1
|
Chatterjee D, Bhattacharya S, Kumari L, Datta A. Aptamers: ushering in new hopes in targeted glioblastoma therapy. J Drug Target 2024; 32:1005-1028. [PMID: 38923419 DOI: 10.1080/1061186x.2024.2373306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Glioblastoma, a formidable brain cancer, has remained a therapeutic challenge due to its aggressive nature and resistance to conventional treatments. Recent data indicate that aptamers, short synthetic DNA or RNA molecules can be used in anti-cancer therapy due to their better tumour penetration, specific binding affinity, longer retention in tumour sites and their ability to cross the blood-brain barrier. With the ability to modify these oligonucleotides through the selection process, and using rational design to modify them, post-SELEX aptamers offer several advantages in glioblastoma treatment, including precise targeting of cancer cells while sparing healthy tissue. This review discusses the pivotal role of aptamers in glioblastoma therapy and diagnosis, emphasising their potential to enhance treatment efficacy and also highlights recent advancements in aptamer-based therapies which can transform the landscape of glioblastoma treatment, offering renewed hope to patients and clinicians alike.
Collapse
Affiliation(s)
- Debarpan Chatterjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Srijan Bhattacharya
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Leena Kumari
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Aparna Datta
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| |
Collapse
|
2
|
Wiswedel R, Bui ATN, Kim J, Lee MK. Beta-Barrel Nanopores as Diagnostic Sensors: An Engineering Perspective. BIOSENSORS 2024; 14:345. [PMID: 39056622 PMCID: PMC11274599 DOI: 10.3390/bios14070345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Biological nanopores are ultrasensitive and highly attractive platforms for disease diagnostics, including the sequencing of viral and microbial genes and the detection of biomarkers and pathogens. To utilize biological nanopores as diagnostic sensors, they have been engineered through various methods resulting in the accurate and highly sensitive detection of biomarkers and disease-related biomolecules. Among diverse biological nanopores, the β-barrel-containing nanopores have advantages in nanopore engineering because of their robust structure, making them well-suited for modifications. In this review, we highlight the engineering approaches for β-barrel-containing nanopores used in single-molecule sensing for applications in early diagnosis and prognosis. In the highlighted studies, β-barrel nanopores can be modified by genetic mutation to change the structure; alter charge distributions; or add enzymes, aptamers, and protein probes to enhance sensitivity and accuracy. Furthermore, this review discusses challenges and future perspectives for advancing nanopore-based diagnostic sensors.
Collapse
Affiliation(s)
- Rani Wiswedel
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (R.W.); (A.T.N.B.); (J.K.)
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Anh Thi Ngoc Bui
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (R.W.); (A.T.N.B.); (J.K.)
| | - Jinhyung Kim
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (R.W.); (A.T.N.B.); (J.K.)
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Mi-Kyung Lee
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (R.W.); (A.T.N.B.); (J.K.)
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Krissanaprasit A, Mihalko E, Meinhold K, Simpson A, Sollinger J, Pandit S, Dupont DM, Kjems J, Brown AC, LaBean TH. A functional RNA-origami as direct thrombin inhibitor with fast-acting and specific single-molecule reversal agents in vivo model. Mol Ther 2024; 32:2286-2298. [PMID: 38720458 PMCID: PMC11286819 DOI: 10.1016/j.ymthe.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/29/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
Injectable anticoagulants are widely used in medical procedures to prevent unwanted blood clotting. However, many lack safe, effective reversal agents. Here, we present new data on a previously described RNA origami-based, direct thrombin inhibitor (HEX01). We describe a new, fast-acting, specific, single-molecule reversal agent (antidote) and present in vivo data for the first time, including efficacy, reversibility, preliminary safety, and initial biodistribution studies. HEX01 contains multiple thrombin-binding aptamers appended on an RNA origami. It exhibits excellent anticoagulation activity in vitro and in vivo. The new single-molecule, DNA antidote (HEX02) reverses anticoagulation activity of HEX01 in human plasma within 30 s in vitro and functions effectively in a murine liver laceration model. Biodistribution studies of HEX01 in whole mice using ex vivo imaging show accumulation mainly in the liver over 24 h and with 10-fold lower concentrations in the kidneys. Additionally, we show that the HEX01/HEX02 system is non-cytotoxic to epithelial cell lines and non-hemolytic in vitro. Furthermore, we found no serum cytokine response to HEX01/HEX02 in a murine model. HEX01 and HEX02 represent a safe and effective coagulation control system with a fast-acting, specific reversal agent showing promise for potential drug development.
Collapse
Affiliation(s)
- Abhichart Krissanaprasit
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Emily Mihalko
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC 27695, USA
| | - Katherine Meinhold
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Aryssa Simpson
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC 27695, USA
| | - Jennifer Sollinger
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC 27695, USA
| | - Sanika Pandit
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC 27695, USA
| | - Daniel M Dupont
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000 Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000 Aarhus, Denmark
| | - Ashley C Brown
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC 27695, USA; Comparative Medicine Institute, North Carolina State University and University of North Carolina, Chapel Hill, NC 27695, USA
| | - Thomas H LaBean
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, NC 27695, USA; Comparative Medicine Institute, North Carolina State University and University of North Carolina, Chapel Hill, NC 27695, USA.
| |
Collapse
|
4
|
Requena MD, Yan A, Llanga T, Sullenger BA. Reversible Aptamer Staining, Sorting, and Cleaning of Cells (Clean FACS) with Antidote Oligonucleotide or Nuclease Yields Fully Responsive Cells. Nucleic Acid Ther 2024; 34:12-17. [PMID: 38285522 PMCID: PMC11302193 DOI: 10.1089/nat.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/13/2023] [Indexed: 01/31/2024] Open
Abstract
The ability to reverse the binding of aptamers to their target proteins has received considerable attention for developing controllable therapeutic agents. Recently, use of aptamers as reversible cell-sorting ligands has also sparked interest. Antibodies are currently utilized for isolating cells expressing a particular cell surface receptor. The inability to remove antibodies from isolated cells following sorting greatly limits their utility for many applications. Previously, we described how a particular aptamer-antidote oligonucleotide pair can isolate cells and clean them. Here, we demonstrate that this approach is generalizable; aptamers can simultaneously recognize more than one cell type during fluorescent activated cell sorting (FACS). Moreover, we describe a novel approach to reverse aptamer binding following cell sorting using a nuclease. This alternative strategy represents a cleaning approach that does not require the generation of antidote oligonucleotides for each aptamer and will greatly reduce the cost and expand the utility of Clean FACS.
Collapse
Affiliation(s)
- Martin D. Requena
- Department of Surgery, Duke University, Durham, North Carolina, USA
- University Program in Genetics and Genomics, and Duke University, Durham, North Carolina, USA
| | - Amy Yan
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Telmo Llanga
- Department of Surgery, Duke University, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Bruce A. Sullenger
- Department of Surgery, Duke University, Durham, North Carolina, USA
- University Program in Genetics and Genomics, and Duke University, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
5
|
Troisi R, Balasco N, Autiero I, Vitagliano L, Sica F. Structural Insights into Protein-Aptamer Recognitions Emerged from Experimental and Computational Studies. Int J Mol Sci 2023; 24:16318. [PMID: 38003510 PMCID: PMC10671752 DOI: 10.3390/ijms242216318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Aptamers are synthetic nucleic acids that are developed to target with high affinity and specificity chemical entities ranging from single ions to macromolecules and present a wide range of chemical and physical properties. Their ability to selectively bind proteins has made these compounds very attractive and versatile tools, in both basic and applied sciences, to such an extent that they are considered an appealing alternative to antibodies. Here, by exhaustively surveying the content of the Protein Data Bank (PDB), we review the structural aspects of the protein-aptamer recognition process. As a result of three decades of structural studies, we identified 144 PDB entries containing atomic-level information on protein-aptamer complexes. Interestingly, we found a remarkable increase in the number of determined structures in the last two years as a consequence of the effective application of the cryo-electron microscopy technique to these systems. In the present paper, particular attention is devoted to the articulated architectures that protein-aptamer complexes may exhibit. Moreover, the molecular mechanism of the binding process was analyzed by collecting all available information on the structural transitions that aptamers undergo, from their protein-unbound to the protein-bound state. The contribution of computational approaches in this area is also highlighted.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | - Nicole Balasco
- Institute of Molecular Biology and Pathology, CNR c/o Department of Chemistry, University of Rome Sapienza, 00185 Rome, Italy;
| | - Ida Autiero
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
| |
Collapse
|
6
|
Requena MD, Gray BP, Sullenger BA. Protocol for purification of cells in their native state using reversible aptamer-antidote pairs. STAR Protoc 2023; 4:102348. [PMID: 37314924 PMCID: PMC10277588 DOI: 10.1016/j.xpro.2023.102348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/13/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
Cell isolation from complex mixtures is a key step in many clinical and research applications, but standard isolation methods may affect the cell's biology and are difficult to reverse. Here, we present a method to isolate and restore cells to their native state using an aptamer that binds epidermal growth factor receptor (EGFR+)cells and a complementary antisense oligonucleotide to reverse binding. For complete details on the use and execution of this protocol, please refer to Gray et al.1.
Collapse
Affiliation(s)
- Martin D Requena
- Department of Surgery, Duke University Medical Center, 2 Genome Ct, Durham, NC 27710, USA; University Program in Genetics and Genomics, Duke University Medical Center, 2 Genome Ct, Durham, NC 27710, USA.
| | - Bethany Powell Gray
- Department of Surgery, Duke University Medical Center, 2 Genome Ct, Durham, NC 27710, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe St, Baltimore, MD 21205, USA
| | - Bruce A Sullenger
- Department of Surgery, Duke University Medical Center, 2 Genome Ct, Durham, NC 27710, USA; University Program in Genetics and Genomics, Duke University Medical Center, 2 Genome Ct, Durham, NC 27710, USA.
| |
Collapse
|
7
|
Halder S, Thakur A, Keshry SS, Jana P, Karothia D, Das Jana I, Acevedo O, Swain RK, Mondal A, Chattopadhyay S, Jayaprakash V, Dev A. SELEX based aptamers with diagnostic and entry inhibitor therapeutic potential for SARS-CoV-2. Sci Rep 2023; 13:14560. [PMID: 37666993 PMCID: PMC10477244 DOI: 10.1038/s41598-023-41885-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
Frequent mutation and variable immunological protection against vaccination is a common feature for COVID-19 pandemic. Early detection and confinement remain key to controlling further spread of infection. In response, we have developed an aptamer-based system that possesses both diagnostic and therapeutic potential towards the virus. A random aptamer library (~ 1017 molecules) was screened using systematic evolution of ligands by exponential enrichment (SELEX) and aptamer R was identified as a potent binder for the SARS-CoV-2 spike receptor binding domain (RBD) using in vitro binding assay. Using a pseudotyped viral entry assay we have shown that aptamer R specifically inhibited the entry of a SARS-CoV-2 pseudotyped virus in HEK293T-ACE2 cells but did not inhibit the entry of a Vesicular Stomatitis Virus (VSV) glycoprotein (G) pseudotyped virus, hence establishing its specificity towards SARS-CoV-2 spike protein. The antiviral potential of aptamers R and J (same central sequence as R but lacking flanked primer regions) was tested and showed 95.4% and 82.5% inhibition, respectively, against the SARS-CoV-2 virus. Finally, intermolecular interactions between the aptamers and the RBD domain were analyzed using in silico docking and molecular dynamics simulations that provided additional insight into the binding and inhibitory action of aptamers R and J.
Collapse
Affiliation(s)
- Sayanti Halder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Abhishek Thakur
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, USA
| | - Supriya Suman Keshry
- Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha, India
| | - Pradip Jana
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | | | - Indrani Das Jana
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, USA
| | - Rajeeb K Swain
- Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
| | - Arindam Mondal
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | | | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Abhimanyu Dev
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
8
|
Malicki S, Książek M, Sochaj Gregorczyk A, Kamińska M, Golda A, Chruścicka B, Mizgalska D, Potempa J, Marti HP, Kozieł J, Wieczorek M, Pieczykolan J, Mydel P, Dubin G. Identification and characterization of aptameric inhibitors of human neutrophil elastase. J Biol Chem 2023; 299:104889. [PMID: 37286041 PMCID: PMC10359491 DOI: 10.1016/j.jbc.2023.104889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023] Open
Abstract
Human neutrophil elastase (HNE) plays a pivotal role in innate immunity, inflammation, and tissue remodeling. Aberrant proteolytic activity of HNE contributes to organ destruction in various chronic inflammatory diseases including emphysema, asthma, and cystic fibrosis. Therefore, elastase inhibitors could alleviate the progression of these disorders. Here, we used the systematic evolution of ligands by exponential enrichment to develop ssDNA aptamers that specifically target HNE. We determined the specificity of the designed inhibitors and their inhibitory efficacy against HNE using biochemical and in vitro methods, including an assay of neutrophil activity. Our aptamers inhibit the elastinolytic activity of HNE with nanomolar potency and are highly specific for HNE and do not target other tested human proteases. As such, this study provides lead compounds suitable for the evaluation of their tissue-protective potential in animal models.
Collapse
Affiliation(s)
- Stanisław Malicki
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Mirosław Książek
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Sochaj Gregorczyk
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marta Kamińska
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
| | - Anna Golda
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Barbara Chruścicka
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Joanna Kozieł
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maciej Wieczorek
- Innovative Drugs R&D Department, Celon Pharma Inc, Lomianki, Poland
| | | | - Piotr Mydel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
| | - Grzegorz Dubin
- Protein Crystallography Research, Group Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
9
|
Yong J, Mellick AS, Whitelock J, Wang J, Liang K. A Biomolecular Toolbox for Precision Nanomotors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205746. [PMID: 36055646 DOI: 10.1002/adma.202205746] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The application of nanomotors for cancer diagnosis and therapy is a new and exciting area of research, which when combined with precision nanomedicine, promises to solve many of the issues encountered by previous development of passive nanoparticles. The goal of this article is to introduce nanomotor and nanomedicine researchers to the deep pool of knowledge available regarding cancer cell biology and biochemistry, as well as provide a greater appreciation of the complexity of cell membrane compositions, extracellular surfaces, and their functional consequences. A short description of the nanomotor state-of-art for cancer therapy and diagnosis is first provided, as well as recommendations for future directions of the field. Then, a biomolecular targeting toolbox has been collated for researchers looking to apply their nanomaterial of choice to a biological setting, as well as providing a glimpse into currently available clinical therapies and technologies. This toolbox contains an overview of different classes of targeting molecules available for high affinity and specific targeting and cell surface targets to aid researchers in the selection of a clinical disease model and targeting methodology. It is hoped that this review will provide biological context, inspiration, and direction to future nanomotor and nanomedicine research.
Collapse
Affiliation(s)
- Joel Yong
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, 2052, Australia
| | - Albert S Mellick
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, 2052, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, 2170, Australia
| | - John Whitelock
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, 2052, Australia
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, 2052, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, 2052, Australia
| |
Collapse
|
10
|
Gray BP, Kelly L, Steen-Burrell KA, Layzer JM, Rempel RE, Nimjee SM, Cooley BC, Tarantal AF, Sullenger BA. Rapid molecular imaging of active thrombi in vivo using aptamer-antidote probes. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:440-451. [PMID: 36817726 PMCID: PMC9930157 DOI: 10.1016/j.omtn.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Pathological blood clotting, or thrombosis, limits vital blood flow to organs; such deprivation can lead to catastrophic events including myocardial infarction, pulmonary embolism, and ischemic stroke. Prompt restoration of blood flow greatly improves outcomes. We explored whether aptamers could serve as molecular imaging probes to rapidly detect thrombi. An aptamer targeting thrombin, Tog25t, was found to rapidly localize to and visualize pre-existing clots in the femoral and jugular veins of mice using fluorescence imaging and, when circulating, was able to image clots as they form. Since free aptamer is quickly cleared from circulation, contrast is rapidly developed, allowing clot visualization within minutes. Moreover, administration of an antidote oligonucleotide further enhanced contrast development, causing the unbound aptamer to clear within 5min while impacting the clot-bound aptamer more slowly. These findings suggest that aptamers can serve as imaging agents for rapid detection of thrombi in acute care and perioperative settings.
Collapse
Affiliation(s)
- Bethany Powell Gray
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Linsley Kelly
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Juliana M. Layzer
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rachel E. Rempel
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shahid M. Nimjee
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Brian C. Cooley
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7525, USA
| | - Alice F. Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California Davis, Davis, CA 95616-8542, USA
| | - Bruce A. Sullenger
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Pharmacology & Cancer Biology and Biomedical Engineering, Duke University, Durham, NC 27710, USA
| |
Collapse
|
11
|
Abstract
SELEX has enabled the selection of aptamers, nucleic acids that can bind a defined ligand, in some cases with exceptionally high affinity and specificity. The SELEX protocol has been adapted many times to fit a variety of needs. This protocol describes such an adaptation, namely, RNA-Capture SELEX that we have used to successfully develop small molecule-binding RNA aptamers. Our proposed method specifically selects not only for excellent binding but also for conformational switching. In consequence, we found this SELEX method to be particularly suitable for identifying aptamers for further application in synthetic riboswitch engineering.
Collapse
Affiliation(s)
- Leon Kraus
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Beatrix Suess
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany.
- Center for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
12
|
Krissanaprasit A, Key C, Froehlich K, LaBean TH. Production and Testing of RNA Origami Anticoagulants. Methods Mol Biol 2023; 2639:339-350. [PMID: 37166725 DOI: 10.1007/978-1-0716-3028-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nucleic acid nanotechnology provides the ability to create unprecedented nanostructures with diverse architectures and functions that can be utilized in myriad fields. A set of self-folding, single-stranded RNA origami structures bearing thrombin RNA aptamers have been demonstrated to act as anticoagulants. Here, we describe the detailed methods of producing and testing of such RNA origami anticoagulants. This method highlights the potential of RNA origami for biomedical applications.
Collapse
Affiliation(s)
- Abhichart Krissanaprasit
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - Carson Key
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - Kristen Froehlich
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - Thomas H LaBean
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
13
|
Yin X, He Z, Ge W, Zhao Z. Application of aptamer functionalized nanomaterials in targeting therapeutics of typical tumors. Front Bioeng Biotechnol 2023; 11:1092901. [PMID: 36873354 PMCID: PMC9978196 DOI: 10.3389/fbioe.2023.1092901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Cancer is a major cause of human death all over the world. Traditional cancer treatments include surgery, radiotherapy, chemotherapy, immunotherapy, and hormone therapy. Although these conventional treatment methods improve the overall survival rate, there are some problems, such as easy recurrence, poor treatment, and great side effects. Targeted therapy of tumors is a hot research topic at present. Nanomaterials are essential carriers of targeted drug delivery, and nucleic acid aptamers have become one of the most important targets for targeted tumor therapy because of their high stability, high affinity, and high selectivity. At present, aptamer-functionalized nanomaterials (AFNs), which combine the unique selective recognition characteristics of aptamers with the high-loading performance of nanomaterials, have been widely studied in the field of targeted tumor therapy. Based on the reported application of AFNs in the biomedical field, we introduce the characteristics of aptamer and nanomaterials, and the advantages of AFNs first. Then introduce the conventional treatment methods for glioma, oral cancer, lung cancer, breast cancer, liver cancer, colon cancer, pancreatic cancer, ovarian cancer, and prostate cancer, and the application of AFNs in targeted therapy of these tumors. Finally, we discuss the progress and challenges of AFNs in this field.
Collapse
Affiliation(s)
- Xiujuan Yin
- Department of Radiology, Shaoxing People's Hospital, Shaoxing, China.,Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing, China
| | - Zhenqiang He
- Clinical Medical College of Hebei University, Baoding, China.,Department of Radiology, Hebei University Affiliated Hospital, Baoding, China
| | - Weiying Ge
- Department of Radiology, Hebei University Affiliated Hospital, Baoding, China
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People's Hospital, Shaoxing, China.,Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing, China.,Medical College of Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Shraim AS, Abdel Majeed BA, Al-Binni M, Hunaiti A. Therapeutic Potential of Aptamer-Protein Interactions. ACS Pharmacol Transl Sci 2022; 5:1211-1227. [PMID: 36524009 PMCID: PMC9745894 DOI: 10.1021/acsptsci.2c00156] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Indexed: 11/06/2022]
Abstract
Aptamers are single-stranded oligonucleotides (RNA or DNA) with a typical length between 25 and 100 nucleotides which fold into three-dimensional structures capable of binding to target molecules. Specific aptamers can be isolated against a large variety of targets through efficient and relatively cheap methods, and they demonstrate target-binding affinities that sometimes surpass those of antibodies. Consequently, interest in aptamers has surged over the past three decades, and their application has shown promise in advancing knowledge in target analysis, designing therapeutic interventions, and bioengineering. With emphasis on their therapeutic applications, aptamers are emerging as a new innovative class of therapeutic agents with promising biochemical and biological properties. Aptamers have the potential of providing a feasible alternative to antibody- and small-molecule-based therapeutics given their binding specificity, stability, low toxicity, and apparent non-immunogenicity. This Review examines the general properties of aptamers and aptamer-protein interactions that help to understand their binding characteristics and make them important therapeutic candidates.
Collapse
Affiliation(s)
- Ala’a S. Shraim
- Department
of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328 Amman, Jordan
- Pharmacological
and Diagnostic Research Center (PDRC), Al-Ahliyya
Amman University, 19328 Amman, Jordan
| | - Bayan A. Abdel Majeed
- Department
of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328 Amman, Jordan
- Pharmacological
and Diagnostic Research Center (PDRC), Al-Ahliyya
Amman University, 19328 Amman, Jordan
| | - Maysaa’
Adnan Al-Binni
- Department
of Clinical Laboratory Sciences, School of Science, The University of Jordan, 11942 Amman, Jordan
| | - Abdelrahim Hunaiti
- Department
of Clinical Laboratory Sciences, School of Science, The University of Jordan, 11942 Amman, Jordan
| |
Collapse
|
15
|
Pavan M, Bassani D, Sturlese M, Moro S. Investigating RNA-protein recognition mechanisms through supervised molecular dynamics (SuMD) simulations. NAR Genom Bioinform 2022; 4:lqac088. [PMID: 36458023 PMCID: PMC9706429 DOI: 10.1093/nargab/lqac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/20/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Ribonucleic acid (RNA) plays a key regulatory role within the cell, cooperating with proteins to control the genome expression and several biological processes. Due to its characteristic structural features, this polymer can mold itself into different three-dimensional structures able to recognize target biomolecules with high affinity and specificity, thereby attracting the interest of drug developers and medicinal chemists. One successful example of the exploitation of RNA's structural and functional peculiarities is represented by aptamers, a class of therapeutic and diagnostic tools that can recognize and tightly bind several pharmaceutically relevant targets, ranging from small molecules to proteins, making use of the available structural and conformational freedom to maximize the complementarity with their interacting counterparts. In this scientific work, we present the first application of Supervised Molecular Dynamics (SuMD), an enhanced sampling Molecular Dynamics-based method for the study of receptor-ligand association processes in the nanoseconds timescale, to the study of recognition pathways between RNA aptamers and proteins, elucidating the main advantages and limitations of the technique while discussing its possible role in the rational design of RNA-based therapeutics.
Collapse
Affiliation(s)
- Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Stefano Moro
- To whom correspondence should be addressed. Tel: +39 0498275704; Fax: +39 0498275366;
| |
Collapse
|
16
|
Hu L, Liu K, Ren G, Liang J, Wu Y. Progress in DNA Aptamers as Recognition Components for Protein Functional Regulation. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Reed CR, Bonadonna D, Otto JC, McDaniel CG, Chabata CV, Kuchibhatla M, Frederiksen J, Layzer JM, Arepally GM, Sullenger BA, Tracy ET. Aptamer-based factor IXa inhibition preserves hemostasis and prevents thrombosis in a piglet model of ECMO. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:524-534. [PMID: 35036063 PMCID: PMC8728519 DOI: 10.1016/j.omtn.2021.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
Extracorporeal membrane oxygenation (ECMO) requires anticoagulation to prevent clotting when the patient’s blood contacts the circuit. Unfractionated heparin (UFH) usually prevents clotting but can cause life-threatening bleeding. An anticoagulant that selectively inhibits the contact activation (intrinsic) pathway while sparing the tissue factor (extrinsic) pathway of coagulation might prevent clotting triggered by the circuit while permitting physiologic coagulation at surgical sites. DTRI-178 is an RNA anticoagulant aptamer conjugated to polyethylene glycol that increases its half-life in circulation. This aptamer is based on a previously described molecule (9.3t) that inhibits intrinsic tenase activity by binding to factor IXa on an exosite. Using a piglet model of pediatric venoarterial (VA) ECMO, we compared thromboprevention and blood loss using a single dose of DTRI-178 versus UFH. In each of five experiments, we subjected two litter-matched piglets, one anticoagulated with DTRI-178 and the other with UFH, to simultaneous 12-h periods of VA ECMO. Both anticoagulants achieved satisfactory and comparable thromboprotection. However, UFH piglets had increased surgical site bleeding and required significantly greater blood transfusion volumes than piglets anticoagulated with DTRI-178. Our results indicate that DTRI-178, an aptamer against factor IXa, may be feasible, safer, and result in fewer transfusions and clinical bleeding events in ECMO.
Collapse
Affiliation(s)
- Christopher R. Reed
- Department of Surgery, Duke University Medical Center and Health System, 2301 Erwin Road, Box 3443, Durham, NC 27710, USA
- Corresponding author Christopher R. Reed, MD, Department of Surgery, Duke University Medical Center and Health System, 2301 Erwin Road, Box 3443, Durham, NC 27710, USA
| | - Desiree Bonadonna
- Extracorporeal Life Support, Duke University Medical Center, Durham, NC 27710, USA
| | - James C. Otto
- Department of Surgery, Duke University Medical Center and Health System, 2301 Erwin Road, Box 3443, Durham, NC 27710, USA
| | | | - Charlene Vongai Chabata
- Departments of Surgery; and Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Maragatha Kuchibhatla
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA
| | - James Frederiksen
- Department of Surgery, Duke University Medical Center and Health System, 2301 Erwin Road, Box 3443, Durham, NC 27710, USA
| | - Juliana M. Layzer
- Duke University Clinical and Translational Science Institute, Durham, NC 27710, USA
| | - Gowthami M. Arepally
- Division of Hematology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Bruce A. Sullenger
- Department of Surgery, Duke University Medical Center and Health System, 2301 Erwin Road, Box 3443, Durham, NC 27710, USA
| | - Elisabeth T. Tracy
- Department of Surgery, Duke University Medical Center and Health System, 2301 Erwin Road, Box 3443, Durham, NC 27710, USA
- Division of Pediatric Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
18
|
Qian S, Chang D, He S, Li Y. Aptamers from random sequence space: Accomplishments, gaps and future considerations. Anal Chim Acta 2022; 1196:339511. [DOI: 10.1016/j.aca.2022.339511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 02/07/2023]
|
19
|
Soule EE, Yu H, Olson L, Naqvi I, Kumar S, Krishnaswamy S, Sullenger BA. Generation of an anticoagulant aptamer that targets factor V/Va and disrupts the FVa-membrane interaction in normal and COVID-19 patient samples. Cell Chem Biol 2022; 29:215-225.e5. [PMID: 35114109 PMCID: PMC8808741 DOI: 10.1016/j.chembiol.2022.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/11/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
Coagulation cofactors profoundly regulate hemostasis and are appealing targets for anticoagulants. However, targeting such proteins has been challenging because they lack an active site. To address this, we isolate an RNA aptamer termed T18.3 that binds to both factor V (FV) and FVa with nanomolar affinity and demonstrates clinically relevant anticoagulant activity in both plasma and whole blood. The aptamer also shows synergy with low molecular weight heparin and delivers potent anticoagulation in plasma collected from patients with coronavirus disease 2019 (COVID-19). Moreover, the aptamer's anticoagulant activity can be rapidly and efficiently reversed using protamine sulfate, which potentially allows fine-tuning of aptamer's activity post-administration. We further show that the aptamer achieves its anticoagulant activity by abrogating FV/FVa interactions with phospholipid membranes. Our success in generating an anticoagulant aptamer targeting FV/Va demonstrates the feasibility of using cofactor-binding aptamers as therapeutic protein inhibitors and reveals an unconventional working mechanism of an aptamer by interrupting protein-membrane interactions.
Collapse
Affiliation(s)
- Erin E. Soule
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC 27710, USA,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Haixiang Yu
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Lyra Olson
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC 27710, USA,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Ibtehaj Naqvi
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Shekhar Kumar
- The Children’s Hospital of Philadelphia, Division of Hematology, Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sriram Krishnaswamy
- The Children’s Hospital of Philadelphia, Division of Hematology, Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bruce A. Sullenger
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC 27710, USA,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA,Corresponding author
| |
Collapse
|
20
|
Kramat J, Suess B. Efficient Method to Identify Synthetic Riboswitches Using RNA-Based Capture-SELEX Combined with In Vivo Screening. Methods Mol Biol 2022; 2518:157-177. [PMID: 35666445 DOI: 10.1007/978-1-0716-2421-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Synthetic riboswitches are a promising tool for conditional gene expression. In vitro selected aptamers used as binding domains for the design of RNA-based switches have to exhibit excellent binding affinity as well as ligand binding-induced structural changes. Selection via Capture-SELEX favors the enrichment of aptamers which exhibit both characteristics. For the Capture-SELEX, an RNA pool is used that gets immobilized onto a capture oligonucleotide by hybridization. Addition of the ligand frees the aptamers by their binding to the ligand, resulting in the release from the capture oligonucleotide through structural changes. These sequences get reverse transcribed, PCR amplified, and used for the following selection rounds. In this publication, we present a detailed protocol for Capture-SELEX, followed by screening in yeast to identify aptamers suitable for the design of synthetic riboswitches.
Collapse
Affiliation(s)
- Janice Kramat
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Beatrix Suess
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany.
- Centre of Synthetic Biology, Technical University Darmstadt, Darmstadt, Germany.
| |
Collapse
|
21
|
Huang Z, Niu L. RNA aptamers for AMPA receptors. Neuropharmacology 2021; 199:108761. [PMID: 34509496 DOI: 10.1016/j.neuropharm.2021.108761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
RNA aptamers are single-stranded RNA molecules, and they are selected against a target of interest so that they can bind to and modulate the activity of the target, such as inhibiting the target activity, with high potency and selectivity. Antagonists, such as RNA aptamers, acting on AMPA receptors, a major subtype of ionotropic glutamate receptors, are potential drug candidates for treatment of a number of CNS diseases that involve excessive receptor activation and/or elevated receptor expression. Here we review the approach to discover RNA aptamers targeting AMPA receptors from a random sequence library (∼1014 sequences) through a process called systematic evolution of ligands by exponential enrichment (SELEX). As compared with small-molecule compounds, RNA aptamers are a new class of regulatory agents with interesting and desirable pharmacological properties. Some AMPA receptor aptamers we have developed are presented in this review. The promises and challenges of translating RNA aptamers into potential drugs and treatment options are also discussed. This article is part of the special Issue on 'Glutamate Receptors - AMPA receptors'.
Collapse
Affiliation(s)
- Zhen Huang
- Chemistry Department, Center for Neuroscience Research, University at Albany, State University of New York (SUNY), Albany, NY, USA
| | - Li Niu
- Chemistry Department, Center for Neuroscience Research, University at Albany, State University of New York (SUNY), Albany, NY, USA.
| |
Collapse
|
22
|
Kelly L, Maier KE, Yan A, Levy M. A comparative analysis of cell surface targeting aptamers. Nat Commun 2021; 12:6275. [PMID: 34725326 PMCID: PMC8560833 DOI: 10.1038/s41467-021-26463-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 10/05/2021] [Indexed: 11/10/2022] Open
Abstract
Aptamers represent a potentially important class of ligands for the development of diagnostics and therapeutics. However, it is often difficult to compare the function and specificity of many of these molecules as assay formats and conditions vary greatly. Here, with an interest in developing aptamer targeted therapeutics that could effectively deliver cargoes to cells, we chemically synthesize 15 aptamers that have been reported to target cell surface receptors or cells. Using standardized assay conditions, we assess each aptamer’s binding properties on a panel of 11 different cancer cell lines, correlate aptamer binding to antibody controls and use siRNA transfection to validate each aptamer’s binding to reported target receptors. Using a subset of these molecules known to be expressed on prostate cancers, we use near-infrared in vivo imaging to assess the tumor localization following intravenous injection. Our data demonstrate some surprising differences in the reported specificity and function for many of these molecules and raise concerns regarding their cell targeting capabilities. They also identify an anti-human transferrin aptamer, Waz, as a robust candidate for targeting prostate cancers and for future development of aptamer-based therapeutics. Aptamers could potentially be widely used in therapy and diagnostics. Here the authors use standardised assay conditions to compare aptamer properties in tumour targeting.
Collapse
Affiliation(s)
- Linsley Kelly
- Department of Biochemistry, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY, 10461, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Keith E Maier
- Department of Biochemistry, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY, 10461, USA.,EpiCypher Inc, Durham, NC, 27709, USA
| | - Amy Yan
- Department of Biochemistry, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY, 10461, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Matthew Levy
- Department of Biochemistry, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY, 10461, USA. .,Creyon Bio, Inc., San Diego, CA, 92121, USA.
| |
Collapse
|
23
|
Exosite Binding in Thrombin: A Global Structural/Dynamic Overview of Complexes with Aptamers and Other Ligands. Int J Mol Sci 2021; 22:ijms221910803. [PMID: 34639143 PMCID: PMC8509272 DOI: 10.3390/ijms221910803] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Thrombin is the key enzyme of the entire hemostatic process since it is able to exert both procoagulant and anticoagulant functions; therefore, it represents an attractive target for the developments of biomolecules with therapeutic potential. Thrombin can perform its many functional activities because of its ability to recognize a wide variety of substrates, inhibitors, and cofactors. These molecules frequently are bound to positively charged regions on the surface of protein called exosites. In this review, we carried out extensive analyses of the structural determinants of thrombin partnerships by surveying literature data as well as the structural content of the Protein Data Bank (PDB). In particular, we used the information collected on functional, natural, and synthetic molecular ligands to define the anatomy of the exosites and to quantify the interface area between thrombin and exosite ligands. In this framework, we reviewed in detail the specificity of thrombin binding to aptamers, a class of compounds with intriguing pharmaceutical properties. Although these compounds anchor to protein using conservative patterns on its surface, the present analysis highlights some interesting peculiarities. Moreover, the impact of thrombin binding aptamers in the elucidation of the cross-talk between the two distant exosites is illustrated. Collectively, the data and the work here reviewed may provide insights into the design of novel thrombin inhibitors.
Collapse
|
24
|
Study on the binding mode of aptamer to ampicillin and its electrochemical response behavior in two different reaction media. Anal Bioanal Chem 2021; 413:6877-6887. [PMID: 34595555 DOI: 10.1007/s00216-021-03646-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
A study was carried out to investigate the binding mode of aptamer to ampicillin (AMP) and its electrochemical response behavior. The binding mode was confirmed using the molecular dynamics (MD) simulation method to obtain the corresponding binding dynamic change process. Following the confirmed binding mode, a qualitative elucidation was provided on the electrochemical response characteristics of a single-probe aptamer-based folding sensor. The results show that there exist two different binding modes in two different solution systems, Phys2 and H2O (0.1 M NaCl). These two binding modes can respectively induce two different contraction changes, thereby driving the methylene blue (MB)-modified aptamer probe to show a "close-to-interface" convergence behavior with different degrees on the actual electrode surface, which validates two apparently different electrochemical response behavior characteristics of "signal-on" for the sensor. By contrast, H2O (0.1 M NaCl) as the reaction medium is more conducive to the formation of a stable aptamer/AMP complex and the development of a high-sensitivity analytical method with a low detection limit of 0.033 μM. The simulation results effectively support the experimental results, which is helpful in gaining a deeper understanding of the relationship between the signaling mechanism and practical analytical performance for aptamer-based folding sensors at the molecular level.
Collapse
|
25
|
Krissanaprasit A, Key CM, Froehlich K, Pontula S, Mihalko E, Dupont DM, Andersen ES, Kjems J, Brown AC, LaBean TH. Multivalent Aptamer-Functionalized Single-Strand RNA Origami as Effective, Target-Specific Anticoagulants with Corresponding Reversal Agents. Adv Healthc Mater 2021; 10:e2001826. [PMID: 33882195 DOI: 10.1002/adhm.202001826] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/23/2021] [Indexed: 12/15/2022]
Abstract
Anticoagulants are commonly utilized during surgeries and to treat thrombotic diseases like stroke and deep vein thrombosis. However, conventional anticoagulants have serious side-effects, narrow therapeutic windows, and lack safe reversal agents (antidotes). Here, an alternative RNA origami displaying RNA aptamers as target-specific anticoagulant is described. Improved design and construction techniques for self-folding, single-molecule RNA origami as a platform for displaying pre-selected RNA aptamers with precise orientational and spatial control are reported. Nuclease resistance is added using 2'-fluoro-modified pyrimidines during in vitro transcription. When four aptamers are displayed on the RNA origami platform, the measured thrombin inhibition and anticoagulation activity is higher than observed for free aptamers, ssRNA-linked RNA aptamers, and RNA origami displaying fewer aptamers. Importantly, thrombin inhibition is immediately switched off by addition of specific reversal agents. Results for single-stranded DNA (ssDNA) and single-stranded peptide nucleic acid (PNA) antidotes show restoration of 63% and 95% coagulation activity, respectively. To demonstrate potential for practical, long-term storage for clinical use, RNA origami is freeze-dried, and stored at room temperature. Freshly produced and freeze-dried RNA show identical levels of activity in coagulation assays. Compared to current commercial intravenous anticoagulants, RNA origami-based molecules show promise as safer alternatives with rapid activity switching for future therapeutic applications.
Collapse
Affiliation(s)
- Abhichart Krissanaprasit
- Department of Materials Science and Engineering College of Engineering North Carolina State University Raleigh NC 27695 USA
| | - Carson M. Key
- Department of Materials Science and Engineering College of Engineering North Carolina State University Raleigh NC 27695 USA
| | - Kristen Froehlich
- Joint Department of Biomedical Engineering College of Engineering North Carolina State University and University of North Carolina – Chapel Hill Raleigh NC 27695 USA
| | | | - Emily Mihalko
- Joint Department of Biomedical Engineering College of Engineering North Carolina State University and University of North Carolina – Chapel Hill Raleigh NC 27695 USA
| | - Daniel M. Dupont
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Aarhus C Aarhus 8000 Denmark
| | - Ebbe S. Andersen
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Aarhus C Aarhus 8000 Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Aarhus C Aarhus 8000 Denmark
| | - Ashley C. Brown
- Joint Department of Biomedical Engineering College of Engineering North Carolina State University and University of North Carolina – Chapel Hill Raleigh NC 27695 USA
- Comparative Medicine Institute North Carolina State University and University of North Carolina – Chapel Hill Raleigh NC 27695 USA
| | - Thomas H. LaBean
- Department of Materials Science and Engineering College of Engineering North Carolina State University Raleigh NC 27695 USA
- Comparative Medicine Institute North Carolina State University and University of North Carolina – Chapel Hill Raleigh NC 27695 USA
| |
Collapse
|
26
|
Structural and functional analysis of the simultaneous binding of two duplex/quadruplex aptamers to human α-thrombin. Int J Biol Macromol 2021; 181:858-867. [PMID: 33864869 DOI: 10.1016/j.ijbiomac.2021.04.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022]
Abstract
The long-range communication between the two exosites of human α-thrombin (thrombin) tightly modulates the protein-effector interactions. Duplex/quadruplex aptamers represent an emerging class of very effective binders of thrombin. Among them, NU172 and HD22 aptamers are at the forefront of exosite I and II recognition, respectively. The present study investigates the simultaneous binding of these two aptamers by combining a structural and dynamics approach. The crystal structure of the ternary complex formed by the thrombin with NU172 and HD22_27mer provides a detailed view of the simultaneous binding of these aptamers to the protein, inspiring the design of novel bivalent thrombin inhibitors. The crystal structure represents the starting model for molecular dynamics studies, which point out the cooperation between the binding at the two exosites. In particular, the binding of an aptamer to its exosite reduces the intrinsic flexibility of the other exosite, that preferentially assumes conformations similar to those observed in the bound state, suggesting a predisposition to interact with the other aptamer. This behaviour is reflected in a significant increase of the anticoagulant activity of NU172 when the inactive HD22_27mer is bound to exosite II, providing a clear evidence of the synergic action of the two aptamers.
Collapse
|
27
|
Yunn NO, Park M, Park S, Lee J, Noh J, Shin E, Ryu SH. A hotspot for enhancing insulin receptor activation revealed by a conformation-specific allosteric aptamer. Nucleic Acids Res 2021; 49:700-712. [PMID: 33410883 PMCID: PMC7826266 DOI: 10.1093/nar/gkaa1247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/23/2020] [Accepted: 12/15/2020] [Indexed: 01/20/2023] Open
Abstract
Aptamers are single-stranded oligonucleotides that bind to a specific target with high affinity, and are widely applied in biomedical diagnostics and drug development. However, the use of aptamers has largely been limited to simple binders or inhibitors that interfere with the function of a target protein. Here, we show that an aptamer can also act as a positive allosteric modulator that enhances the activation of a receptor by stabilizing the binding of a ligand to that receptor. We developed an aptamer, named IR-A43, which binds to the insulin receptor, and confirmed that IR-A43 and insulin bind to the insulin receptor with mutual positive cooperativity. IR-A43 alone is inactive, but, in the presence of insulin, it potentiates autophosphorylation and downstream signaling of the insulin receptor. By using the species-specific activity of IR-A43 at the human insulin receptor, we demonstrate that residue Q272 in the cysteine-rich domain is directly involved in the insulin-enhancing activity of IR-A43. Therefore, we propose that the region containing residue Q272 is a hotspot that can be used to enhance insulin receptor activation. Moreover, our study implies that aptamers are promising reagents for the development of allosteric modulators that discriminate a specific conformation of a target receptor.
Collapse
Affiliation(s)
- Na-Oh Yunn
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Mangeun Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seongeun Park
- Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jimin Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jeongeun Noh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Euisu Shin
- Aptamer Sciences, Inc., Seongnam 13605, Republic of Korea
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
28
|
Allemailem KS, Almatroudi A, Alsahli MA, Basfar GT, Alrumaihi F, Rahmani AH, Khan AA. Recent advances in understanding oligonucleotide aptamers and their applications as therapeutic agents. 3 Biotech 2020; 10:551. [PMID: 33269185 PMCID: PMC7686427 DOI: 10.1007/s13205-020-02546-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
The innovative discovery of aptamers was based on target-specific treatment in clinical diagnostics and therapeutics. Aptamers are synthetic, single-stranded oligonucleotides, simply described as chemical antibodies, which can bind to diverse targets with high specificity and affinity. Aptamers are synthesized by the SELEX technique, and possess distinctive properties as small size (10-50 kDa), higher stability, easy manufacture and less immunogenicity. These oligonucleotides are easily degraded by nucleases, so require some important modifications like capping and incorporation of modified nucleotides. RNA aptamers can be modified chemically on 2' positions using -NH3, -F, -deoxy, or -OMe groups to enhance their nuclease resistance. Aptamers have been employed for multiple purposes, as direct drugs or aptamer-drug conjugates targeted against different diseased cells. Different aptamer-conjugated nanovehicles (e.g., micelles, liposomes, silica nano-shells) have been designed to transport diverse anticancer-drugs like doxorubicin and cisplatin in bulk to minimize systemic cytotoxicity. Some drug-loaded nanovehicles (up to 97% loading capacity) and conjugated with specific aptamer resulted in more than 60% tumor inhibition as compared to unconjugated drug-loaded nanovehicles which showed only 31% cancer inhibition. In addition, aptamers have been widely used in basic research, food safety, environmental monitoring, clinical diagnostics and therapeutics. Different FDA-approved RNA and DNA aptamers are now available in the market, used for the treatment of diverse diseases, especially cancer. These aptamers include Macugen, Pegaptanib, etc. Despite a good progress in aptamer use, the present-day chemotherapeutics and drug targeting systems still face great challenges. Here in this review article, we are discussing nucleic acid aptamers, preparation, role in the transportation of different nanoparticle vehicles and their applications as therapeutic agents.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraydah, 51452 Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ghaiyda Talal Basfar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraydah, 51452 Saudi Arabia
| |
Collapse
|
29
|
Ptacek J, Zhang D, Qiu L, Kruspe S, Motlova L, Kolenko P, Novakova Z, Shubham S, Havlinova B, Baranova P, Chen SJ, Zou X, Giangrande P, Barinka C. Structural basis of prostate-specific membrane antigen recognition by the A9g RNA aptamer. Nucleic Acids Res 2020; 48:11130-11145. [PMID: 32525981 PMCID: PMC7641732 DOI: 10.1093/nar/gkaa494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA) is a well-characterized tumor marker associated with prostate cancer and neovasculature of most solid tumors. PSMA-specific ligands are thus being developed to deliver imaging or therapeutic agents to cancer cells. Here, we report on a crystal structure of human PSMA in complex with A9g, a 43-bp PSMA-specific RNA aptamer, that was determined to the 2.2 Å resolution limit. The analysis of the PSMA/aptamer interface allows for identification of key interactions critical for nanomolar binding affinity and high selectivity of A9g for human PSMA. Combined with in silico modeling, site-directed mutagenesis, inhibition experiments and cell-based assays, the structure also provides an insight into structural changes of the aptamer and PSMA upon complex formation, mechanistic explanation for inhibition of the PSMA enzymatic activity by A9g as well as its ligand-selective competition with small molecules targeting the internal pocket of the enzyme. Additionally, comparison with published protein-RNA aptamer structures pointed toward more general features governing protein-aptamer interactions. Finally, our findings can be exploited for the structure-assisted design of future A9g-based derivatives with improved binding and stability characteristics.
Collapse
Affiliation(s)
- Jakub Ptacek
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Dong Zhang
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, USA
| | - Liming Qiu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Sven Kruspe
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lucia Motlova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Petr Kolenko
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic.,Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, Prague 11519, Czech Republic
| | - Zora Novakova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Shambhavi Shubham
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Barbora Havlinova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Petra Baranova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Shi-Jie Chen
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Xiaoqin Zou
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Paloma Giangrande
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cyril Barinka
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| |
Collapse
|
30
|
Filippi L, Bagni O, Nervi C. Aptamer-based technology for radionuclide targeted imaging and therapy: a promising weapon against cancer. Expert Rev Med Devices 2020; 17:751-758. [PMID: 32669004 DOI: 10.1080/17434440.2020.1796633] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION aptamers are short artificial, single-strand oligonucleotide sequences (DNA, RNA or modified RNA), capable of binding to biological molecules with high affinity and specificity. Due to their relatively low cost of production and scarce immunogenicity, many efforts have been made to produce aptamers directed against specific molecular targets, such as receptors or transporters overexpressed by malignancies. AREAS COVERED the technological approaches for generating aptamers are reviewed. Furthermore, the applications of radiolabeled aptamers for the in vivo imaging of several oncological biomarkers through single photon emission computed tomography (SPECT) or positron emission tomography (PET), are covered. Lastly, targeted therapy based on the utilization of aptamers labeled with radionuclides emitting beta particles is discussed, with particular emphasis to the oncological perspectives. EXPERT OPINION The main limitation of radiolabeled aptamers is represented by their in vivo sensitivity to endogenous nuclease, so that several strategies have been developed to increase the stability of these compounds. Although the applications of aptamers are still in a preliminary and pre-clinical phase, it is reasonable to hypothesize that this technology will play a major role for personalized medicine in the next years.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital , Latina, Italy
| | - Oreste Bagni
- Department of Nuclear Medicine, Santa Maria Goretti Hospital , Latina, Italy
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnology, University of Rome "La Sapienza" , Latina, Italy
| |
Collapse
|
31
|
Qu H, Ma Q, Wang L, Mao Y, Eisenstein M, Soh HT, Zheng L. Measuring Aptamer Folding Energy Using a Molecular Clamp. J Am Chem Soc 2020; 142:11743-11749. [PMID: 32491843 DOI: 10.1021/jacs.0c01570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Folding energy (ΔGfold) offers a useful metric for characterizing the stability and function of aptamers. However, experimentally measuring the folding energy is challenging, and there is currently no general technique to measure this parameter directly. In this work, we present a simple approach for measuring aptamer folding energy. First, the aptamer is stretched under equilibrium conditions with a double-stranded DNA "molecular clamp" that is coupled to the aptamer ends. We then measure the total internal energy of stressed DNA molecules using time-lapse gel electrophoresis and compare the folding and unfolding behavior of molecular clamp-stressed molecules that incorporate either the aptamer or unstructured random single-stranded DNA in order to derive the aptamer folding energy. Using this approach, we measured a folding energy of 10.40 kJ/mol for the HD22 thrombin aptamer, which is consistent with other predictions and estimates. We also analyzed a simple hairpin structure, generating a folding energy result of 9.05 kJ/mol, consistent with the value predicted by computational models (9.24 kJ/mol). We believe our strategy offers an accessible and generalizable approach for obtaining such measurements with virtually any aptamer.
Collapse
Affiliation(s)
- Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qihui Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Michael Eisenstein
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States.,Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Hyongsok Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States.,Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
32
|
Aptamers as a novel diagnostic and therapeutic tool and their potential use in parasitology. ACTA ACUST UNITED AC 2020; 40:148-165. [PMID: 32463617 PMCID: PMC7449109 DOI: 10.7705/biomedica.4765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Indexed: 02/07/2023]
Abstract
Los aptámeros son secuencias de ADN o ARN de cadena sencilla que adoptan la forma de estructuras tridimensionales únicas, lo cual les permite reconocer un blanco específico con gran afinidad. Sus usos potenciales abarcan, entre otros, el diagnóstico de enfermedades, el desarrollo de nuevos agentes terapéuticos, la detección de riesgos alimentarios, la producción de biosensores, la detección de toxinas, el transporte de fármacos en el organismo y la señalización de nanopartículas. El pegaptanib es el único aptámero aprobado para uso comercial por la Food and Drug Administration (FDA). Otros aptámeros para el tratamiento de enfermedades están en la fase clínica de desarrollo. En parasitología, se destacan los estudios que se vienen realizando en Leishmania spp., con la obtención de aptámeros que reconocen la proteína de unión a poliA (LiPABP) y que pueden tener potencial utilidad en la investigación, el diagnóstico y el tratamiento de la leishmaniasis. En cuanto a la malaria, se han obtenido aptámeros que permiten identificar eritrocitos infectados e inhiben la formación de rosetas, y otros que prometen ser alternativas para el diagnóstico al detectar de forma específica la proteína lactato deshidrogenasa (PfLDH). Para Cryptosporidium parvuum se han seleccionado aptámeros que detectan ooquistes a partir de alimentos o aguas contaminadas. Para Entamoeba histolytica se han aislado dos aptámeros llamados C4 y C5, que inhiben la proliferación in vitro de los trofozoítos y tienen potencial terapéutico. Los aptámeros contra Trypanosoma cruzi inhiben la invasión de células LLC-MK2 (de riñón de mono) en un 50 a 70 % y aquellos contra T. brucei transportan moléculas tóxicas al lisosoma parasitario como una novedosa estrategia terapéutica. Los datos recopilados en esta revisión destacan los aptámeros como una alternativa para la investigación, el diagnóstico y el tratamiento contra parásitos de interés nacional.
Collapse
|
33
|
Liu J, Feng W, Zhang W. A single-molecule study reveals novel rod-like structures formed by a thrombin aptamer repeat sequence. NANOSCALE 2020; 12:4159-4166. [PMID: 32022812 DOI: 10.1039/c9nr09054a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thrombin aptamers (TBAs) have attracted much attention due to their various applications. The structures and properties of long ssDNA chains with multiple TBA repeat sequences are interesting and distinct from those of their monomers. Due to the complexity of the sample system, it is quite difficult to reveal the structure of such a long-chain ssDNA using traditional methods. In this work, we investigated the repeated ssDNA by using single-molecule magnetic tweezers and AFM imaging. To do that we developed the polymerase change-rolling circle amplification (PC-RCA) synthetic method and prepared two-end modified repeated ssDNA. The rod-like G4 structures formed by intramolecular stacking of the repeat sequence were for the first time identified. This novel structure is different from those higher-order quadruplex structures formed by G-tetrads or loop-mediated interactions. It is also quite interesting to find that the increase of the TBA copy number can unitize the diversity of TBA conformation to the best-fit binding structure for thrombin. The methodology developed in this work can be used for studying other repeat sequences in the genome, such as telomeric DNA as well as interactions of ssDNA with the binding molecule.
Collapse
Affiliation(s)
- Jianyu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.
| | - Wei Feng
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.
| |
Collapse
|
34
|
Aptamers: A Review of Their Chemical Properties and Modifications for Therapeutic Application. Molecules 2019; 24:molecules24234229. [PMID: 31766318 PMCID: PMC6930564 DOI: 10.3390/molecules24234229] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 12/29/2022] Open
Abstract
Aptamers are short, single-stranded oligonucleotides that bind to specific target molecules. The shape-forming feature of single-stranded oligonucleotides provides high affinity and excellent specificity toward targets. Hence, aptamers can be used as analogs of antibodies. In December 2004, the US Food and Drug Administration approved the first aptamer-based therapeutic, pegaptanib (Macugen), targeting vascular endothelial growth factor, for the treatment of age-related macular degeneration. Since then, however, no aptamer medication for public health has appeared. During these relatively silent years, many trials and improvements of aptamer therapeutics have been performed, opening multiple novel directions for the therapeutic application of aptamers. This review summarizes the basic characteristics of aptamers and the chemical modifications available for aptamer therapeutics.
Collapse
|
35
|
Wang R, Zhang Q, Zhang Y, Shi H, Nguyen KT, Zhou X. Unconventional Split Aptamers Cleaved at Functionally Essential Sites Preserve Biorecognition Capability. Anal Chem 2019; 91:15811-15817. [DOI: 10.1021/acs.analchem.9b04115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ruoyu Wang
- Research Centre of Environmental and Health Sensing Technology, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Zhang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Hanchang Shi
- Research Centre of Environmental and Health Sensing Technology, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kim Truc Nguyen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Xiaohong Zhou
- Research Centre of Environmental and Health Sensing Technology, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
36
|
Humphreys SC, Thayer MB, Lade JM, Wu B, Sham K, Basiri B, Hao Y, Huang X, Smith R, Rock BM. Plasma and Liver Protein Binding of N-Acetylgalactosamine-Conjugated Small Interfering RNA. Drug Metab Dispos 2019; 47:1174-1182. [PMID: 31097425 DOI: 10.1124/dmd.119.086967] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/06/2019] [Indexed: 02/13/2025] Open
Abstract
Understanding small interfering RNA (siRNA) fraction unbound (f u) in relevant physiologic compartments is critical for establishing pharmacokinetic-pharmacodynamic relationships for this emerging modality. In our attempts to isolate the equilibrium free fraction of N-acetylgalactosamine-conjugated siRNA using classic small-molecule in vitro techniques, we found that the hydrodynamic radius was critical in determining the size exclusion limit requirements for f u isolation, largely validating the siRNA "rigid rod" hypothesis. With this knowledge, we developed an orthogonally validated 50 kDa molecular-mass cutoff ultrafiltration assay to quantify f u in biologic matrices including human, nonhuman primate, rat, and mouse plasma, and human liver homogenate. To enhance understanding of the siRNA-plasma interaction landscape, we examined the effects of various common oligonucleotide therapeutic modifications to the ribose and helix backbone on siRNA f u in plasma (f u,plasma) and found that chemical modifications can alter plasma protein binding by at least 20%. Finally, to gain insight into which specific plasma proteins bind to siRNA, we developed a qualitative screen to identify binding "hits" across a panel of select purified human plasma proteins.
Collapse
Affiliation(s)
- Sara C Humphreys
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, California (S.C.H., M.B.T., J.M.L., B.B., R.S., B.M.R.); Hybrid Modality Engineering Department, Amgen Research, Thousand Oaks, California (B.W., K.S.); and Molecular Engineering Department, Amgen Research, Cambridge, Massachusetts (Y.H., X.H.)
| | - Mai B Thayer
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, California (S.C.H., M.B.T., J.M.L., B.B., R.S., B.M.R.); Hybrid Modality Engineering Department, Amgen Research, Thousand Oaks, California (B.W., K.S.); and Molecular Engineering Department, Amgen Research, Cambridge, Massachusetts (Y.H., X.H.)
| | - Julie M Lade
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, California (S.C.H., M.B.T., J.M.L., B.B., R.S., B.M.R.); Hybrid Modality Engineering Department, Amgen Research, Thousand Oaks, California (B.W., K.S.); and Molecular Engineering Department, Amgen Research, Cambridge, Massachusetts (Y.H., X.H.)
| | - Bin Wu
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, California (S.C.H., M.B.T., J.M.L., B.B., R.S., B.M.R.); Hybrid Modality Engineering Department, Amgen Research, Thousand Oaks, California (B.W., K.S.); and Molecular Engineering Department, Amgen Research, Cambridge, Massachusetts (Y.H., X.H.)
| | - Kelvin Sham
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, California (S.C.H., M.B.T., J.M.L., B.B., R.S., B.M.R.); Hybrid Modality Engineering Department, Amgen Research, Thousand Oaks, California (B.W., K.S.); and Molecular Engineering Department, Amgen Research, Cambridge, Massachusetts (Y.H., X.H.)
| | - Babak Basiri
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, California (S.C.H., M.B.T., J.M.L., B.B., R.S., B.M.R.); Hybrid Modality Engineering Department, Amgen Research, Thousand Oaks, California (B.W., K.S.); and Molecular Engineering Department, Amgen Research, Cambridge, Massachusetts (Y.H., X.H.)
| | - Yue Hao
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, California (S.C.H., M.B.T., J.M.L., B.B., R.S., B.M.R.); Hybrid Modality Engineering Department, Amgen Research, Thousand Oaks, California (B.W., K.S.); and Molecular Engineering Department, Amgen Research, Cambridge, Massachusetts (Y.H., X.H.)
| | - Xin Huang
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, California (S.C.H., M.B.T., J.M.L., B.B., R.S., B.M.R.); Hybrid Modality Engineering Department, Amgen Research, Thousand Oaks, California (B.W., K.S.); and Molecular Engineering Department, Amgen Research, Cambridge, Massachusetts (Y.H., X.H.)
| | - Richard Smith
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, California (S.C.H., M.B.T., J.M.L., B.B., R.S., B.M.R.); Hybrid Modality Engineering Department, Amgen Research, Thousand Oaks, California (B.W., K.S.); and Molecular Engineering Department, Amgen Research, Cambridge, Massachusetts (Y.H., X.H.)
| | - Brooke M Rock
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, California (S.C.H., M.B.T., J.M.L., B.B., R.S., B.M.R.); Hybrid Modality Engineering Department, Amgen Research, Thousand Oaks, California (B.W., K.S.); and Molecular Engineering Department, Amgen Research, Cambridge, Massachusetts (Y.H., X.H.)
| |
Collapse
|
37
|
Moreno A, Pitoc GA, Ganson NJ, Layzer JM, Hershfield MS, Tarantal AF, Sullenger BA. Anti-PEG Antibodies Inhibit the Anticoagulant Activity of PEGylated Aptamers. Cell Chem Biol 2019; 26:634-644.e3. [PMID: 30827937 PMCID: PMC6707742 DOI: 10.1016/j.chembiol.2019.02.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/17/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
Biopharmaceuticals have become increasingly attractive therapeutic agents and are often PEGylated to enhance their pharmacokinetics and reduce their immunogenicity. However, recent human clinical trials have demonstrated that administration of PEGylated compounds can evoke anti-PEG antibodies. Considering the ubiquity of PEG in commercial products and the presence of pre-existing anti-PEG antibodies in patients in large clinical trials evaluating a PEG-modified aptamer, we investigated how anti-PEG antibodies effect the therapeutic activities of PEGylated RNA aptamers. We demonstrate that anti-PEG antibodies can directly bind to and inhibit anticoagulant aptamer function in vitro and in vivo. Moreover, in parallel studies we detected the presence of anti-PEG antibodies in nonhuman primates after a single administration of a PEGylated aptamer. Our results suggest that anti-PEG antibodies can limit the activity of PEGylated drugs and potentially compromise the activity of otherwise effective therapeutic agents.
Collapse
Affiliation(s)
- Angelo Moreno
- Department of Molecular Genetics and Microbiology graduate program, Duke University, Durham, NC, USA,Department of Surgery, Duke University, Durham, NC, USA
| | | | - Nancy J. Ganson
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Juliana M. Layzer
- Department of Surgery, Duke University, Durham, NC, USA,Duke Clinical and Translational Science Institute, Durham, NC, USA
| | | | - Alice F. Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, NHLBI Center for Gene Transfer for Heart, Lung, and Blood Disease, and California National Primate Research Center, University of California, Davis, CA, USA
| | - Bruce A. Sullenger
- Department of Molecular Genetics and Microbiology graduate program, Duke University, Durham, NC, USA,Department of Surgery, Duke University, Durham, NC, USA,Contact Info: Corresponding Author and Lead Contact:
| |
Collapse
|
38
|
Krissanaprasit A, Key C, Fergione M, Froehlich K, Pontula S, Hart M, Carriel P, Kjems J, Andersen ES, LaBean TH. Genetically Encoded, Functional Single-Strand RNA Origami: Anticoagulant. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808262. [PMID: 30972819 DOI: 10.1002/adma.201808262] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Nucleic acid aptamers selected for thrombin binding have been previously shown to possess anticoagulant activity; however, problems with rapid renal clearance and short circulation half-life have prevented translation to clinical usefulness. Here, a family of self-folding, functional RNA origami molecules bearing multiple thrombin-binding RNA aptamers and showing significantly improved anticoagulant activity is described. These constructs may overcome earlier problems preventing clinical use of nucleic acid anticoagulants. RNA origami structures are designed in silico and produced by in vitro transcription from DNA templates. Incorporation of 2'-fluoro-modified C- and U-nucleotides is shown to increase nuclease resistance and stability during long-term storage. Specific binding to human thrombin as well as high stability in the presence of RNase A and in human plasma, comparatively more stable than DNA is demonstrated. The RNA origami constructs show anticoagulant activity sevenfold greater than free aptamer and higher than previous DNA weave tiles decorated with DNA aptamers. Anticoagulation activity is maintained after at least 3 months of storage in buffer at 4 °C. Additionally, inhibition of thrombin is shown to be reversed by addition of single-stranded DNA antidotes. This project paves the way for development of RNA origami for potential therapeutic applications especially as a safer surgical anticoagulant.
Collapse
Affiliation(s)
- Abhichart Krissanaprasit
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Carson Key
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael Fergione
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kristen Froehlich
- Department of Biomedical Engineering, College of Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sahil Pontula
- William G. Enloe High School, Raleigh, NC, 27610, USA
| | - Matthew Hart
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Pedro Carriel
- Department of Biomedical Engineering, College of Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - Ebbe Sloth Andersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - Thomas H LaBean
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
39
|
Egli M, Lybrand TP. Enhanced Dispersion and Polarization Interactions Achieved through Dithiophosphate Group Incorporation Yield a Dramatic Binding Affinity Increase for an RNA Aptamer-Thrombin Complex. J Am Chem Soc 2019; 141:4445-4452. [PMID: 30794399 DOI: 10.1021/jacs.9b00104] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regiospecific replacement of a single phosphate (PO2) by a dithiophosphate (PS2) group in an RNA can dramatically increase its binding affinity for a target protein. Thus, complexes between antithrombin and anti-VEGF RNA aptamers with single dithiophosphate moieties and thrombin and VEGF, respectively, display equilibrium dissociation constants KD of ca. 1 pM, 1000-fold tighter than the native RNA complexes (ca. 1 nM). Inspection of crystal structures of the native and PS2-RNA aptamer:thrombin complexes reveals an RNA-induced fit in the latter. This leads to a close approach between PS2 and the phenyl ring edge of Phe-232 that is surrounded by pairs of lysines and arginines. To better understand the origins of the tighter binding and individual contributions to the interaction energy, we carried out QM calculations with phosphate- and dithiophosphate-benzene and dimethyl phosphate- and dimethyl dithiophosphate-benzene model systems. These calculations demonstrate that the dithiophosphate-benzene interaction is much stronger than the corresponding interaction with phosphate. QM/MM calculations with the full complexes confirmed this finding and support the hypothesis that the electric field generated by basic residues surrounding Phe-232 is key to the polarization of the PS2 moiety. Thus, disparate polarization and dispersion energies between the PO2 and PS2 complexes contribute critically to the difference in binding affinity. By comparison, easier desolvation of the dithiophosphate group compared to phosphate does not contribute decisively to the observed difference in binding affinity. Favorable polarization and dispersion energies may be a general feature of the dramatic affinity gains seen for complexes between RNAs carrying dithiophosphate groups and their binding proteins.
Collapse
|
40
|
Seo M, Lei L, Egli M. Label-Free Electrophoretic Mobility Shift Assay (EMSA) for Measuring Dissociation Constants of Protein-RNA Complexes. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2019; 76:e70. [PMID: 30461222 PMCID: PMC6391183 DOI: 10.1002/cpnc.70] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The electrophoretic mobility shift assay (EMSA) is a well-established method to detect formation of complexes between proteins and nucleic acids and to determine, among other parameters, equilibrium constants for the interaction. Mixtures of protein and nucleic acid solutions of various ratios are analyzed via polyacrylamide gel electrophoresis (PAGE) under native conditions. In general, protein-nucleic acid complexes will migrate more slowly than the free nucleic acid. From the distributions of the nucleic acid components in the observed bands in individual gel lanes, quantitative parameters such as the dissociation constant (Kd ) of the interaction can be measured. This article describes a simple and rapid EMSA that relies either on precast commercial or handcast polyacrylamide gels and uses unlabeled protein and nucleic acid. Nucleic acids are instead detected with SYBR Gold stain and band intensities established with a standard gel imaging system. We used this protocol specifically to determine Kd values for complexes between the PAZ domain of Argonaute 2 (Ago2) enzyme and native and chemically modified RNA oligonucleotides. EMSA-based equilibrium constants are compared to those determined with isothermal titration calorimetry (ITC). Advantages and limitations of this simple EMSA are discussed by comparing it to other techniques used for determination of equilibrium constants of protein-RNA interactions, and a troubleshooting guide is provided. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Minguk Seo
- Department of Biochemistry, School of Medicine, Vanderbilt University,
Nashville TN 37232
| | - Li Lei
- Department of Biochemistry, School of Medicine, Vanderbilt University,
Nashville TN 37232
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University,
Nashville TN 37232
| |
Collapse
|
41
|
Hayashi T, Matsuda T, Nagata T, Katahira M, Kinoshita M. Mechanism of protein-RNA recognition: analysis based on the statistical mechanics of hydration. Phys Chem Chem Phys 2019; 20:9167-9180. [PMID: 29560998 DOI: 10.1039/c8cp00155c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We investigate the RBD1-r(GUAGU) binding as a case study using all-atom models for the biomolecules, molecular models for water, and the currently most reliable statistical-mechanical method. RBD1 is one of the RNA-binding domains of mammalian Musashi1 (Msi1), and r(GUAGU) contains the minimum recognition sequence for Msi1, r(GUAG). We show that the binding is driven by a large gain of configurational entropy of water in the entire system. It is larger than the sum of conformational-entropy losses for RBD1 and r(GUAGU). The decrease in RBD1-r(GUAGU) interaction energy upon binding is largely cancelled out by the increase in the sum of RBD1-water, r(GUAGU)-water, and water-water interaction energies. We refer to this increase as "energetic dehydration". The decrease is larger than the increase for the van der Waals component, whereas the opposite is true for the electrostatic component. We give a novel reason for the empirically known fact that protein residues possessing side chains with positive charges and with flat moieties frequently appear within protein-RNA binding interfaces. A physical picture of the general protein-RNA binding mechanism is then presented. To achieve a sufficiently large water-entropy gain, shape complementarity at the atomic level needs to be constructed by utilizing the stacking and sandwiching of flat moieties (aromatic rings of the protein and nucleobases of RNA) as fundamental motifs. To compensate for electrostatic energetic dehydration, charge complementarity becomes crucial within the binding interface. We argue the reason why the RNA recognition motif (RRM) is the most ubiquitous RNA binding domain.
Collapse
Affiliation(s)
- Tomohiko Hayashi
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Tomoaki Matsuda
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
42
|
Cai S, Yan J, Xiong H, Liu Y, Peng D, Liu Z. Investigations on the interface of nucleic acid aptamers and binding targets. Analyst 2019; 143:5317-5338. [PMID: 30357118 DOI: 10.1039/c8an01467a] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA of 20-100 nucleotides in length that have attracted substantial scientific interest due to their ability to specifically bind to target molecules via the formation of three-dimensional structures. Compared to traditional protein antibodies, aptamers have several advantages, such as their small size, high binding affinity, specificity, flexible structure, being chemical synthesizable and modifiable, good biocompatibility, high stability and low immunogenicity, which all contribute to their widely applications in the biomedical field. To date, much progress has been made in the study and applications of aptamers, however, detailed information on how aptamers bind to their targets is still scarce. Over the past few decades, many methods have been introduced to investigate the aptamer-target binding process, such as measuring the main kinetic or thermodynamic parameters, detecting the structural changes of the binding complexes, etc. Apart from traditional physicochemical methods, various types of molecular docking programs have been applied to simulate the aptamer-target interactions, while these simulations also have limitations. To facilitate the further research on the interactions, herein, we provide a brief review to illustrate the recent advances in the study of aptamer-target interactions. We summarize the binding targets of aptamers, such as small molecules, macromolecules, and even cells. Their binding constants (KD) are also summarized. Methods to probe the aptamer-target binding process, such as surface plasmon resonance (SPR), circular dichroism spectroscopy (CD), isothermal titration calorimetry (ITC), footprinting assay, truncation and mutation assay, nuclear magnetic resonance spectroscopy (NMR), X-ray crystallography and molecular docking simulation are indicated. The binding forces mediating the aptamer-target interactions, such as hydrogen bonding, electrostatic interaction, the hydrophobic effect, π-π stacking and van der Waals forces are summarized. The challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Shundong Cai
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China.
| | | | | | | | | | | |
Collapse
|
43
|
Zhu G, Chen X. Aptamer-based targeted therapy. Adv Drug Deliv Rev 2018; 134:65-78. [PMID: 30125604 PMCID: PMC6239901 DOI: 10.1016/j.addr.2018.08.005] [Citation(s) in RCA: 322] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/12/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022]
Abstract
Precision medicine holds great promise to harness genetic and epigenetic cues for targeted treatment of a variety of diseases, ranging from many types of cancers, neurodegenerative diseases, to cardiovascular diseases. The proteomic profiles resulting from the unique genetic and epigenetic signatures represent a class of relatively well accessible molecular targets for both interrogation (e.g., diagnosis, prognosis) and intervention (e.g., targeted therapy) of these diseases. Aptamers are promising for such applications by specific binding with cognate disease biomarkers. Nucleic acid aptamers are a class of DNA or RNA with unique three-dimensional conformations that allow them to specifically bind with target molecules. Aptamers can be relatively easily screened, reproducibly manufactured, programmably designed, and chemically modified for various biomedical applications, including targeted therapy. Aptamers can be chemically modified to resist enzymatic degradation or optimize their pharmacological behaviors, which ensured their chemical integrity and bioavailability under physiological conditions. In this review, we will focus on recent progress and discuss the challenges and opportunities in the research areas of aptamer-based targeted therapy in the forms of aptamer therapeutics and aptamer-drug conjugates (ApDCs).
Collapse
Affiliation(s)
- Guizhi Zhu
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Gunaratne R, Kumar S, Frederiksen JW, Stayrook S, Lohrmann JL, Perry K, Bompiani KM, Chabata CV, Thalji NK, Ho MD, Arepally G, Camire RM, Krishnaswamy S, Sullenger BA. Combination of aptamer and drug for reversible anticoagulation in cardiopulmonary bypass. Nat Biotechnol 2018; 36:606-613. [PMID: 29863725 PMCID: PMC6349032 DOI: 10.1038/nbt.4153] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 03/27/2018] [Indexed: 02/05/2023]
Abstract
Unfractionated heparin (UFH), the standard anticoagulant for cardiopulmonary bypass (CPB) surgery, carries a risk of post-operative bleeding and is potentially harmful in patients with heparin-induced thrombocytopenia-associated antibodies. To improve the activity of an alternative anticoagulant, the RNA aptamer 11F7t, we solved X-ray crystal structures of the aptamer bound to factor Xa (FXa). The finding that 11F7t did not bind the catalytic site suggested that it could complement small-molecule FXa inhibitors. We demonstrate that combinations of 11F7t and catalytic-site FXa inhibitors enhance anticoagulation in purified reaction mixtures and plasma. Aptamer-drug combinations prevented clot formation as effectively as UFH in human blood circulated in an extracorporeal oxygenator circuit that mimicked CPB, while avoiding side effects of UFH. An antidote could promptly neutralize the anticoagulant effects of both FXa inhibitors. Our results suggest that drugs and aptamers with shared targets can be combined to exert more specific and potent effects than either agent alone.
Collapse
Affiliation(s)
- Ruwan Gunaratne
- Duke University, Department of Pharmacology and Cancer Biology, Durham, NC 27710
- Duke University, Medical Scientist Training Program, Durham, NC 27710
| | - Shekhar Kumar
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | | | - Steven Stayrook
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Kay Perry
- Northeastern Collaborative Access Team (NE-CAT) and Departments of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439
| | | | - Charlene V. Chabata
- Duke University, Department of Pharmacology and Cancer Biology, Durham, NC 27710
| | - Nabil K. Thalji
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104
| | - Michelle D. Ho
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | | | - Rodney M. Camire
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104
| | - Sriram Krishnaswamy
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104
| | - Bruce A. Sullenger
- Duke University, Department of Pharmacology and Cancer Biology, Durham, NC 27710
- Duke University, Department of Surgery, Durham, NC 27710
| |
Collapse
|
45
|
Khurshid H, Shi Y, Berwin BL, Weaver JB. Evaluating blood clot progression using magnetic particle spectroscopy. Med Phys 2018; 45:3258-3263. [PMID: 29772078 DOI: 10.1002/mp.12983] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 02/04/2023] Open
Abstract
PURPOSE To evaluate the thrombus maturity noninvasively providing the promise of much earlier and more accurate diagnosis of diseases ranging from stroke to myocardial infarction to deep vein thrombosis. METHODS Magnetic spectroscopy of nanoparticle Brownian rotation (MSB), a form of magnetic particle spectroscopy sensitive to Brownian rotation of magnetic nanoparticles, was used for the detection and characterization of blood clots. The nanoparticles' relaxation time was quantified by scaling the MSB spectra in frequency to match the spectra from nanoparticles in a reference state. The nanoparticles' relaxation time, in the bound state, was used to characterize the nanoparticle binding to thrombin on the blood clot. The number of nanoparticles bound to the clot was also estimated. Both the relaxation time and the weight of bound nanoparticles were obtained for clots of several ages, reflecting different stages of development and organization. The impact of clot development was explored using functionalized nanoparticles present during clot formation. RESULTS The relaxation time of the bound nanoparticles decreases for more mature, organized clots. The number of nanoparticles able to bind the clot diminishes quantitatively with clot age. On mature clots, the nanoparticles bind the thrombin on the surface while for developing clots the nanoparticles bind several thrombin molecules or become trapped in the clot matrix during formation. CONCLUSIONS By estimating the magnetic nanoparticles' relaxation time the clot age and organization can be predicted. The purposed methods are quick and minimally invasive for in vivo applications.
Collapse
Affiliation(s)
- Hafsa Khurshid
- Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA.,Department of Applied Physics and Astronomy, University of Sharjah, Sharjah, 27272, UAE
| | - Yipeng Shi
- Department of Physics, Dartmouth College, Hanover, NH, 03755, USA
| | - Brent L Berwin
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, NH, 03755, USA
| | - John B Weaver
- Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA.,Department of Physics, Dartmouth College, Hanover, NH, 03755, USA.,Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
46
|
Imashimizu M, Takahashi M, Amano R, Nakamura Y. Single-round isolation of diverse RNA aptamers from a random sequence pool. Biol Methods Protoc 2018; 3:bpy004. [PMID: 32161798 PMCID: PMC6994090 DOI: 10.1093/biomethods/bpy004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/02/2018] [Accepted: 04/10/2018] [Indexed: 01/09/2023] Open
Abstract
Aptamers are oligonucleotide ligands with specific binding affinity to target molecules. Generally, RNA aptamers are selected from an RNA pool with random sequences, using the technique termed SELEX, in which the target-binding RNA molecules are repeatedly isolated and exponentially amplified. Despite several advantages, SELEX often produces uncertain results during the iterative amplifications of the rare target-binding RNA molecules. Here, we develop a non-repeated, primer-less and target immobilization-free isolation method for generating RNA aptamers, which is robust to experimental noise. Uniquely, this method focuses on finding and removal of non-aptamer sequences from the RNA pool by RNase digestion leaving target-bound aptamer molecules, and thus is independent of aptamer types. The undigested RNA sequences remaining are so few in number that they must be mixed with a large excess of a known sequence for further manipulations and this sequence is then removed by restriction digestion followed by high-throughput sequencing analysis to identify aptamers. Using this method, we generated multiple RNA aptamers targeting α-thrombin and TGFβ1 proteins, independently. This method potentially generates thousands of sequences as aptamer candidates, which may enable us to predict a common average sequence or structural property of these aptamers that is different from input RNA.
Collapse
Affiliation(s)
- Masahiko Imashimizu
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Masaki Takahashi
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Ryo Amano
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Yoshikazu Nakamura
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan.,RIBOMIC Inc., Minato-ku, Tokyo, 108-0071, Japan
| |
Collapse
|
47
|
MacPherson IS, Temme JS, Krauss IJ. DNA display of folded RNA libraries enabling RNA-SELEX without reverse transcription. Chem Commun (Camb) 2018; 53:2878-2881. [PMID: 28220154 DOI: 10.1039/c6cc09991b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A method for the physical attachment of folded RNA libraries to their encoding DNA is presented as a way to circumvent the reverse transcription step during systematic evolution of RNA ligands by exponential enrichment (RNA-SELEX). A DNA library is modified with one isodC base to stall T7 polymerase and a 5' "capture strand" which anneals to the nascent RNA transcript. This method is validated in a selection of RNA aptamers against human α-thrombin with dissociation constants in the low nanomolar range. This method will be useful in the discovery of RNA aptamers and ribozymes containing base modifications that make them resistant to accurate reverse transcription.
Collapse
Affiliation(s)
- I S MacPherson
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Manoa, 651 Ilalo St., Biosciences Building, Suite 325, Honolulu, Hawaii 96813-5525, USA. and Department of Chemistry, Brandeis University, 415 South St. MS 015, Waltham, MA 02454-9110, USA.
| | - J S Temme
- Department of Chemistry, Brandeis University, 415 South St. MS 015, Waltham, MA 02454-9110, USA.
| | - I J Krauss
- Department of Chemistry, Brandeis University, 415 South St. MS 015, Waltham, MA 02454-9110, USA.
| |
Collapse
|
48
|
Valencia-Reséndiz DG, Palomino-Vizcaino G, Tapia-Vieyra JV, Benítez-Hess ML, Leija-Montoya AG, Alvarez-Salas LM. Inhibition of Human Papillomavirus Type 16 Infection Using an RNA Aptamer. Nucleic Acid Ther 2018; 28:97-105. [PMID: 29437522 DOI: 10.1089/nat.2017.0687] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Human papillomavirus type 16 (HPV16) DNA has been found in ∼50% of cervical tumors worldwide. HPV infection starts with the binding of the virus capsid to heparan sulfate (HS) receptors exposed on the surface of epithelial basal layer keratinocytes. Previously, our group isolated a high-affinity RNA aptamer (Sc5c3) specific for HPV16 L1 virus-like particles (VLPs). In this study, we report the inhibition of HPV16 infection by Sc5c3 in a pseudovirus (PsVs) model. 293TT cells were infected by HPV16 PsVs containing the yellow fluorescent protein (YFP) as reporter gene. Incubation of HPV16 PsVs with Sc5c3 before infection resulted in a dose-dependent decrease in YFP fluorescence, suggesting infection inhibition. Aptamer degradation by RNase A restored PsVs infectivity, supporting the previous observation that Sc5c3 aptamer can inhibit infection. VLP mutants with removed HS binding sites were used in binding assays to elucidate the Sc5c3 blocking mechanism; however, no binding difference was observed between wild-type and mutant VLPs, suggesting that pseudoinfection inhibition relies on mechanisms additional to electrostatic HS binding site interaction. A DNA/RNA Sc5c3 version also inhibited HPV PsVs infection, suggesting that a modified, nuclease-resistant Sc5c3 may be used to inhibit HPV16 infection in vivo.
Collapse
Affiliation(s)
- Diana Gabriela Valencia-Reséndiz
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. , Ciudad de México, México
| | - Giovanni Palomino-Vizcaino
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. , Ciudad de México, México
| | - Juana Virginia Tapia-Vieyra
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. , Ciudad de México, México
| | - María Luisa Benítez-Hess
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. , Ciudad de México, México
| | - Ana Gabriela Leija-Montoya
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. , Ciudad de México, México
| | - Luis Marat Alvarez-Salas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. , Ciudad de México, México
| |
Collapse
|
49
|
Two-Dimensional Fluorescence Difference Spectroscopy of ZnO and Mg Composites in the Detection of Physiological Protein and RNA Interactions. MATERIALS 2017; 10:ma10121430. [PMID: 29244716 PMCID: PMC5744365 DOI: 10.3390/ma10121430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 11/28/2022]
Abstract
Two-dimensional fluorescence difference spectroscopy (2-D FDS) was used to determine the unique spectral signatures of zinc oxide (ZnO), magnesium oxide (MgO), and 5% magnesium zinc oxide nanocomposite (5% Mg/ZnO) and was then used to demonstrate the change in spectral signature that occurs when physiologically important proteins, such as angiotensin-converting enzyme (ACE) and ribonuclease A (RNase A), interact with ZnO nanoparticles (NPs). When RNase A is bound to 5% Mg/ZnO, the intensity is quenched, while the intensity is magnified and a significant shift is seen when torula yeast RNA (TYRNA) is bound to RNase A and 5% Mg/ZnO. The intensity of 5% Mg/ZnO is quenched also when thrombin and thrombin aptamer are bound to the nanocomposite. These data indicate that RNA–protein interaction can occur unimpeded on the surface of NPs, which was confirmed by gel electrophoresis, and importantly that the change in fluorescence excitation, emission, and intensity shown by 2-D FDS may indicate specificity of biomolecular interactions.
Collapse
|
50
|
Nakamura Y. Aptamers as therapeutic middle molecules. Biochimie 2017; 145:22-33. [PMID: 29050945 DOI: 10.1016/j.biochi.2017.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/12/2017] [Indexed: 02/04/2023]
Abstract
Therapeutic molecules can be classified as low-, middle- and high-molecular weight drugs depending on their molecular masses. Antibodies represent high-molecular weight drugs and their clinical applications have been developing rapidly. Aptamers, on the other hand, are middle-molecular weight molecules that are short, single-stranded nucleic acid sequences that are selected in vitro from large oligonucleotide libraries based on their high affinity to a target molecule. Hence, aptamers can be thought of as a nucleic acid analog to antibodies. However, several viewpoints hold that the potential of aptamers arises from interesting characteristics that are distinct from, or in some cases, superior to those of antibodies. Recently, therapeutic middle molecules gain considerable attention as protein-protein interaction (PPI) inhibitors. This review summarizes the recent achievements in aptamer development in our laboratory in terms of PPI and non-PPI inhibitors.
Collapse
Affiliation(s)
- Yoshikazu Nakamura
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; RIBOMIC Inc., Minato-ku, Tokyo 108-0071, Japan.
| |
Collapse
|