1
|
Johnson DL, Kumar R, Kakhniashvili D, Pfeffer LM, Laribee RN. Ccr4-not ubiquitin ligase signaling regulates ribosomal protein homeostasis and inhibits 40S ribosomal autophagy. J Biol Chem 2024; 300:107582. [PMID: 39025453 PMCID: PMC11357857 DOI: 10.1016/j.jbc.2024.107582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
The Ccr4-Not complex contains the poorly understood Not4 ubiquitin ligase that functions in transcription, mRNA decay, translation, proteostasis, and endolysosomal nutrient signaling. To gain further insight into the in vivo functions of the ligase, we performed quantitative proteomics in Saccharomyces cerevisiae using yeast cells lacking Not4, or cells overexpressing wild-type Not4 or an inactive Not4 mutant. Herein, we provide evidence that balanced Not4 activity maintains ribosomal protein (RP) homeostasis independent of changes to RP mRNA or known Not4 ribosomal substrates. Intriguingly, we also find that Not4 loss activates 40S ribosomal autophagy independently of canonical Atg7-dependent macroautophagy, indicating that microautophagy is responsible. We previously demonstrated that Ccr4-Not stimulates the target of rapamycin complex 1 (TORC1) signaling, which activates RP expression and inhibits autophagy, by maintaining vacuole V-ATPase H+ pump activity. Importantly, combining Not4 deficient cells with a mutant that blocks vacuole H+ export fully restores RP expression and increases 40S RP autophagy efficiency. In contrast, restoring TORC1 activity alone fails to rescue either process, indicating that Not4 loss disrupts additional endolysosomal functions that regulate RP expression and 40S autophagy. Analysis of the Not4-regulated proteome reveals increases in endolysosomal and autophagy-related factors that functionally interact with Not4 to control RP expression and affect 40S autophagy. Collectively, our data indicate that balanced Ccr4-Not ubiquitin ligase signaling maintains RP homeostasis and inhibits 40S autophagy via the ligase's emerging role as an endolysosomal regulator.
Collapse
Affiliation(s)
- Daniel L Johnson
- Molecular Bioinformatics Core and the University of Tennessee Health Science Center Office of Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ravinder Kumar
- Department of Pathology and Laboratory Medicine, College of Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - David Kakhniashvili
- Proteomics and Metabolomics Core and the University of Tennessee Health Science Center Office of Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, College of Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - R Nicholas Laribee
- Department of Pathology and Laboratory Medicine, College of Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| |
Collapse
|
2
|
Collart MA, Audebert L, Bushell M. Roles of the CCR4-Not complex in translation and dynamics of co-translation events. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1827. [PMID: 38009591 PMCID: PMC10909573 DOI: 10.1002/wrna.1827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
The Ccr4-Not complex is a global regulator of mRNA metabolism in eukaryotic cells that is most well-known to repress gene expression. Delivery of the complex to mRNAs through a multitude of distinct mechanisms accelerates their decay, yet Ccr4-Not also plays an important role in co-translational processes, such as co-translational association of proteins and delivery of translating mRNAs to organelles. The recent structure of Not5 interacting with the translated ribosome has brought to light that embedded information within the codon sequence can be monitored by recruitment of the Ccr4-Not complex to elongating ribosomes. Thereby, the Ccr4-Not complex is empowered with regulatory decisions determining the fate of proteins being synthesized and their encoding mRNAs. This review will focus on the roles of the complex in translation and dynamics of co-translation events. This article is categorized under: Translation > Mechanisms Translation > Regulation.
Collapse
Affiliation(s)
- Martine A. Collart
- Department of Microbiology and Molecular MedicineInstitute of Genetics and Genomics Geneva, University of Geneva, Faculty of MedicineGenèveSwitzerland
| | - Léna Audebert
- Department of Microbiology and Molecular MedicineInstitute of Genetics and Genomics Geneva, University of Geneva, Faculty of MedicineGenèveSwitzerland
| | - Martin Bushell
- Cancer Research UK Beatson InstituteGlasgowUK
- School of Cancer Sciences, University of GlasgowGlasgowUK
| |
Collapse
|
3
|
Johnson DL, Kumar R, Kakhniashvili D, Pfeffer LM, Laribee RN. Ccr4-Not ubiquitin ligase signaling regulates ribosomal protein homeostasis and inhibits 40S ribosomal autophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555095. [PMID: 37693548 PMCID: PMC10491097 DOI: 10.1101/2023.08.28.555095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The Ccr4-Not complex containing the Not4 ubiquitin ligase regulates gene transcription and mRNA decay, yet it also has poorly defined roles in translation, proteostasis, and endolysosomal-dependent nutrient signaling. To define how Ccr4-Not mediated ubiquitin signaling regulates these additional processes, we performed quantitative proteomics in the yeast Saccharomyces cerevisiae lacking the Not4 ubiquitin ligase, and also in cells overexpressing either wild-type or functionally inactive ligase. Herein, we provide evidence that both increased and decreased Ccr4-Not ubiquitin signaling disrupts ribosomal protein (RP) homeostasis independently of reduced RP mRNA changes or reductions in known Not4 ribosomal substrates. Surprisingly, we also find that both Not4-mediated ubiquitin signaling, and the Ccr4 subunit, actively inhibit 40S ribosomal autophagy. This 40S autophagy is independent of canonical Atg7-dependent macroautophagy, thus indicating microautophagy activation is responsible. Furthermore, the Not4 ligase genetically interacts with endolysosomal pathway effectors to control both RP expression and 40S autophagy efficiency. Overall, we demonstrate that balanced Ccr4-Not ligase activity maintains RP homeostasis, and that Ccr4-Not ubiquitin signaling interacts with the endolysosomal pathway to both regulate RP expression and inhibit 40S ribosomal autophagy.
Collapse
Affiliation(s)
- Daniel L. Johnson
- Molecular Bioinformatics Core and the University of Tennessee Health Science Center Office of Research, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Ravinder Kumar
- Department of Pathology and Laboratory Medicine, College of Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - David Kakhniashvili
- Proteomics and Metabolomics Core and the University of Tennessee Health Science Center Office of Research, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Lawrence M. Pfeffer
- Department of Pathology and Laboratory Medicine, College of Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - R. Nicholas Laribee
- Department of Pathology and Laboratory Medicine, College of Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States of America
| |
Collapse
|
4
|
Allen G, Weiss B, Panasenko OO, Huch S, Villanyi Z, Albert B, Dilg D, Zagatti M, Schaughency P, Liao SE, Corden J, Polte C, Shore D, Ignatova Z, Pelechano V, Collart MA. Not1 and Not4 inversely determine mRNA solubility that sets the dynamics of co-translational events. Genome Biol 2023; 24:30. [PMID: 36803582 PMCID: PMC9940351 DOI: 10.1186/s13059-023-02871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND The Ccr4-Not complex is mostly known as the major eukaryotic deadenylase. However, several studies have uncovered roles of the complex, in particular of the Not subunits, unrelated to deadenylation and relevant for translation. In particular, the existence of Not condensates that regulate translation elongation dynamics has been reported. Typical studies that evaluate translation efficiency rely on soluble extracts obtained after the disruption of cells and ribosome profiling. Yet cellular mRNAs in condensates can be actively translated and may not be present in such extracts. RESULTS In this work, by analyzing soluble and insoluble mRNA decay intermediates in yeast, we determine that insoluble mRNAs are enriched for ribosomes dwelling at non-optimal codons compared to soluble mRNAs. mRNA decay is higher for soluble RNAs, but the proportion of co-translational degradation relative to the overall mRNA decay is higher for insoluble mRNAs. We show that depletion of Not1 and Not4 inversely impacts mRNA solubilities and, for soluble mRNAs, ribosome dwelling according to codon optimality. Depletion of Not4 solubilizes mRNAs with lower non-optimal codon content and higher expression that are rendered insoluble by Not1 depletion. By contrast, depletion of Not1 solubilizes mitochondrial mRNAs, which are rendered insoluble upon Not4 depletion. CONCLUSIONS Our results reveal that mRNA solubility defines the dynamics of co-translation events and is oppositely regulated by Not1 and Not4, a mechanism that we additionally determine may already be set by Not1 promoter association in the nucleus.
Collapse
Affiliation(s)
- George Allen
- Departement of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Benjamin Weiss
- Departement of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Present address: Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Olesya O. Panasenko
- Departement of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Susanne Huch
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Zoltan Villanyi
- Departement of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Benjamin Albert
- Department of Molecular and Cellular Biology, Faculty of Sciences, Institute of Genetics and Genomics Geneva, University of Geneva, Geneva, Switzerland
- Present Address: Molecular, Cellular & Developmental Biology (MCD), Center for Integrative Biology (CBI), University of 11, CNRS/UPS, Bâtiment IBCG, 118, Route de Narbonne, 31062 ToulouseToulouse Cedex 9, France
| | - Daniel Dilg
- Department of Molecular and Cellular Biology, Faculty of Sciences, Institute of Genetics and Genomics Geneva, University of Geneva, Geneva, Switzerland
| | - Marina Zagatti
- Departement of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Paul Schaughency
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD USA
- Present Address: Axle Informatics, NIAID Collaborative Bioinformatics Resource, North Bethesda, MD USA
| | - Susan E. Liao
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD USA
- Present Address: Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, USA
| | - Jeff Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Christine Polte
- Departement of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - David Shore
- Department of Molecular and Cellular Biology, Faculty of Sciences, Institute of Genetics and Genomics Geneva, University of Geneva, Geneva, Switzerland
| | - Zoya Ignatova
- Departement of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Martine A. Collart
- Departement of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Allen GE, Panasenko OO, Villanyi Z, Zagatti M, Weiss B, Pagliazzo L, Huch S, Polte C, Zahoran S, Hughes CS, Pelechano V, Ignatova Z, Collart MA. Not4 and Not5 modulate translation elongation by Rps7A ubiquitination, Rli1 moonlighting, and condensates that exclude eIF5A. Cell Rep 2021; 36:109633. [PMID: 34469733 DOI: 10.1016/j.celrep.2021.109633] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/18/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
In this work, we show that Not4 and Not5 from the Ccr4-Not complex modulate translation elongation dynamics and change ribosome A-site dwelling occupancy in a codon-dependent fashion. These codon-specific changes in not5Δ cells are very robust and independent of codon position within the mRNA, the overall mRNA codon composition, or changes of mRNA expression levels. They inversely correlate with codon-specific changes in cells depleted for eIF5A and positively correlate with those in cells depleted for ribosome-recycling factor Rli1. Not5 resides in punctate loci, co-purifies with ribosomes and Rli1, but not with eIF5A, and limits mRNA solubility. Overexpression of wild-type or non-complementing Rli1 and loss of Rps7A ubiquitination enable Not4 E3 ligase-dependent translation of polyarginine stretches. We propose that Not4 and Not5 modulate translation elongation dynamics to produce a soluble proteome by Rps7A ubiquitination, dynamic condensates that limit mRNA solubility and exclude eIF5A, and a moonlighting function of Rli1.
Collapse
Affiliation(s)
- George E Allen
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Olesya O Panasenko
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Zoltan Villanyi
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland; Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Marina Zagatti
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Benjamin Weiss
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Lucile Pagliazzo
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Susanne Huch
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
| | - Christine Polte
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Szabolcs Zahoran
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland; Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | | | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Martine A Collart
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland.
| |
Collapse
|
6
|
Ccr4-Not as a mediator of environmental signaling: a jack of all trades and master of all. Curr Genet 2021; 67:707-713. [PMID: 33791857 DOI: 10.1007/s00294-021-01180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
The cellular response to environmental exposures, such as nutrient shifts and various forms of stress, requires the integration of the signaling apparatus that senses these environmental changes with the downstream gene regulatory machinery. Delineating this molecular circuitry remains essential for understanding how organisms adapt to environmental flux, and it is critical for determining how dysregulation of these mechanisms causes disease. Ccr4-Not is a highly conserved regulatory complex that controls all aspects of the gene expression process. Recent studies in budding yeast have identified novel roles for Ccr4-Not as a key regulator of core nutrient signaling pathways that control cell growth and proliferation, including signaling through the mechanistic target of rapamycin complex 1 (TORC1) pathway. Herein, I will review the current evidence that implicate Ccr4-Not in nutrient signaling regulation, and I will discuss important unanswered questions that should help guide future efforts to delineate Ccr4-Not's role in linking environmental signaling with the gene regulatory machinery. Ccr4-Not is highly conserved throughout eukaryotes, and increasing evidence indicates it is dysregulated in a variety of diseases. Determining how Ccr4-Not regulates these signaling pathways in model organisms such as yeast will provide a guide for defining how it controls these processes in human cells.
Collapse
|
7
|
RNA Metabolism Guided by RNA Modifications: The Role of SMUG1 in rRNA Quality Control. Biomolecules 2021; 11:biom11010076. [PMID: 33430019 PMCID: PMC7826747 DOI: 10.3390/biom11010076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
RNA modifications are essential for proper RNA processing, quality control, and maturation steps. In the last decade, some eukaryotic DNA repair enzymes have been shown to have an ability to recognize and process modified RNA substrates and thereby contribute to RNA surveillance. Single-strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1) is a base excision repair enzyme that not only recognizes and removes uracil and oxidized pyrimidines from DNA but is also able to process modified RNA substrates. SMUG1 interacts with the pseudouridine synthase dyskerin (DKC1), an enzyme essential for the correct assembly of small nucleolar ribonucleoproteins (snRNPs) and ribosomal RNA (rRNA) processing. Here, we review rRNA modifications and RNA quality control mechanisms in general and discuss the specific function of SMUG1 in rRNA metabolism. Cells lacking SMUG1 have elevated levels of immature rRNA molecules and accumulation of 5-hydroxymethyluridine (5hmU) in mature rRNA. SMUG1 may be required for post-transcriptional regulation and quality control of rRNAs, partly by regulating rRNA and stability.
Collapse
|
8
|
The Regulatory Properties of the Ccr4-Not Complex. Cells 2020; 9:cells9112379. [PMID: 33138308 PMCID: PMC7692201 DOI: 10.3390/cells9112379] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
The mammalian Ccr4–Not complex, carbon catabolite repression 4 (Ccr4)-negative on TATA-less (Not), is a large, highly conserved, multifunctional assembly of proteins that acts at different cellular levels to regulate gene expression. In the nucleus, it is involved in the regulation of the cell cycle, chromatin modification, activation and inhibition of transcription initiation, control of transcription elongation, RNA export, nuclear RNA surveillance, and DNA damage repair. In the cytoplasm, the Ccr4–Not complex plays a central role in mRNA decay and affects protein quality control. Most of our original knowledge of the Ccr4–Not complex is derived, primarily, from studies in yeast. More recent studies have shown that the mammalian complex has a comparable structure and similar properties. In this review, we summarize the evidence for the multiple roles of both the yeast and mammalian Ccr4–Not complexes, highlighting their similarities.
Collapse
|
9
|
Chen H, Miller PW, Johnson DL, Laribee RN. The Ccr4-Not complex regulates TORC1 signaling and mitochondrial metabolism by promoting vacuole V-ATPase activity. PLoS Genet 2020; 16:e1009046. [PMID: 33064727 PMCID: PMC7592917 DOI: 10.1371/journal.pgen.1009046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 10/28/2020] [Accepted: 08/12/2020] [Indexed: 01/30/2023] Open
Abstract
The Ccr4-Not complex functions as an effector of multiple signaling pathways that control gene transcription and mRNA turnover. Consequently, Ccr4-Not contributes to a diverse array of processes, which includes a significant role in cell metabolism. Yet a mechanistic understanding of how it contributes to metabolism is lacking. Herein, we provide evidence that Ccr4-Not activates nutrient signaling through the essential target of rapamycin complex 1 (TORC1) pathway. Ccr4-Not disruption reduces global TORC1 signaling, and it also upregulates expression of the cell wall integrity (CWI) pathway terminal kinase Mpk1. Although CWI signaling represses TORC1 signaling, we find that Ccr4-Not loss inhibits TORC1 independently of CWI activation. Instead, we demonstrate that Ccr4-Not promotes the function of the vacuole V-ATPase, which interacts with the Gtr1 GTPase-containing EGO complex to stimulate TORC1 in response to nutrient sufficiency. Bypassing the V-ATPase requirement in TORC1 activation using a constitutively active Gtr1 mutant fully restores TORC1 signaling in Ccr4-Not deficient cells. Transcriptome analysis and functional studies revealed that loss of the Ccr4 subunit activates the TORC1 repressed retrograde signaling pathway to upregulate mitochondrial activity. Blocking this mitochondrial upregulation in Ccr4-Not deficient cells further represses TORC1 signaling, and it causes synergistic deficiencies in mitochondrial-dependent metabolism. These data support a model whereby Ccr4-Not loss impairs V-ATPase dependent TORC1 activation that forces cells to enhance mitochondrial metabolism to sustain a minimal level of TORC1 signaling necessary for cell growth and proliferation. Therefore, Ccr4-Not plays an integral role in nutrient signaling and cell metabolism by promoting V-ATPase dependent TORC1 activation.
Collapse
Affiliation(s)
- Hongfeng Chen
- Department of Pathology and Laboratory Medicine, College of Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - P. Winston Miller
- Molecular Bioinformatics Core and the University of Tennessee Health Science Center Office of Research, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Daniel L. Johnson
- Molecular Bioinformatics Core and the University of Tennessee Health Science Center Office of Research, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - R. Nicholas Laribee
- Department of Pathology and Laboratory Medicine, College of Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States of America
| |
Collapse
|
10
|
Vissers LE, Kalvakuri S, de Boer E, Geuer S, Oud M, van Outersterp I, Kwint M, Witmond M, Kersten S, Polla DL, Weijers D, Begtrup A, McWalter K, Ruiz A, Gabau E, Morton JE, Griffith C, Weiss K, Gamble C, Bartley J, Vernon HJ, Brunet K, Ruivenkamp C, Kant SG, Kruszka P, Larson A, Afenjar A, Billette de Villemeur T, Nugent K, Raymond FL, Venselaar H, Demurger F, Soler-Alfonso C, Li D, Bhoj E, Hayes I, Hamilton NP, Ahmad A, Fisher R, van den Born M, Willems M, Sorlin A, Delanne J, Moutton S, Christophe P, Mau-Them FT, Vitobello A, Goel H, Massingham L, Phornphutkul C, Schwab J, Keren B, Charles P, Vreeburg M, De Simone L, Hoganson G, Iascone M, Milani D, Evenepoel L, Revencu N, Ward DI, Burns K, Krantz I, Raible SE, Murrell JR, Wood K, Cho MT, van Bokhoven H, Muenke M, Kleefstra T, Bodmer R, de Brouwer AP, de Brouwer APM. De Novo Variants in CNOT1, a Central Component of the CCR4-NOT Complex Involved in Gene Expression and RNA and Protein Stability, Cause Neurodevelopmental Delay. Am J Hum Genet 2020; 107:164-172. [PMID: 32553196 DOI: 10.1016/j.ajhg.2020.05.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/26/2020] [Indexed: 11/27/2022] Open
Abstract
CNOT1 is a member of the CCR4-NOT complex, which is a master regulator, orchestrating gene expression, RNA deadenylation, and protein ubiquitination. We report on 39 individuals with heterozygous de novo CNOT1 variants, including missense, splice site, and nonsense variants, who present with a clinical spectrum of intellectual disability, motor delay, speech delay, seizures, hypotonia, and behavioral problems. To link CNOT1 dysfunction to the neurodevelopmental phenotype observed, we generated variant-specific Drosophila models, which showed learning and memory defects upon CNOT1 knockdown. Introduction of human wild-type CNOT1 was able to rescue this phenotype, whereas mutants could not or only partially, supporting our hypothesis that CNOT1 impairment results in neurodevelopmental delay. Furthermore, the genetic interaction with autism-spectrum genes, such as ASH1L, DYRK1A, MED13, and SHANK3, was impaired in our Drosophila models. Molecular characterization of CNOT1 variants revealed normal CNOT1 expression levels, with both mutant and wild-type alleles expressed at similar levels. Analysis of protein-protein interactions with other members indicated that the CCR4-NOT complex remained intact. An integrated omics approach of patient-derived genomics and transcriptomics data suggested only minimal effects on endonucleolytic nonsense-mediated mRNA decay components, suggesting that de novo CNOT1 variants are likely haploinsufficient hypomorph or neomorph, rather than dominant negative. In summary, we provide strong evidence that de novo CNOT1 variants cause neurodevelopmental delay with a wide range of additional co-morbidities. Whereas the underlying pathophysiological mechanism warrants further analysis, our data demonstrate an essential and central role of the CCR4-NOT complex in human brain development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Arjan P M de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| |
Collapse
|
11
|
Promdonkoy P, Mhuantong W, Champreda V, Tanapongpipat S, Runguphan W. Improvement in d-xylose utilization and isobutanol production in S. cerevisiae by adaptive laboratory evolution and rational engineering. ACTA ACUST UNITED AC 2020; 47:497-510. [DOI: 10.1007/s10295-020-02281-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022]
Abstract
Abstract
As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The design and engineering of microorganisms to produce gasoline, diesel, and jet fuel compounds from renewable feedstocks can significantly reduce our dependence on fossil fuels as well as lower the emissions of greenhouse gases. Over the past 2 decades, a considerable amount of work has led to the development of microbial strains for the production of advanced fuel compounds from both C5 and C6 sugars. In this work, we combined two strategies—adaptive laboratory evolution and rational metabolic engineering—to improve the yeast Saccharomyces cerevisiae’s ability to utilize d-xylose, a major C5 sugar in biomass, and produce the advanced biofuel isobutanol. Whole genome resequencing of several evolved strains followed by reverse engineering identified two single nucleotide mutations, one in CCR4 and another in TIF1, that improved the yeast’s specific growth rate by 23% and 14%, respectively. Neither one of these genes has previously been implicated to play a role in utilization of d-xylose. Fine-tuning the expression levels of the bottleneck enzymes in the isobutanol pathway further improved the evolved strain’s isobutanol titer to 92.9 ± 4.4 mg/L (specific isobutanol production of 50.2 ± 2.6 mg/g DCW), a 90% improvement in titer and a 110% improvement in specific production over the non-evolved strain. We hope that our work will set the stage for an economic route to the advanced biofuel isobutanol and enable efficient utilization of xylose-containing biomass.
Collapse
Affiliation(s)
- Peerada Promdonkoy
- grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
| | - Wuttichai Mhuantong
- grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
| | - Verawat Champreda
- grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
| | - Sutipa Tanapongpipat
- grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
| | - Weerawat Runguphan
- grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
| |
Collapse
|
12
|
CNOT2 facilitates dengue virus infection via negatively modulating IFN-Independent Non-Canonical JAK/STAT pathway. Biochem Biophys Res Commun 2019; 515:403-409. [DOI: 10.1016/j.bbrc.2019.05.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/11/2019] [Indexed: 01/02/2023]
|
13
|
Ccr4-Not maintains genomic integrity by controlling the ubiquitylation and degradation of arrested RNAPII. Genes Dev 2019; 33:705-717. [PMID: 30948432 PMCID: PMC6546055 DOI: 10.1101/gad.322453.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/14/2019] [Indexed: 12/23/2022]
Abstract
The Ccr4-Not complex regulates essentially every aspect of gene expression, from mRNA synthesis to protein destruction. The Not4 subunit of the complex contains an E3 RING domain and targets proteins for ubiquitin-dependent proteolysis. Ccr4-Not associates with elongating RNA polymerase II (RNAPII), which raises the possibility that it controls the degradation of elongation complex components. Here, we demonstrate that Ccr4-Not controls the ubiquitylation and turnover of Rpb1, the largest subunit of RNAPII, during transcription arrest. Deleting NOT4 or mutating its RING domain strongly reduced the DNA damage-dependent ubiquitylation and destruction of Rpb1. Surprisingly, in vitro ubiquitylation assays indicate that Ccr4-Not does not directly ubiquitylate Rpb1 but instead promotes Rpb1 ubiquitylation by the HECT domain-containing ligase Rsp5. Genetic analyses suggest that Ccr4-Not acts upstream of RSP5, where it acts to initiate the destruction process. Ccr4-Not binds Rsp5 and forms a ternary complex with it and the RNAPII elongation complex. Analysis of mutant Ccr4-Not lacking the RING domain of Not4 suggests that it both recruits Rsp5 and delivers the E2 Ubc4/5 to RNAPII. Our work reveals a previously unknown function of Ccr4-Not and identifies an essential new regulator of RNAPII turnover during genotoxic stress.
Collapse
|
14
|
Minor Isozymes Tailor Yeast Metabolism to Carbon Availability. mSystems 2019; 4:mSystems00170-18. [PMID: 30834327 PMCID: PMC6392091 DOI: 10.1128/msystems.00170-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/21/2019] [Indexed: 11/23/2022] Open
Abstract
Gene duplication is one of the main evolutionary paths to new protein function. Typically, duplicated genes either accumulate mutations and degrade into pseudogenes or are retained and diverge in function. Some duplicated genes, however, show long-term persistence without apparently acquiring new function. An important class of isozymes consists of those that catalyze the same reaction in the same compartment, where knockout of one isozyme causes no known functional defect. Here we present an approach to assigning specific functional roles to seemingly redundant isozymes. First, gene expression data are analyzed computationally to identify conditions under which isozyme expression diverges. Then, knockouts are compared under those conditions. This approach revealed that the expression of many yeast isozymes diverges in response to carbon availability and that carbon source manipulations can induce fitness phenotypes for seemingly redundant isozymes. A driver of these fitness phenotypes is differential allosteric enzyme regulation, indicating isozyme divergence to achieve more-optimal control of metabolism. Isozymes are enzymes that differ in sequence but catalyze the same chemical reactions. Despite their apparent redundancy, isozymes are often retained over evolutionary time, suggesting that they contribute to fitness. We developed an unsupervised computational method for identifying environmental conditions under which isozymes are likely to make fitness contributions. This method analyzes published gene expression data to find specific experimental perturbations that induce differential isozyme expression. In yeast, we found that isozymes are strongly enriched in the pathways of central carbon metabolism and that many isozyme pairs show anticorrelated expression during the respirofermentative shift. Building on these observations, we assigned function to two minor central carbon isozymes, aconitase 2 (ACO2) and pyruvate kinase 2 (PYK2). ACO2 is expressed during fermentation and proves advantageous when glucose is limiting. PYK2 is expressed during respiration and proves advantageous for growth on three-carbon substrates. PYK2’s deletion can be rescued by expressing the major pyruvate kinase only if that enzyme carries mutations mirroring PYK2’s allosteric regulation. Thus, central carbon isozymes help to optimize allosteric metabolic regulation under a broad range of potential nutrient conditions while requiring only a small number of transcriptional states. IMPORTANCE Gene duplication is one of the main evolutionary paths to new protein function. Typically, duplicated genes either accumulate mutations and degrade into pseudogenes or are retained and diverge in function. Some duplicated genes, however, show long-term persistence without apparently acquiring new function. An important class of isozymes consists of those that catalyze the same reaction in the same compartment, where knockout of one isozyme causes no known functional defect. Here we present an approach to assigning specific functional roles to seemingly redundant isozymes. First, gene expression data are analyzed computationally to identify conditions under which isozyme expression diverges. Then, knockouts are compared under those conditions. This approach revealed that the expression of many yeast isozymes diverges in response to carbon availability and that carbon source manipulations can induce fitness phenotypes for seemingly redundant isozymes. A driver of these fitness phenotypes is differential allosteric enzyme regulation, indicating isozyme divergence to achieve more-optimal control of metabolism.
Collapse
|
15
|
Ryu HY, López-Giráldez F, Knight J, Hwang SS, Renner C, Kreft SG, Hochstrasser M. Distinct adaptive mechanisms drive recovery from aneuploidy caused by loss of the Ulp2 SUMO protease. Nat Commun 2018; 9:5417. [PMID: 30575729 PMCID: PMC6303320 DOI: 10.1038/s41467-018-07836-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022] Open
Abstract
In response to acute loss of the Ulp2 SUMO-specific protease, yeast become disomic for chromosome I (ChrI) and ChrXII. Here we report that ChrI disomy, which creates an adaptive advantage in part by increasing the dosage of the Ccr4 deadenylase, was eliminated by extended passaging. Loss of aneuploidy is often accompanied by mutations in essential SUMO-ligating enzymes, which reduced polySUMO-conjugate accumulation. The mRNA levels for almost all ribosomal proteins increase transiently upon initial loss of Ulp2, but elevated Ccr4 levels limit excess ribosome formation. Notably, extended passaging leads to increased levels of many small nucleolar RNAs (snoRNAs) involved in ribosome biogenesis, and higher dosage of three linked ChrXII snoRNA genes suppressed ChrXII disomy in ulp2Δ cells. Our data reveal that aneuploidy allows rapid adaptation to Ulp2 loss, but long-term adaptation restores euploidy. Cellular evolution restores homeostasis through countervailing mutations in SUMO-modification pathways and regulatory shifts in ribosome biogenesis.
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | | | - James Knight
- Yale Center for Genome Analysis, Yale University, New Haven, CT, 06520, USA
| | - Soo Seok Hwang
- Department of Immunobiology, Yale University, New Haven, CT, 06520, USA
| | - Christina Renner
- Department of Biology, Molecular Microbiology, University of Konstanz, Universitaetsstrasse 10, 78457, Konstanz, Germany
| | - Stefan G Kreft
- Department of Biology, Molecular Microbiology, University of Konstanz, Universitaetsstrasse 10, 78457, Konstanz, Germany
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
16
|
Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3-GENES GENOMES GENETICS 2018; 8:315-330. [PMID: 29158339 PMCID: PMC5765359 DOI: 10.1534/g3.117.300415] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Ccr4 (carbon catabolite repression 4)-Not complex is a major regulator of stress responses that controls gene expression at multiple levels, from transcription to mRNA decay. Ccr4, a “core” subunit of the complex, is the main cytoplasmic deadenylase in Saccharomyces cerevisiae; however, its mRNA targets have not been mapped on a genome-wide scale. Here, we describe a genome-wide approach, RNA immunoprecipitation (RIP) high-throughput sequencing (RIP-seq), to identify the RNAs bound to Ccr4, and two proteins that associate with it, Dhh1 and Puf5. All three proteins were preferentially bound to lowly abundant mRNAs, most often at the 3′ end of the transcript. Furthermore, Ccr4, Dhh1, and Puf5 are recruited to mRNAs that are targeted by other RNA-binding proteins that promote decay and mRNA transport, and inhibit translation. Although Ccr4-Not regulates mRNA transcription and decay, Ccr4 recruitment to mRNAs correlates better with decay rates, suggesting it imparts greater control over transcript abundance through decay. Ccr4-enriched mRNAs are refractory to control by the other deadenylase complex in yeast, Pan2/3, suggesting a division of labor between these deadenylation complexes. Finally, Ccr4 and Dhh1 associate with mRNAs whose abundance increases during nutrient starvation, and those that fluctuate during metabolic and oxygen consumption cycles, which explains the known genetic connections between these factors and nutrient utilization and stress pathways.
Collapse
|
17
|
Gomez-Cambronero J, Fite K, Miller TE. How miRs and mRNA deadenylases could post-transcriptionally regulate expression of tumor-promoting protein PLD. Adv Biol Regul 2017; 68:107-119. [PMID: 28964725 DOI: 10.1016/j.jbior.2017.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022]
Abstract
Phospholipase D (PLD) plays a key role in both cell membrane lipid reorganization and architecture, as well as a cell signaling protein via the product of its enzymatic reaction, phosphatidic acid (PA). PLD is involved in promoting breast cancer cell growth, proliferation, and metastasis and both gene and protein expression are upregulated in breast carcinoma human samples. In spite of all this, the ultimate reason as to why PLD expression is high in cancer cells vs. their normal counterparts remains largely unknown. Until we understand this and the associated signaling pathways, it will be difficult to establish PLD as a bona fide target to explore new potential cancer therapeutic approaches. Recently, our lab has identified several molecular mechanisms by which PLD expression is high in breast cancer cells and they all involve post-transcriptional control of its mRNA. First, PA, a mitogen, functions as a protein and mRNA stabilizer that counteracts natural decay and degradation. Second, there is a repertoire of microRNAs (miRs) that keep PLD mRNA translation at low levels in normal cells, but their effects change with starvation and during endothelial-to-mesenchymal transition (EMT) in cancer cells. Third, there is a novel way of post-transcriptional regulation of PLD involving 3'-exonucleases, specifically the deadenylase, Poly(A)-specific Ribonuclease (PARN), which tags mRNA for mRNA for degradation. This would enable PLD accumulation and ultimately breast cancer cell growth. We review in depth the emerging field of post-transcriptional regulation of PLD, which is only recently beginning to be understood. Since, surprisingly, so little is known about post-transcriptional regulation of PLD and related phospholipases (PLC or PLA), this new knowledge could help our understanding of how post-transcriptional deregulation of a lipid enzyme expression impacts tumor growth.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Wright State University School of Medicine, Department of Biochemistry and Molecular Biology, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA.
| | - Kristen Fite
- Wright State University School of Medicine, Department of Biochemistry and Molecular Biology, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | - Taylor E Miller
- Wright State University School of Medicine, Department of Biochemistry and Molecular Biology, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| |
Collapse
|
18
|
Goossens J, De Geyter N, Walton A, Eeckhout D, Mertens J, Pollier J, Fiallos-Jurado J, De Keyser A, De Clercq R, Van Leene J, Gevaert K, De Jaeger G, Goormachtig S, Goossens A. Isolation of protein complexes from the model legume Medicago truncatula by tandem affinity purification in hairy root cultures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:476-489. [PMID: 27377668 DOI: 10.1111/tpj.13258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/21/2016] [Accepted: 06/30/2016] [Indexed: 05/26/2023]
Abstract
Tandem affinity purification coupled to mass spectrometry (TAP-MS) is one of the most powerful techniques to isolate protein complexes and elucidate protein interaction networks. Here, we describe the development of a TAP-MS strategy for the model legume Medicago truncatula, which is widely studied for its ability to produce valuable natural products and to engage in endosymbiotic interactions. As biological material, transgenic hairy roots, generated through Agrobacterium rhizogenes-mediated transformation of M. truncatula seedlings, were used. As proof of concept, proteins involved in the cell cycle, transcript processing and jasmonate signalling were chosen as bait proteins, resulting in a list of putative interactors, many of which confirm the interologue concept of protein interactions, and which can contribute to biological information about the functioning of these bait proteins in planta. Subsequently, binary protein-protein interactions among baits and preys, and among preys were confirmed by a systematic yeast two-hybrid screen. Together, by establishing a M. truncatula TAP-MS platform, we extended the molecular toolbox of this model species.
Collapse
Affiliation(s)
- Jonas Goossens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Nathan De Geyter
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Alan Walton
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
- Department of Medical Protein Research, VIB, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
| | - Dominique Eeckhout
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jan Mertens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jacob Pollier
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jennifer Fiallos-Jurado
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Annick De Keyser
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Rebecca De Clercq
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jelle Van Leene
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Sofie Goormachtig
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| |
Collapse
|
19
|
CNOT3-Dependent mRNA Deadenylation Safeguards the Pluripotent State. Stem Cell Reports 2016; 7:897-910. [PMID: 27746116 PMCID: PMC5106518 DOI: 10.1016/j.stemcr.2016.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 01/07/2023] Open
Abstract
Poly(A) tail length and mRNA deadenylation play important roles in gene regulation. However, how they regulate embryonic development and pluripotent cell fate is not fully understood. Here we present evidence that CNOT3-dependent mRNA deadenylation governs the pluripotent state. We show that CNOT3, a component of the Ccr4-Not deadenylase complex, is required for mouse epiblast maintenance. It is highly expressed in blastocysts and its deletion leads to peri-implantation lethality. The epiblast cells in Cnot3 deletion embryos are quickly lost during diapause and fail to outgrow in culture. Mechanistically, CNOT3 C terminus is required for its interaction with the complex and its function in embryonic stem cells (ESCs). Furthermore, Cnot3 deletion results in increases in the poly(A) tail lengths, half-lives, and steady-state levels of differentiation gene mRNAs. The half-lives of CNOT3 target mRNAs are shorter in ESCs and become longer during normal differentiation. Together, we propose that CNOT3 maintains the pluripotent state by promoting differentiation gene mRNA deadenylation and degradation, and we identify poly(A) tail-length regulation as a post-transcriptional mechanism that controls pluripotency. CNOT3 is required for mouse epiblast maintenance during early development CNOT3 C-terminal domain is necessary for the maintenance of the pluripotent state CNOT3 promotes differentiation gene mRNA deadenylation and degradation mRNA poly(A) tail regulation plays a critical role in pluripotency
Collapse
|
20
|
Gupta I, Villanyi Z, Kassem S, Hughes C, Panasenko OO, Steinmetz LM, Collart MA. Translational Capacity of a Cell Is Determined during Transcription Elongation via the Ccr4-Not Complex. Cell Rep 2016; 15:1782-94. [PMID: 27184853 DOI: 10.1016/j.celrep.2016.04.055] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/08/2016] [Accepted: 04/04/2016] [Indexed: 11/29/2022] Open
Abstract
The current understanding of gene expression considers transcription and translation to be independent processes. Challenging this notion, we found that translation efficiency is determined during transcription elongation through the imprinting of mRNAs with Not1, the central scaffold of the Ccr4-Not complex. We determined that another subunit of the complex, Not5, defines Not1 binding to specific mRNAs, particularly those produced from ribosomal protein genes. This imprinting mechanism specifically regulates ribosomal protein gene expression, which in turn determines the translational capacity of cells. We validate our model by SILAC and polysome profiling experiments. As a proof of concept, we demonstrate that enhanced translation compensates for transcriptional elongation stress. Taken together, our data indicate that in addition to defining mRNA stability, components of the Ccr4-Not imprinting complex regulate RNA translatability, thus ensuring global gene expression homeostasis.
Collapse
Affiliation(s)
- Ishaan Gupta
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Zoltan Villanyi
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Institute of Genetics and Genomics, University of Geneva, 1211 Geneva 4, Switzerland
| | - Sari Kassem
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Institute of Genetics and Genomics, University of Geneva, 1211 Geneva 4, Switzerland
| | - Christopher Hughes
- Genome Sciences Center, British Columbia Cancer Research Agency, Vancouver, BC V5Z 1L3, Canada
| | - Olesya O Panasenko
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Institute of Genetics and Genomics, University of Geneva, 1211 Geneva 4, Switzerland
| | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Martine A Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Institute of Genetics and Genomics, University of Geneva, 1211 Geneva 4, Switzerland.
| |
Collapse
|
21
|
Abstract
In this mini-review, we summarize our current knowledge about the cross-talk between the different levels of gene expression. We introduce the Ccr4 (carbon catabolite repressed 4)–Not (negative on TATA-less) complex as a candidate to be a master regulator that orchestrates between the different levels of gene expression. An integrated view of the findings about the Ccr4–Not complex suggests that it is involved in gene expression co-ordination. Since the discovery of the Not proteins in a selection for transcription regulators in yeast [Collart and Struhl (1994) Genes Dev. 8, 525–537], the Ccr4–Not complex has been connected to every step of the mRNA lifecycle. Moreover, it has been found to be relevant for appropriate protein folding and quaternary protein structure by being involved in co-translational protein complex assembly.
Collapse
|
22
|
The Not5 subunit of the ccr4-not complex connects transcription and translation. PLoS Genet 2014; 10:e1004569. [PMID: 25340856 PMCID: PMC4207488 DOI: 10.1371/journal.pgen.1004569] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 07/01/2014] [Indexed: 11/19/2022] Open
Abstract
Recent studies have suggested that a sub-complex of RNA polymerase II composed of Rpb4 and Rpb7 couples the nuclear and cytoplasmic stages of gene expression by associating with newly made mRNAs in the nucleus, and contributing to their translation and degradation in the cytoplasm. Here we show by yeast two hybrid and co-immunoprecipitation experiments, followed by ribosome fractionation and fluorescent microscopy, that a subunit of the Ccr4-Not complex, Not5, is essential in the nucleus for the cytoplasmic functions of Rpb4. Not5 interacts with Rpb4; it is required for the presence of Rpb4 in polysomes, for interaction of Rpb4 with the translation initiation factor eIF3 and for association of Rpb4 with mRNAs. We find that Rpb7 presence in the cytoplasm and polysomes is much less significant than that of Rpb4, and that it does not depend upon Not5. Hence Not5-dependence unlinks the cytoplasmic functions of Rpb4 and Rpb7. We additionally determine with RNA immunoprecipitation and native gel analysis that Not5 is needed in the cytoplasm for the co-translational assembly of RNA polymerase II. This stems from the importance of Not5 for the association of the R2TP Hsp90 co-chaperone with polysomes translating RPB1 mRNA to protect newly synthesized Rpb1 from aggregation. Hence taken together our results show that Not5 interconnects translation and transcription.
Collapse
|
23
|
Inada T, Makino S. Novel roles of the multi-functional CCR4-NOT complex in post-transcriptional regulation. Front Genet 2014; 5:135. [PMID: 24904636 PMCID: PMC4033010 DOI: 10.3389/fgene.2014.00135] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/25/2014] [Indexed: 11/30/2022] Open
Abstract
The CCR4-NOT complex is a highly conserved specific gene silencer that also serves more general post-transcriptional functions. Specific regulatory proteins including the miRNA-induced silencing complex and its associated proteins, bind to 3’-UTR elements of mRNA and recruit the CCR4-NOT complex thereby promoting poly(A) shortening and repressing translation and/or mRNA degradation. Recent studies have shown that the CCR4-NOT complex that is tethered to mRNA by such regulator(s) represses translation and facilitates mRNA decay independent of a poly(A) tail and its shortening. In addition to deadenylase activity, the CCR4-NOT complex also has an E3 ubiquitin ligase activity and is involved in a novel protein quality control system, i.e., co-translational proteasomal-degradation of aberrant proteins. In this review, we describe recent progress in elucidation of novel roles of the multi-functional complex CCR4-NOT in post-transcriptional regulation.
Collapse
Affiliation(s)
- Toshifumi Inada
- Laboratory of Gene Regulation, Graduate School of Pharmaceutical Sciences, Tohoku University Sendai, Japan
| | - Shiho Makino
- Laboratory of Gene Regulation, Graduate School of Pharmaceutical Sciences, Tohoku University Sendai, Japan
| |
Collapse
|
24
|
Jobert L, Nilsen H. Regulatory mechanisms of RNA function: emerging roles of DNA repair enzymes. Cell Mol Life Sci 2014; 71:2451-65. [PMID: 24496644 PMCID: PMC4055861 DOI: 10.1007/s00018-014-1562-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/05/2014] [Accepted: 01/10/2014] [Indexed: 12/13/2022]
Abstract
The acquisition of an appropriate set of chemical modifications is required in order to establish correct structure of RNA molecules, and essential for their function. Modification of RNA bases affects RNA maturation, RNA processing, RNA quality control, and protein translation. Some RNA modifications are directly involved in the regulation of these processes. RNA epigenetics is emerging as a mechanism to achieve dynamic regulation of RNA function. Other modifications may prevent or be a signal for degradation. All types of RNA species are subject to processing or degradation, and numerous cellular mechanisms are involved. Unexpectedly, several studies during the last decade have established a connection between DNA and RNA surveillance mechanisms in eukaryotes. Several proteins that respond to DNA damage, either to process or to signal the presence of damaged DNA, have been shown to participate in RNA quality control, turnover or processing. Some enzymes that repair DNA damage may also process modified RNA substrates. In this review, we give an overview of the DNA repair proteins that function in RNA metabolism. We also discuss the roles of two base excision repair enzymes, SMUG1 and APE1, in RNA quality control.
Collapse
Affiliation(s)
- Laure Jobert
- Division of Medicine, Department of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen, 1478 Lørenskog, Norway
| | - Hilde Nilsen
- Division of Medicine, Department of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen, 1478 Lørenskog, Norway
- Department of Clinical Molecular Biology, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Blindern, P.O.Box 1171, 0318 Oslo, Norway
| |
Collapse
|
25
|
Mannironi C, Proietto M, Bufalieri F, Cundari E, Alagia A, Danovska S, Rinaldi T, Famiglini V, Coluccia A, La Regina G, Silvestri R, Negri R. An high-throughput in vivo screening system to select H3K4-specific histone demethylase inhibitors. PLoS One 2014; 9:e86002. [PMID: 24489688 PMCID: PMC3906020 DOI: 10.1371/journal.pone.0086002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 12/03/2013] [Indexed: 12/15/2022] Open
Abstract
Background Histone demethylases (HDMs) have a prominent role in epigenetic regulation and are emerging as potential therapeutic cancer targets. The search for small molecules able to inhibit HDMs in vivo is very active but at the present few compounds were found to be specific for defined classes of these enzymes. Methodology/Principal Findings In order to discover inhibitors specific for H3K4 histone demethylation we set up a screening system which tests the effects of candidate small molecule inhibitors on a S.cerevisiae strain which requires Jhd2 demethylase activity to efficiently grow in the presence of rapamycin. In order to validate the system we screened a library of 45 structurally different compounds designed as competitive inhibitors of α -ketoglutarate (α-KG) cofactor of the enzyme, and found that one of them inhibited Jhd2 activity in vitro and in vivo. The same compound effectively inhibits human Jumonji AT-Rich Interactive Domain (JARID) 1B and 1D in vitro and increases H3K4 tri-methylation in HeLa cell nuclear extracts (NEs). When added in vivo to HeLa cells, the compound leads to an increase of tri-methyl-H3K4 (H3K4me3) but does not affect H3K9 tri-methylation. We describe the cytostatic and toxic effects of the compound on HeLa cells at concentrations compatible with its inhibitory activity. Conclusions/Significance Our screening system is proved to be very useful in testing putative H3K4-specific HDM inhibitors for the capacity of acting in vivo without significantly altering the activity of other important 2-oxoglutarate oxygenases.
Collapse
Affiliation(s)
- Cecilia Mannironi
- Istituto di Biologia e Patologia Molecolari Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Marco Proietto
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Francesca Bufalieri
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Enrico Cundari
- Istituto di Biologia e Patologia Molecolari Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Angela Alagia
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Svetlana Danovska
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Teresa Rinaldi
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Valeria Famiglini
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Antonio Coluccia
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Giuseppe La Regina
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Romano Silvestri
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Rodolfo Negri
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
- * E-mail:
| |
Collapse
|
26
|
Halter D, Collart MA, Panasenko OO. The Not4 E3 ligase and CCR4 deadenylase play distinct roles in protein quality control. PLoS One 2014; 9:e86218. [PMID: 24465968 PMCID: PMC3895043 DOI: 10.1371/journal.pone.0086218] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/08/2013] [Indexed: 11/21/2022] Open
Abstract
Eukaryotic cells control their proteome by regulating protein production and protein clearance. Protein production is determined to a large extent by mRNA levels, whereas protein degradation depends mostly upon the proteasome. Dysfunction of the proteasome leads to the accumulation of non-functional proteins that can aggregate, be toxic for the cell, and, in extreme cases, lead to cell death. mRNA levels are controlled by their rates of synthesis and degradation. Recent evidence indicates that these rates have oppositely co-evolved to ensure appropriate mRNA levels. This opposite co-evolution has been correlated with the mutations in the Ccr4-Not complex. Consistently, the deadenylation enzymes responsible for the rate-limiting step in eukaryotic mRNA degradation, Caf1 and Ccr4, are subunits of the Ccr4-Not complex. Another subunit of this complex is a RING E3 ligase, Not4. It is essential for cellular protein solubility and has been proposed to be involved in co-translational quality control. An open question has been whether this role of Not4 resides strictly in the regulation of the deadenylation module of the Ccr4-Not complex. However, Not4 is important for proper assembly of the proteasome, and the Ccr4-Not complex may have multiple functional modules that participate in protein quality control in different ways. In this work we studied how the functions of the Caf1/Ccr4 and Not4 modules are connected. We concluded that Not4 plays a role in protein quality control independently of the Ccr4 deadenylase, and that it is involved in clearance of aberrant proteins at least in part via the proteasome.
Collapse
Affiliation(s)
- David Halter
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Martine A. Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Olesya O. Panasenko
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
27
|
Panepinto JC, Heinz E, Traven A. The cellular roles of Ccr4-NOT in model and pathogenic fungi-implications for fungal virulence. Front Genet 2013; 4:302. [PMID: 24391665 PMCID: PMC3868889 DOI: 10.3389/fgene.2013.00302] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/09/2013] [Indexed: 11/13/2022] Open
Abstract
The fungal Ccr4-NOT complex has been implicated in orchestrating gene expression networks that impact on pathways key for virulence in pathogenic species. The activity of Ccr4-NOT regulates cell wall integrity, antifungal drug susceptibility, adaptation to host temperature, and the developmental switches that enable the formation of pathogenic structures, such as filamentous hyphae. Moreover, Ccr4-NOT impacts on DNA repair pathways and genome stability, opening the possibility that this gene regulator could control adaptive responses in pathogens that are driven by chromosomal alterations. Here we provide a synthesis of the cellular roles of the fungal Ccr4-NOT, focusing on pathways important for virulence toward animals. Our review is based on studies in models yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, and two species that cause serious human infections, Candida albicans and Cryptococcus neoformans. We hypothesize that the activity of Ccr4-NOT could be targeted for future antifungal drug discovery, a proposition supported by the fact that inactivation of the genes encoding subunits of Ccr4-NOT in C. albicans and C. neoformans reduces virulence in the mouse infection model. We performed bioinformatics analysis to identify similarities and differences between Ccr4-NOT subunits in fungi and animals, and discuss this knowledge in the context of future antifungal strategies.
Collapse
Affiliation(s)
- John C Panepinto
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York Buffalo, NY, USA
| | - Eva Heinz
- Department of Microbiology, Monash University Clayton, VIC, Australia ; Victorian Bioinformatics Consortium, School of Biomedical Sciences, Monash University Clayton, VIC, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Monash University Clayton, VIC, Australia
| |
Collapse
|
28
|
Solana J, Gamberi C, Mihaylova Y, Grosswendt S, Chen C, Lasko P, Rajewsky N, Aboobaker AA. The CCR4-NOT complex mediates deadenylation and degradation of stem cell mRNAs and promotes planarian stem cell differentiation. PLoS Genet 2013; 9:e1004003. [PMID: 24367277 PMCID: PMC3868585 DOI: 10.1371/journal.pgen.1004003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 10/21/2013] [Indexed: 01/08/2023] Open
Abstract
Post-transcriptional regulatory mechanisms are of fundamental importance to form robust genetic networks, but their roles in stem cell pluripotency remain poorly understood. Here, we use freshwater planarians as a model system to investigate this and uncover a role for CCR4-NOT mediated deadenylation of mRNAs in stem cell differentiation. Planarian adult stem cells, the so-called neoblasts, drive the almost unlimited regenerative capabilities of planarians and allow their ongoing homeostatic tissue turnover. While many genes have been demonstrated to be required for these processes, currently almost no mechanistic insight is available into their regulation. We show that knockdown of planarian Not1, the CCR4-NOT deadenylating complex scaffolding subunit, abrogates regeneration and normal homeostasis. This abrogation is primarily due to severe impairment of their differentiation potential. We describe a stem cell specific increase in the mRNA levels of key neoblast genes after Smed-not1 knock down, consistent with a role of the CCR4-NOT complex in degradation of neoblast mRNAs upon the onset of differentiation. We also observe a stem cell specific increase in the frequency of longer poly(A) tails in these same mRNAs, showing that stem cells after Smed-not1 knock down fail to differentiate as they accumulate populations of transcripts with longer poly(A) tails. As other transcripts are unaffected our data hint at a targeted regulation of these key stem cell mRNAs by post-transcriptional regulators such as RNA-binding proteins or microRNAs. Together, our results show that the CCR4-NOT complex is crucial for stem cell differentiation and controls stem cell-specific degradation of mRNAs, thus providing clear mechanistic insight into this aspect of neoblast biology.
Collapse
Affiliation(s)
- Jordi Solana
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Chiara Gamberi
- Department of Biology, McGill University, Montréal, Québec, Canada
- Department of Biology, Concordia University, Montreal, Québec, Canada
| | - Yuliana Mihaylova
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Stefanie Grosswendt
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Chen Chen
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Paul Lasko
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - A. Aziz Aboobaker
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Structure and RNA-binding properties of the Not1-Not2-Not5 module of the yeast Ccr4-Not complex. Nat Struct Mol Biol 2013; 20:1281-8. [PMID: 24121231 DOI: 10.1038/nsmb.2686] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/05/2013] [Indexed: 02/01/2023]
Abstract
The Ccr4-Not complex is involved in several aspects of gene expression, including mRNA decay, translational repression and transcription. We determined the 2.8-Å-resolution crystal structure of a 120-kDa core complex of the Saccharomyces cerevisiae Not module comprising the C-terminal arm of Not1, Not2 and Not5. Not1 is a HEAT-repeat scaffold. Not2 and Not5 have extended regions that wrap around Not1 and around their globular domains, the Not boxes. The Not boxes resemble Sm folds and interact with each other with a noncanonical dimerization surface. Disruption of the interactions within the ternary complex has severe effects on growth in vivo. The ternary complex forms a composite surface that binds poly(U) RNA in vitro, with a site at the Not5 Not box. The results suggest that the Not module forms a versatile platform for macromolecular interactions.
Collapse
|
30
|
Coy S, Volanakis A, Shah S, Vasiljeva L. The Sm complex is required for the processing of non-coding RNAs by the exosome. PLoS One 2013; 8:e65606. [PMID: 23755256 PMCID: PMC3675052 DOI: 10.1371/journal.pone.0065606] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/27/2013] [Indexed: 12/25/2022] Open
Abstract
A key question in the field of RNA regulation is how some exosome substrates, such as spliceosomal snRNAs and telomerase RNA, evade degradation and are processed into stable, functional RNA molecules. Typical feature of these non-coding RNAs is presence of the Sm complex at the 3′end of the mature RNA molecule. Here, we report that in Saccharomyces cerevisiae presence of intact Sm binding site is required for the exosome-mediated processing of telomerase RNA from a polyadenylated precursor into its mature form and is essential for its function in elongating telomeres. Additionally, we demonstrate that the same pathway is involved in the maturation of snRNAs. Furthermore, the insertion of an Sm binding site into an unstable RNA that is normally completely destroyed by the exosome, leads to its partial stabilization. We also show that telomerase RNA accumulates in Schizosaccharomyces pombe exosome mutants, suggesting a conserved role for the exosome in processing and degradation of telomerase RNA. In summary, our data provide important mechanistic insight into the regulation of exosome dependent RNA processing as well as telomerase RNA biogenesis.
Collapse
Affiliation(s)
- Sarah Coy
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Adam Volanakis
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sneha Shah
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Lidia Vasiljeva
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
The Not4 RING E3 Ligase: A Relevant Player in Cotranslational Quality Control. ISRN MOLECULAR BIOLOGY 2013; 2013:548359. [PMID: 27335678 PMCID: PMC4890865 DOI: 10.1155/2013/548359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 11/21/2012] [Indexed: 12/02/2022]
Abstract
The Not4 RING E3 ligase is a subunit of the evolutionarily conserved Ccr4-Not complex. Originally identified in yeast by mutations that increase transcription, it was subsequently defined as an ubiquitin ligase. Substrates for this ligase were characterized in yeast and in metazoans. Interestingly, some substrates for this ligase are targeted for polyubiquitination and degradation, while others instead are stable monoubiquitinated proteins. The former are mostly involved in transcription, while the latter are a ribosomal protein and a ribosome-associated chaperone. Consistently, Not4 and all other subunits of the Ccr4-Not complex are present in translating ribosomes. An important function for Not4 in cotranslational quality control has emerged. In the absence of Not4, the total level of polysomes is reduced. In addition, translationally arrested polypeptides, aggregated proteins, and polyubiquitinated proteins accumulate. Its role in quality control is likely to be related on one hand to its importance for the functional assembly of the proteasome and on the other hand to its association with the RNA degradation machines. Not4 is in an ideal position to signal to degradation mRNAs whose translation has been aborted, and this defines Not4 as a key player in the quality control of newly synthesized proteins.
Collapse
|
32
|
Collart MA, Panasenko OO, Nikolaev SI. The Not3/5 subunit of the Ccr4-Not complex: a central regulator of gene expression that integrates signals between the cytoplasm and the nucleus in eukaryotic cells. Cell Signal 2012; 25:743-51. [PMID: 23280189 DOI: 10.1016/j.cellsig.2012.12.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
Abstract
The Ccr4-Not complex is a conserved multi-subunit complex in eukaryotes that carries 2 enzymatic activities: ubiquitination mediated by the Not4 RING E3 ligase and deadenylation mediated by the Ccr4 and Caf1 orthologs. This complex has been implicated in all aspects of the mRNA life cycle, from synthesis of mRNAs in the nucleus to their degradation in the cytoplasm. More recently the complex has also been implicated in many aspects of the life cycle of proteins, from quality control during synthesis of peptides, to assembly of protein complexes and protein degradation. Consistently, the Ccr4-Not complex is found both in the nucleus, where it is connected to transcribing ORFs, and in the cytoplasm, where it was revealed to be both associated with translating ribosomes and in RNA processing bodies. This functional and physical presence of the Ccr4-Not complex at all stages of gene expression raises the question of its fundamental role. This review will summarize recent evidence designing the Not3/5 module of the Ccr4-Not complex as a functional module involved in coordination of the regulation of gene expression between the nucleus and the cytoplasm.
Collapse
Affiliation(s)
- Martine A Collart
- Dpt of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Genève 4, Switzerland.
| | | | | |
Collapse
|
33
|
Färber V, Erben E, Sharma S, Stoecklin G, Clayton C. Trypanosome CNOT10 is essential for the integrity of the NOT deadenylase complex and for degradation of many mRNAs. Nucleic Acids Res 2012; 41:1211-22. [PMID: 23221646 PMCID: PMC3553956 DOI: 10.1093/nar/gks1133] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The degradation of most eukaryotic mRNAs is initiated by removal of the poly(A) tail, and the major deadenylase activity is associated with the CCR4/CAF1/NOT complex (NOT complex). We here study the role of CNOT10, a protein that is found in human and trypanosome, but not in yeast, NOT complexes. Trypanosome (Tb) CNOT10 is essential for growth. TbCNOT10 interacted with the deadenylase TbCAF1 and the scaffold protein TbNOT1; TbCAF1 also interacted with TbNOT1 in a yeast two-hybrid assay. In both trypanosomes and human embryonic kidney cells, approximately half of CAF1 was associated with the NOT complex. Depletion of CNOT10 from human cells did not affect this association. In contrast, depletion of TbCNOT10 in trypanosomes caused a decrease in the level of TbNOT1, detachment of TbCAF1 from the complex and pronounced stabilization of most trypanosome mRNAs. Artificial tethering of TbCAF1 to a reporter mRNA in vivo resulted in mRNA degradation, and this was not affected by TbCNOT10 depletion. We conclude that in trypanosomes, TbCNOT10 may stabilize the interaction between TbCAF1 and the NOT complex. The results further suggest that TbCAF1 is only able to deadenylate mRNA in vivo if it is recruited to the mRNA through other NOT complex components.
Collapse
Affiliation(s)
- Valentin Färber
- DKFZ-ZMBH Alliance, Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, D69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
34
|
Abstract
The purpose of this review is to provide an analysis of the latest developments on the functions of the carbon catabolite-repression 4-Not (Ccr4-Not) complex in regulating eukaryotic gene expression. Ccr4-Not is a nine-subunit protein complex that is conserved in sequence and function throughout the eukaryotic kingdom. Although Ccr4-Not has been studied since the 1980s, our understanding of what it does is constantly evolving. Once thought to solely regulate transcription, it is now clear that it has much broader roles in gene regulation, such as in mRNA decay and quality control, RNA export, translational repression and protein ubiquitylation. The mechanism of actions for each of its functions is still being debated. Some of the difficulty in drawing a clear picture is that it has been implicated in so many processes that regulate mRNAs and proteins in both the cytoplasm and the nucleus. We will describe what is known about the Ccr4-Not complex in yeast and other eukaryotes in an effort to synthesize a unified model for how this complex coordinates multiple steps in gene regulation and provide insights into what questions will be most exciting to answer in the future.
Collapse
Affiliation(s)
- Jason E. Miller
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Center for RNA Molecular Biology, Penn State University, University Park, PA 16802
| | - Joseph C. Reese
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Center for RNA Molecular Biology, Penn State University, University Park, PA 16802
| |
Collapse
|
35
|
Tange Y, Kurabayashi A, Goto B, Hoe KL, Kim DU, Park HO, Hayles J, Chikashige Y, Tsutumi C, Hiraoka Y, Yamao F, Nurse P, Niwa O. The CCR4-NOT complex is implicated in the viability of aneuploid yeasts. PLoS Genet 2012; 8:e1002776. [PMID: 22737087 PMCID: PMC3380822 DOI: 10.1371/journal.pgen.1002776] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/05/2012] [Indexed: 12/23/2022] Open
Abstract
To identify the genes required to sustain aneuploid viability, we screened a deletion library of non-essential genes in the fission yeast Schizosaccharomyces pombe, in which most types of aneuploidy are eventually lethal to the cell. Aneuploids remain viable for a period of time and can form colonies by reducing the extent of the aneuploidy. We hypothesized that a reduction in colony formation efficiency could be used to screen for gene deletions that compromise aneuploid viability. Deletion mutants were used to measure the effects on the viability of spores derived from triploid meiosis and from a chromosome instability mutant. We found that the CCR4-NOT complex, an evolutionarily conserved general regulator of mRNA turnover, and other related factors, including poly(A)-specific nuclease for mRNA decay, are involved in aneuploid viability. Defective mutations in CCR4-NOT complex components in the distantly related yeast Saccharomyces cerevisiae also affected the viability of spores produced from triploid cells, suggesting that this complex has a conserved role in aneuploids. In addition, our findings suggest that the genes required for homologous recombination repair are important for aneuploid viability.
Collapse
Affiliation(s)
- Yoshie Tange
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | | | - Bunshiro Goto
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Kwang-Lae Hoe
- Chungnam National University, Graduate School of New Drug Discovery and Development, Yusong-gu, Daejeon, Korea
| | - Dong-Uk Kim
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yusong-gu, Daejeon, Korea
| | | | - Jacqueline Hayles
- Cancer Research UK, The London Research Institute, London, United Kingdom
| | - Yuji Chikashige
- National Institute of Information and Communications Technology, Kobe, Japan
| | - Chihiro Tsutumi
- National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- National Institute of Information and Communications Technology, Kobe, Japan
| | - Fumiaki Yamao
- National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Paul Nurse
- Cancer Research UK, The London Research Institute, London, United Kingdom
- The Rockefeller University, New York, New York, United States of America
| | - Osami Niwa
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
- The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
36
|
Panasenko OO, Collart MA. Presence of Not5 and ubiquitinated Rps7A in polysome fractions depends upon the Not4 E3 ligase. Mol Microbiol 2012; 83:640-53. [PMID: 22243599 DOI: 10.1111/j.1365-2958.2011.07957.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study, we determine that Saccharomyces cerevisiae Not4 E3 ligase ubiquitinates Rps7A in vivo and in vitro, but not its paralogue, Rps7B. Ubiquitinated Rps7A is detectable only in 80S and polysomes, but not in free 40S fractions. A different role of the Rps7 paralogues in vivo is supported by the observation that the deletion of Rps7A but not Rps7B is sensitive to translational inhibitors and leads to an accumulation of aggregated proteins. An important accumulation of aggregated proteins that include ribosomal proteins and ribosome-associated chaperones is also observed in cells lacking Not4. A contribution of Not4 to ribosomal function extending beyond Rps7A ubiquitination is supported by the observation that the deletion of Not4 displays a synthetic slow growth phenotype when combined with the deletion of either one of the two Rps7 paralogues. Not4 is detectable in polysome fractions, as are other subunits of the Ccr4-Not complex such as Not5. The optimal presence of Not5 in polysomes is dependent upon Not4 and the deletion of Not5 leads to a dramatic reduction of polysomes. These results lead us to suggest that Not4 contributes to normal polysome levels and is important for cellular protein solubility maybe in part by ubiquitination of Rps7A.
Collapse
Affiliation(s)
- Olesya O Panasenko
- Department of Microbiology and Molecular Medicine, University of Geneva, Faculty of Medicine, 1 rue Michel Servet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
37
|
The effects of different endocrine disruptors defining compound-specific alterations of gene expression profiles in the developing testis. Reprod Toxicol 2012; 33:106-15. [DOI: 10.1016/j.reprotox.2011.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 12/20/2011] [Accepted: 12/24/2011] [Indexed: 12/11/2022]
|
38
|
Collart MA, Panasenko OO. The Ccr4--not complex. Gene 2011; 492:42-53. [PMID: 22027279 DOI: 10.1016/j.gene.2011.09.033] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/06/2011] [Accepted: 09/29/2011] [Indexed: 12/11/2022]
Abstract
The Ccr4-Not complex is a unique, essential and conserved multi-subunit complex that acts at the level of many different cellular functions to regulate gene expression. Two enzymatic activities, namely ubiquitination and deadenylation, are provided by different subunits of the complex. However, studies over the last decade have demonstrated a tantalizing multi-functionality of this complex that extends well beyond its identified enzymatic activities. Most of our initial knowledge about the Ccr4-Not complex stemmed from studies in yeast, but an increasing number of reports on this complex in other species are emerging. In this review we will discuss the structure and composition of the complex, and describe the different cellular functions with which the Ccr4-Not complex has been connected in different organisms. Finally, based upon our current state of knowledge, we will propose a model to explain how one complex can provide such multi-functionality. This model suggests that the Ccr4-Not complex might function as a "chaperone platform".
Collapse
Affiliation(s)
- Martine A Collart
- Dpt Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
39
|
Morita M, Oike Y, Nagashima T, Kadomatsu T, Tabata M, Suzuki T, Nakamura T, Yoshida N, Okada M, Yamamoto T. Obesity resistance and increased hepatic expression of catabolism-related mRNAs in Cnot3+/- mice. EMBO J 2011; 30:4678-91. [PMID: 21897366 DOI: 10.1038/emboj.2011.320] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 08/10/2011] [Indexed: 01/05/2023] Open
Abstract
Obesity is a life-threatening factor and is often associated with dysregulation of gene expression. Here, we show that the CNOT3 subunit of the CCR4-NOT deadenylase complex is critical to metabolic regulation. Cnot3(+/-) mice are lean with hepatic and adipose tissues containing reduced levels of lipids, and show increased metabolic rates and enhanced glucose tolerance. Cnot3(+/-) mice remain lean and sensitive to insulin even on a high-fat diet. Furthermore, introduction of Cnot3 haplodeficiency in ob/ob mice ameliorated the obese phenotype. Hepatic expression of most mRNAs is not altered in Cnot3(+/-) vis-à-vis wild-type mice. However, the levels of specific mRNAs, such as those coding for energy metabolism-related PDK4 and IGFBP1, are increased in Cnot3(+/-) hepatocytes, having poly(A) tails that are longer than those seen in control cells. We provide evidence that CNOT3 is involved in recruitment of the CCR4-NOT deadenylase to the 3' end of specific mRNAs. Finally, as CNOT3 levels in the liver and white adipose tissues decrease upon fasting, we propose that CNOT3 responds to feeding conditions to regulate deadenylation-specific mRNAs and energy metabolism.
Collapse
Affiliation(s)
- Masahiro Morita
- Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
RNA-binding protein Khd1 and Ccr4 deadenylase play overlapping roles in the cell wall integrity pathway in Saccharomyces cerevisiae. EUKARYOTIC CELL 2011; 10:1340-7. [PMID: 21873511 DOI: 10.1128/ec.05181-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Saccharomyces cerevisiae RNA-binding protein Khd1/Hek2 associates with hundreds of potential mRNA targets preferentially, including the mRNAs encoding proteins localized to the cell wall and plasma membrane. We have previously revealed that Khd1 positively regulates expression of MTL1 mRNA encoding a membrane sensor in the cell wall integrity (CWI) pathway. However, a khd1Δ mutation has no detectable phenotype on cell wall synthesis. Here we show that the khd1Δ mutation causes a severe cell lysis when combined with the deletion of the CCR4 gene encoding a cytoplasmic deadenylase. We identified the ROM2 mRNA, encoding a guanine nucleotide exchange factor (GEF) for Rho1, as a target for Khd1 and Ccr4. The ROM2 mRNA level was decreased in the khd1Δ ccr4Δ mutant, and ROM2 overexpression suppressed the cell lysis of the khd1Δ ccr4Δ mutant. We also found that Ccr4 negatively regulates expression of the LRG1 mRNA encoding a GTPase-activating protein (GAP) for Rho1. The LRG1 mRNA level was increased in the ccr4Δ and khd1Δ ccr4Δ mutants, and deletion of LRG1 suppressed the cell lysis of the khd1Δ ccr4Δ mutant. Our results presented here suggest that Khd1 and Ccr4 modulate a signal from Rho1 in the CWI pathway by regulating the expression of RhoGEF and RhoGAP.
Collapse
|
41
|
Dori-Bachash M, Shema E, Tirosh I. Coupled evolution of transcription and mRNA degradation. PLoS Biol 2011; 9:e1001106. [PMID: 21811398 PMCID: PMC3139634 DOI: 10.1371/journal.pbio.1001106] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 06/03/2011] [Indexed: 11/18/2022] Open
Abstract
mRNA levels are determined by the balance between transcription and mRNA degradation, and while transcription has been extensively studied, very little is known regarding the regulation of mRNA degradation and its coordination with transcription. Here we examine the evolution of mRNA degradation rates between two closely related yeast species. Surprisingly, we find that around half of the evolutionary changes in mRNA degradation were coupled to transcriptional changes that exert opposite effects on mRNA levels. Analysis of mRNA degradation rates in an interspecific hybrid further suggests that opposite evolutionary changes in transcription and in mRNA degradation are mechanistically coupled and were generated by the same individual mutations. Coupled changes are associated with divergence of two complexes that were previously implicated both in transcription and in mRNA degradation (Rpb4/7 and Ccr4-Not), as well as with sequence divergence of transcription factor binding motifs. These results suggest that an opposite coupling between the regulation of transcription and that of mRNA degradation has shaped the evolution of gene regulation in yeast.
Collapse
Affiliation(s)
- Mally Dori-Bachash
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Efrat Shema
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Itay Tirosh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
42
|
Chen C, Ito K, Takahashi A, Wang G, Suzuki T, Nakazawa T, Yamamoto T, Yokoyama K. Distinct expression patterns of the subunits of the CCR4-NOT deadenylase complex during neural development. Biochem Biophys Res Commun 2011; 411:360-4. [PMID: 21741365 DOI: 10.1016/j.bbrc.2011.06.148] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 06/22/2011] [Indexed: 11/24/2022]
Abstract
The stability of mRNA influences the dynamics of gene expression. The mammalian CCR4-NOT complex is associated with deadenylase activity, which shortens the mRNA poly(A) tail and thereby contributes to destabilization of mRNAs. The complex consists of at least nine subunits and predominantly forms a 2.0MDa protein complex in HeLa cells. Accumulating evidence suggests that the CCR4-NOT complex is involved in cell growth and survival; however, the regulatory mechanisms of its biological activity remain obscure. Here, we analyzed the expression levels of the subunits of the CCR4-NOT complex in various mouse tissues and found that they showed distinct expression patterns. CNOT6, 6L, 7, and 10 were expressed nearly ubiquitously, whereas others were expressed in tissue-specific manners, such as those displaying especially high expression in the brain. Furthermore, CNOT2, 3, 6, and 8 were rapidly downregulated during differentiation of neural stem cells. These findings suggest that subunit composition of the CCR4-NOT complex differs among tissues and is altered during neural development, thereby imparting an additional layer of specificity in the control of gene expression.
Collapse
Affiliation(s)
- Chuan Chen
- Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Castells‐Roca L, Mühlenhoff U, Lill R, Herrero E, Bellí G. The oxidative stress response in yeast cells involves changes in the stability of Aft1 regulon mRNAs. Mol Microbiol 2011; 81:232-48. [DOI: 10.1111/j.1365-2958.2011.07689.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laia Castells‐Roca
- Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Montserrat Roig 2, 25008‐Lleida, Spain
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Philipps‐Universität Marburg, 35032 Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps‐Universität Marburg, 35032 Marburg, Germany
| | - Enrique Herrero
- Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Montserrat Roig 2, 25008‐Lleida, Spain
| | - Gemma Bellí
- Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Montserrat Roig 2, 25008‐Lleida, Spain
| |
Collapse
|
44
|
Kerr SC, Azzouz N, Fuchs SM, Collart MA, Strahl BD, Corbett AH, Laribee RN. The Ccr4-Not complex interacts with the mRNA export machinery. PLoS One 2011; 6:e18302. [PMID: 21464899 PMCID: PMC3065485 DOI: 10.1371/journal.pone.0018302] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 03/02/2011] [Indexed: 11/19/2022] Open
Abstract
Background The Ccr4-Not complex is a key eukaryotic regulator of gene transcription and cytoplasmic mRNA degradation. Whether this complex also affects aspects of post-transcriptional gene regulation, such as mRNA export, remains largely unexplored. Human Caf1 (hCaf1), a Ccr4-Not complex member, interacts with and regulates the arginine methyltransferase PRMT1, whose targets include RNA binding proteins involved in mRNA export. However, the functional significance of this regulation is poorly understood. Methodology/Principal Findings Here we demonstrate using co-immunoprecipitation approaches that Ccr4-Not subunits interact with Hmt1, the budding yeast ortholog of PRMT1. Furthermore, using genetic and biochemical approaches, we demonstrate that Ccr4-Not physically and functionally interacts with the heterogenous nuclear ribonucleoproteins (hnRNPs) Nab2 and Hrp1, and that the physical association depends on Hmt1 methyltransferase activity. Using mass spectrometry, co-immunoprecipitation and genetic approaches, we also uncover physical and functional interactions between Ccr4-Not subunits and components of the nuclear pore complex (NPC) and we provide evidence that these interactions impact mRNA export. Conclusions/Significance Taken together, our findings suggest that Ccr4-Not has previously unrealized functional connections to the mRNA processing/export pathway that are likely important for its role in gene expression. These results shed further insight into the biological functions of Ccr4-Not and suggest that this complex is involved in all aspects of mRNA biogenesis, from the regulation of transcription to mRNA export and turnover.
Collapse
Affiliation(s)
- Shana C. Kerr
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Biochemistry, Cell, and Developmental Biology Graduate Program, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Nowel Azzouz
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Stephen M. Fuchs
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Martine A. Collart
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Brian D. Strahl
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Anita H. Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - R. Nicholas Laribee
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
45
|
Abstract
The poly(A) tail of mRNA has an important influence on the dynamics of gene expression. On one hand, it promotes enhanced mRNA stability to allow production of the protein, even after inactivation of transcription. On the other hand, shortening of the poly(A) tail (deadenylation) slows down translation of the mRNA, or prevents it entirely, by inducing mRNA decay. Thus deadenylation plays a crucial role in the post-transcriptional regulation of gene expression, deciding the fate of individual mRNAs. It acts both in basal mRNA turnover, as well as in temporally and spatially regulated translation and decay of specific mRNAs. In the present paper, we discuss mRNA deadenylation in eukaryotes, focusing on the main deadenylase, the Ccr4-Not complex, including its composition, regulation and functional roles.
Collapse
|
46
|
Not4 E3 ligase contributes to proteasome assembly and functional integrity in part through Ecm29. Mol Cell Biol 2011; 31:1610-23. [PMID: 21321079 DOI: 10.1128/mcb.01210-10] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study we determine that the Not4 E3 ligase is important for proteasome integrity. Consequently, deletion of Not4 leads to an accumulation of polyubiquitinated proteins and reduced levels of free ubiquitin. In the absence of Not4, the proteasome regulatory particle (RP) and core particle (CP) form salt-resistant complexes, and all other forms of RPs are unstable. Not4 can associate with RP species present in purified proteasome holoenzyme but not with purified RP. Additionally, Not4 interacts with Ecm29, a protein that stabilizes the proteasome. Interestingly, Ecm29 is identified in RP species that are inactive and not detectable in cells lacking Not4. In the absence of Not4, Ecm29 interacts less well with the proteasome and becomes ubiquitinated and degraded. Our results characterize Ecm29 as a proteasome chaperone whose appropriate interaction with the proteasome requires Not4.
Collapse
|
47
|
Becerra M, Lombardía LJ, Lamas-Maceiras M, Canto E, Rodríguez-Belmonte E, Cerdán ME. Comparative transcriptome analysis of yeast strains carrying slt2, rlm1, and pop2 deletions. Genome 2011; 54:99-109. [DOI: 10.1139/g10-101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The function of the genes SLT2 (encoding the Mpk1 protein), RLM1, and POP2 have previously been related to several stress responses in yeasts. DNA arrays have been used to identify differences among the transcriptomes of a Saccharomyces cerevisiae wild type strain and its derivative Δslt2, Δrlm1, and Δpop2 mutants. Correspondence analyses indicate that the vast majority of genes that show lower expression in Δrlm1 also show lower expression in Δslt2. In contrast, there is little overlap between the results of the transcriptome analyses of the Δpop2 strain and the Δslt2 or Δrlm1 strains. The DNA array data were validated by reverse Northern blotting and chromatin immunoprecipitation (ChIp). ChIp assays demonstrate Rlm1p binding to specific regions of the promoters of two genes that show expression differences between the Δrlm1 mutant and wild type strains. Interestingly, RLM1 deletion decreases the transcription of SLT2, encoding the Mpk1p kinase that phosphorylates Rlm1p, suggesting a feedback control in the signal transduction pathway. Also, deletion of RLM1 causes a decrease in the mRNA level of KDX1, which is paralogous to SLT2. In contrast, deletion of POP2 is accompanied by an increase of both SLT2 and KDX1 levels. We show that SLT2 mRNA increase in the Δpop2 strain is due to a decrease in RNA turnover, consistent with the expected loss of RNA-deadenylase activity in this strain.
Collapse
Affiliation(s)
- M. Becerra
- Dpto. Bioloxía Celular e Molecular, Universidade da Coruña, F Ciencias, Campus da Zapateira s/n 15071, A Coruña, Spain
- Molecular Diagnostics Unit - Molecular Pathology Program, Centro Nacional de Investigaciones Oncológicas (Spanish National Cancer Research Centre)
| | - L. J. Lombardía
- Dpto. Bioloxía Celular e Molecular, Universidade da Coruña, F Ciencias, Campus da Zapateira s/n 15071, A Coruña, Spain
- Molecular Diagnostics Unit - Molecular Pathology Program, Centro Nacional de Investigaciones Oncológicas (Spanish National Cancer Research Centre)
| | - M. Lamas-Maceiras
- Dpto. Bioloxía Celular e Molecular, Universidade da Coruña, F Ciencias, Campus da Zapateira s/n 15071, A Coruña, Spain
- Molecular Diagnostics Unit - Molecular Pathology Program, Centro Nacional de Investigaciones Oncológicas (Spanish National Cancer Research Centre)
| | - E. Canto
- Dpto. Bioloxía Celular e Molecular, Universidade da Coruña, F Ciencias, Campus da Zapateira s/n 15071, A Coruña, Spain
- Molecular Diagnostics Unit - Molecular Pathology Program, Centro Nacional de Investigaciones Oncológicas (Spanish National Cancer Research Centre)
| | - E. Rodríguez-Belmonte
- Dpto. Bioloxía Celular e Molecular, Universidade da Coruña, F Ciencias, Campus da Zapateira s/n 15071, A Coruña, Spain
- Molecular Diagnostics Unit - Molecular Pathology Program, Centro Nacional de Investigaciones Oncológicas (Spanish National Cancer Research Centre)
| | - M. E. Cerdán
- Dpto. Bioloxía Celular e Molecular, Universidade da Coruña, F Ciencias, Campus da Zapateira s/n 15071, A Coruña, Spain
- Molecular Diagnostics Unit - Molecular Pathology Program, Centro Nacional de Investigaciones Oncológicas (Spanish National Cancer Research Centre)
| |
Collapse
|
48
|
Dagley MJ, Gentle IE, Beilharz TH, Pettolino FA, Djordjevic JT, Lo TL, Uwamahoro N, Rupasinghe T, Tull DL, McConville M, Beaurepaire C, Nantel A, Lithgow T, Mitchell AP, Traven A. Cell wall integrity is linked to mitochondria and phospholipid homeostasis in Candida albicans through the activity of the post-transcriptional regulator Ccr4-Pop2. Mol Microbiol 2010; 79:968-89. [PMID: 21299651 DOI: 10.1111/j.1365-2958.2010.07503.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cell wall is essential for viability of fungi and is an effective drug target in pathogens such as Candida albicans. The contribution of post-transcriptional gene regulators to cell wall integrity in C. albicans is unknown. We show that the C. albicans Ccr4-Pop2 mRNA deadenylase, a regulator of mRNA stability and translation, is required for cell wall integrity. The ccr4/pop2 mutants display reduced wall β-glucans and sensitivity to the echinocandin caspofungin. Moreover, the deadenylase mutants are compromised for filamentation and virulence. We demonstrate that defective cell walls in the ccr4/pop2 mutants are linked to dysfunctional mitochondria and phospholipid imbalance. To further understand mitochondrial function in cell wall integrity, we screened a Saccharomyces cerevisiae collection of mitochondrial mutants. We identify several mitochondrial proteins required for caspofungin tolerance and find a connection between mitochondrial phospholipid homeostasis and caspofungin sensitivity. We focus on the mitochondrial outer membrane SAM complex subunit Sam37, demonstrating that it is required for both trafficking of phospholipids between the ER and mitochondria and cell wall integrity. Moreover, in C. albicans also Sam37 is essential for caspofungin tolerance. Our study provides the basis for an integrative view of mitochondrial function in fungal cell wall biogenesis and resistance to echinocandin antifungal drugs.
Collapse
Affiliation(s)
- Michael J Dagley
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
CUCU modification of mRNA promotes decapping and transcript degradation in Aspergillus nidulans. Mol Cell Biol 2009; 30:460-9. [PMID: 19901075 DOI: 10.1128/mcb.00997-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In eukaryotes, mRNA decay is generally initiated by the shortening of the poly(A) tail mediated by the major deadenylase complex Ccr4-Caf1-Not. The deadenylated transcript is then rapidly degraded, primarily via the decapping-dependent pathway. Here we report that in Aspergillus nidulans both the Caf1 and Ccr4 orthologues are functionally distinct deadenylases in vivo: Caf1 is required for the regulated degradation of specific transcripts, and Ccr4 is responsible for basal degradation. Intriguingly disruption of the Ccr4-Caf1-Not complex leads to deadenylation-independent decapping. Additionally, decapping is correlated with a novel transcript modification, addition of a CUCU sequence. A member of the nucleotidyltransferase superfamily, CutA, is required for this modification, and its disruption leads to a reduced rate of decapping and subsequent transcript degradation. We propose that 3' modification of adenylated mRNA, which is likely to represent a common eukaryotic process, primes the transcript for decapping and efficient degradation.
Collapse
|
50
|
A genome-wide genetic screen for host factors required for hepatitis C virus propagation. Proc Natl Acad Sci U S A 2009; 106:16410-5. [PMID: 19717417 DOI: 10.1073/pnas.0907439106] [Citation(s) in RCA: 295] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major cause of end-stage liver disease and a leading indication for liver transplantation. Current therapy fails in many instances and is associated with significant side effects. HCV encodes only a few proteins and depends heavily on host factors for propagation. Each of these host dependencies is a potential therapeutic target. To find host factors required by HCV, we completed a genome-wide small interfering RNA (siRNA) screen using an infectious HCV cell culture system. We applied a two-part screening protocol to allow identification of host factors involved in the complete viral lifecycle. The candidate genes found included known or previously identified factors, and also implicate many additional host cell proteins in HCV infection. To create a more comprehensive view of HCV and host cell interactions, we performed a bioinformatic meta-analysis that integrates our data with those of previous functional and proteomic studies. The identification of host factors participating in the complete HCV lifecycle will both advance our understanding of HCV pathogenesis and illuminate therapeutic targets.
Collapse
|