1
|
Snow S, Mir DA, Ma Z, Horrocks J, Cox M, Ruzga M, Sayed H, Rogers AN. Neuronal CBP-1 is Required for Enhanced Body Muscle Proteostasis in Response to Reduced Translation Downstream of mTOR. FRONT BIOSCI-LANDMRK 2024; 29:264. [PMID: 39082355 PMCID: PMC11412575 DOI: 10.31083/j.fbl2907264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND The ability to maintain muscle function decreases with age and loss of proteostatic function. Diet, drugs, and genetic interventions that restrict nutrients or nutrient signaling help preserve long-term muscle function and slow age-related decline. Previously, it was shown that attenuating protein synthesis downstream of the mechanistic target of rapamycin (mTOR) gradually increases expression of heat shock response (HSR) genes in a manner that correlates with increased resilience to protein unfolding stress. Here, we investigate the role of specific tissues in mediating the cytoprotective effects of low translation. METHODS This study uses genetic tools (transgenic Caenorhabditis elegans (C. elegans), RNA interference and gene expression analysis) as well as physiological assays (survival and paralysis assays) in order to better understand how specific tissues contribute to adaptive changes involving cellular cross-talk that enhance proteostasis under low translation conditions. RESULTS We use the C. elegans system to show that lowering translation in neurons or the germline increases heat shock gene expression and survival under conditions of heat stress. In addition, we find that low translation in these tissues protects motility in a body muscle-specific model of proteotoxicity that results in paralysis. Low translation in neurons or germline also results in increased expression of certain muscle regulatory and structural genes, reversing reduced expression normally observed with aging in C. elegans. Enhanced resilience to protein unfolding stress requires neuronal expression of cbp-1. CONCLUSIONS Low translation in either neurons or the germline orchestrate protective adaptation in other tissues, including body muscle.
Collapse
Affiliation(s)
- Santina Snow
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Dilawar Ahmad Mir
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Zhengxin Ma
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Jordan Horrocks
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Matthew Cox
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Marissa Ruzga
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Hussein Sayed
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Aric N. Rogers
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| |
Collapse
|
2
|
Grove DJ, Russell PJ, Kearse MG. To initiate or not to initiate: A critical assessment of eIF2A, eIF2D, and MCT-1·DENR to deliver initiator tRNA to ribosomes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1833. [PMID: 38433101 PMCID: PMC11260288 DOI: 10.1002/wrna.1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 03/05/2024]
Abstract
Selection of the correct start codon is critical for high-fidelity protein synthesis. In eukaryotes, this is typically governed by a multitude of initiation factors (eIFs), including eIF2·GTP that directly delivers the initiator tRNA (Met-tRNAi Met ) to the P site of the ribosome. However, numerous reports, some dating back to the early 1970s, have described other initiation factors having high affinity for the initiator tRNA and the ability of delivering it to the ribosome, which has provided a foundation for further work demonstrating non-canonical initiation mechanisms using alternative initiation factors. Here we provide a critical analysis of current understanding of eIF2A, eIF2D, and the MCT-1·DENR dimer, the evidence surrounding their ability to initiate translation, their implications in human disease, and lay out important key questions for the field. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Translation > Mechanisms Translation > Regulation.
Collapse
Affiliation(s)
- Daisy J. Grove
- The Ohio State Biochemistry Program, Department of Biological Chemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Paul J. Russell
- The Ohio State Biochemistry Program, Department of Biological Chemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- The Cellular, Molecular, Biochemical Sciences Program, Department of Biological Chemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Michael G. Kearse
- The Ohio State Biochemistry Program, Department of Biological Chemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- The Cellular, Molecular, Biochemical Sciences Program, Department of Biological Chemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Madan V, Albacete‐Albacete L, Jin L, Scaturro P, Watson JL, Muschalik N, Begum F, Boulanger J, Bauer K, Kiebler MA, Derivery E, Bullock SL. HEATR5B associates with dynein-dynactin and promotes motility of AP1-bound endosomal membranes. EMBO J 2023; 42:e114473. [PMID: 37872872 PMCID: PMC10690479 DOI: 10.15252/embj.2023114473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
The microtubule motor dynein mediates polarised trafficking of a wide variety of organelles, vesicles and macromolecules. These functions are dependent on the dynactin complex, which helps recruit cargoes to dynein's tail and activates motor movement. How the dynein-dynactin complex orchestrates trafficking of diverse cargoes is unclear. Here, we identify HEATR5B, an interactor of the adaptor protein-1 (AP1) clathrin adaptor complex, as a novel player in dynein-dynactin function. HEATR5B was recovered in a biochemical screen for proteins whose association with the dynein tail is augmented by dynactin. We show that HEATR5B binds directly to the dynein tail and dynactin and stimulates motility of AP1-associated endosomal membranes in human cells. We also demonstrate that the Drosophila HEATR5B homologue is an essential gene that selectively promotes dynein-based transport of AP1-bound membranes to the Golgi apparatus. As HEATR5B lacks the coiled-coil architecture typical of dynein adaptors, our data point to a non-canonical process orchestrating motor function on a specific cargo. We additionally show that HEATR5B promotes association of AP1 with endosomal membranes independently of dynein. Thus, HEATR5B co-ordinates multiple events in AP1-based trafficking.
Collapse
Affiliation(s)
- Vanesa Madan
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
- Present address:
AbcamCambridgeUK
| | - Lucas Albacete‐Albacete
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Li Jin
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | | | - Joseph L Watson
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
- Present address:
Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | - Nadine Muschalik
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Farida Begum
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Jérôme Boulanger
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Karl Bauer
- Biomedical Center, Department for Cell Biology, Medical FacultyLudwig‐Maximilians‐University of MunichMunichGermany
| | - Michael A Kiebler
- Biomedical Center, Department for Cell Biology, Medical FacultyLudwig‐Maximilians‐University of MunichMunichGermany
| | - Emmanuel Derivery
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Simon L Bullock
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| |
Collapse
|
4
|
Kumar S, Verma R, Saha S, Agrahari AK, Shukla S, Singh ON, Berry U, Anurag, Maiti TK, Asthana S, Ranjith-Kumar CT, Surjit M. RNA-Protein Interactome at the Hepatitis E Virus Internal Ribosome Entry Site. Microbiol Spectr 2023; 11:e0282722. [PMID: 37382527 PMCID: PMC10434006 DOI: 10.1128/spectrum.02827-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/11/2023] [Indexed: 06/30/2023] Open
Abstract
Multiple processes exist in a cell to ensure continuous production of essential proteins either through cap-dependent or cap-independent translation processes. Viruses depend on the host translation machinery for viral protein synthesis. Therefore, viruses have evolved clever strategies to use the host translation machinery. Earlier studies have shown that genotype 1 hepatitis E virus (g1-HEV) uses both cap-dependent and cap-independent translation machineries for its translation and proliferation. Cap-independent translation in g1-HEV is driven by an 87-nucleotide-long RNA element that acts as a noncanonical, internal ribosome entry site-like (IRESl) element. Here, we have identified the RNA-protein interactome of the HEV IRESl element and characterized the functional significance of some of its components. Our study identifies the association of HEV IRESl with several host ribosomal proteins, demonstrates indispensable roles of ribosomal protein RPL5 and DHX9 (RNA helicase A) in mediating HEV IRESl activity, and establishes the latter as a bona fide internal translation initiation site. IMPORTANCE Protein synthesis is a fundamental process for survival and proliferation of all living organisms. The majority of cellular proteins are produced through cap-dependent translation. Cells also use a variety of cap-independent translation processes to synthesize essential proteins during stress. Viruses depend on the host cell translation machinery to synthesize their own proteins. Hepatitis E virus (HEV) is a major cause of hepatitis worldwide and has a capped positive-strand RNA genome. Viral nonstructural and structural proteins are synthesized through a cap-dependent translation process. An earlier study from our laboratory reported the presence of a fourth open reading frame (ORF) in genotype 1 HEV, which produces the ORF4 protein using a cap-independent internal ribosome entry site-like (IRESl) element. In the current study, we identified the host proteins that associate with the HEV-IRESl RNA and generated the RNA-protein interactome. Through a variety of experimental approaches, our data prove that HEV-IRESl is a bona fide internal translation initiation site.
Collapse
Affiliation(s)
- Shiv Kumar
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Rohit Verma
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Sandhini Saha
- Laboratory of Functional Proteomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Ashish Kumar Agrahari
- Noncommunicable Disease Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Shivangi Shukla
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Oinam Ningthemmani Singh
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Umang Berry
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Anurag
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Tushar Kanti Maiti
- Laboratory of Functional Proteomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Shailendra Asthana
- Noncommunicable Disease Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - C. T. Ranjith-Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Milan Surjit
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
5
|
Dobrikov MI, Dobrikova EY, McKay ZP, Kastan JP, Brown MC, Gromeier M. PKR Binds Enterovirus IRESs, Displaces Host Translation Factors, and Impairs Viral Translation to Enable Innate Antiviral Signaling. mBio 2022; 13:e0085422. [PMID: 35652592 PMCID: PMC9239082 DOI: 10.1128/mbio.00854-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022] Open
Abstract
For RNA virus families except Picornaviridae, viral RNA sensing includes Toll-like receptors and/or RIG-I. Picornavirus RNAs, whose 5' termini are shielded by a genome-linked protein, are predominately recognized by MDA5. This has important ramifications for adaptive immunity, as MDA5-specific patterns of type-I interferon (IFN) release are optimal for CD4+T cell TH1 polarization and CD8+T cell priming. We are exploiting this principle for cancer immunotherapy with recombinant poliovirus (PV), PVSRIPO, the type 1 (Sabin) PV vaccine containing a rhinovirus type 2 internal ribosomal entry site (IRES). Here we show that PVSRIPO-elicited MDA5 signaling is preceded by early sensing of the IRES by the double-stranded (ds)RNA-activated protein kinase (PKR). PKR binding to IRES stem-loop domains 5-6 led to dimerization and autoactivation, displaced host translation initiation factors, and suppressed viral protein synthesis. Early PKR-mediated antiviral responses tempered incipient viral translation and the activity of cytopathogenic viral proteinases, setting up accentuated MDA5 innate inflammation in response to PVSRIPO infection. IMPORTANCE Among the RIG-I-like pattern recognition receptors, MDA5 stands out because it senses long dsRNA duplexes independent of their 5' features (RIG-I recognizes viral [v]RNA 5'-ppp blunt ends). Uniquely among RNA viruses, the innate defense against picornaviruses is controlled by MDA5. We show that prior to engaging MDA5, recombinant PV RNA is sensed upon PKR binding to the viral IRES at a site that overlaps with the footprint for host translation factors mediating 40S subunit recruitment. Our study demonstrates that innate antiviral type-I IFN responses orchestrated by MDA5 involve separate innate modules that recognize distinct vRNA features and interfere with viral functions at multiple levels.
Collapse
Affiliation(s)
- Mikhail I. Dobrikov
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Elena Y. Dobrikova
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Zachary P. McKay
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Jonathan P. Kastan
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Michael C. Brown
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Matthias Gromeier
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| |
Collapse
|
6
|
Tsoi H, You CP, Leung MH, Man EPS, Khoo US. Targeting Ribosome Biogenesis to Combat Tamoxifen Resistance in ER+ve Breast Cancer. Cancers (Basel) 2022; 14:1251. [PMID: 35267559 PMCID: PMC8909264 DOI: 10.3390/cancers14051251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is a heterogeneous disease. Around 70% of breast cancers are estrogen receptor-positive (ER+ve), with tamoxifen being most commonly used as an adjuvant treatment to prevent recurrence and metastasis. However, half of the patients will eventually develop tamoxifen resistance. The overexpression of c-MYC can drive the development of ER+ve breast cancer and confer tamoxifen resistance through multiple pathways. One key mechanism is to enhance ribosome biogenesis, synthesising mature ribosomes. The over-production of ribosomes sustains the demand for proteins necessary to maintain a high cell proliferation rate and combat apoptosis induced by therapeutic agents. c-MYC overexpression can induce the expression of eIF4E that favours the translation of structured mRNA to produce oncogenic factors that promote cell proliferation and confer tamoxifen resistance. Either non-phosphorylated or phosphorylated eIF4E can mediate such an effect. Since ribosomes play an essential role in c-MYC-mediated cancer development, suppressing ribosome biogenesis may help reduce aggressiveness and reverse tamoxifen resistance in breast cancer. CX-5461, CX-3543 and haemanthamine have been shown to repress ribosome biogenesis. Using these chemicals might help reverse tamoxifen resistance in ER+ve breast cancer, provided that c-MYC-mediated ribosome biogenesis is the crucial factor for tamoxifen resistance. To employ these ribosome biogenesis inhibitors to combat tamoxifen resistance in the future, identification of predictive markers will be necessary.
Collapse
Affiliation(s)
| | | | | | | | - Ui-Soon Khoo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.T.); (C.-P.Y.); (M.-H.L.); (E.P.S.M.)
| |
Collapse
|
7
|
Overexpression of the nucleoporin Nup88 stimulates migration and invasion of HeLa cells. Histochem Cell Biol 2021; 156:409-421. [PMID: 34331103 PMCID: PMC8604841 DOI: 10.1007/s00418-021-02020-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
Elevated expression of the nucleoporin Nup88, a constituent of the nuclear pore complex, is seen in various types of malignant tumors, but whether this overexpression contributes to the malignant phenotype has yet to be determined. Here, we investigated the effect of the overexpression of Nup88 on the migration and invasion of cervical cancer HeLa cells. The overexpression of Nup88 promoted a slight but significant increase in both migration and invasion, whereas knockdown of Nup88 by RNA interference suppressed these phenotypes. The observed phenotypes in Nup88-overexpressing HeLa cells were not due to the progression of the epithelial-to-mesenchymal transition or activation of NF-κB, which are known to be important for cell migration and invasion. Instead, we identified an upregulation of matrix metalloproteinase-12 (MMP-12) at both the gene and protein levels in Nup88-overexpressing HeLa cells. Upregulation of MMP-12 protein by the overexpression of Nup88 was also observed in one other cervical cancer cell line and two prostate cancer cell lines but not 293 cells. Treatment with a selective inhibitor against MMP-12 enzymatic activity significantly suppressed the invasive ability of HeLa cells induced by Nup88 overexpression. Taken together, our results suggest that overexpression of Nup88 can stimulate malignant phenotypes including invasive ability, which is promoted by MMP-12 expression.
Collapse
|
8
|
Lu Y, Yu S, Wang G, Ma Z, Fu X, Cao Y, Li Q, Xu Z. Elevation of EIF4G1 promotes non-small cell lung cancer progression by activating mTOR signalling. J Cell Mol Med 2021; 25:2994-3005. [PMID: 33523588 PMCID: PMC7957198 DOI: 10.1111/jcmm.16340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 01/04/2023] Open
Abstract
Eukaryotic translation initiation factor 4 gamma 1 (EIF4G1), as the key component of the transcription initiation factor complex EIF4F, is significantly upregulated in multiple solid tumours, including lung cancer. However, the function and mechanism of EIF4G1 in the regulation of non‐small‐cell lung cancer (NSCLC) remain unclear. Here, using the clinical samples and the comprehensive survival analysis platforms Kaplan‐Meier plotter, we observed aberrant upregulation of EIF4G1 in NSCLC tissues; furthermore, high expression of EIF4G1 showed association with low differentiation of lung cancer cells and poor overall survival in NSCLC patients. Non‐small‐cell lung cancer cell line A549 and H1703 stably infected with EIF4G1 shRNA were used to determine the function of EIF4G1 in regulating cell proliferation and tumorigenesis in vitro and in vivo. The results demonstrated that EIF4G1 promoted the G1/S transition of the cell cycle and tumour cell proliferation in non‐small cell lung cancer. Mechanistically, EIF4G1 was found to regulate the expression and phosphorylation of mTOR (Ser2448), which mediates the tumorigenesis‐promoting function of EIF4G1. The inhibition of mTOR attenuated the EIF4G1‐induced development and progression of tumours. These findings demonstrated that EIF4G1 is a new potential molecular target for the clinical treatment of non‐small cell lung cancer.
Collapse
Affiliation(s)
- Ying Lu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shanshan Yu
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guangxue Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zuan Ma
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuelian Fu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yueyu Cao
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qinchuan Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zengguang Xu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Campos RK, Wijeratne HRS, Shah P, Garcia-Blanco MA, Bradrick SS. Ribosomal stalk proteins RPLP1 and RPLP2 promote biogenesis of flaviviral and cellular multi-pass transmembrane proteins. Nucleic Acids Res 2020; 48:9872-9885. [PMID: 32890404 PMCID: PMC7515724 DOI: 10.1093/nar/gkaa717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/05/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
The ribosomal stalk proteins, RPLP1 and RPLP2 (RPLP1/2), which form the ancient ribosomal stalk, were discovered decades ago but their functions remain mysterious. We had previously shown that RPLP1/2 are exquisitely required for replication of dengue virus (DENV) and other mosquito-borne flaviviruses. Here, we show that RPLP1/2 function to relieve ribosome pausing within the DENV envelope coding sequence, leading to enhanced protein stability. We evaluated viral and cellular translation in RPLP1/2-depleted cells using ribosome profiling and found that ribosomes pause in the sequence coding for the N-terminus of the envelope protein, immediately downstream of sequences encoding two adjacent transmembrane domains (TMDs). We also find that RPLP1/2 depletion impacts a ribosome density for a small subset of cellular mRNAs. Importantly, the polarity of ribosomes on mRNAs encoding multiple TMDs was disproportionately affected by RPLP1/2 knockdown, implying a role for RPLP1/2 in multi-pass transmembrane protein biogenesis. These analyses of viral and host RNAs converge to implicate RPLP1/2 as functionally important for ribosomes to elongate through ORFs encoding multiple TMDs. We suggest that the effect of RPLP1/2 at TMD associated pauses is mediated by improving the efficiency of co-translational folding and subsequent protein stability.
Collapse
Affiliation(s)
- Rafael K Campos
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | | | - Premal Shah
- Department of Genetics, Rutgers University, NJ, USA
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.,Programme of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
10
|
Destefanis F, Manara V, Bellosta P. Myc as a Regulator of Ribosome Biogenesis and Cell Competition: A Link to Cancer. Int J Mol Sci 2020; 21:ijms21114037. [PMID: 32516899 PMCID: PMC7312820 DOI: 10.3390/ijms21114037] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
The biogenesis of ribosomes is a finely regulated multistep process linked to cell proliferation and growth-processes which require a high rate of protein synthesis. One of the master regulators of ribosome biogenesis is Myc, a well-known proto-oncogene that has an important role in ribosomal function and in the regulation of protein synthesis. The relationship between Myc and the ribosomes was first highlighted in Drosophila, where Myc's role in controlling Pol-I, II and III was evidenced by both microarrays data, and by the ability of Myc to control growth (mass), and cellular and animal size. Moreover, Myc can induce cell competition, a physiological mechanism through which cells with greater fitness grow better and thereby prevail over less competitive cells, which are actively eliminated by apoptosis. Myc-induced cell competition was shown to regulate both vertebrate development and tumor promotion; however, how these functions are linked to Myc's control of ribosome biogenesis, protein synthesis and growth is not clear yet. In this review, we will discuss the major pathways that link Myc to ribosomal biogenesis, also in light of its function in cell competition, and how these mechanisms may reflect its role in favoring tumor promotion.
Collapse
Affiliation(s)
- Francesca Destefanis
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy; (F.D.); (V.M.)
| | - Valeria Manara
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy; (F.D.); (V.M.)
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy; (F.D.); (V.M.)
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
- Correspondence: ; Tel.: +39-0461-283070
| |
Collapse
|
11
|
Niche origin of mesenchymal stem cells derived microvesicles determines opposing effects on NSCLC: Primary versus metastatic. Cell Signal 2019; 65:109456. [PMID: 31672605 DOI: 10.1016/j.cellsig.2019.109456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 01/01/2023]
Abstract
Novel therapeutic approaches that address the malignant cells in their stroma microenvironment are urgently needed in lung cancer. The stroma resident mesenchymal stem cells (MSCs) interact with cancer cells in diverse ways including microvesicles (MVs) that transfer proteins and RNA species thereby modulating recipient cells' phenotype. Previously, we have demonstrated that MSCs' secretome from the primary non-small cell lung cancer (NSCLC) niche (lung) and metastatic niche (bone marrow (BM)) demonstrate opposite effects on NSCLC cells in a translation initiation (TI) dependent manner. Here, we examined the effect of MVs secreted from BM-MSCs' or lung-MSCs (healthy, NSCLC) to NSCLC phenotype. Briefly, NSCLC cell lines treated with Lung or BM-MSCs' MVs were assayed for viability (WST-1), cell count/death (trypan), migration (scratch), TI status and MAPKs activation (immunoblotting). Corresponding to previous published trends, Lung-MSCs' MVs promoted NSCLC cells' assayed traits whereas, BM-MSCs' MVs suppressed them. Activation of MAPKs and autophagy was registered in lung-MSCs MVs treated NSCLC cell lines only. Furthermore, lung-MSCs' MVs' treated NSCLC cells demonstrated an early (5min) activation of MAPKs and TI factors (peIF4E/peIF4GI) not evident in BM-MSCs MVs treated cells. These observations depict a role for MSCs'-MVs in NSCLC phenotype design and display distinct differences between the primary and metastatic niches that correspond to disease progression. In conclusion, the systemic nature of MVs marks them as attractive therapeutic markers/targets and we propose that identification of specific cargoes/signals that differentiate between MSCs MVs of primary and metastatic niches may introduce fresh therapeutic approaches.
Collapse
|
12
|
Dyer A, Schoeps B, Frost S, Jakeman P, Scott EM, Freedman J, Jacobus EJ, Seymour LW. Antagonism of Glycolysis and Reductive Carboxylation of Glutamine Potentiates Activity of Oncolytic Adenoviruses in Cancer Cells. Cancer Res 2019; 79:331-345. [PMID: 30487139 DOI: 10.1158/0008-5472.can-18-1326] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/08/2018] [Accepted: 11/08/2018] [Indexed: 11/16/2022]
Abstract
Tumor cells exhibiting the Warburg effect rely on aerobic glycolysis for ATP production and have a notable addiction to anaplerotic use of glutamine for macromolecular synthesis. This strategy maximizes cellular biosynthetic potential while avoiding excessive depletion of NAD+ and provides an attractive anabolic environment for viral infection. Here, we evaluate infection of highly permissive and poorly permissive cancer cells with wild-type adenoviruses and the oncolytic chimeric adenovirus enadenotucirev (EnAd). All adenoviruses caused an increase in glucose and glutamine uptake along with increased lactic acid secretion. Counterintuitively, restricting glycolysis using 2-deoxyglucose or by limiting glucose supply strongly improved virus activity in both cell types. Antagonism of glycolysis also boosted EnAd replication and transgene expression within human tumor biopsies and in xenografted tumors in vivo. In contrast, the virus life cycle was critically dependent on exogenous glutamine. Virus activity in glutamine-free cells was rescued with exogenous membrane-permeable α-ketoglutarate, but not pyruvate or oxaloacetate, suggesting an important role for reductive carboxylation in glutamine usage, perhaps for production of biosynthetic intermediates. This overlap between the metabolic phenotypes of adenovirus infection and transformed tumor cells may provide insight into how oncolytic adenoviruses exploit metabolic transformation to augment their selectivity for cancer cells. SIGNIFICANCE: This study describes changes in glucose and glutamine metabolism induced by oncolytic and wild-type adenoviruses in cancer cells, which will be important to consider in the preclinical evaluation of oncolytic viruses.
Collapse
Affiliation(s)
- Arthur Dyer
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Benjamin Schoeps
- Institute of Molecular Immunology and Experimental Oncology, Technische Universität München, München, Germany
| | - Sally Frost
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Philip Jakeman
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Eleanor M Scott
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Joshua Freedman
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Egon J Jacobus
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Leonard W Seymour
- Department of Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
13
|
Avanzino BC, Jue H, Miller CM, Cheung E, Fuchs G, Fraser CS. Molecular mechanism of poliovirus Sabin vaccine strain attenuation. J Biol Chem 2018; 293:15471-15482. [PMID: 30126841 DOI: 10.1074/jbc.ra118.004913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/11/2018] [Indexed: 11/06/2022] Open
Abstract
Recruitment of poliovirus (PV) RNA to the human ribosome requires the coordinated interaction of the viral internal ribosome entry site (IRES) and several host cellular initiation factors and IRES trans-acting factors (ITAFs). Attenuated PV Sabin strains contain point mutations in the PV IRES domain V (dV) that inhibit viral translation. Remarkably, attenuation is most apparent in cells of the central nervous system, but the molecular basis to explain this is poorly understood. The dV contains binding sites for eukaryotic initiation factor 4G (eIF4G) and polypyrimidine tract-binding protein (PTB). Impaired binding of these proteins to the mutant IRESs has been observed, but these effects have not been quantitated. We used a fluorescence anisotropy assay to reveal that the Sabin mutants reduce the equilibrium dissociation constants of eIF4G and PTB to the PV IRES by up to 6-fold. Using the most inhibitory Sabin 3 mutant, we used a real-time fluorescence helicase assay to show that the apparent affinity of an active eIF4G/4A/4B helicase complex for the IRES is reduced by 2.5-fold. The Sabin 3 mutant did not alter the maximum rate of eIF4A-dependent helicase activity, suggesting that this mutant primarily reduces the affinity, rather than activity, of the unwinding complex. To confirm this affinity model of attenuation, we show that eIF4G overexpression in HeLa cells overcomes the attenuation of a Sabin 3 mutant PV-luciferase replicon. Our study provides a quantitative framework for understanding the mechanism of PV Sabin attenuation and provides an explanation for the previously observed cell type-specific translational attenuation.
Collapse
Affiliation(s)
- Brian C Avanzino
- From the Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California 95616 and
| | - Helen Jue
- From the Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California 95616 and
| | - Clare M Miller
- the Department of Biological Sciences, The RNA Institute, University at Albany, State University of New York, Albany, New York 12222
| | - Emily Cheung
- the Department of Biological Sciences, The RNA Institute, University at Albany, State University of New York, Albany, New York 12222
| | - Gabriele Fuchs
- the Department of Biological Sciences, The RNA Institute, University at Albany, State University of New York, Albany, New York 12222
| | - Christopher S Fraser
- From the Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California 95616 and
| |
Collapse
|
14
|
Regulation of Hypoxia-Inducible Factor 1α during Hypoxia by DAP5-Induced Translation of PHD2. Mol Cell Biol 2018. [PMID: 29530922 DOI: 10.1128/mcb.00647-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Death-associated protein 5 (DAP5) is an atypical isoform of the translation initiation scaffolds eukaryotic initiation factor 4GI (eIF4GI) and eIF4GII (eIF4GI/II), which recruit mRNAs to ribosomes in mammals. Unlike eIF4GI/II, DAP5 binds eIF2β, a subunit of the eIF2 complex that delivers methionyl-tRNA to ribosomes. We discovered that DAP5:eIF2β binding depends on specific stimuli, e.g., protein kinase C (PKC)-Raf-extracellular signal-regulated kinase 1/2 (ERK1/2) signals, and determines DAP5's influence on global and template-specific translation. DAP5 depletion caused an unanticipated surge of hypoxia-inducible factor 1α (HIF-1α), the transcription factor and master switch of the hypoxia response. Physiologically, the hypoxia response is tempered through HIF-1α hydroxylation by the oxygen-sensing prolyl hydroxylase-domain protein 2 (PHD2) and subsequent ubiquitination and degradation. We found that DAP5 regulates HIF-1α abundance through DAP5:eIF2β-dependent translation of PHD2. DAP5:eIF2-induced PHD2 translation occurred during hypoxia-associated protein synthesis repression, indicating a role as a safeguard to reverse HIF-1α accumulation and curb the hypoxic response.
Collapse
|
15
|
Makise M, Nakamura H, Kuniyasu A. The role of vimentin in the tumor marker Nup88-dependent multinucleated phenotype. BMC Cancer 2018; 18:519. [PMID: 29724197 PMCID: PMC5934895 DOI: 10.1186/s12885-018-4454-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Background Nucleoporin Nup88, a component of nuclear pore complexes, is known to be overexpressed in several types of tumor tissue. The overexpression of Nup88 has been reported to promote the early step of tumorigenesis by inducing multinuclei in both HeLa cells and a mouse model. However, the molecular basis of how Nup88 leads to a multinucleated phenotype remains unclear because of a lack of information concerning its binding partners. In this study, we characterize a novel interaction between Nup88 and vimentin. We also examine the involvement of vimentin in the Nup88-dependent multinucleated phenotype. Methods Cells overexpressing tagged versions of Nup88, vimentin and their truncations were used in this study. Coprecipitation and GST-pulldown assays were carried out to analyze protein-protein interactions. Vimentin knockdown by siRNA was performed to examine the functional role of the Nup88-vimentin interaction in cells. The phosphorylation status of vimentin was analyzed by immunoblotting using an antibody specific for its phosphorylation site. Results Vimentin was identified as a Nup88 interacting partner, although it did not bind to other nucleoporins, such as Nup50, Nup214, and Nup358, in HeLa cell lysates. The N-terminal 541 amino acid residues of Nup88 was found to be responsible for its interaction with vimentin. Recombinant GST-tagged Nup88 bound to recombinant vimentin in a GST-pulldown assay. Although overexpression of Nup88 in HeLa cells was observed mainly at the nuclear rim and in the cytoplasm, colocalization with vimentin was only partially detected at or around the nuclear rim. Disruption of the Nup88-vimentin interaction by vimentin specific siRNA transfection suppressed the Nup88-dependent multinucleated phenotype. An excess amount of Nup88 in cell lysates inhibited the dephosphorylation of a serine residue (Ser83) within the vimentin N-terminal region even in the absence and presence of an exogenous phosphatase. The N-terminal 96 amino acid residues of vimentin interacted with both full-length and the N-terminal 541 residues of Nup88. Conclusions Nup88 can affect the phosphorylation status of vimentin, which may contribute to the Nup88-dependent multinucleated phenotype through changing the organization of vimentin.
Collapse
Affiliation(s)
- Masaki Makise
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan.
| | - Hideaki Nakamura
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| | - Akihiko Kuniyasu
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| |
Collapse
|
16
|
Galarza-Muñoz G, Briggs FBS, Evsyukova I, Schott-Lerner G, Kennedy EM, Nyanhete T, Wang L, Bergamaschi L, Widen SG, Tomaras GD, Ko DC, Bradrick SS, Barcellos LF, Gregory SG, Garcia-Blanco MA. Human Epistatic Interaction Controls IL7R Splicing and Increases Multiple Sclerosis Risk. Cell 2017; 169:72-84.e13. [PMID: 28340352 DOI: 10.1016/j.cell.2017.03.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 09/18/2016] [Accepted: 03/02/2017] [Indexed: 12/18/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disorder where T cells attack neurons in the central nervous system (CNS) leading to demyelination and neurological deficits. A driver of increased MS risk is the soluble form of the interleukin-7 receptor alpha chain gene (sIL7R) produced by alternative splicing of IL7R exon 6. Here, we identified the RNA helicase DDX39B as a potent activator of this exon and consequently a repressor of sIL7R, and we found strong genetic association of DDX39B with MS risk. Indeed, we showed that a genetic variant in the 5' UTR of DDX39B reduces translation of DDX39B mRNAs and increases MS risk. Importantly, this DDX39B variant showed strong genetic and functional epistasis with allelic variants in IL7R exon 6. This study establishes the occurrence of biological epistasis in humans and provides mechanistic insight into the regulation of IL7R exon 6 splicing and its impact on MS risk.
Collapse
Affiliation(s)
- Gaddiel Galarza-Muñoz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Center for RNA Biology, Duke University, Durham, NC 27710, USA; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Farren B S Briggs
- Department of Epidemiology and Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Irina Evsyukova
- Center for RNA Biology, Duke University, Durham, NC 27710, USA
| | - Geraldine Schott-Lerner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Edward M Kennedy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Tinashe Nyanhete
- Department of Immunology, Duke University Durham, NC 27710, USA; Department of Surgery, Duke University Durham, NC 27710, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Laura Bergamaschi
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Georgia D Tomaras
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Durham, NC 27710, USA; Department of Surgery, Duke University Durham, NC 27710, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center; Durham, NC 27710, USA
| | - Shelton S Bradrick
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Center for RNA Biology, Duke University, Durham, NC 27710, USA; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Lisa F Barcellos
- Division of Epidemiology, School of Public Health, University of California Berkeley, Berkeley, CA 94720, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA; Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Mariano A Garcia-Blanco
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Center for RNA Biology, Duke University, Durham, NC 27710, USA; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
17
|
Terenin IM, Smirnova VV, Andreev DE, Dmitriev SE, Shatsky IN. A researcher's guide to the galaxy of IRESs. Cell Mol Life Sci 2017; 74:1431-1455. [PMID: 27853833 PMCID: PMC11107752 DOI: 10.1007/s00018-016-2409-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/25/2022]
Abstract
The idea of internal initiation is frequently exploited to explain the peculiar translation properties or unusual features of some eukaryotic mRNAs. In this review, we summarize the methods and arguments most commonly used to address cases of translation governed by internal ribosome entry sites (IRESs). Frequent mistakes are revealed. We explain why "cap-independent" does not readily mean "IRES-dependent" and why the presence of a long and highly structured 5' untranslated region (5'UTR) or translation under stress conditions cannot be regarded as an argument for appealing to internal initiation. We carefully describe the known pitfalls and limitations of the bicistronic assay and artefacts of some commercially available in vitro translation systems. We explain why plasmid DNA transfection should not be used in IRES studies and which control experiments are unavoidable if someone decides to use it anyway. Finally, we propose a workflow for the validation of IRES activity, including fast and simple experiments based on a single genetic construct with a sequence of interest.
Collapse
Affiliation(s)
- Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Victoria V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitri E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
18
|
RPLP1 and RPLP2 Are Essential Flavivirus Host Factors That Promote Early Viral Protein Accumulation. J Virol 2017; 91:JVI.01706-16. [PMID: 27974556 DOI: 10.1128/jvi.01706-16] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022] Open
Abstract
The Flavivirus genus contains several arthropod-borne viruses that pose global health threats, including dengue viruses (DENV), yellow fever virus (YFV), and Zika virus (ZIKV). In order to understand how these viruses replicate in human cells, we previously conducted genome-scale RNA interference screens to identify candidate host factors. In these screens, we identified ribosomal proteins RPLP1 and RPLP2 (RPLP1/2) to be among the most crucial putative host factors required for DENV and YFV infection. RPLP1/2 are phosphoproteins that bind the ribosome through interaction with another ribosomal protein, RPLP0, to form a structure termed the ribosomal stalk. RPLP1/2 were validated as essential host factors for DENV, YFV, and ZIKV infection in two human cell lines: A549 lung adenocarcinoma and HuH-7 hepatoma cells, and for productive DENV infection of Aedes aegypti mosquitoes. Depletion of RPLP1/2 caused moderate cell-line-specific effects on global protein synthesis, as determined by metabolic labeling. In A549 cells, global translation was increased, while in HuH-7 cells it was reduced, albeit both of these effects were modest. In contrast, RPLP1/2 knockdown strongly reduced early DENV protein accumulation, suggesting a requirement for RPLP1/2 in viral translation. Furthermore, knockdown of RPLP1/2 reduced levels of DENV structural proteins expressed from an exogenous transgene. We postulate that these ribosomal proteins are required for efficient translation elongation through the viral open reading frame. In summary, this work identifies RPLP1/2 as critical flaviviral host factors required for translation. IMPORTANCE Flaviviruses cause important diseases in humans. Examples of mosquito-transmitted flaviviruses include dengue, yellow fever and Zika viruses. Viruses require a plethora of cellular factors to infect cells, and the ribosome plays an essential role in all viral infections. The ribosome is a complex macromolecular machine composed of RNA and proteins and it is responsible for protein synthesis. We identified two specific ribosomal proteins that are strictly required for flavivirus infection of human cells and mosquitoes: RPLP1 and RPLP2 (RPLP1/2). These proteins are part of a structure known as the ribosomal stalk and help orchestrate the elongation phase of translation. We show that flaviviruses are particularly dependent on the function of RPLP1/2. Our findings suggest that ribosome composition is an important factor for virus translation and may represent a regulatory layer for translation of specific cellular mRNAs.
Collapse
|
19
|
Attar-Schneider O, Drucker L, Gottfried M. Migration and epithelial-to-mesenchymal transition of lung cancer can be targeted via translation initiation factors eIF4E and eIF4GI. J Transl Med 2016; 96:1004-15. [PMID: 27501049 DOI: 10.1038/labinvest.2016.77] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/18/2016] [Accepted: 06/20/2016] [Indexed: 02/06/2023] Open
Abstract
Metastasis underlies cancer morbidity and accounts for disease progression and significant death rates generally and in non-small cell lung cancer (NSCLC) particularly. Therefore, it is critically important to understand the molecular events that regulate metastasis. Accumulating data portray a central role for protein synthesis, particularly translation initiation (TI) factors eIF4E and eIF4G in tumorigenesis and patients' survival. We have published that eIF4E/eIF4GI activities and consequently NSCLC cell migration are modulated by bone-marrow mesenchymal stem cell secretomes, suggesting a role for TI in metastasis. Here, we aimed to expand our understanding of the TI factors significance to NSCLC characteristics, particularly epithelial-to-mesenchymal transition (EMT) and migration, supportive of metastasis. In a model of NSCLC cell lines (H1299, H460), we inhibited eIF4E/eIF4GI's expressions (siRNA, ribavirin) and assessed NSCLC cell lines' migration (scratch), differentiation (EMT, immunoblotting), and expression of select microRNAs (qPCR). Initially, we determined an overexpression of several TI factors (eIF4E, eIF4GI, eIF4B, and DHX29) and their respective targets in NSCLC compared with normal lung samples (70-350%↑, P<0.05). Knockdown (KD) of eIF4E/eIF4GI in NSCLC cell lines (70%↓, P<0.05) also manifested in decreased target levels (ERα, SMAD5, NFkB, CyclinD1, c-MYC, and HIF1α) (20-50%↓, P<0.05). eIF4E/eIF4GI KD also attenuated cell migration (60-75%↓, P<0.05), EMT promoters (15-90%↓, P<0.05), and enhanced EMT suppressors (30-380%↑, P<0.05). The importance of eIF4E KD to NSCLC phenotype was further corroborated with its inhibitor, ribavirin. Changes in expression of essential microRNAs implicated in NSCLC cell migration concluded the study (20-100%, P<0.05). In summary, targeting eIF4E/eIF4GI reduces migration and EMT, both essential for metastasis, thereby underscoring the potential of TI targeting in NSCLC therapy, especially the already clinically employed agents (ribavirin/4EGI). Comparison of these findings with previously reported effects of eIF4E/eIF4GI KD in multiple myeloma suggests a collective role for these TI factors in cancer progression.
Collapse
Affiliation(s)
- Oshrat Attar-Schneider
- Lung Cancer Research Laboratory, Lung Cancer Unit, Meir Medical Center, Kfar Saba, Israel.,Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Drucker
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Gottfried
- Lung Cancer Research Laboratory, Lung Cancer Unit, Meir Medical Center, Kfar Saba, Israel.,Oncology Department, Lung Cancer Unit, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Lu YF, Mauger DM, Goldstein DB, Urban TJ, Weeks KM, Bradrick SS. IFNL3 mRNA structure is remodeled by a functional non-coding polymorphism associated with hepatitis C virus clearance. Sci Rep 2015; 5:16037. [PMID: 26531896 PMCID: PMC4631997 DOI: 10.1038/srep16037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/08/2015] [Indexed: 01/14/2023] Open
Abstract
Polymorphisms near the interferon lambda 3 (IFNL3) gene strongly predict clearance of hepatitis C virus (HCV) infection. We analyzed a variant (rs4803217 G/T) located within the IFNL3 mRNA 3' untranslated region (UTR); the G allele (protective allele) is associated with elevated therapeutic HCV clearance. We show that the IFNL3 3' UTR represses mRNA translation and the rs4803217 allele modulates the extent of translational regulation. We analyzed the structures of IFNL3 variant mRNAs at nucleotide resolution by SHAPE-MaP. The rs4803217 G allele mRNA forms well-defined 3' UTR structure while the T allele mRNA is more dynamic. The observed differences between alleles are among the largest possible RNA structural alterations that can be induced by a single nucleotide change and transform the UTR from a single well-defined conformation to one with multiple dynamic interconverting structures. These data illustrate that non-coding genetic variants can have significant functional effects by impacting RNA structure.
Collapse
Affiliation(s)
- Yi-Fan Lu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham NC, 27710, USA
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - David M. Mauger
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Thomas J. Urban
- Center for Pharmacogenomics and Individualized Therapy, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7361, USA
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Shelton S. Bradrick
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham NC, 27710, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
21
|
Secretome of human bone marrow mesenchymal stem cells: an emerging player in lung cancer progression and mechanisms of translation initiation. Tumour Biol 2015; 37:4755-65. [PMID: 26515338 DOI: 10.1007/s13277-015-4304-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/20/2015] [Indexed: 12/25/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) remains the most common cause of cancer-related death worldwide. Patients presenting with advanced-stage NSCLC have poor prognosis, while metastatic spread accounts for >70 % of patient's deaths. The major advances in the treatment of lung cancer have brought only minor improvements in survival; therefore, novel strategic treatment approaches are urgently needed. Accumulating data allocate a central role for the cancer microenvironment including mesenchymal stem cells (MSCs) in acquisition of drug resistance and disease relapse. Furthermore, studies indicate that translation initiation factors are over expressed in NSCLC and negatively impact its prognosis. Importantly, translation initiation is highly modulated by microenvironmental cues. Therefore, we decided to examine the effect of bone marrow MSCs (BM-MSCs) from normal donors on NSCLC cell lines with special emphasis on translation initiation mechanism in the crosstalk. We cultured NSCLC cell lines with BM-MSC conditioned media (i.e., secretome) and showed deleterious effects on the cells' proliferation, viability, death, and migration. We also demonstrated reduced levels of translation initiation factors implicated in cancer progression [eukaryotic translation initiation factor 4E (eIF4E) and eukaryotic translation initiation factor 4GI (eIF4GI)], their targets, and regulators. Finally, we outlined a mechanism by which BM-MSCs' secretome affected NSCLC's mitogen-activated protein kinase (MAPK) signaling pathway, downregulated the cell migration, and diminished translation initiation factors' levels. Taken together, our study demonstrates that there is direct dialogue between the BM-MSCs' secretome and NSCLC cells that manipulates translation initiation and critically affects cell fate. We suggest that therapeutic approach that will sabotage this dialogue, especially in the BM microenvironment, may diminish lung cancer metastatic spread and morbidity and improve the patient's life quality.
Collapse
|
22
|
Boni A, Politi AZ, Strnad P, Xiang W, Hossain MJ, Ellenberg J. Live imaging and modeling of inner nuclear membrane targeting reveals its molecular requirements in mammalian cells. J Cell Biol 2015; 209:705-20. [PMID: 26056140 PMCID: PMC4460149 DOI: 10.1083/jcb.201409133] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 05/08/2015] [Indexed: 01/08/2023] Open
Abstract
Targeting of inner nuclear membrane (INM) proteins is essential for nuclear architecture and function, yet its mechanism remains poorly understood. Here, we established a new reporter that allows real-time imaging of membrane protein transport from the ER to the INM using Lamin B receptor and Lap2β as model INM proteins. These reporters allowed us to characterize the kinetics of INM targeting and establish a mathematical model of this process and enabled us to probe its molecular requirements in an RNA interference screen of 96 candidate genes. Modeling of the phenotypes of genes involved in transport of these INM proteins predicted that it critically depended on the number and permeability of nuclear pores and the availability of nuclear binding sites, but was unaffected by depletion of most transport receptors. These predictions were confirmed with targeted validation experiments on the functional requirements of nucleoporins and nuclear lamins. Collectively, our data support a diffusion retention model of INM protein transport in mammalian cells.
Collapse
Affiliation(s)
- Andrea Boni
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Antonio Z Politi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Petr Strnad
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Wanqing Xiang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - M Julius Hossain
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|
23
|
Moral-López P, Alvarez E, Redondo N, Skern T, Carrasco L. L protease from foot and mouth disease virus confers eIF2-independent translation for mRNAs bearing picornavirus IRES. FEBS Lett 2014; 588:4053-9. [PMID: 25268112 DOI: 10.1016/j.febslet.2014.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/08/2014] [Accepted: 09/21/2014] [Indexed: 12/26/2022]
Abstract
The leader protease (L(pro)) from foot-and-mouth disease virus (FMDV) has the ability to cleave eIF4G, leading to a blockade of cellular protein synthesis. In contrast to previous reports, our present findings demonstrate that FMDV L(pro) is able to increase translation driven by FMDV IRES. Additionally, inactivation of eIF2 subsequent to phosphorylation induced by arsenite or thapsigargin in BHK cells blocks protein synthesis directed by FMDV IRES, whereas in the presence of L(pro), significant translation is found under these conditions. This phenomenon was also observed in cell-free systems after induction of eIF2 phosphorylation by addition of poly(I:C).
Collapse
Affiliation(s)
- Pablo Moral-López
- Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), C/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Enrique Alvarez
- Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), C/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Natalia Redondo
- Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), C/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Tim Skern
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Luis Carrasco
- Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), C/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
24
|
Induction of viral, 7-methyl-guanosine cap-independent translation and oncolysis by mitogen-activated protein kinase-interacting kinase-mediated effects on the serine/arginine-rich protein kinase. J Virol 2014; 88:13135-48. [PMID: 25187541 DOI: 10.1128/jvi.01883-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Protein synthesis, the most energy-consuming process in cells, responds to changing physiologic priorities, e.g., upon mitogen- or stress-induced adaptations signaled through the mitogen-activated protein kinases (MAPKs). The prevailing status of protein synthesis machinery is a viral pathogenesis factor, particularly for plus-strand RNA viruses, where immediate translation of incoming viral RNAs shapes host-virus interactions. In this study, we unraveled signaling pathways centered on the ERK1/2 and p38α MAPK-interacting kinases MNK1/2 and their role in controlling 7-methyl-guanosine (m(7)G) "cap"-independent translation at enterovirus type 1 internal ribosomal entry sites (IRESs). Activation of Raf-MEK-ERK1/2 signals induced viral IRES-mediated translation in a manner dependent on MNK1/2. This effect was not due to MNK's known functions as eukaryotic initiation factor (eIF) 4G binding partner or eIF4E(S209) kinase. Rather, MNK catalytic activity enabled viral IRES-mediated translation/host cell cytotoxicity through negative regulation of the Ser/Arg (SR)-rich protein kinase (SRPK). Our investigations suggest that SRPK activity is a major determinant of type 1 IRES competency, host cell cytotoxicity, and viral proliferation in infected cells. IMPORTANCE We are targeting unfettered enterovirus IRES activity in cancer with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES. A phase I clinical trial of PVSRIPO with intratumoral inoculation in patients with recurrent glioblastoma (GBM) is showing early promise. Viral translation proficiency in infected GBM cells is a core requirement for the antineoplastic efficacy of PVSRIPO. Therefore, it is critically important to understand the mechanisms controlling viral cap-independent translation in infected host cells.
Collapse
|
25
|
Mitogen-activated protein kinase-interacting kinase regulates mTOR/AKT signaling and controls the serine/arginine-rich protein kinase-responsive type 1 internal ribosome entry site-mediated translation and viral oncolysis. J Virol 2014; 88:13149-60. [PMID: 25187540 DOI: 10.1128/jvi.01884-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Translation machinery is a major recipient of the principal mitogenic signaling networks involving Raf-ERK1/2 and phosphoinositol 3-kinase (PI3K)-mechanistic target of rapamycin (mTOR). Picornavirus internal ribosomal entry site (IRES)-mediated translation and cytopathogenic effects are susceptible to the status of such signaling cascades in host cells. We determined that tumor-specific cytotoxicity of the poliovirus/rhinovirus chimera PVSRIPO is facilitated by Raf-ERK1/2 signals to the mitogen-activated protein kinase (MAPK)-interacting kinase (MNK) and its effects on the partitioning/activity of the Ser/Arg (SR)-rich protein kinase (SRPK) (M. C. Brown, J. D. Bryant, E. Y. Dobrikova, M. Shveygert, S. S. Bradrick, V. Chandramohan, D. D. Bigner, and M, Gromeier, J. Virol. 22:13135-13148, 2014, doi:http://dx.doi.org/10.1128/JVI.01883-14). Here, we show that MNK regulates SRPK via mTOR and AKT. Our investigations revealed a MNK-controlled mechanism acting on mTORC2-AKT. The resulting suppression of AKT signaling attenuates SRPK activity to enhance picornavirus type 1 IRES translation and favor PVSRIPO tumor cell toxicity and killing. IMPORTANCE Oncolytic immunotherapy with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES, is demonstrating early promise in clinical trials with intratumoral infusion in recurrent glioblastoma (GBM). Our investigations demonstrate that the core mechanistic principle of PVSRIPO, tumor-selective translation and cytotoxicity, relies on constitutive ERK1/2-MNK signals that counteract the deleterious effects of runaway AKT-SRPK activity in malignancy.
Collapse
|
26
|
Attar-Schneider O, Drucker L, Zismanov V, Tartakover-Matalon S, Lishner M. Targeting eIF4GI translation initiation factor affords an attractive therapeutic strategy in multiple myeloma. Cell Signal 2014; 26:1878-87. [DOI: 10.1016/j.cellsig.2014.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 01/04/2023]
|
27
|
Howard A, Rogers AN. Role of translation initiation factor 4G in lifespan regulation and age-related health. Ageing Res Rev 2014; 13:115-24. [PMID: 24394551 DOI: 10.1016/j.arr.2013.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 01/04/2023]
Abstract
Inhibiting expression of eukaryotic translation initiation factor 4G (eIF4G) arrests normal development but extends lifespan when suppressed during adulthood. In addition to reducing overall translation, inhibition alters the stoichiometry of mRNA translation in favor of genes important for responding to stress and against those associated with growth and reproduction in C. elegans. In humans, aberrant expression of eIF4G is associated with certain forms of cancer and neurodegeneration. Here we review what is known about the roles of eIF4G in molecular, cellular, and organismal contexts. Also discussed are the gaps in understanding of this factor, particularly with regard to the roles of specific forms of expression in individual tissues and the importance of understanding eIF4G for development of potential therapeutic applications.
Collapse
|
28
|
Mitotic phosphorylation of eukaryotic initiation factor 4G1 (eIF4G1) at Ser1232 by Cdk1:cyclin B inhibits eIF4A helicase complex binding with RNA. Mol Cell Biol 2013; 34:439-51. [PMID: 24248602 DOI: 10.1128/mcb.01046-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During mitosis, global translation is suppressed, while synthesis of proteins with vital mitotic roles must go on. Prior evidence suggests that the mitotic translation shift involves control of initiation. Yet, no signals specifically targeting translation initiation factors during mitosis have been identified. We used phosphoproteomics to investigate the central translation initiation scaffold and "ribosome adaptor," eukaryotic initiation factor 4G1 (eIF4G1) in interphase or nocodazole-arrested mitotic cells. This approach and kinase inhibition assays, in vitro phosphorylation with recombinant kinase, and kinase depletion-reconstitution experiments revealed that Ser1232 in eIF4G1 is phosphorylated by cyclin-dependent kinase 1 (Cdk1):cyclin B during mitosis. Ser1232 is located in an unstructured region of the C-terminal portion of eIF4G1 that coordinates assembly of the eIF4G/-4A/-4B helicase complex and binding of the mitogen-activated protein kinase (MAPK) signal-integrating kinase, Mnk. Intense phosphorylation of Ser1232 in mitosis strongly enhanced the interactions of eIF4A with HEAT domain 2 of eIF4G and decreased association of eIF4G/-4A with RNA. Our findings implicate phosphorylation of eIF4G1(Ser1232) by Cdk1:cyclin B and its inhibitory effects on eIF4A helicase activity in the mitotic translation initiation shift.
Collapse
|
29
|
Minai-Tehrani A, Chang SH, Park SB, Cho MH. The O‑glycosylation mutant osteopontin alters lung cancer cell growth and migration in vitro and in vivo. Int J Mol Med 2013; 32:1137-49. [PMID: 24008322 DOI: 10.3892/ijmm.2013.1483] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/27/2013] [Indexed: 11/05/2022] Open
Abstract
Osteopontin (OPN) is an acidic, glycosylated and phosphorylated protein that plays an essential role in determining the aggressiveness and oncogenic potential of several types of cancer, including lung cancer. The OPN function is highly dependent on post-translational modification (PTM) and regulation of the processes that involve OPN can be mediated through glycosylation. However, the connection between OPN function and its O-glycosylation in lung cancer cells has yet to be investigated. In the present study, this issue was addressed by studying the effects of wild-type (WT) OPN and a triple mutant (TM) of OPN, which was mutated at three O-glycosylation sites in lung cancer cells. It was shown that OPN WT rather than OPN TM induced the OPN‑mediated signaling pathway. The OPN WT expression enhanced cap-dependent protein translation, NF-κB activity and glucose uptake, whereas a reduction was observed in cells treated with OPN TM. The results clearly demonstrated that unlike OPN WT, OPN TM did not increase lung cancer cell growth and migration both in vitro and in a xenograft mouse model. Thus, results of the present study suggested that targeting OPN by introducing OPN TM may be a good strategy for treating lung cancer.
Collapse
Affiliation(s)
- Arash Minai-Tehrani
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151‑742, Japan
| | | | | | | |
Collapse
|
30
|
Minai-Tehrani A, Chang SH, Kwon JT, Hwang SK, Kim JE, Shin JY, Yu KN, Park SJ, Jiang HL, Kim JH, Hong SH, Kang B, Kim D, Chae CH, Lee KH, Beck GR, Cho MH. Aerosol delivery of lentivirus-mediated O-glycosylation mutant osteopontin suppresses lung tumorigenesis in K-ras (LA1) mice. Cell Oncol (Dordr) 2013; 36:15-26. [PMID: 23070870 DOI: 10.1007/s13402-012-0107-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Osteopontin (OPN) is a secreted glycophosphoprotein that has been implicated in the regulation of cancer development. The function of OPN is primarily regulated through post-translational modification such as glycosylation. As yet, however, the relationship between OPN glycosylation and lung cancer development has not been investigated. In this study, we addressed this issue by studying the effect of a triple mutant (TM) of OPN, which is mutated at three O-glycosylation sites, on lung cancer development in K-ras (LA1) mice, a murine model for human non-small cell lung cancer. METHODS Aerosolized lentivirus-based OPN TM was delivered into the lungs of K-ras (LA1) mice using a nose-only-inhalation chamber 3 times/wk for 4 wks. Subsequently, the effects of repeated delivery of OPN TM on lung tumorigenesis and its concomitant OPN-mediated signaling pathways were investigated. RESULTS Aerosol-delivered OPN TM inhibited lung tumorigenesis. In addition, the OPN-mediated Akt signaling pathway was inhibited. OPN TM also decreased NF-κB activity and the phosphorylation of 4E-BP1, while facilitating apoptosis in the lungs of K-ras (LA1) mice. CONCLUSIONS Our results show that aerosol delivery of OPN TM successfully suppresses lung cancer development in the K-ras (LA1) mouse model and, therefore, warrant its further investigation as a possible therapeutic strategy for non-small cell lung cancer.
Collapse
Affiliation(s)
- Arash Minai-Tehrani
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
de Vries S, Naarmann-de Vries IS, Urlaub H, Lue H, Bernhagen J, Ostareck DH, Ostareck-Lederer A. Identification of DEAD-box RNA helicase 6 (DDX6) as a cellular modulator of vascular endothelial growth factor expression under hypoxia. J Biol Chem 2013; 288:5815-27. [PMID: 23293030 DOI: 10.1074/jbc.m112.420711] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vascular endothelial growth factor A (VEGF) is a crucial proangiogenic factor, which regulates blood vessel supply under physiologic and pathologic conditions. The VEGF mRNA 5'-untranslated region (5'-UTR) bears internal ribosome entry sites (IRES), which confer sustained VEGF mRNA translation under hypoxia when 5'-cap-dependent mRNA translation is inhibited. VEGF IRES-mediated initiation of translation requires the modulated interaction of trans-acting factors. To identify trans-acting factors that control VEGF mRNA translation under hypoxic conditions we established an in vitro translation system based on human adenocarcinoma cells (MCF-7). Cytoplasmic extracts of MCF-7 cells grown under hypoxia (1% oxygen) recapitulate VEGF IRES-mediated reporter mRNA translation. Employing the VEGF mRNA 5'-UTR and 3'-UTR in an RNA affinity approach we isolated interacting proteins from translational active MCF-7 extract prepared from cells grown under normoxia or hypoxia. Interestingly, mass spectrometry analysis identified the DEAD-box RNA helicase 6 (DDX6) that interacts with the VEGF mRNA 5'-UTR. Recombinant DDX6 inhibits VEGF IRES-mediated translation in normoxic MCF-7 extract. Under hypoxia the level of DDX6 declines, and its interaction with VEGF mRNA is diminished in vivo. Depletion of DDX6 by RNAi further promotes VEGF expression in MCF-7 cells. Increased secretion of VEGF from DDX6 knockdown cells positively affects vascular tube formation of human umbilical vein endothelial cells (HUVEC) in vitro. Our results indicate that the decrease of DDX6 under hypoxia contributes to the activation of VEGF expression and promotes its proangiogenic function.
Collapse
Affiliation(s)
- Sebastian de Vries
- Experimental Research Unit, Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Makise M, Mackay DR, Elgort S, Shankaran SS, Adam SA, Ullman KS. The Nup153-Nup50 protein interface and its role in nuclear import. J Biol Chem 2012; 287:38515-22. [PMID: 23007389 DOI: 10.1074/jbc.m112.378893] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interactions between Nup50 and soluble transport factors underlie the efficiency of certain nucleocytoplasmic transport pathways. The platform on which these interactions take place is important to building a complete understanding of nucleocytoplasmic trafficking. Nup153 is the nucleoporin that provides this scaffold for Nup50. Here, we have delineated requirements for the interaction between Nup153 and Nup50, revealing a dual interface. An interaction between Nup50 and a region in the unique N-terminal region of Nup153 is critical for the nuclear pore localization of Nup50. A second site of interaction is at the distal tail of Nup153 and is dependent on importin α. Both of these interactions involve the N-terminal domain of Nup50. The configuration of the Nup153-Nup50 partnership suggests that the Nup153 scaffold provides not just a means of pore targeting for Nup50 but also serves to provide a local environment that facilitates bringing Nup50 and importin α together, as well as other soluble factors involved in transport. Consistent with this, disruption of the Nup153-Nup50 interface decreases efficiency of nuclear import.
Collapse
Affiliation(s)
- Masaki Makise
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | |
Collapse
|
33
|
Translation without eIF2 promoted by poliovirus 2A protease. PLoS One 2011; 6:e25699. [PMID: 22003403 PMCID: PMC3189197 DOI: 10.1371/journal.pone.0025699] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/08/2011] [Indexed: 12/14/2022] Open
Abstract
Poliovirus RNA utilizes eIF2 for the initiation of translation in cell free systems. Remarkably, we now describe that poliovirus translation takes place at late times of infection when eIF2 is inactivated by phosphorylation. By contrast, translation directed by poliovirus RNA is blocked when eIF2 is inactivated at earlier times. Thus, poliovirus RNA translation exhibits a dual mechanism for the initiation of protein synthesis as regards to the requirement for eIF2. Analysis of individual poliovirus non-structural proteins indicates that the presence of 2Apro alone is sufficient to provide eIF2 independence for IRES-driven translation. This effect is not observed with a 2Apro variant unable to cleave eIF4G. The level of 2Apro synthesized in culture cells is crucial for obtaining eIF2 independence. Expression of the N-or C-terminus fragments of eIF4G did not stimulate IRES-driven translation, nor provide eIF2 independence, consistent with the idea that the presence of 2Apro at high concentrations is necessary. The finding that 2Apro provides eIF2-independent translation opens a new and unsuspected area of research in the field of picornavirus protein synthesis.
Collapse
|
34
|
Goetz C, Dobrikova E, Shveygert M, Dobrikov M, Gromeier M. Oncolytic poliovirus against malignant glioma. Future Virol 2011; 6:1045-1058. [PMID: 21984883 DOI: 10.2217/fvl.11.76] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In cancerous cells, physiologically tight regulation of protein synthesis is lost, contributing to uncontrolled growth and proliferation. We describe a novel experimental cancer therapy approach based on genetically recombinant poliovirus that targets an intriguing aberration of translation control in malignancy. This strategy is based on the confluence of several factors enabling specific and efficacious cancer cell targeting. Poliovirus naturally targets the vast majority of ectodermal/neuroectodermal cancers expressing its cellular receptor. Evidence from glioblastoma patients suggests that the poliovirus receptor is ectopically upregulated on tumor cells and may be associated with stem cell-like cancer cell populations and proliferating tumor vasculature. We exploit poliovirus' reliance on an unorthodox mechanism of protein synthesis initiation to selectively drive viral translation, propagation and cytotoxicity in glioblastoma. PVSRIPO, a prototype nonpathogenic poliovirus recombinant, is scheduled to enter clinical investigation against glioblastoma.
Collapse
Affiliation(s)
- Christian Goetz
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
35
|
Phosphorylation of eukaryotic translation initiation factor 4G1 (eIF4G1) by protein kinase C{alpha} regulates eIF4G1 binding to Mnk1. Mol Cell Biol 2011; 31:2947-59. [PMID: 21576361 DOI: 10.1128/mcb.05589-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Signal transduction through mitogen-activated protein kinases (MAPKs) is implicated in growth and proliferation control through translation regulation and involves posttranslational modification of translation initiation factors. For example, convergent MAPK signals to Mnk1 lead to phosphorylation of eukaryotic translation initiation factor 4E (eIF4E), which has been linked to malignant transformation. However, understanding the compound effects of mitogenic signaling on the translation apparatus and on protein synthesis control remains elusive. This is particularly true for the central scaffold of the translation initiation apparatus and ribosome adaptor eIF4G. To unravel the effects of signal transduction to eIF4G on translation, we used specific activation of protein kinase C (PKC)-Ras-Erk signaling with phorbol esters. Phospho-proteomic and mutational analyses revealed that eIF4G1 is a substrate for PKCα at Ser1186. We show that PKCα activation elicits a cascade of orchestrated phosphorylation events that may modulate eIF4G1 structure and control interaction with the eIF4E kinase, Mnk1.
Collapse
|
36
|
Shatsky IN, Dmitriev SE, Terenin IM, Andreev DE. Cap- and IRES-independent scanning mechanism of translation initiation as an alternative to the concept of cellular IRESs. Mol Cells 2010; 30:285-93. [PMID: 21052925 DOI: 10.1007/s10059-010-0149-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 09/30/2010] [Indexed: 12/30/2022] Open
Abstract
During the last decade the concept of cellular IRES-elements has become predominant to explain the continued expression of specific proteins in eukaryotic cells under conditions when the cap-dependent translation initiation is inhibited. However, many cellular IRESs regarded as cornerstones of the concept, have been compromised by several recent works using a number of modern techniques. This review analyzes the sources of artifacts associated with identification of IRESs and describes a set of control experiments, which should be performed before concluding that a 5' UTR of eukaryotic mRNA does contain an IRES. Hallmarks of true IRES-elements as exemplified by well-documented IRESs of viral origin are presented. Analysis of existing reports allows us to conclude that there is a constant confusion of the cap-independent with the IRES-directed translation initiation. In fact, these two modes of translation initiation are not synonymous. We discuss here not numerous reports pointing to the existence of a cap- and IRES-independent scanning mechanism of translation initiation based on utilization of special RNA structures called cap-independent translational enhancers (CITE). We describe this mechanism and suggest it as an alternative to the concept of cellular IRESs.
Collapse
Affiliation(s)
- Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.
| | | | | | | |
Collapse
|
37
|
Regulation of eukaryotic initiation factor 4E (eIF4E) phosphorylation by mitogen-activated protein kinase occurs through modulation of Mnk1-eIF4G interaction. Mol Cell Biol 2010; 30:5160-7. [PMID: 20823271 DOI: 10.1128/mcb.00448-10] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The m(7)G cap binding protein eukaryotic initiation factor 4E (eIF4E) is a rate-limiting determinant of protein synthesis. Elevated eIF4E levels, commonly associated with neoplasia, promote oncogenesis, and phosphorylation of eIF4E at Ser209 is critical for its tumorigenic potential. eIF4E phosphorylation is catalyzed by mitogen-activated protein kinase (MAPK)-interacting serine/threonine kinase (Mnk), a substrate of Erk1/2 and p38 MAPKs. Interaction with the scaffolding protein eIF4G, which also binds eIF4E, brings Mnk and its substrate into physical proximity. Thus, Mnk-eIF4G interaction is important for eIF4E phosphorylation. Through coimmunoprecipitation assays, we showed that MAPK-mediated phosphorylation of the Mnk1 active site controls eIF4G binding. Utilizing a naturally occurring splice variant, we demonstrated that the C-terminal domain of Mnk1 restricts its interaction with eIF4G, preventing eIF4E phosphorylation in the absence of MAPK signaling. Furthermore, using a small-molecule Mnk1 inhibitor and kinase-dead mutant, we established that Mnk1 autoregulates its interaction with eIF4G, releasing itself from the scaffold after phosphorylation of its substrate. Our findings indicate tight control of eIF4E phosphorylation through modulation of Mnk1-eIF4G interaction.
Collapse
|
38
|
Goetz C, Everson RG, Zhang LC, Gromeier M. MAPK signal-integrating kinase controls cap-independent translation and cell type-specific cytotoxicity of an oncolytic poliovirus. Mol Ther 2010; 18:1937-46. [PMID: 20648000 DOI: 10.1038/mt.2010.145] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many animal viruses exhibit proficient growth in transformed cells, a property that has been harnessed for the development of novel therapies against cancer. Despite overwhelming evidence for this phenomenon, understanding of the molecular mechanisms enabling tumor-cell killing is rudimentary for most viruses. We report here that growth and cytotoxicity of the prototype oncolytic poliovirus (PV), PVSRIPO, in glioblastoma multiforme (GBM) is promoted by mitogen-activated protein kinases (MAPKs) converging on the MAPK signal-integrating kinase 1 (Mnk1) and its primary substrate, the eukaryotic initiation factor (eIF) 4E. Inducing Mnk1-catalyzed eIF4E phosphorylation through expression of oncogenic Ras substantially enhanced PVSRIPO translation, replication, and cytotoxicity in resistant cells. This effect was mimicked by expression of constitutively active forms of Mnk1 and correlated with enhanced translation of subgenomic reporter RNAs. Our findings implicate Mnk1 activity in stimulation of PVSRIPO cap-independent translation, an effect that can be synergistically enhanced by inhibition of the phosphoinositide-3 kinase (PI3K).
Collapse
Affiliation(s)
- Christian Goetz
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
39
|
Abstract
MYC regulates the transcription of thousands of genes required to coordinate a range of cellular processes, including those essential for proliferation, growth, differentiation, apoptosis and self-renewal. Recently, MYC has also been shown to serve as a direct regulator of ribosome biogenesis. MYC coordinates protein synthesis through the transcriptional control of RNA and protein components of ribosomes, and of gene products required for the processing of ribosomal RNA, the nuclear export of ribosomal subunits and the initiation of mRNA translation. We discuss how the modulation of ribosome biogenesis by MYC may be essential to its physiological functions as well as its pathological role in tumorigenesis.
Collapse
Affiliation(s)
- Jan van Riggelen
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
40
|
Goetz C, Gromeier M. Preparing an oncolytic poliovirus recombinant for clinical application against glioblastoma multiforme. Cytokine Growth Factor Rev 2010; 21:197-203. [PMID: 20299272 DOI: 10.1016/j.cytogfr.2010.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PVS-RIPO is a genetically recombinant, non-pathogenic poliovirus chimera with a tumor-specific conditional replication phenotype. Consisting of the genome of the live attenuated poliovirus type 1 (Sabin) vaccine with its cognate IRES element replaced with that of human rhinovirus type 2, PVS-RIPO displays an inability to translate its genome in untransformed neuronal cells, but effectively does so in cells originating from primary tumors in the central nervous system or other cancers. Hence, PVS-RIPO unleashes potent cytotoxic effects on infected cancer cells and produces sustained anti-tumoral responses in animal tumor models. PVS-RIPO presents a novel approach to the treatment of patients with glioblastoma multiforme, based on conditions favoring an unconventional viral translation initiation mechanism in cancerous cells. In this review we summarize advances in the understanding of major molecular determinants of PVS-RIPO oncolytic efficacy and safety and discuss their implications for upcoming clinical investigations.
Collapse
Affiliation(s)
- Christian Goetz
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
41
|
Herpes simplex virus proteins ICP27 and UL47 associate with polyadenylate-binding protein and control its subcellular distribution. J Virol 2010; 84:270-9. [PMID: 19864386 DOI: 10.1128/jvi.01740-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Human pathogenic viruses manipulate host cell translation machinery to ensure efficient expression of viral genes and to thwart host cell protein synthesis. Viral strategies include cleaving translation factors, manipulating translation factor abundance and recruitment into translation initiation complexes, or expressing viral translation factor analogs. Analyzing translation factors in herpes simplex virus type 1 (HSV-1)-infected HeLa cells, we found diminished association of the polyadenylate-binding protein (PABP) with the cap-binding complex. Although total PABP levels were unchanged, HSV-1 infection prompted accumulation of cytoplasmic PABPC1, but not its physiologic binding partner PABP-interacting protein 2 (Paip2), in the nucleus. Using glutathione S-transferase-PABP pull-down and proteomic analyses, we identified several viral proteins interacting with PABPC1 including tegument protein UL47 and infected-cell protein ICP27. Transient expression of ICP27 and UL47 in HeLa cells suggested that ICP27 and UL47 jointly displace Paip2 from PABP. ICP27 expression alone was sufficient to cause PABPC1 redistribution to the nucleus. ICP27 and UL47 did not alter translation efficiency of transfected reporter RNAs but modulated transcript abundance and expression of reporter cDNAs in transfected cells. This indicates that redistribution of PABPC1 may be involved in co- and posttranscriptional regulation of mRNA processing and/or nuclear export by HSV-1 gene regulatory proteins.
Collapse
|
42
|
Walters RW, Bradrick SS, Gromeier M. Poly(A)-binding protein modulates mRNA susceptibility to cap-dependent miRNA-mediated repression. RNA (NEW YORK, N.Y.) 2010; 16:239-250. [PMID: 19934229 PMCID: PMC2802033 DOI: 10.1261/rna.1795410] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 10/19/2009] [Indexed: 05/28/2023]
Abstract
MicroRNAs (miRNAs) regulate gene expression post-transcriptionally through binding specific sites within the 3' untranslated regions (UTRs) of their target mRNAs. Numerous investigations have documented repressive effects of miRNAs and identified factors required for their activity. However, the precise mechanisms by which miRNAs modulate gene expression are still obscure. Here, we have examined the effects of multiple miRNAs on diverse target transcripts containing artificial or naturally occurring 3' UTRs in human cell culture. In agreement with previous studies, we report that both the 5' m(7)G cap and 3' poly(A) tail are essential for maximum miRNA repression. These cis-acting elements also conferred miRNA susceptibility to target mRNAs translating under the control of viral- and eukaryotic mRNA-derived 5' UTR structures that enable cap-independent translation. Additionally, we evaluated a role for the poly(A)-binding protein (PABP) in miRNA function utilizing multiple approaches to modulate levels of active PABP in cells. PABP expression and activity inversely correlated with the strength of miRNA silencing, in part due to antagonism of target mRNA deadenylation. Together, these findings further define the cis- and trans-acting factors that modulate miRNA efficacy.
Collapse
Affiliation(s)
- Robert W Walters
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
43
|
Bradrick SS, Gromeier M. Identification of gemin5 as a novel 7-methylguanosine cap-binding protein. PLoS One 2009; 4:e7030. [PMID: 19750007 PMCID: PMC2736588 DOI: 10.1371/journal.pone.0007030] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 08/14/2009] [Indexed: 01/04/2023] Open
Abstract
Background A unique attribute of RNA molecules synthesized by RNA polymerase II is the presence of a 7-methylguanosine (m7G) cap structure added co-transcriptionally to the 5′ end. Through its association with trans-acting effector proteins, the m7G cap participates in multiple aspects of RNA metabolism including localization, translation and decay. However, at present relatively few eukaryotic proteins have been identified as factors capable of direct association with m7G. Methodology/Principal Findings Employing an unbiased proteomic approach, we identified gemin5, a component of the survival of motor neuron (SMN) complex, as a factor capable of direct and specific interaction with the m7G cap. Gemin5 was readily purified by cap-affinity chromatography in contrast to other SMN complex proteins. Investigating the underlying basis for this observation, we found that purified gemin5 associates with m7G-linked sepharose in the absence of detectable eIF4E, and specifically crosslinks to radiolabeled cap structure after UV irradiation. Deletion analysis revealed that an intact set of WD repeat domains located in the N-terminal half of gemin5 are required for cap-binding. Moreover, using structural modeling and site-directed mutagenesis, we identified two proximal aromatic residues located within the WD repeat region that significantly impact m7G association. Conclusions/Significance This study rigorously identifies gemin5 as a novel cap-binding protein and describes an unprecedented role for WD repeat domains in m7G recognition. The findings presented here will facilitate understanding of gemin5's role in the metabolism of non-coding snRNAs and perhaps other RNA pol II transcripts.
Collapse
Affiliation(s)
- Shelton S Bradrick
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America.
| | | |
Collapse
|