation(s)
- Paxton Kostos
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Anna Galligos
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
10
|
Macdonald E, Whibley A, Waters PD, Patel H, Edwards RJ, Ganley ARD. Origin and maintenance of large ribosomal RNA gene repeat size in mammals. Genetics 2024; 228:iyae121. [PMID: 39044674 PMCID: PMC11373518 DOI: 10.1093/genetics/iyae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
The genes encoding ribosomal RNA are highly conserved across life and in almost all eukaryotes are present in large tandem repeat arrays called the rDNA. rDNA repeat unit size is conserved across most eukaryotes but has expanded dramatically in mammals, principally through the expansion of the intergenic spacer region that separates adjacent rRNA coding regions. Here, we used long-read sequence data from representatives of the major amniote lineages to determine where in amniote evolution rDNA unit size increased. We find that amniote rDNA unit sizes fall into two narrow size classes: "normal" (∼11-20 kb) in all amniotes except monotreme, marsupial, and eutherian mammals, which have "large" (∼35-45 kb) sizes. We confirm that increases in intergenic spacer length explain much of this mammalian size increase. However, in stark contrast to the uniformity of mammalian rDNA unit size, mammalian intergenic spacers differ greatly in sequence. These results suggest a large increase in intergenic spacer size occurred in a mammalian ancestor and has been maintained despite substantial sequence changes over the course of mammalian evolution. This points to a previously unrecognized constraint on the length of the intergenic spacer, a region that was thought to be largely neutral. We finish by speculating on possible causes of this constraint.
Collapse
Affiliation(s)
- Emma Macdonald
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Annabel Whibley
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Grapevine Improvement, Bragato Research Institute, RFH Building, Engineering Drive, Lincoln University, Lincoln 7647, New Zealand
| | - Paul D Waters
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Chancellery Walk, Kensington, NSW 2033, Australia
| | - Hardip Patel
- John Curtin School of Medical Research, Australian National University, 131 Garran Rd, Acton, ACT 2601, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Chancellery Walk, Kensington, NSW 2033, Australia
- Minderoo OceanOmics Centre at UWA, UWA Oceans Institute, University of Western Australia, Crawley WA 6009, Australia
| | - Austen R D Ganley
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Digital Life Institute, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
11
|
Rothschild D, Susanto TT, Sui X, Spence JP, Rangan R, Genuth NR, Sinnott-Armstrong N, Wang X, Pritchard JK, Barna M. Diversity of ribosomes at the level of rRNA variation associated with human health and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.30.526360. [PMID: 36778251 PMCID: PMC9915487 DOI: 10.1101/2023.01.30.526360] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Ribosomal DNA and RNA (rDNA and rRNA) sequences are usually discarded from sequencing analyses. But with hundreds of copies of rDNA genes it is unknown whether they possess sequence variations that form different types of ribosomes that affect human physiology and disease. Here, we developed an algorithm for variant-calling between paralog genes (termed RGA) and compared rDNA variations found in short- and long-read sequencing data from the 1,000 Genomes Project (1KGP) and Genome In A Bottle (GIAB). We additionally developed a novel protocol for long-read sequencing full-length rRNA (RIBO-RT) from actively translating ribosomes. Our analyses identified hundreds of rDNA variants, most of which, surprisingly, are short insertion-deletions (indels) and dozens of highly abundant rRNA variants that are incorporated into translationally active ribosomes. To visualize variant ribosomes at the single cell level, we developed an in-situ rRNA sequencing method (SWITCH-seq) which revealed that variants are co-expressed within individual cells. Strikingly, by analyzing rDNA, we found that variants assemble into distinct ribosome subtypes. We discovered that these subtypes acquire different rRNA structures by successfully employing dimethyl sulfate (DMS) probing of full length rRNA. With this atlas we investigated rRNA variation changes across human tissues and cancer types. This revealed tissue-specific rRNA subtype expression in endoderm/ectoderm-derived tissues. In cancer, low abundant rRNA variants can become highly expressed, which suggests the presence of cancer-specific ribosomes. Together, this study identifies and comprehensively characterizes the diversity of ribosomes at the level of rRNA variants which is dominated by indel variants, their chromosomal location and unique structure as well as the association of ribosome variation with tissue-specific biology and cancer.
Collapse
|
12
|
Garcia S, Kovarik A, Maiwald S, Mann L, Schmidt N, Pascual-Díaz JP, Vitales D, Weber B, Heitkam T. The Dynamic Interplay Between Ribosomal DNA and Transposable Elements: A Perspective From Genomics and Cytogenetics. Mol Biol Evol 2024; 41:msae025. [PMID: 38306580 PMCID: PMC10946416 DOI: 10.1093/molbev/msae025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/06/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Although both are salient features of genomes, at first glance ribosomal DNAs and transposable elements are genetic elements with not much in common: whereas ribosomal DNAs are mainly viewed as housekeeping genes that uphold all prime genome functions, transposable elements are generally portrayed as selfish and disruptive. These opposing characteristics are also mirrored in other attributes: organization in tandem (ribosomal DNAs) versus organization in a dispersed manner (transposable elements); evolution in a concerted manner (ribosomal DNAs) versus evolution by diversification (transposable elements); and activity that prolongs genomic stability (ribosomal DNAs) versus activity that shortens it (transposable elements). Re-visiting relevant instances in which ribosomal DNA-transposable element interactions have been reported, we note that both repeat types share at least four structural and functional hallmarks: (1) they are repetitive DNAs that shape genomes in evolutionary timescales, (2) they exchange structural motifs and can enter co-evolution processes, (3) they are tightly controlled genomic stress sensors playing key roles in senescence/aging, and (4) they share common epigenetic marks such as DNA methylation and histone modification. Here, we give an overview of the structural, functional, and evolutionary characteristics of both ribosomal DNAs and transposable elements, discuss their roles and interactions, and highlight trends and future directions as we move forward in understanding ribosomal DNA-transposable element associations.
Collapse
Affiliation(s)
- Sònia Garcia
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
| | - Ales Kovarik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic
| | - Sophie Maiwald
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Ludwig Mann
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Nicola Schmidt
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | | | - Daniel Vitales
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
- Laboratori de Botànica–Unitat Associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Beatrice Weber
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
- Institute of Biology, NAWI Graz, Karl-Franzens-Universität, A-8010 Graz, Austria
| |
Collapse
|
13
|
Wang W, Zhang X, Garcia S, Leitch AR, Kovařík A. Intragenomic rDNA variation - the product of concerted evolution, mutation, or something in between? Heredity (Edinb) 2023; 131:179-188. [PMID: 37402824 PMCID: PMC10462631 DOI: 10.1038/s41437-023-00634-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
The classical model of concerted evolution states that hundreds to thousands of ribosomal DNA (rDNA) units undergo homogenization, making the multiple copies of the individual units more uniform across the genome than would be expected given mutation frequencies and gene redundancy. While the universality of this over 50-year-old model has been confirmed in a range of organisms, advanced high throughput sequencing techniques have also revealed that rDNA homogenization in many organisms is partial and, in rare cases, even apparently failing. The potential underpinning processes leading to unexpected intragenomic variation have been discussed in a number of studies, but a comprehensive understanding remains to be determined. In this work, we summarize information on variation or polymorphisms in rDNAs across a wide range of taxa amongst animals, fungi, plants, and protists. We discuss the definition and description of concerted evolution and describe whether incomplete concerted evolution of rDNAs predominantly affects coding or non-coding regions of rDNA units and if it leads to the formation of pseudogenes or not. We also discuss the factors contributing to rDNA variation, such as interspecific hybridization, meiotic cycles, rDNA expression status, genome size, and the activity of effector genes involved in genetic recombination, epigenetic modifications, and DNA editing. Finally, we argue that a combination of approaches is needed to target genetic and epigenetic phenomena influencing incomplete concerted evolution, to give a comprehensive understanding of the evolution and functional consequences of intragenomic variation in rDNA.
Collapse
Affiliation(s)
- Wencai Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xianzhi Zhang
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Sònia Garcia
- Institut Botànic de Barcelona, IBB (CSIC - Ajuntament de Barcelona), Barcelona, Spain
| | - Andrew R Leitch
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, CZ-61200, Czech Republic.
| |
Collapse
|
14
|
George SS, Pimkin M, Paralkar VR. Construction and validation of customized genomes for human and mouse ribosomal DNA mapping. J Biol Chem 2023; 299:104766. [PMID: 37121547 PMCID: PMC10245113 DOI: 10.1016/j.jbc.2023.104766] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023] Open
Abstract
rRNAs are transcribed from ribosomal DNA (rDNA) repeats, the most intensively transcribed loci in the genome. Due to their repetitive nature, there is a lack of genome assemblies suitable for rDNA mapping, creating a vacuum in our understanding of how the most abundant RNA in the cell is regulated. Our recent work revealed binding of numerous mammalian transcription and chromatin factors to rDNA. Several of these factors were known to play critical roles in development, tissue function, and malignancy, but their potential roles in rDNA regulation remained unexplored. This demonstrated the blind spot into which rDNA has fallen in genetic and epigenetic studies and highlighted an unmet need for public rDNA-optimized genome assemblies. Here, we customized five human and mouse assemblies-hg19 (GRCh37), hg38 (GRCh38), hs1 (T2T-CHM13), mm10 (GRCm38), and mm39 (GRCm39)-to render them suitable for rDNA mapping. The standard builds of these genomes contain numerous fragmented or repetitive rDNA loci. We identified and masked all rDNA-like regions, added a single rDNA reference sequence of the appropriate species as a ∼45 kb chromosome designated "chromosome R," and created annotation files to aid visualization of rDNA features in browser tracks. We validated these customized genomes for mapping of known rDNA-binding proteins and present a simple workflow for mapping chromatin immunoprecipitation-sequencing datasets. Customized genome assemblies, annotation files, positive and negative control tracks, and Snapgene files of standard rDNA reference sequences have been deposited to GitHub. These resources make rDNA mapping and visualization more readily accessible to a broad audience.
Collapse
Affiliation(s)
- Subin S George
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Maxim Pimkin
- Cancer and Blood Disorders Center, Harvard Medical School, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA
| | - Vikram R Paralkar
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
15
|
Xu H, Shi L, Feng L, Wu F, Chen J, Qin Y, Dong X, Jiang Z, Li Y, Xia H, Lou J. Hexavalent chromium [Cr(VI)]-induced ribosomal DNA copy number variation and DNA damage responses and their associations with nucleolar protein HRAS in humans and cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121816. [PMID: 37182578 DOI: 10.1016/j.envpol.2023.121816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/06/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
The carcinogenicity of hexavalent chromium [Cr(VI)] and its compounds has been widely recognized, yet the mechanism of genetic damage is still not fully understood. The ribosomal DNA (rDNA) copy number is recently considered a potential marker of cancer-associated stress. To investigate the roles of rDNA copy number variation (CNV) in DNA damage responses (DDRs) induced by Cr(VI) and the potential mechanism from nucleolar protein HRAS, a cross-sectional study in Cr(Ⅵ)-exposed workers and an in vitro experiment using HeLa cells were conducted. Our results showed increased levels of rDNA CNV, DDRs, and HRAS expression in Cr(VI)-exposed workers. Generalized linear regression analyses showed that Cr(VI) exposure was significantly positively associated with increased levels of rDNA CNV, DDRs, and HRAS expression in Cr(VI)-exposed workers. Moreover, there were pairwise associations between rDNA CNV, DDRs, and HRAS levels. Mediation analyses found that rDNA CNV significantly mediated the association between Cr(VI) exposure and DDRs. The in vitro experiments further confirmed that Cr(VI) treatment induced increased levels of rDNA CNV, DDRs, and HRAS expression in HeLa cells. Cr(VI)-induced rDNA CNV, ATM activation, and apoptosis damage were then strongly enhanced by HRAS depletion with siRNA in vitro, suggesting the important role of HRAS in CNV and DDRs caused by Cr(VI). The combined results of the human and cell line studies indicated that Cr(VI) exposure might enhance rDNA CNV by regulation of HRAS expression, which leads to Cr(VI)-induced genetic damage.
Collapse
Affiliation(s)
- Huadong Xu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Li Shi
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Lingfang Feng
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Fan Wu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Junfei Chen
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Yao Qin
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Xiaowen Dong
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Zhaoqiang Jiang
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Yongxin Li
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Hailing Xia
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Jianlin Lou
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China; School of Medicine, and the First Affiliated Hospital, Huzhou University, Huzhou, Zhejiang, 313000, China.
| |
Collapse
|
16
|
McGee JP, Armache JP, Lindner SE. Ribosome heterogeneity and specialization of Plasmodium parasites. PLoS Pathog 2023; 19:e1011267. [PMID: 37053161 PMCID: PMC10101515 DOI: 10.1371/journal.ppat.1011267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Affiliation(s)
- James P. McGee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania, United States of America
- Huck Center for Malaria Research, Pennsylvania State University, Pennsylvania, United States of America
| | - Jean-Paul Armache
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, Pennsylvania, United States of America
| | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania, United States of America
- Huck Center for Malaria Research, Pennsylvania State University, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, Pennsylvania, United States of America
| |
Collapse
|
17
|
Sun Y, Hu X, Qiu D, Zhang Z, Lei L. rDNA Transcription in Developmental Diseases and Stem Cells. Stem Cell Rev Rep 2023; 19:839-852. [PMID: 36633782 DOI: 10.1007/s12015-023-10504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2023] [Indexed: 01/13/2023]
Abstract
As the first and rate-limiting step in ribosome biogenesis, rDNA transcription undergoes significant dynamic changes during cell pluripotency alteration. Over the past decades, rDNA activity has demonstrated dynamic changes, but most people view it as passive compliance with cellular needs. The evidence for rDNA transcriptional activity determining stem cell pluripotency is growing as research advances, resulting in the arrest of embryonic development and impairment of stem cell lines stemness by rDNA transcription inhibition. The exact mechanism by which rDNA activation influences pluripotency remains unknown. The first objective of this opinion article is to describe rDNA changes in the pathological and physiological course of life, including developmental diseases, tumor genesis, and stem cell differentiation. After that, we propose three hypotheses regarding rDNA regulation of pluripotency: 1) Specialized ribosomes synthesized from rDNA variant, 2) Nucleolar stress induced by the drop of rDNA transcription, 3) Interchromosomal interactions between rDNA and other genes. The pluripotency regulatory center is expected to focus strongly on rDNA. A small molecule inhibitor of rDNA is used to treat tumors caused by abnormal pluripotency activation. By understanding how rDNA regulates pluripotency, we hope to treat developmental diseases and safely apply somatic cell reprogramming in clinical settings.
Collapse
Affiliation(s)
- Yuchen Sun
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - Xinglin Hu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - Dan Qiu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - Zhijing Zhang
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - Lei Lei
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, People's Republic of China, 150081.
| |
Collapse
|
18
|
Regulation of RNA Polymerase I Stability and Function. Cancers (Basel) 2022; 14:cancers14235776. [PMID: 36497261 PMCID: PMC9737084 DOI: 10.3390/cancers14235776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
RNA polymerase I is a highly processive enzyme with fast initiation and elongation rates. The structure of Pol I, with its in-built RNA cleavage ability and incorporation of subunits homologous to transcription factors, enables it to quickly and efficiently synthesize the enormous amount of rRNA required for ribosome biogenesis. Each step of Pol I transcription is carefully controlled. However, cancers have highjacked these control points to switch the enzyme, and its transcription, on permanently. While this provides an exceptional benefit to cancer cells, it also creates a potential cancer therapeutic vulnerability. We review the current research on the regulation of Pol I transcription, and we discuss chemical biology efforts to develop new targeted agents against this process. Lastly, we highlight challenges that have arisen from the introduction of agents with promiscuous mechanisms of action and provide examples of agents with specificity and selectivity against Pol I.
Collapse
|
19
|
Cockrell AJ, Gerton JL. Nucleolar Organizer Regions as Transcription-Based Scaffolds of Nucleolar Structure and Function. Results Probl Cell Differ 2022; 70:551-580. [PMID: 36348121 DOI: 10.1007/978-3-031-06573-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Eukaryotic genomes maintain multiple copies of ribosomal DNA gene repeats in tandem arrays to provide sufficient ribosomal RNAs to make ribosomes. These DNA repeats are the most highly transcribed regions of the genome, with dedicated transcriptional machinery to manage the enormous task of producing more than 50% of the total RNA in a proliferating cell. The arrays are called nucleolar organizer regions (NORs) and constitute the scaffold of the nucleolar compartment, where ribosome biogenesis occurs. Advances in molecular and cellular biology have brought great insights into how these arrays are transcribed and organized within genomes. Much of their biology is driven by their high transcription level, which has also driven the development of unique methods to understand rDNA gene activity, beginning with classic techniques such as silver staining and Miller spreads. However, the application of modern methodologies such as CRISPR gene editing, super-resolution microscopy, and long-read sequencing has enabled recent advances described herein, with many more discoveries possible soon. This chapter highlights what is known about NOR transcription and organization and the techniques applied historically and currently. Given the potential for NORs to impact organismal health and disease, as highlighted at the end of the chapter, the field must continue to develop and apply innovative analysis to understand genetic, epigenetic, and organizer properties of the ribosomal DNA repeats.
Collapse
Affiliation(s)
- Alexandria J Cockrell
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|