1
|
González SA, Affranchino JL. The life cycle of feline immunodeficiency virus. Virology 2025; 601:110304. [PMID: 39561619 DOI: 10.1016/j.virol.2024.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Feline immunodeficiency virus (FIV) is a retrovirus of worldwide distribution that can cause an acquired immunodeficiency disease in domestic cats. FIV and the primate lentiviruses, human and simian immunodeficiency viruses (HIV and SIV, respectively) share structural and biological features but also exhibit important differences, which reflect both their evolutionary relationship and divergence. Given that FIV is not only an important cat pathogen but also a useful model for certain aspects of HIV-1 infections in humans, the study of FIV biology is highly relevant. In this review we provide an updated description of the molecular mechanisms involved in each stage of the FIV life cycle.
Collapse
Affiliation(s)
- Silvia A González
- Laboratorio de Virología, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano (UB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - José L Affranchino
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Abierta Interamericana (UAI), Buenos Aires, Argentina
| |
Collapse
|
2
|
Prabhu SG, Pillai VN, Ali LM, Vivet-Boudou V, Chameettachal A, Bernacchi S, Mustafa F, Marquet R, Rizvi TA. MMTV RNA packaging requires an extended long-range interaction for productive Gag binding to packaging signals. PLoS Biol 2024; 22:e3002827. [PMID: 39361708 PMCID: PMC11449360 DOI: 10.1371/journal.pbio.3002827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
The packaging of genomic RNA (gRNA) into retroviral particles relies on the specific recognition by the Gag precursor of packaging signals (Psi), which maintain a complex secondary structure through long-range interactions (LRIs). However, it remains unclear whether the binding of Gag to Psi alone is enough to promote RNA packaging and what role LRIs play in this process. Using mouse mammary tumor virus (MMTV), we investigated the effects of mutations in 4 proposed LRIs on gRNA structure and function. Our findings revealed the presence of an unsuspected extended LRI, and hSHAPE revealed that maintaining a wild-type-like Psi structure is crucial for efficient packaging. Surprisingly, filter-binding assays demonstrated that most mutants, regardless of their packaging capability, exhibited significant binding to Pr77Gag, suggesting that Gag binding to Psi is insufficient for efficient packaging. Footprinting experiments indicated that efficient RNA packaging is promoted when Pr77Gag binds to 2 specific sites within Psi, whereas binding elsewhere in Psi does not lead to efficient packaging. Taken together, our results suggest that the 3D structure of the Psi/Pr77Gag complex regulates the assembly of viral particles around gRNA, enabling effective discrimination against other viral and cellular RNAs that may also bind Gag efficiently.
Collapse
Affiliation(s)
- Suresha G Prabhu
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Vineeta N Pillai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Lizna Mohamed Ali
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Serena Bernacchi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Farah Mustafa
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, United Arab Emirates
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
González SA, Affranchino JL. The assembly-defective phenotype of an FIV Gag polyprotein containing the SIV nucleocapsid zinc finger motifs is reversed by including the SIV SP2 domain in the chimeric protein. Virology 2024; 597:110163. [PMID: 38959724 DOI: 10.1016/j.virol.2024.110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
To gain insight into the functional relationship between the nucleocapsid (NC) domains of the Gag polyproteins of feline and simian immunodeficiency viruses, FIV and SIV, respectively, we generated two FIV Gag chimeric proteins containing different SIV NC and gag sequences. A chimeric FIV Gag protein (NC1) containing the SIV two zinc fingers motifs was incapable of assembling into virus-like particles. By contrast, another Gag chimera (NC2) differing from NC1 by the replacement of the C-terminal region of the FIV NC with SIV SP2 produced particles as efficiently as wild-type FIV Gag. Of note, when the chimeric NC2 Gag polyprotein was expressed in the context of the proviral DNA in feline CrFK cells, wild-type levels of virions were produced which encapsidated 50% of genomic RNA when compared to the wild-type virus.
Collapse
Affiliation(s)
- Silvia A González
- Laboratorio de Virología, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano (UB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - José L Affranchino
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Abierta Interamericana (UAI), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Krishnan A, Ali LM, Prabhu SG, Pillai VN, Chameettachal A, Vivet-Boudou V, Bernacchi S, Mustafa F, Marquet R, Rizvi TA. Identification of a putative Gag binding site critical for feline immunodeficiency virus genomic RNA packaging. RNA (NEW YORK, N.Y.) 2023; 30:68-88. [PMID: 37914398 PMCID: PMC10726167 DOI: 10.1261/rna.079840.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
The retroviral Gag precursor plays a central role in the selection and packaging of viral genomic RNA (gRNA) by binding to virus-specific packaging signal(s) (psi or ψ). Previously, we mapped the feline immunodeficiency virus (FIV) ψ to two discontinuous regions within the 5' end of the gRNA that assumes a higher order structure harboring several structural motifs. To better define the region and structural elements important for gRNA packaging, we methodically investigated these FIV ψ sequences using genetic, biochemical, and structure-function relationship approaches. Our mutational analysis revealed that the unpaired U85CUG88 stretch within FIV ψ is crucial for gRNA encapsidation into nascent virions. High-throughput selective 2' hydroxyl acylation analyzed by primer extension (hSHAPE) performed on wild type (WT) and mutant FIV ψ sequences, with substitutions in the U85CUG88 stretch, revealed that these mutations had limited structural impact and maintained nucleotides 80-92 unpaired, as in the WT structure. Since these mutations dramatically affected packaging, our data suggest that the single-stranded U85CUG88 sequence is important during FIV RNA packaging. Filter-binding assays performed using purified FIV Pr50Gag on WT and mutant U85CUG88 ψ RNAs led to reduced levels of Pr50Gag binding to mutant U85CUG88 ψ RNAs, indicating that the U85CUG88 stretch is crucial for ψ RNA-Pr50Gag interactions. Delineating sequences important for FIV gRNA encapsidation should enhance our understanding of both gRNA packaging and virion assembly, making them potential targets for novel retroviral therapeutic interventions, as well as the development of FIV-based vectors for human gene therapy.
Collapse
Affiliation(s)
- Anjana Krishnan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Lizna M Ali
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Suresha G Prabhu
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Vineeta N Pillai
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Akhil Chameettachal
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 67084 Strasbourg cedex, France
| | - Serena Bernacchi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 67084 Strasbourg cedex, France
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, United Arab Emirates
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 67084 Strasbourg cedex, France
| | - Tahir A Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Chameettachal A, Mustafa F, Rizvi TA. Understanding Retroviral Life Cycle and its Genomic RNA Packaging. J Mol Biol 2023; 435:167924. [PMID: 36535429 DOI: 10.1016/j.jmb.2022.167924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Members of the family Retroviridae are important animal and human pathogens. Being obligate parasites, their replication involves a series of steps during which the virus hijacks the cellular machinery. Additionally, many of the steps of retrovirus replication are unique among viruses, including reverse transcription, integration, and specific packaging of their genomic RNA (gRNA) as a dimer. Progress in retrovirology has helped identify several molecular mechanisms involved in each of these steps, but many are still unknown or remain controversial. This review summarizes our present understanding of the molecular mechanisms involved in various stages of retrovirus replication. Furthermore, it provides a comprehensive analysis of our current understanding of how different retroviruses package their gRNA into the assembling virions. RNA packaging in retroviruses holds a special interest because of the uniqueness of packaging a dimeric genome. Dimerization and packaging are highly regulated and interlinked events, critical for the virus to decide whether its unspliced RNA will be packaged as a "genome" or translated into proteins. Finally, some of the outstanding areas of exploration in the field of RNA packaging are highlighted, such as the role of epitranscriptomics, heterogeneity of transcript start sites, and the necessity of functional polyA sequences. An in-depth knowledge of mechanisms that interplay between viral and cellular factors during virus replication is critical in understanding not only the virus life cycle, but also its pathogenesis, and development of new antiretroviral compounds, vaccines, as well as retroviral-based vectors for human gene therapy.
Collapse
Affiliation(s)
- Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates. https://twitter.com/chameettachal
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
6
|
Pillai VN, Ali LM, Prabhu SG, Krishnan A, Tariq S, Mustafa F, Rizvi TA. Expression, purification, and functional characterization of soluble recombinant full-length simian immunodeficiency virus (SIV) Pr55 Gag. Heliyon 2023; 9:e12892. [PMID: 36685375 PMCID: PMC9853374 DOI: 10.1016/j.heliyon.2023.e12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
The simian immunodeficiency virus (SIV) precursor polypeptide Pr55Gag drives viral assembly and facilitates specific recognition and packaging of the SIV genomic RNA (gRNA) into viral particles. While several studies have tried to elucidate the role of SIV Pr55Gag by expressing its different components independently, studies using full-length SIV Pr55Gag have not been conducted, primarily due to the unavailability of purified and biologically active full-length SIV Pr55Gag. We successfully expressed soluble, full-length SIV Pr55Gag with His6-tag in bacteria and purified it using affinity and gel filtration chromatography. In the process, we identified within Gag, a second in-frame start codon downstream of a putative Shine-Dalgarno-like sequence resulting in an additional truncated form of Gag. Synonymously mutating this sequence allowed expression of full-length Gag in its native form. The purified Gag assembled into virus-like particles (VLPs) in vitro in the presence of nucleic acids, revealing its biological functionality. In vivo experiments also confirmed formation of functional VLPs, and quantitative reverse transcriptase PCR demonstrated efficient packaging of SIV gRNA by these VLPs. The methodology we employed ensured the availability of >95% pure, biologically active, full-length SIV Pr55Gag which should facilitate future studies to understand protein structure and RNA-protein interactions involved during SIV gRNA packaging.
Collapse
Affiliation(s)
- Vineeta N. Pillai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Lizna Mohamed Ali
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Suresha G. Prabhu
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anjana Krishnan
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,Corresponding author. Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), P.O. Box 15551, Al Ain, United Arab Emirates.
| | - Tahir A. Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,Corresponding author. Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), P.O. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
7
|
A Stretch of Unpaired Purines in the Leader Region of Simian Immunodeficiency Virus (SIV) Genomic RNA is Critical for its Packaging into Virions. J Mol Biol 2021; 433:167293. [PMID: 34624298 DOI: 10.1016/j.jmb.2021.167293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022]
Abstract
Simian immunodeficiency virus (SIV) is an important lentivirus used as a non-human primate model to study HIV replication, and pathogenesis of human AIDS, as well as a potential vector for human gene therapy. This study investigated the role of single-stranded purines (ssPurines) as potential genomic RNA (gRNA) packaging determinants in SIV replication. Similar ssPurines have been implicated as important motifs for gRNA packaging in many retroviruses like, HIV-1, MPMV, and MMTV by serving as Gag binding sites during virion assembly. In examining the secondary structure of the SIV 5' leader region, as recently deduced using SHAPE methodology, we identified four specific stretches of ssPurines (I-IV) in the region that harbors major packaging determinants of SIV. The significance of these ssPurine motifs were investigated by mutational analysis coupled with a biologically relevant single round of replication assay. These analyses revealed that while ssPurine II was essential, the others (ssPurines I, III, & IV) did not significantly contribute to SIV gRNA packaging. Any mutation in the ssPurine II, such as its deletion or substitution, or other mutations that caused base pairing of ssPurine II loop resulted in near abrogation of RNA packaging, further substantiating the crucial role of ssPurine II and its looped conformation in SIV gRNA packaging. Structure prediction analysis of these mutants further corroborated the biological results and further revealed that the unpaired nature of ssPurine II is critical for its function during SIV RNA packaging perhaps by enabling it to function as a specific binding site for SIV Gag.
Collapse
|
8
|
Long M, Toesca J, Guillon C. Review and Perspectives on the Structure-Function Relationships of the Gag Subunits of Feline Immunodeficiency Virus. Pathogens 2021; 10:pathogens10111502. [PMID: 34832657 PMCID: PMC8621984 DOI: 10.3390/pathogens10111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The Gag polyprotein is implied in the budding as well as the establishment of the supramolecular architecture of infectious retroviral particles. It is also involved in the early phases of the replication of retroviruses by protecting and transporting the viral genome towards the nucleus of the infected cell until its integration in the host genome. Therefore, understanding the structure-function relationships of the Gag subunits is crucial as each of them can represent a therapeutic target. Though the field has been explored for some time in the area of Human Immunodeficiency Virus (HIV), it is only in the last decade that structural data on Feline Immunodeficiency Virus (FIV) Gag subunits have emerged. As FIV is an important veterinary issue, both in domestic cats and endangered feline species, such data are of prime importance for the development of anti-FIV molecules targeting Gag. This review will focus on the recent advances and perspectives on the structure-function relationships of each subunit of the FIV Gag polyprotein.
Collapse
Affiliation(s)
- Mathieu Long
- Retroviruses and Structural Biochemistry, Molecular Microbiology and Structural Biochemistry, CNRS, Univ Lyon, UMR5086, 69007 Lyon, France; (M.L.); (J.T.)
- Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, 221 00 Scania, Sweden
| | - Johan Toesca
- Retroviruses and Structural Biochemistry, Molecular Microbiology and Structural Biochemistry, CNRS, Univ Lyon, UMR5086, 69007 Lyon, France; (M.L.); (J.T.)
- Enveloped Viruses, Vectors and Immunotherapy, CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, UMR5308, ENS Lyon, 69007 Lyon, France
| | - Christophe Guillon
- Retroviruses and Structural Biochemistry, Molecular Microbiology and Structural Biochemistry, CNRS, Univ Lyon, UMR5086, 69007 Lyon, France; (M.L.); (J.T.)
- Correspondence:
| |
Collapse
|
9
|
Pitchai FNN, Chameettachal A, Vivet-Boudou V, Ali LM, Pillai VN, Krishnan A, Bernacchi S, Mustafa F, Marquet R, Rizvi TA. Identification of Pr78 Gag Binding Sites on the Mason-Pfizer Monkey Virus Genomic RNA Packaging Determinants. J Mol Biol 2021; 433:166923. [PMID: 33713677 DOI: 10.1016/j.jmb.2021.166923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 02/04/2023]
Abstract
How retroviral Gag proteins recognize the packaging signals (Psi) on their genomic RNA (gRNA) is a key question that we addressed here using Mason-Pfizer monkey virus (MPMV) as a model system by combining band-shift assays and footprinting experiments. Our data show that Pr78Gag selects gRNA against spliced viral RNA by simultaneously binding to two single stranded loops on the MPMV Psi RNA: (1) a large purine loop (ssPurines), and (2) a loop which partially overlaps with a mostly base-paired purine repeat (bpPurines) and extends into a GU-rich binding motif. Importantly, this second Gag binding site is located immediately downstream of the major splice donor (mSD) and is thus absent from the spliced viral RNAs. Identifying elements crucial for MPMV gRNA packaging should help in understanding not only the mechanism of virion assembly by retroviruses, but also facilitate construction of safer retroviral vectors for human gene therapy.
Collapse
Affiliation(s)
- Fathima Nuzra Nagoor Pitchai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Lizna Mohamed Ali
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Vineeta N Pillai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Anjana Krishnan
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Serena Bernacchi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences, United Arab Emirates University, United Arab Emirates
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France.
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences, United Arab Emirates University, United Arab Emirates.
| |
Collapse
|
10
|
Ali LM, Pitchai FNN, Vivet-Boudou V, Chameettachal A, Jabeen A, Pillai VN, Mustafa F, Marquet R, Rizvi TA. Role of Purine-Rich Regions in Mason-Pfizer Monkey Virus (MPMV) Genomic RNA Packaging and Propagation. Front Microbiol 2020; 11:595410. [PMID: 33250884 PMCID: PMC7674771 DOI: 10.3389/fmicb.2020.595410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
A distinguishing feature of the Mason-Pfizer monkey virus (MPMV) packaging signal RNA secondary structure is a single-stranded purine-rich sequence (ssPurines) in close vicinity to a palindromic stem loop (Pal SL) that functions as MPMV dimerization initiation site (DIS). However, unlike other retroviruses, MPMV contains a partially base-paired repeat sequence of ssPurines (bpPurines) in the adjacent region. Both purine-rich sequences have earlier been proposed to act as potentially redundant Gag binding sites to initiate the process of MPMV genomic RNA (gRNA) packaging. The objective of this study was to investigate the biological significance of ssPurines and bpPurines in MPMV gRNA packaging by systematic mutational and biochemical probing analyses. Deletion of either ssPurines or bpPurines individually had no significant effect on MPMV gRNA packaging, but it was severely compromised when both sequences were deleted simultaneously. Selective 2′ hydroxyl acylation analyzed by primer extension (SHAPE) analysis of the mutant RNAs revealed only mild effects on structure by deletion of either ssPurines or bpPurines, while the structure was dramatically affected by the two simultaneous deletions. This suggests that ssPurines and bpPurines play a redundant role in MPMV gRNA packaging, probably as Gag binding sites to facilitate gRNA capture and encapsidation. Interestingly, the deletion of bpPurines revealed an additional severe defect on RNA propagation that was independent of the presence or absence of ssPurines or the gRNA structure of the region. These findings further suggest that the bpPurines play an additional role in the early steps of MPMV replication cycle that is yet to be identified.
Collapse
Affiliation(s)
- Lizna Mohamed Ali
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fathima Nuzra Nagoor Pitchai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Valérie Vivet-Boudou
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ayesha Jabeen
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Vineeta N Pillai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Roland Marquet
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
11
|
Rous Sarcoma Virus Genomic RNA Dimerization Capability In Vitro Is Not a Prerequisite for Viral Infectivity. Viruses 2020; 12:v12050568. [PMID: 32455905 PMCID: PMC7291142 DOI: 10.3390/v12050568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/29/2022] Open
Abstract
Retroviruses package their full-length, dimeric genomic RNA (gRNA) via specific interactions between the Gag polyprotein and a “Ψ” packaging signal located in the gRNA 5′-UTR. Rous sarcoma virus (RSV) gRNA has a contiguous, well-defined Ψ element, that directs the packaging of heterologous RNAs efficiently. The simplicity of RSV Ψ makes it an informative model to examine the mechanism of retroviral gRNA packaging, which is incompletely understood. Little is known about the structure of dimerization initiation sites or specific Gag interaction sites of RSV gRNA. Using selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE), we probed the secondary structure of the entire RSV 5′-leader RNA for the first time. We identified a putative bipartite dimerization initiation signal (DIS), and mutation of both sites was required to significantly reduce dimerization in vitro. These mutations failed to reduce viral replication, suggesting that in vitro dimerization results do not strictly correlate with in vivo infectivity, possibly due to additional RNA interactions that maintain the dimers in cells. UV crosslinking-coupled SHAPE (XL-SHAPE) was next used to determine Gag-induced RNA conformational changes, revealing G218 as a critical Gag contact site. Overall, our results suggest that disruption of either of the DIS sequences does not reduce virus replication and reveal specific sites of Gag–RNA interactions.
Collapse
|
12
|
Purification and Functional Characterization of a Biologically Active Full-Length Feline Immunodeficiency Virus (FIV) Pr50 Gag. Viruses 2019; 11:v11080689. [PMID: 31357656 PMCID: PMC6723490 DOI: 10.3390/v11080689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023] Open
Abstract
The feline immunodeficiency virus (FIV) full-length Pr50Gag precursor is a key player in the assembly of new viral particles. It is also a critical component of the efficient selection and packaging of two copies of genomic RNA (gRNA) into the newly formed virus particles from a wide pool of cellular and spliced viral RNA. To understand the molecular mechanisms involved during FIV gRNA packaging, we expressed the His6-tagged and untagged recombinant FIV Pr50Gag protein both in eukaryotic and prokaryotic cells. The recombinant Pr50Gag-His6-tag fusion protein was purified from soluble fractions of prokaryotic cultures using immobilized metal affinity chromatography (IMAC). This purified protein was able to assemble in vitro into virus-like particles (VLPs), indicating that it preserved its ability to oligomerize/multimerize. Furthermore, VLPs formed in eukaryotic cells by the FIV full-length Pr50Gag both in the presence and absence of His6-tag could package FIV sub-genomic RNA to similar levels, suggesting that the biological activity of the recombinant full-length Pr50Gag fusion protein was retained in the presence of His6-tag at the carboxy terminus. Successful expression and purification of a biologically active, recombinant full-length Pr50Gag-His6-tag fusion protein will allow study of the intricate RNA-protein interactions involved during FIV gRNA encapsidation.
Collapse
|
13
|
Kalloush RM, Vivet-Boudou V, Ali LM, Pillai VN, Mustafa F, Marquet R, Rizvi TA. Stabilizing role of structural elements within the 5´ Untranslated Region (UTR) and gag sequences in Mason-Pfizer monkey virus (MPMV) genomic RNA packaging. RNA Biol 2019; 16:612-625. [PMID: 30773097 DOI: 10.1080/15476286.2019.1572424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The Mason-Pfizer monkey virus (MPMV) genomic RNA (gRNA) packaging signal is a highly-structured element with several stem-loops held together by two phylogenetically conserved long-range interactions (LRIs) between U5 and gag complementary sequences. These LRIs play a critical role in maintaining the structure of the 5´ end of the MPMV gRNA. Thus, one could hypothesize that the overall RNA secondary structure of this region is further architecturally held together by three other stem loops (SL3, Gag SL1, and Gag SL2) comprising of sequences from the distal parts of the 5´untranslated region (5' UTR) to ~ 120 nucleotides into gag, excluding gag sequences involved in forming the U5-Gag LRIs. To provide functional evidence for the biological significance of these stem loops during gRNA encapsidation, these structural motifs were mutated and their effects on MPMV RNA packaging and propagation were tested in a single round trans-complementation assay. The mutant RNA structures were further studied by high throughput SHAPE (hSHAPE) assay. Our results reveal that sequences involved in forming these three stem loops do not play crucial roles at an individual level during MPMV gRNA packaging or propagation. Further structure-function analysis indicates that the U5-Gag LRIs have a more important architectural role in stabilizing the higher order structure of the 5´ UTR than the three stem loops which have a more secondary and perhaps indirect role in stabilizing the overall RNA secondary structure of the region. Our work provides a better understanding of the molecular interactions that take place during MPMV gRNA packaging.
Collapse
Affiliation(s)
- Rawan M Kalloush
- a Department of Microbiology & Immunology College of Medicine and Health Sciences , United Arab Emirates University , Al Ain , United Arab Emirates (UAE)
| | - Valérie Vivet-Boudou
- b CNRS, Architecture et Réactivité de l'ARN, UPR , Université de Strasbourg , Strasbourg , France
| | - Lizna M Ali
- a Department of Microbiology & Immunology College of Medicine and Health Sciences , United Arab Emirates University , Al Ain , United Arab Emirates (UAE)
| | - Vineeta N Pillai
- a Department of Microbiology & Immunology College of Medicine and Health Sciences , United Arab Emirates University , Al Ain , United Arab Emirates (UAE)
| | - Farah Mustafa
- c Department of Biochemistry, College of Medicine and Health Sciences , United Arab Emirates University , Al Ain , United Arab Emirates (UAE)
| | - Roland Marquet
- b CNRS, Architecture et Réactivité de l'ARN, UPR , Université de Strasbourg , Strasbourg , France
| | - Tahir A Rizvi
- a Department of Microbiology & Immunology College of Medicine and Health Sciences , United Arab Emirates University , Al Ain , United Arab Emirates (UAE)
| |
Collapse
|
14
|
Mustafa F, Vivet-Boudou V, Jabeen A, Ali LM, Kalloush RM, Marquet R, Rizvi TA. The bifurcated stem loop 4 (SL4) is crucial for efficient packaging of mouse mammary tumor virus (MMTV) genomic RNA. RNA Biol 2018; 15:1047-1059. [PMID: 29929424 PMCID: PMC6161677 DOI: 10.1080/15476286.2018.1486661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Packaging the mouse mammary tumor virus (MMTV) genomic RNA (gRNA) requires the entire 5' untranslated region (UTR) in conjunction with the first 120 nucleotides of the gag gene. This region includes several palindromic (pal) sequence(s) and stable stem loops (SLs). Among these, stem loop 4 (SL4) adopts a bifurcated structure consisting of three stems, two apical loops, and an internal loop. Pal II, located in one of the apical loops, mediates gRNA dimerization, a process intricately linked to packaging. We thus hypothesized that the bifurcated SL4 structure could constitute the major gRNA packaging determinant. To test this hypothesis, the two apical loops and the flanking sequences forming the bifurcated SL4 were individually mutated. These mutations all had deleterious effects on gRNA packaging and propagation. Next, single and compensatory mutants were designed to destabilize then recreate the bifurcated SL4 structure. A structure-function analysis using bioinformatics predictions and RNA chemical probing revealed that mutations that led to the loss of the SL4 bifurcated structure abrogated RNA packaging and propagation, while compensatory mutations that recreated the native SL4 structure restored RNA packaging and propagation to wild type levels. Altogether, our results demonstrate that SL4 constitutes the principal packaging determinant of MMTV gRNA. Our findings further suggest that SL4 acts as a structural switch that can not only differentiate between RNA for translation versus packaging/dimerization, but its location also allows differentiation between spliced and unspliced RNAs during gRNA encapsidation.
Collapse
Affiliation(s)
- Farah Mustafa
- a Department of Biochemistry , College of Medicine and Health Sciences, United Arab Emirates University , Al Ain , UAE
| | - Valérie Vivet-Boudou
- b Université de Strasbourg , CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Ayesha Jabeen
- c Department of Microbiology & Immunology , College of Medicine and Health Sciences, United Arab Emirates University , Al Ain , UAE
| | - Lizna M Ali
- c Department of Microbiology & Immunology , College of Medicine and Health Sciences, United Arab Emirates University , Al Ain , UAE
| | - Rawan M Kalloush
- c Department of Microbiology & Immunology , College of Medicine and Health Sciences, United Arab Emirates University , Al Ain , UAE
| | - Roland Marquet
- b Université de Strasbourg , CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Tahir A Rizvi
- c Department of Microbiology & Immunology , College of Medicine and Health Sciences, United Arab Emirates University , Al Ain , UAE
| |
Collapse
|
15
|
Properties and Functions of Feline Immunodeficiency Virus Gag Domains in Virion Assembly and Budding. Viruses 2018; 10:v10050261. [PMID: 29772651 PMCID: PMC5977254 DOI: 10.3390/v10050261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 01/11/2023] Open
Abstract
Feline immunodeficiency virus (FIV) is an important cat pathogen worldwide whose biological and pathophysiological properties resemble those of human immunodeficiency virus type 1 (HIV-1). Therefore, the study of FIV not only benefits its natural host but is also useful for the development of antiviral strategies directed against HIV-1 infections in humans. FIV assembly results from the multimerization of a single but complex viral polypeptide, the Gag precursor. In this review, we will first give an overview of the current knowledge of the proteins encoded by the FIV pol, env, rev, vif, and orf-A genes, and then we will describe and discuss in detail the critical roles that each of the FIV Gag domains plays in virion morphogenesis. Since retroviral assembly is an attractive target for therapeutic interventions, gaining a better understanding of this process is highly desirable.
Collapse
|
16
|
Dubois N, Marquet R, Paillart JC, Bernacchi S. Retroviral RNA Dimerization: From Structure to Functions. Front Microbiol 2018; 9:527. [PMID: 29623074 PMCID: PMC5874298 DOI: 10.3389/fmicb.2018.00527] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/08/2018] [Indexed: 01/18/2023] Open
Abstract
The genome of the retroviruses is a dimer composed by two homologous copies of genomic RNA (gRNA) molecules of positive polarity. The dimerization process allows two gRNA molecules to be non-covalently linked together through intermolecular base-pairing. This step is critical for the viral life cycle and is highly conserved among retroviruses with the exception of spumaretroviruses. Furthermore, packaging of two gRNA copies into viral particles presents an important evolutionary advantage for immune system evasion and drug resistance. Recent studies reported RNA switches models regulating not only gRNA dimerization, but also translation and packaging, and a spatio-temporal characterization of viral gRNA dimerization within cells are now at hand. This review summarizes our current understanding on the structural features of the dimerization signals for a variety of retroviruses (HIVs, MLV, RSV, BLV, MMTV, MPMV…), the mechanisms of RNA dimer formation and functional implications in the retroviral cycle.
Collapse
Affiliation(s)
- Noé Dubois
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Roland Marquet
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Serena Bernacchi
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
17
|
Jayaraman D, Kenyon JC. New windows into retroviral RNA structures. Retrovirology 2018; 15:11. [PMID: 29368653 PMCID: PMC5784592 DOI: 10.1186/s12977-018-0393-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
Background The multiple roles of both viral and cellular RNAs have become increasingly apparent in recent years, and techniques to model them have become significantly more powerful, enabling faster and more accurate visualization of RNA structures. Main body Techniques such as SHAPE (selective 2’OH acylation analysed by primer extension) have revolutionized the field, and have been used to examine RNAs belonging to many and diverse retroviruses. Secondary structure probing reagents such as these have been aided by the development of faster methods of analysis either via capillary or next-generation sequencing, allowing the analysis of entire genomes, and of retroviral RNA structures within virions. Techniques to model the three-dimensional structures of these large RNAs have also recently developed. Conclusions The flexibility of retroviral RNAs, both structural and functional, is clear from the results of these new experimental techniques. Retroviral RNA structures and structural changes control many stages of the lifecycle, and both the RNA structures themselves and their interactions with ligands are potential new drug targets. In addition, our growing understanding of retroviral RNA structures is aiding our knowledge of cellular RNA form and function.
Collapse
Affiliation(s)
- Dhivya Jayaraman
- Department of Medicine, National University of Singapore, 14 Medical Drive, MD 6, Level 15, Singapore, 117599, Singapore
| | - Julia Claire Kenyon
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital Hills Rd, Cambridge, CB2 0QQ, UK. .,Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2 Blk MD4, Level 3, Singapore, 117545, Singapore. .,Homerton College, University of Cambridge, Hills Rd, Cambridge, CB2 8PH, UK.
| |
Collapse
|
18
|
Deforges J, de Breyne S, Ameur M, Ulryck N, Chamond N, Saaidi A, Ponty Y, Ohlmann T, Sargueil B. Two ribosome recruitment sites direct multiple translation events within HIV1 Gag open reading frame. Nucleic Acids Res 2017; 45:7382-7400. [PMID: 28449096 PMCID: PMC5499600 DOI: 10.1093/nar/gkx303] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023] Open
Abstract
In the late phase of the HIV virus cycle, the unspliced genomic RNA is exported to the cytoplasm for the necessary translation of the Gag and Gag-pol polyproteins. Three distinct translation initiation mechanisms ensuring Gag production have been described with little rationale for their multiplicity. The Gag-IRES has the singularity to be located within Gag ORF and to directly interact with ribosomal 40S. Aiming at elucidating the specificity and the relevance of this interaction, we probed HIV-1 Gag-IRES structure and developed an innovative integrative modelling strategy to take into account all the gathered information. We propose a novel Gag-IRES secondary structure strongly supported by all experimental data. We further demonstrate the presence of two regions within Gag-IRES that independently and directly interact with the ribosome. Importantly, these binding sites are functionally relevant to Gag translation both in vitro and ex vivo. This work provides insight into the Gag-IRES molecular mechanism and gives compelling evidence for its physiological importance. It allows us to propose original hypotheses about the IRES physiological role and conservation among primate lentiviruses.
Collapse
Affiliation(s)
- Jules Deforges
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Sylvain de Breyne
- CIRI (International Center for Infectiology Research), INSERM U1111, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5308, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Melissa Ameur
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Nathalie Ulryck
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Nathalie Chamond
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Afaf Saaidi
- CNRS UMR 7161, Laboratoire de Recherche en Informatique de l'Ecole Polytechnique (LIX), Ecole Polytechnique, 1 rue Estienne d'Orves, 91120 Palaiseau, France.,AMIB, Inria Saclay, bat Alan Turing, 1 rue Estienne d'Orves, 91120 Palaiseau, France
| | - Yann Ponty
- CNRS UMR 7161, Laboratoire de Recherche en Informatique de l'Ecole Polytechnique (LIX), Ecole Polytechnique, 1 rue Estienne d'Orves, 91120 Palaiseau, France.,AMIB, Inria Saclay, bat Alan Turing, 1 rue Estienne d'Orves, 91120 Palaiseau, France
| | - Theophile Ohlmann
- CIRI (International Center for Infectiology Research), INSERM U1111, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5308, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Bruno Sargueil
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| |
Collapse
|
19
|
Cross- and Co-Packaging of Retroviral RNAs and Their Consequences. Viruses 2016; 8:v8100276. [PMID: 27727192 PMCID: PMC5086612 DOI: 10.3390/v8100276] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 12/23/2022] Open
Abstract
Retroviruses belong to the family Retroviridae and are ribonucleoprotein (RNP) particles that contain a dimeric RNA genome. Retroviral particle assembly is a complex process, and how the virus is able to recognize and specifically capture the genomic RNA (gRNA) among millions of other cellular and spliced retroviral RNAs has been the subject of extensive investigation over the last two decades. The specificity towards RNA packaging requires higher order interactions of the retroviral gRNA with the structural Gag proteins. Moreover, several retroviruses have been shown to have the ability to cross-/co-package gRNA from other retroviruses, despite little sequence homology. This review will compare the determinants of gRNA encapsidation among different retroviruses, followed by an examination of our current understanding of the interaction between diverse viral genomes and heterologous proteins, leading to their cross-/co-packaging. Retroviruses are well-known serious animal and human pathogens, and such a cross-/co-packaging phenomenon could result in the generation of novel viral variants with unknown pathogenic potential. At the same time, however, an enhanced understanding of the molecular mechanisms involved in these specific interactions makes retroviruses an attractive target for anti-viral drugs, vaccines, and vectors for human gene therapy.
Collapse
|
20
|
Orchestrating the Selection and Packaging of Genomic RNA by Retroviruses: An Ensemble of Viral and Host Factors. Viruses 2016; 8:v8090257. [PMID: 27657110 PMCID: PMC5035971 DOI: 10.3390/v8090257] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Infectious retrovirus particles contain two copies of unspliced viral RNA that serve as the viral genome. Unspliced retroviral RNA is transcribed in the nucleus by the host RNA polymerase II and has three potential fates: (1) it can be spliced into subgenomic messenger RNAs (mRNAs) for the translation of viral proteins; or it can remain unspliced to serve as either (2) the mRNA for the translation of Gag and Gag-Pol; or (3) the genomic RNA (gRNA) that is packaged into virions. The Gag structural protein recognizes and binds the unspliced viral RNA to select it as a genome, which is selected in preference to spliced viral RNAs and cellular RNAs. In this review, we summarize the current state of understanding about how retroviral packaging is orchestrated within the cell and explore potential new mechanisms based on recent discoveries in the field. We discuss the cis-acting elements in the unspliced viral RNA and the properties of the Gag protein that are required for their interaction. In addition, we discuss the role of host factors in influencing the fate of the newly transcribed viral RNA, current models for how retroviruses distinguish unspliced viral mRNA from viral genomic RNA, and the possible subcellular sites of genomic RNA dimerization and selection by Gag. Although this review centers primarily on the wealth of data available for the alpharetrovirus Rous sarcoma virus, in which a discrete RNA packaging sequence has been identified, we have also summarized the cis- and trans-acting factors as well as the mechanisms governing gRNA packaging of other retroviruses for comparison.
Collapse
|
21
|
Kalloush RM, Vivet-Boudou V, Ali LM, Mustafa F, Marquet R, Rizvi TA. Packaging of Mason-Pfizer monkey virus (MPMV) genomic RNA depends upon conserved long-range interactions (LRIs) between U5 and gag sequences. RNA (NEW YORK, N.Y.) 2016; 22:905-919. [PMID: 27095024 PMCID: PMC4878616 DOI: 10.1261/rna.055731.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/09/2016] [Indexed: 06/05/2023]
Abstract
MPMV has great potential for development as a vector for gene therapy. In this respect, precisely defining the sequences and structural motifs that are important for dimerization and packaging of its genomic RNA (gRNA) are of utmost importance. A distinguishing feature of the MPMV gRNA packaging signal is two phylogenetically conserved long-range interactions (LRIs) between U5 and gag complementary sequences, LRI-I and LRI-II. To test their biological significance in the MPMV life cycle, we introduced mutations into these structural motifs and tested their effects on MPMV gRNA packaging and propagation. Furthermore, we probed the structure of key mutants using SHAPE (selective 2'hydroxyl acylation analyzed by primer extension). Disrupting base-pairing of the LRIs affected gRNA packaging and propagation, demonstrating their significance to the MPMV life cycle. A double mutant restoring a heterologous LRI-I was fully functional, whereas a similar LRI-II mutant failed to restore gRNA packaging and propagation. These results demonstrate that while LRI-I acts at the structural level, maintaining base-pairing is not sufficient for LRI-II function. In addition, in vitro RNA dimerization assays indicated that the loss of RNA packaging in LRI mutants could not be attributed to the defects in dimerization. Our findings suggest that U5-gag LRIs play an important architectural role in maintaining the structure of the 5' region of the MPMV gRNA, expanding the crucial role of LRIs to the nonlentiviral group of retroviruses.
Collapse
Affiliation(s)
- Rawan M Kalloush
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Valérie Vivet-Boudou
- Architecture et Réactivité de l'ARN, CNRS, IBMC, Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Lizna M Ali
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Roland Marquet
- Architecture et Réactivité de l'ARN, CNRS, IBMC, Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Tahir A Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
22
|
Characterizing 3D RNA structure by single molecule FRET. Methods 2016; 103:57-67. [PMID: 26853327 DOI: 10.1016/j.ymeth.2016.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 12/26/2022] Open
Abstract
The importance of elucidating the three dimensional structures of RNA molecules is becoming increasingly clear. However, traditional protein structural techniques such as NMR and X-ray crystallography have several important drawbacks when probing long RNA molecules. Single molecule Förster resonance energy transfer (smFRET) has emerged as a useful alternative as it allows native sequences to be probed in physiological conditions and allows multiple conformations to be probed simultaneously. This review serves to describe the method of generating a three dimensional RNA structure from smFRET data from the biochemical probing of the secondary structure to the computational refinement of the final model.
Collapse
|
23
|
Abstract
The range of roles played by structured RNAs in biological systems is vast. At the same time as we are learning more about the importance of RNA structure, recent advances in reagents, methods and technology mean that RNA secondary structural probing has become faster and more accurate. As a result, the capabilities of laboratories that already perform this type of structural analysis have increased greatly, and it has also become more widely accessible. The present review summarizes established and recently developed techniques. The information we can derive from secondary structural analysis is assessed, together with the areas in which we are likely to see exciting developments in the near future.
Collapse
|
24
|
Wu H, Wang W, Naiyer N, Fichtenbaum E, Qualley DF, McCauley MJ, Gorelick RJ, Rouzina I, Musier-Forsyth K, Williams MC. Single aromatic residue location alters nucleic acid binding and chaperone function of FIV nucleocapsid protein. Virus Res 2014; 193:39-51. [PMID: 24915282 PMCID: PMC4252577 DOI: 10.1016/j.virusres.2014.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/28/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
Feline immunodeficiency virus (FIV) is a retrovirus that infects domestic cats, and is an excellent animal model for human immunodeficiency virus type 1 (HIV-1) pathogenesis. The nucleocapsid (NC) protein is critical for replication in both retroviruses. FIV NC has several structural features that differ from HIV-1 NC. While both NC proteins have a single conserved aromatic residue in each of the two zinc fingers, the aromatic residue on the second finger of FIV NC is located on the opposite C-terminal side relative to its location in HIV-1 NC. In addition, whereas HIV-1 NC has a highly charged cationic N-terminal tail and a relatively short C-terminal extension, the opposite is true for FIV NC. To probe the impact of these differences on the nucleic acid (NA) binding and chaperone properties of FIV NC, we carried out ensemble and single-molecule assays with wild-type (WT) and mutant proteins. The ensemble studies show that FIV NC binding to DNA is strongly electrostatic, with a higher effective charge than that observed for HIV-1 NC. The C-terminal basic domain contributes significantly to the NA binding capability of FIV NC. In addition, the non-electrostatic component of DNA binding is much weaker for FIV NC than for HIV-1 NC. Mutation of both aromatic residues in the zinc fingers to Ala (F12A/W44A) further increases the effective charge of FIV NC and reduces its non-electrostatic binding affinity. Interestingly, switching the location of the C-terminal aromatic residue to mimic the HIV-1 NC sequence (N31W/W44A) reduces the effective charge of FIV NC and increases its non-electrostatic binding affinity to values similar to HIV-1 NC. Consistent with the results of these ensemble studies, single-molecule DNA stretching studies show that while WT FIV NC has reduced stacking capability relative to HIV-1 NC, the aromatic switch mutant recovers the ability to intercalate between the DNA bases. Our results demonstrate that altering the position of a single aromatic residue switches the binding mode of FIV NC from primarily electrostatic binding to more non-electrostatic binding, conferring upon it NA interaction properties comparable to that of HIV-1 NC.
Collapse
Affiliation(s)
- Hao Wu
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Wei Wang
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA
| | - Nada Naiyer
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA
| | - Eric Fichtenbaum
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA
| | - Dominic F Qualley
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA
| | - Micah J McCauley
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ioulia Rouzina
- University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA
| | - Karin Musier-Forsyth
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Mark C Williams
- Northeastern University, Department of Physics, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Aktar SJ, Vivet-Boudou V, Ali LM, Jabeen A, Kalloush RM, Richer D, Mustafa F, Marquet R, Rizvi TA. Structural basis of genomic RNA (gRNA) dimerization and packaging determinants of mouse mammary tumor virus (MMTV). Retrovirology 2014; 11:96. [PMID: 25394412 PMCID: PMC4264320 DOI: 10.1186/s12977-014-0096-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 10/23/2014] [Indexed: 11/13/2022] Open
Abstract
Background One of the hallmarks of retroviral life cycle is the efficient and specific packaging of two copies of retroviral gRNA in the form of a non-covalent RNA dimer by the assembling virions. It is becoming increasingly clear that the process of dimerization is closely linked with gRNA packaging, and in some retroviruses, the latter depends on the former. Earlier mutational analysis of the 5’ end of the MMTV genome indicated that MMTV gRNA packaging determinants comprise sequences both within the 5’ untranslated region (5’ UTR) and the beginning of gag. Results The RNA secondary structure of MMTV gRNA packaging sequences was elucidated employing selective 2’hydroxyl acylation analyzed by primer extension (SHAPE). SHAPE analyses revealed the presence of a U5/Gag long-range interaction (U5/Gag LRI), not predicted by minimum free-energy structure predictions that potentially stabilizes the global structure of this region. Structure conservation along with base-pair covariations between different strains of MMTV further supported the SHAPE-validated model. The 5’ region of the MMTV gRNA contains multiple palindromic (pal) sequences that could initiate intermolecular interaction during RNA dimerization. In vitro RNA dimerization, SHAPE analysis, and structure prediction approaches on a series of pal mutants revealed that MMTV RNA utilizes a palindromic point of contact to initiate intermolecular interactions between two gRNAs, leading to dimerization. This contact point resides within pal II (5’ CGGCCG 3’) at the 5’ UTR and contains a canonical “GC” dyad and therefore likely constitutes the MMTV RNA dimerization initiation site (DIS). Further analyses of these pal mutants employing in vivo genetic approaches indicate that pal II, as well as pal sequences located in the primer binding site (PBS) are both required for efficient MMTV gRNA packaging. Conclusions Employing structural prediction, biochemical, and genetic approaches, we show that pal II functions as a primary point of contact between two MMTV RNAs, leading to gRNA dimerization and its subsequent encapsidation into the assembling virus particles. The results presented here enhance our understanding of the MMTV gRNA dimerization and packaging processes and the role of structural motifs with respect to RNA-RNA and possibly RNA-protein interactions that might be taking place during MMTV life cycle. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0096-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suriya J Aktar
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Valérie Vivet-Boudou
- Architecture et Réactivité de l'ARN, CNRS, IBMC, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg cedex, France.
| | - Lizna M Ali
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Ayesha Jabeen
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Rawan M Kalloush
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Delphine Richer
- Architecture et Réactivité de l'ARN, CNRS, IBMC, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg cedex, France.
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Roland Marquet
- Architecture et Réactivité de l'ARN, CNRS, IBMC, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg cedex, France.
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
26
|
Aktar SJ, Jabeen A, Ali LM, Vivet-Boudou V, Marquet R, Rizvi TA. SHAPE analysis of the 5' end of the Mason-Pfizer monkey virus (MPMV) genomic RNA reveals structural elements required for genome dimerization. RNA (NEW YORK, N.Y.) 2013; 19:1648-1658. [PMID: 24152551 PMCID: PMC3884649 DOI: 10.1261/rna.040931.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/11/2013] [Indexed: 06/02/2023]
Abstract
Earlier genetic and structural prediction analyses revealed that the packaging determinants of Mason Pfizer monkey virus (MPMV) include two discontinuous core regions at the 5' end of its genomic RNA. RNA secondary structure predictions suggested that these packaging determinants fold into several stem-loops (SLs). To experimentally validate this structural model, we employed selective 2' hydroxyl acylation analyzed by primer extension (SHAPE), which examines the flexibility of the RNA backbone at each nucleotide position. Our SHAPE data validated several predicted structural motifs, including U5/Gag long-range interactions (LRIs), a stretch of single-stranded purine (ssPurine)-rich region, and a distinctive G-C-rich palindromic (pal) SL. Minimum free-energy structure predictions, phylogenetic, and in silico modeling analyses of different MPMV strains revealed that the U5 and gag sequences involved in the LRIs differ minimally within strains and maintain a very high degree of complementarity. Since the pal SL forms a helix loop containing a canonical "GC" dyad, it may act as a RNA dimerization initiation site (DIS), enabling the virus to package two copies of its genome. Analyses of wild-type and pal mutant RNAs revealed that disruption of pal sequence strongly affected RNA dimerization. However, when in vitro transcribed trans-complementary pal mutants were incubated together showed RNA dimerization was restored authenticating that the pal loop (5'-CGGCCG-3') functions as DIS.
Collapse
Affiliation(s)
- Suriya J. Aktar
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Ayesha Jabeen
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Lizna M. Ali
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Valérie Vivet-Boudou
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 67084 Strasbourg, France
| | - Roland Marquet
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 67084 Strasbourg, France
| | - Tahir A. Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| |
Collapse
|
27
|
Sequences within both the 5' UTR and Gag are required for optimal in vivo packaging and propagation of mouse mammary tumor virus (MMTV) genomic RNA. PLoS One 2012; 7:e47088. [PMID: 23077548 PMCID: PMC3473059 DOI: 10.1371/journal.pone.0047088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 09/07/2012] [Indexed: 01/31/2023] Open
Abstract
Background This study mapped regions of genomic RNA (gRNA) important for packaging and propagation of mouse mammary tumor virus (MMTV). MMTV is a type B betaretrovirus which preassembles intracellularly, a phenomenon distinct from retroviruses that assemble the progeny virion at cell surface just before budding such as the type C human and feline immunodeficiency viruses (HIV and FIV). Studies of FIV and Mason-Pfizer monkey virus (MPMV), a type D betaretrovirus with similar intracellular virion assembly processes as MMTV, have shown that the 5′ untranslated region (5′ UTR) and 5′ end of gag constitute important packaging determinants for gRNA. Methodology Three series of MMTV transfer vectors containing incremental amounts of gag or 5′ UTR sequences, or incremental amounts of 5′ UTR in the presence of 400 nucleotides (nt) of gag were constructed to delineate the extent of 5′ sequences that may be involved in MMTV gRNA packaging. Real time PCR measured the packaging efficiency of these vector RNAs into MMTV particles generated by co-transfection of MMTV Gag/Pol, vesicular stomatitis virus envelope glycoprotein (VSV-G Env), and individual transfer vectors into human 293T cells. Transfer vector RNA propagation was monitored by measuring transduction of target HeLaT4 cells following infection with viral particles containing a hygromycin resistance gene expression cassette on the packaged RNA. Principal Findings MMTV requires the entire 5′ UTR and a minimum of ∼120 nucleotide (nt) at the 5′ end of gag for not only efficient gRNA packaging but also propagation of MMTV-based transfer vector RNAs. Vector RNAs without the entire 5′ UTR were defective for both efficient packaging and propagation into target cells. Conclusions/Significance These results reveal that the 5′ end of MMTV genome is critical for both gRNA packaging and propagation, unlike the recently delineated FIV and MPMV packaging determinants that have been shown to be of bipartite nature.
Collapse
|
28
|
Probing Retroviral and Retrotransposon Genome Structures: The "SHAPE" of Things to Come. Mol Biol Int 2012; 2012:530754. [PMID: 22685659 PMCID: PMC3362945 DOI: 10.1155/2012/530754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/13/2012] [Indexed: 11/28/2022] Open
Abstract
Understanding the nuances of RNA structure as they pertain to biological function remains a formidable challenge for retrovirus research and development of RNA-based therapeutics, an area of particular importance with respect to combating HIV infection. Although a variety of chemical and enzymatic RNA probing techniques have been successfully employed for more than 30 years, they primarily interrogate small (100–500 nt) RNAs that have been removed from their biological context, potentially eliminating long-range tertiary interactions (such as kissing loops and pseudoknots) that may play a critical regulatory role. Selective 2′ hydroxyl acylation analyzed by primer extension (SHAPE), pioneered recently by Merino and colleagues, represents a facile, user-friendly technology capable of interrogating RNA structure with a single reagent and, combined with automated capillary electrophoresis, can analyze an entire 10,000-nucleotide RNA genome in a matter of weeks. Despite these obvious advantages, SHAPE essentially provides a nucleotide “connectivity map,” conversion of which into a 3-D structure requires a variety of complementary approaches. This paper summarizes contributions from SHAPE towards our understanding of the structure of retroviral genomes, modifications to which technology that have been developed to address some of its limitations, and future challenges.
Collapse
|
29
|
Kenyon JC, Tanner SJ, Legiewicz M, Phillip PS, Rizvi TA, Le Grice SFJ, Lever AML. SHAPE analysis of the FIV Leader RNA reveals a structural switch potentially controlling viral packaging and genome dimerization. Nucleic Acids Res 2011; 39:6692-704. [PMID: 21546549 PMCID: PMC3159445 DOI: 10.1093/nar/gkr252] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Feline immunodeficiency virus (FIV) infects many species of cat, and is related to HIV, causing a similar pathology. High-throughput selective 2′ hydroxyl acylation analysed by primer extension (SHAPE), a technique that allows structural interrogation at each nucleotide, was used to map the secondary structure of the FIV packaging signal RNA. Previous studies of this RNA showed four conserved stem–loops, extensive long-range interactions (LRIs) and a small, palindromic stem–loop (SL5) within the gag open reading frame (ORF) that may act as a dimerization initiation site (DIS), enabling the virus to package two copies of its genome. Our analyses of wild-type (wt) and mutant RNAs suggest that although the four conserved stem–loops are static structures, the 5′ and 3′ regions previously shown to form LRI also adopt an alternative, yet similarly conserved conformation, in which the putative DIS is occluded, and which may thus favour translational and splicing functions over encapsidation. SHAPE and in vitro dimerization assays were used to examine SL5 mutants. Dimerization contacts appear to be made between palindromic loop sequences in SL5. As this stem–loop is located within the gag ORF, recognition of a dimeric RNA provides a possible mechanism for the specific packaging of genomic over spliced viral RNAs.
Collapse
Affiliation(s)
- Julia C Kenyon
- University of Cambridge Department of Medicine, Box 157, Level 5 Addenbrooke's Hospital, Hills Rd, Cambridge, CB20QQ, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Lentiviruses, the prototype of which is HIV-1, can initiate translation either by the classical cap-dependent mechanism or by internal recruitment of the ribosome through RNA domains called IRESs (internal ribosome entry sites). Depending on the virus considered, the mechanism of IRES-dependent translation differs widely. It can occur by direct binding of the 40S subunit to the mRNA, necessitating a subset or most of the canonical initiation factors and/or ITAF (IRES trans-acting factors). Nonetheless, a common feature of IRESs is that ribosomal recruitment relies, at least in part, on IRES structural determinants. Lentiviral genomic RNAs present an additional level of complexity, as, in addition to the 5'-UTR (untranslated region) IRES, the presence of a new type of IRES, embedded within Gag coding region was described recently. This IRES, conserved in all three lentiviruses examined, presents conserved structural motifs that are crucial for its activity, thus reinforcing the link between RNA structure and function. However, there are still important gaps in our understanding of the molecular mechanism underlying IRES-dependent translation initiation of HIV, including the determination of the initiation factors required, the dynamics of initiation complex assembly and the dynamics of the RNA structure during initiation complex formation. Finally, the ability of HIV genomic RNA to initiate translation through different pathways questions the possible mechanisms of regulation and their correlation to the viral paradigm, i.e. translation versus encapsidation of its genomic RNA.
Collapse
|
31
|
Rizvi TA, Kenyon JC, Ali J, Aktar SJ, Phillip PS, Ghazawi A, Mustafa F, Lever AML. Optimal packaging of FIV genomic RNA depends upon a conserved long-range interaction and a palindromic sequence within gag. J Mol Biol 2010; 403:103-119. [PMID: 20732330 PMCID: PMC2987497 DOI: 10.1016/j.jmb.2010.08.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 02/06/2023]
Abstract
The feline immunodeficiency virus (FIV) is a lentivirus that is related to human immunodeficiency virus (HIV), causing a similar pathology in cats. It is a potential small animal model for AIDS and the FIV-based vectors are also being pursued for human gene therapy. Previous studies have mapped the FIV packaging signal (ψ) to two or more discontinuous regions within the 5' 511 nt of the genomic RNA and structural analyses have determined its secondary structure. The 5' and 3' sequences within ψ region interact through extensive long-range interactions (LRIs), including a conserved heptanucleotide interaction between R/U5 and gag. Other secondary structural elements identified include a conserved 150 nt stem-loop (SL2) and a small palindromic stem-loop within gag open reading frame that might act as a viral dimerization initiation site. We have performed extensive mutational analysis of these sequences and structures and ascertained their importance in FIV packaging using a trans-complementation assay. Disrupting the conserved heptanucleotide LRI to prevent base pairing between R/U5 and gag reduced packaging by 2.8-5.5 fold. Restoration of pairing using an alternative, non-wild type (wt) LRI sequence restored RNA packaging and propagation to wt levels, suggesting that it is the structure of the LRI, rather than its sequence, that is important for FIV packaging. Disrupting the palindrome within gag reduced packaging by 1.5-3-fold, but substitution with a different palindromic sequence did not restore packaging completely, suggesting that the sequence of this region as well as its palindromic nature is important. Mutation of individual regions of SL2 did not have a pronounced effect on FIV packaging, suggesting that either it is the structure of SL2 as a whole that is necessary for optimal packaging, or that there is redundancy within this structure. The mutational analysis presented here has further validated the previously predicted RNA secondary structure of FIV ψ.
Collapse
Affiliation(s)
- Tahir A Rizvi
- Departments of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE.
| | - Julia C Kenyon
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Jahabar Ali
- Departments of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE
| | - Suriya J Aktar
- Departments of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE
| | - Pretty S Phillip
- Departments of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE
| | - Akela Ghazawi
- Departments of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE
| | - Farah Mustafa
- Department of Biochemistry, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE
| | - Andrew M L Lever
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK
| |
Collapse
|
32
|
Jaballah SA, Aktar SJ, Ali J, Phillip PS, Al Dhaheri NS, Jabeen A, Rizvi TA. A G-C-rich palindromic structural motif and a stretch of single-stranded purines are required for optimal packaging of Mason-Pfizer monkey virus (MPMV) genomic RNA. J Mol Biol 2010; 401:996-1014. [PMID: 20600114 DOI: 10.1016/j.jmb.2010.06.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/21/2010] [Accepted: 06/21/2010] [Indexed: 01/17/2023]
Abstract
During retroviral RNA packaging, two copies of genomic RNA are preferentially packaged into the budding virus particles whereas the spliced viral RNAs and the cellular RNAs are excluded during this process. Specificity towards retroviral RNA packaging is dependent upon sequences at the 5' end of the viral genome, which at times extend into Gag sequences. It has earlier been suggested that the Mason-Pfizer monkey virus (MPMV) contains packaging sequences within the 5' untranslated region (UTR) and Gag. These studies have also suggested that the packaging determinants of MPMV that lie in the UTR are bipartite and are divided into two regions both upstream and downstream of the major splice donor. However, the precise boundaries of these discontinuous regions within the UTR and the role of the intervening sequences between these dipartite sequences towards MPMV packaging have not been investigated. Employing a combination of genetic and structural prediction analyses, we have shown that region "A", immediately downstream of the primer binding site, is composed of 50 nt, whereas region "B" is composed of the last 23 nt of UTR, and the intervening 55 nt between these two discontinuous regions do not contribute towards MPMV RNA packaging. In addition, we have identified a 14-nt G-C-rich palindromic sequence (with 100% autocomplementarity) within region A that has been predicted to fold into a structural motif and is essential for optimal MPMV RNA packaging. Furthermore, we have also identified a stretch of single-stranded purines (ssPurines) within the UTR and 8 nt of these ssPurines are duplicated in region B. The native ssPurines or its repeat in region B when predicted to refold as ssPurines has been shown to be essential for RNA packaging, possibly functioning as a potential nucleocapsid binding site. Findings from this study should enhance our understanding of the steps involved in MPMV replication including RNA encapsidation process.
Collapse
Affiliation(s)
- Soumeya Ali Jaballah
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | | | | | | | | | | | | |
Collapse
|
33
|
Romero-López C, Berzal-Herranz A. A long-range RNA-RNA interaction between the 5' and 3' ends of the HCV genome. RNA (NEW YORK, N.Y.) 2009; 15:1740-1752. [PMID: 19605533 PMCID: PMC2743058 DOI: 10.1261/rna.1680809] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 06/04/2009] [Indexed: 02/05/2023]
Abstract
The RNA genome of the hepatitis C virus (HCV) contains multiple conserved structural cis domains that direct protein synthesis, replication, and infectivity. The untranslatable regions (UTRs) play essential roles in the HCV cycle. Uncapped viral RNAs are translated via an internal ribosome entry site (IRES) located at the 5' UTR, which acts as a scaffold for recruiting multiple protein factors. Replication of the viral genome is initiated at the 3' UTR. Bioinformatics methods have identified other structural RNA elements thought to be involved in the HCV cycle. The 5BSL3.2 motif, which is embedded in a cruciform structure at the 3' end of the NS5B coding sequence, contributes to the three-dimensional folding of the entire 3' end of the genome. It is essential in the initiation of replication. This paper reports the identification of a novel, strand-specific, long-range RNA-RNA interaction between the 5' and 3' ends of the genome, which involves 5BSL3.2 and IRES motifs. Mutants harboring substitutions in the apical loop of domain IIId or in the internal loop of 5BSL3.2 disrupt the complex, indicating these regions are essential in initiating the kissing interaction. No complex was formed when the UTRs of the related foot and mouth disease virus were used in binding assays, suggesting this interaction is specific for HCV sequences. The present data firmly suggest the existence of a higher-order structure that may mediate a protein-independent circularization of the HCV genome. The 5'-3' end bridge may have a role in viral translation modulation and in the switch from protein synthesis to RNA replication.
Collapse
Affiliation(s)
- Cristina Romero-López
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Armilla, 18100 Granada, Spain
| | | |
Collapse
|