1
|
Chang CH, Wong LC, Huang CW, Li YR, Yang CW, Tsai JW, Lee WT. Pathogenic SHQ1 variants result in disruptions to neuronal development and the dopaminergic pathway. Exp Neurol 2024; 382:114968. [PMID: 39326821 DOI: 10.1016/j.expneurol.2024.114968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/17/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Compound heterozygous variants of SHQ1, an assembly factor of H/ACA ribonucleoproteins (RNPs) involved in critical biological pathways, have been identified in patients with developmental delay, dystonia, epilepsy, and microcephaly. We investigated the role of SHQ1 in brain development and movement disorders. METHODS SHQ1 expression was knocked down using short-hairpin RNA (shRNA) to investigate its effects on neurons. Shq1 shRNA and cDNA of WT and mutant SHQ1 were also introduced into neural progenitors in the embryonic mouse cortex through in utero electroporation. Co-immunoprecipitation was performed to investigate the interaction between SHQ1 and DKC1, a core protein of H/ACA RNPs. RESULTS We found that SHQ1 was highly expressed in the developing mouse cortex. SHQ1 knockdown impaired the migration and neurite morphology of cortical neurons during brain development. Additionally, SHQ1 knockdown impaired neurite growth and sensitivity to glutamate toxicity in vitro. There was also increased dopaminergic function upon SHQ1 knockdown, which may underlie the increased glutamate toxicity of the cells. Most SHQ1 variants attenuated their binding ability toward DKC1, implying SHQ1 variants may influence brain development by disrupting the assembly and biogenesis of H/ACA RNPs. CONCLUSIONS SHQ1 plays an essential role in brain development and dopaminergic function by upregulating dopaminergic pathways and regulating the behaviors of neural progenitors and their neuronal progeny, potentially leading to dystonia and developmental delay in patients. Our study provides insights into the functions of SHQ1 in neuronal development and dopaminergic function, providing a possible pathogenic mechanism for H/ACA RNPs-related disorders.
Collapse
Affiliation(s)
- Chien-Hui Chang
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Lee-Chin Wong
- Department of Pediatric Neurology, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Chia-Wei Huang
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yue-Ru Li
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chainne-Wen Yang
- Department of Pediatric Neurology, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Biological Science and Technology, College of Engineering Bioscience, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| | - Wang-Tso Lee
- Department of Pediatric Neurology, National Taiwan University Children's Hospital, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, and Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
2
|
Yeni Y, Cicek B, Yildirim S, Bolat İ, Hacimuftuoglu A. Ameliorating effect of S-Allyl cysteine (Black Garlic) on 6-OHDA mediated neurotoxicity in SH-SY5Y cell line. Toxicol Rep 2024; 13:101762. [PMID: 39484633 PMCID: PMC11525226 DOI: 10.1016/j.toxrep.2024.101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024] Open
Abstract
Therapeutic approaches based on isolated compounds derived from natural products are more common in preventing diseases involving inflammation and oxidative stress at present. S-allyl cysteine (SAC) is a promising garlic-derived organosulfur compound with many positive effects in cell models and living systems. SAC has biological activity in various fields, enclosing healing in learning and memory disorders, neurotrophic effects, and antioxidant activity. In this study, we purposed to identify the neuroprotective activity of SAC toward 6-OHDA-induced cell demise in the SH-SY5Ycell line. For this purpose, 6-OHDA-induced cytotoxicity, and biochemical, and gene expression changes were evaluated in SH-SY5Y cells. SH-SY5Y cells grown in cell culture were treated with SAC 24 h before and after 6-OHDA application. Then, cell viability, antioxidant parameters, and gene expressions were measured. Finally, immunofluorescence staining analysis was performed. Our results showed that SAC increased cell viability by 144 % at 80 µg/mL with pre-incubation (2 h). It was observed that antioxidant levels were significantly increased and oxidative stress marker levels were decreased in cells exposed to 6-OHDA after pre-treatment with SAC (p<0.05). SAC supplementation also suppressed the increase in pro-inflammation levels (TNF-α/IL1/IL8) caused by 6-OHDA (p < 0.05). While 8-OHdG and Nop10 expressions were observed at a mild level in SAC pretreatment depending on the dose, 8-OHdG, and Nop10 expressions were observed at a moderate level in SAC treatment after 6-OHDA application (p<0.05). Our findings demonstrate the positive effect of pretreatment with SAC on SH-SY5Y cells injured by 6-OHDA, suggesting that SAC may be beneficial for neuroprotection in regulating oxidative stress and neuronal survival in an in vitro model of Parkinson's disease.
Collapse
Affiliation(s)
- Yesim Yeni
- Faculty of Medicine, Department of Medical Pharmacology, Malatya Turgut Ozal University, Malatya, Turkey
| | - Betul Cicek
- Faculty of Medicine, Department of Physiology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Serkan Yildirim
- Faculty of Veterinary, Department of Pathology, Ataturk University, Erzurum, Turkey
| | - İsmail Bolat
- Faculty of Veterinary, Department of Pathology, Ataturk University, Erzurum, Turkey
| | - Ahmet Hacimuftuoglu
- Faculty of Medicine, Department of Medical Pharmacology, Ataturk University, Erzurum, Turkey
| |
Collapse
|
3
|
Dou J, Hu W, Zhang X, Jiang K. NOP10 predicts poor prognosis and promotes pancreatic cancer progression. BMC Cancer 2024; 24:1394. [PMID: 39538226 PMCID: PMC11558815 DOI: 10.1186/s12885-024-13180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Telomere shortening and RNA pseudo-uridylation are common features of tumors. NOP10 is a member of the H/ACA snoRNP family, essential for maintaining telomerase activity and RNA pseudouridylation. NOP10 has been indicated to be substantially expressed in tumors such as breast and lung cancers and is associated with poor prognosis. Currently, no investigation exists on NOP10 in pancreatic cancer (PC). This is the first investigation to elucidate the impact on tumorigenesis and prognostic value of NOP10 in pancreatic adenocarcinoma (PAAD). METHOD NOP10 expression and its survival prognostic significance were analyzed via clinical PAAD data from the TCGA database and NOP10 expression in other tumors from the GEPIA database. Furthermore, the NOP10 expression and survival prognosis in clinical samples were validated by qRT-PCR. In-vitro experiments were carried out to elucidate the impact of NOP10 on the biological function of PC cells. RESULTS It was revealed that NOP10 expression was increased in PC tissues than in the normal pancreatic tissues. High NOP10 expression was markedly linked with poorer prognosis. NOP10 may be involved in focal adhesion, channel activity, cAMP signaling pathway, the interaction of neuroactive ligand-receptor, and cell adhesion molecules cams. NOP10 was associated with the tumour immune microenvironment and drug sensitivity. Down-regulation of NOP10 expression suppressed PC cells' ability to proliferate, migrate, and invade. CONCLUSIONS This investigation elucidated the prognostic and predictive importance of NOP10 in PAAD and revealed that NOP10 is associated with poor prognostic features, survival prognosis and TIME. Knockdown of NOP10 inhibits the progression of PAAD.
Collapse
Affiliation(s)
- Jin Dou
- Medical College, Yangzhou University, Yangzhou, China
- Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Weikang Hu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyu Zhang
- Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China.
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Qin J, Garus A, Autexier C. The C-terminal extension of dyskerin is a dyskeratosis congenita mutational hotspot that modulates interaction with telomerase RNA and subcellular localization. Hum Mol Genet 2024; 33:318-332. [PMID: 37879098 PMCID: PMC10840380 DOI: 10.1093/hmg/ddad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
Dyskerin is a component of the human telomerase complex and is involved in stabilizing the human telomerase RNA (hTR). Many mutations in the DKC1 gene encoding dyskerin are found in X-linked dyskeratosis congenita (X-DC), a premature aging disorder and other related diseases. The C-terminal extension (CTE) of dyskerin contributes to its interaction with the molecular chaperone SHQ1 during the early stage of telomerase biogenesis. Disease mutations in this region were proposed to disrupt dyskerin-SHQ1 interaction and destabilize dyskerin, reducing hTR levels indirectly. However, biochemical evidence supporting this hypothesis is still lacking. In addition, the effects of many CTE disease mutations on hTR have not been examined. In this study, we tested eight dyskerin CTE variants and showed that they failed to maintain hTR levels. These mutants showed slightly reduced but not abolished interaction with SHQ1, and caused defective binding to hTR. Deletion of the CTE further reduced binding to hTR, and perturbed localization of dyskerin to the Cajal bodies and the nucleolus, and the interaction with TCAB1 as well as GAR1. Our findings suggest impaired dyskerin-hTR interaction in cells as a previously overlooked mechanism through which dyskerin CTE mutations cause X-DC and related telomere syndromes.
Collapse
Affiliation(s)
- Jian Qin
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, QC H3A 0C7, Canada
- Lady Davis Institute, Jewish General Hospital, 3755 Chem, de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Alexandre Garus
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, QC H3A 0C7, Canada
- Lady Davis Institute, Jewish General Hospital, 3755 Chem, de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, QC H3A 0C7, Canada
- Lady Davis Institute, Jewish General Hospital, 3755 Chem, de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| |
Collapse
|
5
|
Ghanim GE, Sekne Z, Balch S, van Roon AMM, Nguyen THD. 2.7 Å cryo-EM structure of human telomerase H/ACA ribonucleoprotein. Nat Commun 2024; 15:746. [PMID: 38272871 PMCID: PMC10811338 DOI: 10.1038/s41467-024-45002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
Telomerase is a ribonucleoprotein (RNP) enzyme that extends telomeric repeats at eukaryotic chromosome ends to counterbalance telomere loss caused by incomplete genome replication. Human telomerase is comprised of two distinct functional lobes tethered by telomerase RNA (hTR): a catalytic core, responsible for DNA extension; and a Hinge and ACA (H/ACA) box RNP, responsible for telomerase biogenesis. H/ACA RNPs also have a general role in pseudouridylation of spliceosomal and ribosomal RNAs, which is critical for the biogenesis of the spliceosome and ribosome. Much of our structural understanding of eukaryotic H/ACA RNPs comes from structures of the human telomerase H/ACA RNP. Here we report a 2.7 Å cryo-electron microscopy structure of the telomerase H/ACA RNP. The significant improvement in resolution over previous 3.3 Å to 8.2 Å structures allows us to uncover new molecular interactions within the H/ACA RNP. Many disease mutations are mapped to these interaction sites. The structure also reveals unprecedented insights into a region critical for pseudouridylation in canonical H/ACA RNPs. Together, our work advances understanding of telomerase-related disease mutations and the mechanism of pseudouridylation by eukaryotic H/ACA RNPs.
Collapse
Affiliation(s)
| | - Zala Sekne
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | | | | | |
Collapse
|
6
|
Klump BM, Schmidt JC. Advances in understanding telomerase assembly. Biochem Soc Trans 2023; 51:2093-2101. [PMID: 38108475 PMCID: PMC10754283 DOI: 10.1042/bst20230269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Telomerase is a complex ribonucleoprotein scaffolded by the telomerase RNA (TR). Telomere lengthening by telomerase is essential to maintain the proliferative potential of stem cells and germ cells, and telomerase is inappropriately activated in the majority of cancers. Assembly of TR with its 12 protein co-factors and the maturation of the 5'- and 3'-ends of TR have been the focus of intense research efforts over the past two decades. High-resolution Cryo-EM structures of human telomerase, high-throughput sequencing of the 3' end of TR, and live cell imaging of various telomerase components have significantly advanced our understanding of the molecular mechanisms that govern telomerase biogenesis, yet many important questions remain unaddressed. In this review, we will summarize these recent advances and highlight the remaining key questions with the ultimate goal of targeting telomerase assembly to suppress telomere maintenance in cancer cells or to promote telomerase activity in patients affected by telomere shortening disorders.
Collapse
Affiliation(s)
- Basma M. Klump
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, U.S.A
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, U.S.A
- Cell and Molecular Biology Graduate Program, College of Natural Sciences, Michigan State University, East Lansing, MI, U.S.A
| | - Jens C. Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, U.S.A
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
7
|
Rakotopare J, Toledo F. p53 in the Molecular Circuitry of Bone Marrow Failure Syndromes. Int J Mol Sci 2023; 24:14940. [PMID: 37834388 PMCID: PMC10573108 DOI: 10.3390/ijms241914940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Mice with a constitutive increase in p53 activity exhibited features of dyskeratosis congenita (DC), a bone marrow failure syndrome (BMFS) caused by defective telomere maintenance. Further studies confirmed, in humans and mice, that germline mutations affecting TP53 or its regulator MDM4 may cause short telomeres and alter hematopoiesis, but also revealed features of Diamond-Blackfan anemia (DBA) or Fanconi anemia (FA), two BMFSs, respectively, caused by defects in ribosomal function or DNA repair. p53 downregulates several genes mutated in DC, either by binding to promoter sequences (DKC1) or indirectly via the DREAM repressor complex (RTEL1, DCLRE1B), and the p53-DREAM pathway represses 22 additional telomere-related genes. Interestingly, mutations in any DC-causal gene will cause telomere dysfunction and subsequent p53 activation to further promote the repression of p53-DREAM targets. Similarly, ribosomal dysfunction and DNA lesions cause p53 activation, and p53-DREAM targets include the DBA-causal gene TSR2, at least 9 FA-causal genes, and 38 other genes affecting ribosomes or the FA pathway. Furthermore, patients with BMFSs may exhibit brain abnormalities, and p53-DREAM represses 16 genes mutated in microcephaly or cerebellar hypoplasia. In sum, positive feedback loops and the repertoire of p53-DREAM targets likely contribute to partial phenotypic overlaps between BMFSs of distinct molecular origins.
Collapse
Affiliation(s)
- Jeanne Rakotopare
- Genetics of Tumor Suppression, Institut Curie, CEDEX 05, 75248 Paris, France;
- CNRS UMR3244, 75005 Paris, France
- Faculty of Science and Engineering, Sorbonne University, 75005 Paris, France
- Institut Curie, PSL Research University, 75005 Paris, France
| | - Franck Toledo
- Genetics of Tumor Suppression, Institut Curie, CEDEX 05, 75248 Paris, France;
- CNRS UMR3244, 75005 Paris, France
- Faculty of Science and Engineering, Sorbonne University, 75005 Paris, France
- Institut Curie, PSL Research University, 75005 Paris, France
| |
Collapse
|
8
|
Paiva ACF, Lemos AR, Busse P, Martins MT, Silva DO, Freitas MC, Santos SP, Freire F, Barrey EJ, Manival X, Koetzner L, Heinrich T, Wegener A, Grädler U, Bandeiras TM, Schwarz D, Sousa PMF. Extract2Chip-Bypassing Protein Purification in Drug Discovery Using Surface Plasmon Resonance. BIOSENSORS 2023; 13:913. [PMID: 37887106 PMCID: PMC10605449 DOI: 10.3390/bios13100913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Modern drug discovery relies on combinatorial screening campaigns to find drug molecules targeting specific disease-associated proteins. The success of such campaigns often relies on functional and structural information of the selected therapeutic target, only achievable once its purification is mastered. With the aim of bypassing the protein purification process to gain insights on the druggability, ligand binding, and/or characterization of protein-protein interactions, herein, we describe the Extract2Chip method. This approach builds on the immobilization of site-specific biotinylated proteins of interest, directly from cellular extracts, on avidin-coated sensor chips to allow for the characterization of molecular interactions via surface plasmon resonance (SPR). The developed method was initially validated using Cyclophilin D (CypD) and subsequently applied to other drug discovery projects in which the targets of interest were difficult to express, purify, and crystallize. Extract2Chip was successfully applied to the characterization of Yes-associated protein (YAP): Transcriptional enhancer factor TEF (TEAD1) protein-protein interaction inhibitors, in the validation of a ternary complex assembly composed of Dyskerin pseudouridine synthase 1 (DKC1) and RuvBL1/RuvBL2, and in the establishment of a fast-screening platform to select the most suitable NUAK family SNF1-like kinase 2 (NUAK2) surrogate for binding and structural studies. The described method paves the way for a potential revival of the many drug discovery campaigns that have failed to deliver due to the lack of suitable and sufficient protein supply.
Collapse
Affiliation(s)
- Ana C. F. Paiva
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana R. Lemos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Philipp Busse
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Madalena T. Martins
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
| | - Diana O. Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Micael C. Freitas
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Sandra P. Santos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Filipe Freire
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Evelyne J. Barrey
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Xavier Manival
- IMoPA, CNRS, Université de Lorraine, F-54000 Nancy, France;
| | - Lisa Koetzner
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Timo Heinrich
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Ansgar Wegener
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Ulrich Grädler
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Tiago M. Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Daniel Schwarz
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Pedro M. F. Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
9
|
Chi CS, Tsai CR, Lee HF. Biallelic SHQ1 variants in early infantile hypotonia and paroxysmal dystonia as the leading manifestation. Hum Genet 2023; 142:1029-1041. [PMID: 36847845 DOI: 10.1007/s00439-023-02533-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
Biallelic SHQ1 variant-related neurodevelopmental disorder is extremely rare. To date, only six affected individuals, from four families, have been reported. Here, we report eight individuals, from seven unrelated families, who exhibited neurodevelopmental disorder and/or dystonia, received whole-genome sequencing, and had inherited biallelic SHQ1 variants. The median age at disease onset was 3.5 months old. All eight individuals exhibited normal eye contact, profound hypotonia, paroxysmal dystonia, and brisk deep tendon reflexes at the first visit. Varying degrees of autonomic dysfunction were observed. One individual had cerebellar atrophy at the initial neuroimaging study, however, three individuals showed cerebellar atrophy at follow-up. Seven individuals who underwent cerebral spinal fluid analysis all had a low level of homovanillic acid in neurotransmitter metabolites. Four individuals who received 99mTc-TRODAT-1 scan had moderate to severe decreased uptake of dopamine in the striatum. Four novel SHQ1 variants in 16 alleles were identified: 9 alleles (56%) were c.997C > G (p.L333V); 4 (25%) were c.195T > A (p.Y65X); 2 (13%) were c.812T > A (p.V271E); and 1 (6%) was c.146T > C (p.L49S). The four novel SHQ1 variants transfected into human SH-SY5Y neuronal cells resulted in a retardation in neuronal migration, suggestive of SHQ1 variant correlated with neurodevelopmental disorders. During the follow-up period, five individuals still exhibited hypotonia and paroxysmal dystonia; two showed dystonia; and one had hypotonia only. The complex interactions among movement disorders, dopaminergic pathways, and the neuroanatomic circuit needs further study to clarify the roles of the SHQ1 gene and protein in neurodevelopment.
Collapse
Affiliation(s)
- Ching-Shiang Chi
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung, 407, Taiwan
| | - Chi-Ren Tsai
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung, 407, Taiwan
| | - Hsiu-Fen Lee
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung, 407, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan.
| |
Collapse
|
10
|
Revert Barberà A, Fernández Isern G, Ortigoza-Escobar JD. Early Onset Nonprogressive Generalized Dystonia Is Caused by Biallelic SHQ1 Variants. Mov Disord 2023; 38:1118-1119. [PMID: 37475611 DOI: 10.1002/mds.29435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 07/22/2023] Open
Affiliation(s)
- Anna Revert Barberà
- Neurology Department, Hospital del Mar - Parc de Salut Mar, Barcelona, Spain
| | - Guerau Fernández Isern
- Department of Genetic and Molecular Medicine-IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Juan Darío Ortigoza-Escobar
- U-703 Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain
- Movement Disorders Unit, Pediatric Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
- European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| |
Collapse
|
11
|
Shepelev N, Dontsova O, Rubtsova M. Post-Transcriptional and Post-Translational Modifications in Telomerase Biogenesis and Recruitment to Telomeres. Int J Mol Sci 2023; 24:5027. [PMID: 36902458 PMCID: PMC10003056 DOI: 10.3390/ijms24055027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Telomere length is associated with the proliferative potential of cells. Telomerase is an enzyme that elongates telomeres throughout the entire lifespan of an organism in stem cells, germ cells, and cells of constantly renewed tissues. It is activated during cellular division, including regeneration and immune responses. The biogenesis of telomerase components and their assembly and functional localization to the telomere is a complex system regulated at multiple levels, where each step must be tuned to the cellular requirements. Any defect in the function or localization of the components of the telomerase biogenesis and functional system will affect the maintenance of telomere length, which is critical to the processes of regeneration, immune response, embryonic development, and cancer progression. An understanding of the regulatory mechanisms of telomerase biogenesis and activity is necessary for the development of approaches toward manipulating telomerase to influence these processes. The present review focuses on the molecular mechanisms involved in the major steps of telomerase regulation and the role of post-transcriptional and post-translational modifications in telomerase biogenesis and function in yeast and vertebrates.
Collapse
Affiliation(s)
- Nikita Shepelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Olga Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Maria Rubtsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
12
|
AlHargan A, AlMuhaizea MA, Almass R, Alwadei AH, Daghestani M, Arold ST, Kaya N. SHQ1-associated neurodevelopmental disorder: Report of the first homozygous variant in unrelated patients and review of the literature. Hum Genome Var 2023; 10:7. [PMID: 36810590 PMCID: PMC9944922 DOI: 10.1038/s41439-023-00234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 12/13/2022] [Indexed: 02/24/2023] Open
Abstract
Compound heterozygous mutations in SHQ1 have been associated with a rare and severe neurological disorder characterized by global developmental delay (GDD), cerebellar degeneration coupled with seizures, and early-onset dystonia. Currently, only five affected individuals have been documented in the literature. Here, we report three children from two unrelated families harboring a homozygous variant in the gene but with a milder phenotype than previously described. The patients had GDD and seizures. Magnetic resonance imaging analyses revealed diffuse white matter hypomyelination. Sanger sequencing confirmed the whole-exome sequencing results and revealed full segregation of the missense variant (SHQ1:c.833 T > C; p.I278T) in both families. We performed a comprehensive in silico analysis using different prediction classifiers and structural modeling of the variant. Our findings demonstrate that this novel homozygous variant in SHQ1 is likely to be pathogenic and leads to the clinical features observed in our patients.
Collapse
Affiliation(s)
- Aljouhra AlHargan
- Translational Genomics Department, MBC: 26, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, 11211, Saudi Arabia
- Department of Zoology, P.O. Box. 145111, College of Sciences, King Saud University, Riyadh, 11362, Saudi Arabia
| | - Mohammed A AlMuhaizea
- Neuroscience Centre, MBC: 76, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
- College of Medicine, AlFaisal University, Riyadh, Saudi Arabia
| | - Rawan Almass
- Department of Medical Genomics, MBC: 75, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Ali H Alwadei
- Pediatric Neurology Department, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Maha Daghestani
- Department of Zoology, P.O. Box. 145111, College of Sciences, King Saud University, Riyadh, 11362, Saudi Arabia
| | - Stefan T Arold
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Computational Biology Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université de Montpellier, F-34090, Montpellier, France
| | - Namik Kaya
- Translational Genomics Department, MBC: 26, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
13
|
Revy P, Kannengiesser C, Bertuch AA. Genetics of human telomere biology disorders. Nat Rev Genet 2023; 24:86-108. [PMID: 36151328 DOI: 10.1038/s41576-022-00527-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 01/24/2023]
Abstract
Telomeres are specialized nucleoprotein structures at the ends of linear chromosomes that prevent the activation of DNA damage response and repair pathways. Numerous factors localize at telomeres to regulate their length, structure and function, to avert replicative senescence or genome instability and cell death. In humans, Mendelian defects in several of these factors can result in abnormally short or dysfunctional telomeres, causing a group of rare heterogeneous premature-ageing diseases, termed telomeropathies, short-telomere syndromes or telomere biology disorders (TBDs). Here, we review the TBD-causing genes identified so far and describe their main functions associated with telomere biology. We present molecular aspects of TBDs, including genetic anticipation, phenocopy, incomplete penetrance and somatic genetic rescue, which underlie the complexity of these diseases. We also discuss the implications of phenotypic and genetic features of TBDs on fundamental aspects related to human telomere biology, ageing and cancer, as well as on diagnostic, therapeutic and clinical approaches.
Collapse
Affiliation(s)
- Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Nationale contre le Cancer, Paris, France.
- Université Paris Cité, Imagine Institute, Paris, France.
| | - Caroline Kannengiesser
- APHP Service de Génétique, Hôpital Bichat, Paris, France
- Inserm U1152, Université Paris Cité, Paris, France
| | - Alison A Bertuch
- Departments of Paediatrics and Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
14
|
Webster SF, Ghalei H. Maturation of small nucleolar RNAs: from production to function. RNA Biol 2023; 20:715-736. [PMID: 37796118 PMCID: PMC10557570 DOI: 10.1080/15476286.2023.2254540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Small Nucleolar RNAs (snoRNAs) are an abundant group of non-coding RNAs with well-defined roles in ribosomal RNA processing, folding and chemical modification. Besides their classic roles in ribosome biogenesis, snoRNAs are also implicated in several other cellular activities including regulation of splicing, transcription, RNA editing, cellular trafficking, and miRNA-like functions. Mature snoRNAs must undergo a series of processing steps tightly regulated by transiently associating factors and coordinated with other cellular processes including transcription and splicing. In addition to their mature forms, snoRNAs can contribute to gene expression regulation through their derivatives and degradation products. Here, we review the current knowledge on mechanisms of snoRNA maturation, including the different pathways of processing, and the regulatory mechanisms that control snoRNA levels and complex assembly. We also discuss the significance of studying snoRNA maturation, highlight the gaps in the current knowledge and suggest directions for future research in this area.
Collapse
Affiliation(s)
- Sarah F. Webster
- Biochemistry, Cell, and Developmental Biology Graduate Program, Emory University, Atlanta, Georgia, USA
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Homa Ghalei
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Udroiu I, Marinaccio J, Sgura A. Many Functions of Telomerase Components: Certainties, Doubts, and Inconsistencies. Int J Mol Sci 2022; 23:ijms232315189. [PMID: 36499514 PMCID: PMC9736166 DOI: 10.3390/ijms232315189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
A growing number of studies have evidenced non-telomeric functions of "telomerase". Almost all of them, however, investigated the non-canonical effects of the catalytic subunit TERT, and not the telomerase ribonucleoprotein holoenzyme. These functions mainly comprise signal transduction, gene regulation and the increase of anti-oxidative systems. Although less studied, TERC (the RNA component of telomerase) has also been shown to be involved in gene regulation, as well as other functions. All this has led to the publication of many reviews on the subject, which, however, are often disseminating personal interpretations of experimental studies of other researchers as original proofs. Indeed, while some functions such as gene regulation seem ascertained, especially because mechanistic findings have been provided, other ones remain dubious and/or are contradicted by other direct or indirect evidence (e.g., telomerase activity at double-strand break site, RNA polymerase activity of TERT, translation of TERC, mitochondrion-processed TERC). In a critical study of the primary evidence so far obtained, we show those functions for which there is consensus, those showing contradictory results and those needing confirmation. The resulting picture, together with some usually neglected aspects, seems to indicate a link between TERT and TERC functions and cellular stemness and gives possible directions for future research.
Collapse
|
16
|
Sulukan E, Şenol O, Baran A, Kankaynar M, Yıldırım S, Kızıltan T, Bolat İ, Ceyhun SB. Nano-sized polystyrene plastic particles affect many cancer-related biological processes even in the next generations; zebrafish modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156391. [PMID: 35654199 DOI: 10.1016/j.scitotenv.2022.156391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
With the ever-increasing plastic pollution, the nano-sized plastic particles that are constantly released from the main materials have a greater potential threat. Studies continue on how to eliminate plastic waste, which has become a global problem, from nature. We are aware that complete elimination is not easy at all, but it is not known clearly that even if it is successful, its effects on organisms will also disappear completely. In this study, zebrafish injected with 20 nm-sized polystyrene particles (PS) only during the embryonic period were grown in an environment without plastic exposure. The effects of PS on their offspring embryo/larvae were examined at morphological, molecular and metabolomic levels. Results showed that parental PNP exposure caused significant malformations, decreased survival rate, increased heart rate and blood flow rate, as well as decreased eye size, height and locomotor activity, which were attributed to growth retardation in the offspring. According to the results of whole-mount immunofluorescence larval staining, cell death and reactive oxygen species were significantly increased, while lipid accumulation was decreased in new generation larvae from zebrafish injected with PNP. In order to elucidate the mechanisms underlying these morphological, physiological and molecular damages, the metabolome analyses were performed by evaluating the Q-TOF MS/MS spectra with chemometric analyses in the offspring larvae. According to the metabolomics results, 28 annotated metabolomes suggested by the OPLS-DA analysis that may vary significantly through a variable in projection scores were detected. In addition, it was detected that the significantly increased histopathological findings and immunopositivity of JNK, H2A.X, PI3 and NOP10 in new generation larvae. In conclusion, it has been shown that exposure to PS, even only during the embryonic period, may affect many cancer-related biological processes in the next generation.
Collapse
Affiliation(s)
- Ekrem Sulukan
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Aquaculture, Fisheries Faculty, Atatürk University, Erzurum, Turkey
| | - Onur Şenol
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Alper Baran
- Department of Food Quality Control and Analysis, Erzurum Vocational School, Atatürk University, Erzurum, Turkey
| | - Meryem Kankaynar
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Tuba Kızıltan
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - İsmail Bolat
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Saltuk Buğrahan Ceyhun
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Aquaculture, Fisheries Faculty, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
17
|
The Role of Hsp90-R2TP in Macromolecular Complex Assembly and Stabilization. Biomolecules 2022; 12:biom12081045. [PMID: 36008939 PMCID: PMC9406135 DOI: 10.3390/biom12081045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Hsp90 is a ubiquitous molecular chaperone involved in many cell signaling pathways, and its interactions with specific chaperones and cochaperones determines which client proteins to fold. Hsp90 has been shown to be involved in the promotion and maintenance of proper protein complex assembly either alone or in association with other chaperones such as the R2TP chaperone complex. Hsp90-R2TP acts through several mechanisms, such as by controlling the transcription of protein complex subunits, stabilizing protein subcomplexes before their incorporation into the entire complex, and by recruiting adaptors that facilitate complex assembly. Despite its many roles in protein complex assembly, detailed mechanisms of how Hsp90-R2TP assembles protein complexes have yet to be determined, with most findings restricted to proteomic analyses and in vitro interactions. This review will discuss our current understanding of the function of Hsp90-R2TP in the assembly, stabilization, and activity of the following seven classes of protein complexes: L7Ae snoRNPs, spliceosome snRNPs, RNA polymerases, PIKKs, MRN, TSC, and axonemal dynein arms.
Collapse
|
18
|
Rafat A, Dizaji Asl K, Mazloumi Z, Movassaghpour AA, Farahzadi R, Nejati B, Nozad Charoudeh H. Telomerase-based therapies in haematological malignancies. Cell Biochem Funct 2022; 40:199-212. [PMID: 35103334 DOI: 10.1002/cbf.3687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/10/2022] [Indexed: 02/02/2023]
Abstract
Telomeres are specialized genetic structures present at the end of all eukaryotic linear chromosomes. They progressively get shortened after each cell division due to end replication problems. Telomere shortening (TS) and chromosomal instability cause apoptosis and massive cell death. Following oncogene activation and inactivation of tumour suppressor genes, cells acquire mechanisms such as telomerase expression and alternative lengthening of telomeres to maintain telomere length (TL) and prevent initiation of cellular senescence or apoptosis. Significant TS, telomerase activation and alteration in expression of telomere-associated proteins are frequent features of different haematological malignancies that reflect on the progression, response to therapy and recurrence of these diseases. Telomerase is a ribonucleoprotein enzyme that has a pivotal role in maintaining the TL. However, telomerase activity in most somatic cells is insufficient to prevent TS. In 85-90% of tumour cells, the critically short telomeric length is maintained by telomerase activation. Thus, overexpression of telomerase in most tumour cells is a potential target for cancer therapy. In this review, alteration of telomeres, telomerase and telomere-associated proteins in different haematological malignancies and related telomerase-based therapies are discussed.
Collapse
Affiliation(s)
- Ali Rafat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Dizaji Asl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Mazloumi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Nejati
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
19
|
Garus A, Autexier C. Dyskerin: an essential pseudouridine synthase with multifaceted roles in ribosome biogenesis, splicing, and telomere maintenance. RNA (NEW YORK, N.Y.) 2021; 27:1441-1458. [PMID: 34556550 PMCID: PMC8594475 DOI: 10.1261/rna.078953.121] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dyskerin and its homologs are ancient and conserved enzymes that catalyze the most common post-transcriptional modification found in cells, pseudouridylation. The resulting pseudouridines provide stability to RNA molecules and regulate ribosome biogenesis and splicing events. Dyskerin does not act independently-it is the core component of a protein heterotetramer, which associates with RNAs that contain the H/ACA motif. The variety of H/ACA RNAs that guide the function of this ribonucleoprotein (RNP) complex highlights the diversity of cellular processes in which dyskerin participates. When associated with small nucleolar (sno) RNAs, it regulates ribosomal (r) RNAs and ribosome biogenesis. By interacting with small Cajal body (sca) RNAs, it targets small nuclear (sn) RNAs to regulate pre-mRNA splicing. As a component of the telomerase holoenzyme, dyskerin binds to the telomerase RNA to modulate telomere maintenance. In a disease context, dyskerin malfunction can result in multiple detrimental phenotypes. Mutations in DKC1, the gene that encodes dyskerin, cause the premature aging syndrome X-linked dyskeratosis congenita (X-DC), a still incurable disorder that typically leads to bone marrow failure. In this review, we present the classical and most recent findings on this essential protein, discussing the evolutionary, structural, and functional aspects of dyskerin and the H/ACA RNP. The latest research underscores the role that dyskerin plays in the regulation of gene expression, translation efficiency, and telomere maintenance, along with the impacts that defective dyskerin has on aging, cell proliferation, haematopoietic potential, and cancer.
Collapse
Affiliation(s)
- Alexandre Garus
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| |
Collapse
|
20
|
Gruber HJ, Semeraro MD, Renner W, Herrmann M. Telomeres and Age-Related Diseases. Biomedicines 2021; 9:1335. [PMID: 34680452 PMCID: PMC8533433 DOI: 10.3390/biomedicines9101335] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
Telomeres are at the non-coding ends of linear chromosomes. Through a complex 3-dimensional structure, they protect the coding DNA and ensure appropriate separation of chromosomes. Aging is characterized by a progressive shortening of telomeres, which compromises their structure and function. Because of their protective function for genomic DNA, telomeres appear to play an important role in the development and progression of many age-related diseases, such as cardiovascular disease (CVD), malignancies, dementia, and osteoporosis. Despite substantial evidence that links telomere length with these conditions, the nature of these observations remains insufficiently understood. Therefore, future studies should address the question of causality. Furthermore, analytical methods should be further improved with the aim to provide informative and comparable results. This review summarize the actual knowledge of telomere biology and the possible implications of telomere dysfunction for the development and progression of age-related diseases. Furthermore, we provide an overview of analytical techniques for the measurement of telomere length and telomerase activity.
Collapse
Affiliation(s)
| | | | - Wilfried Renner
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (H.-J.G.); (M.D.S.); (M.H.)
| | | |
Collapse
|
21
|
Analysis of Telomere Maintenance Related Genes Reveals NOP10 as a New Metastatic-Risk Marker in Pheochromocytoma/Paraganglioma. Cancers (Basel) 2021; 13:cancers13194758. [PMID: 34638246 PMCID: PMC8507560 DOI: 10.3390/cancers13194758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Telomere maintenance involving TERT and ATRX genes has been recently described in metastatic pheochromocytoma and paraganglioma, reinforcing the importance of immortalization mechanisms in the progression of these tumors. Thus, the aim of this study was to analyze additional telomere-related genes to uncover potential new markers capable of identifying metastatic-risk patients more accurately. After analyzing 29 telomere-related genes, we were able to validate the predictive value of TERT and ATRX in mPPGL progression. In addition, we were able to identify NOP10 as a novel prognostic risk marker of mPPGLs, which also facilitates telomerase-dependent telomere length maintenance in these tumors. Interestingly, NOP10 overexpression assessment by IHC could be easily included within the current battery of markers for stratifying PPGL patients to fine-tune their clinical diagnoses. Abstract One of the main problems we face with PPGL is the lack of molecular markers capable of predicting the development of metastases in patients. Telomere-related genes, such as TERT and ATRX, have been recently described in PPGL, supporting the association between the activation of immortalization mechanisms and disease progression. However, the contribution of other genes involving telomere preservation machinery has not been previously investigated. In this work, we aimed to analyze the prognostic value of a comprehensive set of genes involved in telomere maintenance. For this study, we collected 165 PPGL samples (97 non-metastatic/63 metastatic), genetically characterized, in which the expression of 29 genes of interest was studied by NGS. Three of the 29 genes studied, TERT, ATRX and NOP10, showed differential expression between metastatic and non-metastatic cases, and alterations in these genes were associated with a shorter time to progression, independent of SDHB-status. We studied telomere length by Q-FISH in patient samples and in an in vitro model. NOP10 overexpressing tumors displayed an intermediate-length telomere phenotype without ALT, and in vitro results suggest that NOP10 has a role in telomerase-dependent telomere maintenance. We also propose the implementation of NOP10 IHC to better stratify PPGL patients.
Collapse
|
22
|
Iafusco F, Maione G, Rosanio FM, Mozzillo E, Franzese A, Tinto N. Cystic Fibrosis-Related Diabetes (CFRD): Overview of Associated Genetic Factors. Diagnostics (Basel) 2021; 11:diagnostics11030572. [PMID: 33810109 PMCID: PMC8005125 DOI: 10.3390/diagnostics11030572] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) is the most common autosomal recessive disease in the Caucasian population and is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene that encodes for a chloride/bicarbonate channel expressed on the membrane of epithelial cells of the airways and of the intestine, as well as in cells with exocrine and endocrine functions. A common nonpulmonary complication of CF is cystic fibrosis-related diabetes (CFRD), a distinct form of diabetes due to insulin insufficiency or malfunction secondary to destruction/derangement of pancreatic betacells, as well as to other factors that affect their function. The prevalence of CFRD increases with age, and 40–50% of CF adults develop the disease. Several proposed hypotheses on how CFRD develops have emerged, including exocrine-driven fibrosis and destruction of the entire pancreas, as well as contrasting theories on the direct or indirect impact of CFTR mutation on islet function. Among contributors to the development of CFRD, in addition to CFTR genotype, there are other genetic factors related and not related to type 2 diabetes. This review presents an overview of the current understanding on genetic factors associated with glucose metabolism abnormalities in CF.
Collapse
Affiliation(s)
- Fernanda Iafusco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (F.I.); (G.M.)
- CEINGE Advanced Biotechnology, 80131 Naples, Italy
| | - Giovanna Maione
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (F.I.); (G.M.)
- CEINGE Advanced Biotechnology, 80131 Naples, Italy
| | - Francesco Maria Rosanio
- Regional Center of Pediatric Diabetology, Department of Translational Medical Sciences, Section of Pediatrics, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.R.); (E.M.); (A.F.)
| | - Enza Mozzillo
- Regional Center of Pediatric Diabetology, Department of Translational Medical Sciences, Section of Pediatrics, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.R.); (E.M.); (A.F.)
| | - Adriana Franzese
- Regional Center of Pediatric Diabetology, Department of Translational Medical Sciences, Section of Pediatrics, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.R.); (E.M.); (A.F.)
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (F.I.); (G.M.)
- CEINGE Advanced Biotechnology, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
23
|
Czekay DP, Kothe U. H/ACA Small Ribonucleoproteins: Structural and Functional Comparison Between Archaea and Eukaryotes. Front Microbiol 2021; 12:654370. [PMID: 33776984 PMCID: PMC7991803 DOI: 10.3389/fmicb.2021.654370] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/18/2021] [Indexed: 01/04/2023] Open
Abstract
During ribosome synthesis, ribosomal RNA is modified through the formation of many pseudouridines and methylations which contribute to ribosome function across all domains of life. In archaea and eukaryotes, pseudouridylation of rRNA is catalyzed by H/ACA small ribonucleoproteins (sRNPs) utilizing different H/ACA guide RNAs to identify target uridines for modification. H/ACA sRNPs are conserved in archaea and eukaryotes, as they share a common general architecture and function, but there are also several notable differences between archaeal and eukaryotic H/ACA sRNPs. Due to the higher protein stability in archaea, we have more information on the structure of archaeal H/ACA sRNPs compared to eukaryotic counterparts. However, based on the long history of yeast genetic and other cellular studies, the biological role of H/ACA sRNPs during ribosome biogenesis is better understood in eukaryotes than archaea. Therefore, this review provides an overview of the current knowledge on H/ACA sRNPs from archaea, in particular their structure and function, and relates it to our understanding of the roles of eukaryotic H/ACA sRNP during eukaryotic ribosome synthesis and beyond. Based on this comparison of our current insights into archaeal and eukaryotic H/ACA sRNPs, we discuss what role archaeal H/ACA sRNPs may play in the formation of ribosomes.
Collapse
Affiliation(s)
- Dominic P Czekay
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| | - Ute Kothe
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
24
|
Qin J, Autexier C. Regulation of human telomerase RNA biogenesis and localization. RNA Biol 2021; 18:305-315. [PMID: 32813614 PMCID: PMC7954027 DOI: 10.1080/15476286.2020.1809196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022] Open
Abstract
Maintenance of telomeres is essential for genome integrity and replicative capacity in eukaryotic cells. Telomerase, the ribonucleoprotein complex that catalyses telomere synthesis is minimally composed of a reverse transcriptase and an RNA component. The sequence and structural domains of human telomerase RNA (hTR) have been extensively characterized, while the regulation of hTR transcription, maturation, and localization, is not fully understood. Here, we provide an up-to-date review of hTR, with an emphasis on current breakthroughs uncovering the mechanisms of hTR maturation and localization.
Collapse
Affiliation(s)
- Jian Qin
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Akincilar SC, Chan CHT, Ng QF, Fidan K, Tergaonkar V. Non-canonical roles of canonical telomere binding proteins in cancers. Cell Mol Life Sci 2021; 78:4235-4257. [PMID: 33599797 PMCID: PMC8164586 DOI: 10.1007/s00018-021-03783-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/28/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Reactivation of telomerase is a major hallmark observed in 90% of all cancers. Yet paradoxically, enhanced telomerase activity does not correlate with telomere length and cancers often possess short telomeres; suggestive of supplementary non-canonical roles that telomerase might play in the development of cancer. Moreover, studies have shown that aberrant expression of shelterin proteins coupled with their release from shortening telomeres can further promote cancer by mechanisms independent of their telomeric role. While targeting telomerase activity appears to be an attractive therapeutic option, this approach has failed in clinical trials due to undesirable cytotoxic effects on stem cells. To circumvent this concern, an alternative strategy could be to target the molecules involved in the non-canonical functions of telomeric proteins. In this review, we will focus on emerging evidence that has demonstrated the non-canonical roles of telomeric proteins and their impact on tumorigenesis. Furthermore, we aim to address current knowledge gaps in telomeric protein functions and propose future research approaches that can be undertaken to achieve this.
Collapse
Affiliation(s)
- Semih Can Akincilar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Claire Hian Tzer Chan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Qin Feng Ng
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Kerem Fidan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
| |
Collapse
|
26
|
Codd V, Wang Q, Allara E, Musicha C, Kaptoge S, Stoma S, Jiang T, Hamby SE, Braund PS, Bountziouka V, Budgeon CA, Denniff M, Swinfield C, Papakonstantinou M, Sheth S, Nanus DE, Warner SC, Wang M, Khera AV, Eales J, Ouwehand WH, Thompson JR, Di Angelantonio E, Wood AM, Butterworth AS, Danesh JN, Nelson CP, Samani NJ. Polygenic basis and biomedical consequences of telomere length variation. Nat Genet 2021; 53:1425-1433. [PMID: 34611362 PMCID: PMC8492471 DOI: 10.1038/s41588-021-00944-6] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Telomeres, the end fragments of chromosomes, play key roles in cellular proliferation and senescence. Here we characterize the genetic architecture of naturally occurring variation in leukocyte telomere length (LTL) and identify causal links between LTL and biomedical phenotypes in 472,174 well-characterized UK Biobank participants. We identified 197 independent sentinel variants associated with LTL at 138 genomic loci (108 new). Genetically determined differences in LTL were associated with multiple biological traits, ranging from height to bone marrow function, as well as several diseases spanning neoplastic, vascular and inflammatory pathologies. Finally, we estimated that, at the age of 40 years, people with an LTL >1 s.d. shorter than the population mean had a 2.5-year-lower life expectancy compared with the group with ≥1 s.d. longer LDL. Overall, we furnish new insights into the genetic regulation of LTL, reveal wide-ranging influences of LTL on physiological traits, diseases and longevity, and provide a powerful resource available to the global research community.
Collapse
Affiliation(s)
- Veryan Codd
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Qingning Wang
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Elias Allara
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
| | - Crispin Musicha
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Stephen Kaptoge
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Svetlana Stoma
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Tao Jiang
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Stephen E. Hamby
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Peter S. Braund
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Vasiliki Bountziouka
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Charley A. Budgeon
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK ,grid.1012.20000 0004 1936 7910School of Population and Global Health, University of Western Australia, Perth, Western Australia Australia
| | - Matthew Denniff
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Chloe Swinfield
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Manolo Papakonstantinou
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Shilpi Sheth
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Dominika E. Nanus
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Sophie C. Warner
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Minxian Wang
- grid.66859.34Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.32224.350000 0004 0386 9924Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA USA
| | - Amit V. Khera
- grid.66859.34Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.32224.350000 0004 0386 9924Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA ,grid.32224.350000 0004 0386 9924Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA USA
| | - James Eales
- grid.5379.80000000121662407Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Willem H. Ouwehand
- grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934Department of Haematology, University of Cambridge, Cambridge, UK ,grid.436365.10000 0000 8685 6563NHS Blood and Transplant, Cambridge, UK ,grid.52996.310000 0000 8937 2257University College London Hospitals NHS Foundation Trust, London, UK
| | - John R. Thompson
- grid.9918.90000 0004 1936 8411Department of Health Sciences, University of Leicester, Leicester, UK
| | - Emanuele Di Angelantonio
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK ,grid.10306.340000 0004 0606 5382Health Data Research UK Cambridge, Wellcome Sanger Institute, EMBL-European Bioinformatics Institute and University of Cambridge, Cambridge, UK
| | - Angela M. Wood
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK ,grid.10306.340000 0004 0606 5382Health Data Research UK Cambridge, Wellcome Sanger Institute, EMBL-European Bioinformatics Institute and University of Cambridge, Cambridge, UK ,grid.499548.d0000 0004 5903 3632The Alan Turing Institute, London, UK
| | - Adam S. Butterworth
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK ,grid.10306.340000 0004 0606 5382Health Data Research UK Cambridge, Wellcome Sanger Institute, EMBL-European Bioinformatics Institute and University of Cambridge, Cambridge, UK
| | - John N. Danesh
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK ,grid.10306.340000 0004 0606 5382Health Data Research UK Cambridge, Wellcome Sanger Institute, EMBL-European Bioinformatics Institute and University of Cambridge, Cambridge, UK ,grid.10306.340000 0004 0606 5382Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Christopher P. Nelson
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Nilesh J. Samani
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
27
|
Elsharawy KA, Althobiti M, Mohammed OJ, Aljohani AI, Toss MS, Green AR, Rakha EA. Nucleolar protein 10 (NOP10) predicts poor prognosis in invasive breast cancer. Breast Cancer Res Treat 2020; 185:615-627. [PMID: 33161513 PMCID: PMC7920889 DOI: 10.1007/s10549-020-05999-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/26/2020] [Indexed: 01/16/2023]
Abstract
Purpose Nucleolar protein 10 (NOP10) is required for ribosome biogenesis and telomere maintenance and plays a key role in carcinogenesis. This study aims to evaluate the clinical and prognostic significance of NOP10 in breast cancer (BC). Methods NOP10 expression was assessed at mRNA level employing the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) (n = 1980) and Cancer Genome Atlas (TCGA) BC cohorts (n = 854). Protein expression was evaluated on tissue microarray of a large BC cohort (n = 1081) using immunohistochemistry. The correlation between NOP10 expression, clinicopathological parameters and patient outcome was assessed. Results NOP10 expression was detected in the nucleus and nucleolus of the tumour cells. At the transcriptomic and proteomic levels, NOP10 was significantly associated with aggressive BC features including high tumour grade, high nucleolar score and poor Nottingham Prognostic Index. High NOP10 protein expression was an independent predictor of poor outcome in the whole cohort and in triple-negative BC (TNBC) class (p = 0.002 & p = 0.014, respectively). In chemotherapy- treated patients, high NOP10 protein expression was significantly associated with shorter survival (p = 0.03) and was predictive of higher risk of death (p = 0.028) and development of distant metastasis (p = 0.02) independent of tumour size, nodal stage and tumour grade. Conclusion High NOP10 expression is a poor prognostic biomarker in BC and its expression can help in predicting chemotherapy resistance. Functional assessments are necessary to decipher the underlying mechanisms and to reveal its potential therapeutic values in various BC subtypes especially in the aggressive TNBC class. Electronic supplementary material The online version of this article (doi:10.1007/s10549-020-05999-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Khloud A Elsharawy
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK.,Faculty of Science, Damietta University, Damietta, Egypt
| | - Maryam Althobiti
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK.,Department of Clinical Laboratory Science, College of Applied Medical Science, Shaqra University, Shaqra, Saudi Arabia
| | - Omar J Mohammed
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Abrar I Aljohani
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Michael S Toss
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK. .,Division of Cancer and Stem Cell, University of Nottingham, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
28
|
Elsharawy KA, Mohammed OJ, Aleskandarany MA, Hyder A, El-Gammal HL, Abou-Dobara MI, Green AR, Dalton LW, Rakha EA. The nucleolar-related protein Dyskerin pseudouridine synthase 1 (DKC1) predicts poor prognosis in breast cancer. Br J Cancer 2020; 123:1543-1552. [PMID: 32868896 PMCID: PMC7653035 DOI: 10.1038/s41416-020-01045-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hypertrophy of the nucleolus is a distinctive cytological feature of malignant cells and corresponds to aggressive behaviour. This study aimed to identify the key gene associated with nucleolar prominence (NP) in breast cancer (BC) and determine its prognostic significance. METHODS From The Cancer Genome Atlas (TCGA) cohort, digital whole slide images identified cancers having NP served as label and an information theory algorithm was applied to find which mRNA gene best explained NP. Dyskerin Pseudouridine Synthase 1 (DKC1) was identified. DKC1 expression was assessed using mRNA data of Molecular Taxonomy of Breast Cancer International Consortium (METABRIC, n = 1980) and TCGA (n = 855). DKC1 protein expression was assessed using immunohistochemistry in Nottingham BC cohort (n = 943). RESULTS Nuclear and nucleolar expressions of DKC1 protein were significantly associated with higher tumour grade (p < 0.0001), high nucleolar score (p < 0.001) and poor Nottingham Prognostic Index (p < 0.0001). High DKC1 expression was associated with shorter BC-specific survival (BCSS). In multivariate analysis, DKC1 mRNA and protein expressions were independent risk factors for BCSS (p < 0.01). CONCLUSION DKC1 expression is strongly correlated with NP and its overexpression in BC is associated with unfavourable clinicopathological characteristics and poor outcome. This has been a detailed example in the correlation of phenotype with genotype.
Collapse
Affiliation(s)
- Khloud A Elsharawy
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
- Faculty of Science, Damietta University, Damietta, Egypt
| | - Omar J Mohammed
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Mohammed A Aleskandarany
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Ayman Hyder
- Faculty of Science, Damietta University, Damietta, Egypt
| | | | | | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Leslie W Dalton
- Department of Histopathology, South Austin Hospital, Austin, TX, USA
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK.
| |
Collapse
|
29
|
Zheng JS, Luan J, Sofianopoulou E, Sharp SJ, Day FR, Imamura F, Gundersen TE, Lotta LA, Sluijs I, Stewart ID, Shah RL, van der Schouw YT, Wheeler E, Ardanaz E, Boeing H, Dorronsoro M, Dahm CC, Dimou N, El-Fatouhi D, Franks PW, Fagherazzi G, Grioni S, Huerta JM, Heath AK, Hansen L, Jenab M, Jakszyn P, Kaaks R, Kühn T, Khaw KT, Laouali N, Masala G, Nilsson PM, Overvad K, Olsen A, Panico S, Quirós JR, Rolandsson O, Rodríguez-Barranco M, Sacerdote C, Spijkerman AMW, Tong TYN, Tumino R, Tsilidis KK, Danesh J, Riboli E, Butterworth AS, Langenberg C, Forouhi NG, Wareham NJ. The association between circulating 25-hydroxyvitamin D metabolites and type 2 diabetes in European populations: A meta-analysis and Mendelian randomisation analysis. PLoS Med 2020; 17:e1003394. [PMID: 33064751 PMCID: PMC7567390 DOI: 10.1371/journal.pmed.1003394] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/11/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Prior research suggested a differential association of 25-hydroxyvitamin D (25(OH)D) metabolites with type 2 diabetes (T2D), with total 25(OH)D and 25(OH)D3 inversely associated with T2D, but the epimeric form (C3-epi-25(OH)D3) positively associated with T2D. Whether or not these observational associations are causal remains uncertain. We aimed to examine the potential causality of these associations using Mendelian randomisation (MR) analysis. METHODS AND FINDINGS We performed a meta-analysis of genome-wide association studies for total 25(OH)D (N = 120,618), 25(OH)D3 (N = 40,562), and C3-epi-25(OH)D3 (N = 40,562) in participants of European descent (European Prospective Investigation into Cancer and Nutrition [EPIC]-InterAct study, EPIC-Norfolk study, EPIC-CVD study, Ely study, and the SUNLIGHT consortium). We identified genetic variants for MR analysis to investigate the causal association of the 25(OH)D metabolites with T2D (including 80,983 T2D cases and 842,909 non-cases). We also estimated the observational association of 25(OH)D metabolites with T2D by performing random effects meta-analysis of results from previous studies and results from the EPIC-InterAct study. We identified 10 genetic loci associated with total 25(OH)D, 7 loci associated with 25(OH)D3 and 3 loci associated with C3-epi-25(OH)D3. Based on the meta-analysis of observational studies, each 1-standard deviation (SD) higher level of 25(OH)D was associated with a 20% lower risk of T2D (relative risk [RR]: 0.80; 95% CI 0.77, 0.84; p < 0.001), but a genetically predicted 1-SD increase in 25(OH)D was not significantly associated with T2D (odds ratio [OR]: 0.96; 95% CI 0.89, 1.03; p = 0.23); this result was consistent across sensitivity analyses. In EPIC-InterAct, 25(OH)D3 (per 1-SD) was associated with a lower risk of T2D (RR: 0.81; 95% CI 0.77, 0.86; p < 0.001), while C3-epi-25(OH)D3 (above versus below lower limit of quantification) was positively associated with T2D (RR: 1.12; 95% CI 1.03, 1.22; p = 0.006), but neither 25(OH)D3 (OR: 0.97; 95% CI 0.93, 1.01; p = 0.14) nor C3-epi-25(OH)D3 (OR: 0.98; 95% CI 0.93, 1.04; p = 0.53) was causally associated with T2D risk in the MR analysis. Main limitations include the lack of a non-linear MR analysis and of the generalisability of the current findings from European populations to other populations of different ethnicities. CONCLUSIONS Our study found discordant associations of biochemically measured and genetically predicted differences in blood 25(OH)D with T2D risk. The findings based on MR analysis in a large sample of European ancestry do not support a causal association of total 25(OH)D or 25(OH)D metabolites with T2D and argue against the use of vitamin D supplementation for the prevention of T2D.
Collapse
Affiliation(s)
- Ju-Sheng Zheng
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jian’an Luan
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Eleni Sofianopoulou
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Stephen J. Sharp
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Felix R. Day
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Fumiaki Imamura
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | | | - Luca A. Lotta
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Ivonne Sluijs
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Isobel D. Stewart
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Rupal L. Shah
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Yvonne T. van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Eva Ardanaz
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Germany
| | | | | | - Niki Dimou
- International Agency for Research on Cancer, Lyon, France
| | - Douae El-Fatouhi
- Center of Research in Epidemiology and Population Health, UMR 1018 Inserm, Institut Gustave Roussy, Paris South–Paris Saclay University, Villejuif, France
| | - Paul W. Franks
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Guy Fagherazzi
- Center of Research in Epidemiology and Population Health, UMR 1018 Inserm, Institut Gustave Roussy, Paris South–Paris Saclay University, Villejuif, France
- Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Sara Grioni
- Epidemiology and Prevention Unit, Milan, Italy
| | - José María Huerta
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, Murcia, Spain
| | - Alicia K. Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Louise Hansen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Mazda Jenab
- International Agency for Research on Cancer, Lyon, France
| | - Paula Jakszyn
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology–Institut d’Investigació Biomédica de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
- Facultat Ciències Salut Blanquerna, Universitat Ramon Llull, Barcelona, Spain
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Nasser Laouali
- Center of Research in Epidemiology and Population Health, UMR 1018 Inserm, Institut Gustave Roussy, Paris South–Paris Saclay University, Villejuif, France
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | | | - Kim Overvad
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aalborg University Hospital, Aarhus, Denmark
| | - Anja Olsen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, University of Naples Federico II, Naples, Italy
| | | | - Olov Rolandsson
- Family Medicine Division, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Miguel Rodríguez-Barranco
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Andalusian School of Public Health (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Universidad de Granada, Granada, Spain
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza di Torino University Hospital–University of Turin and Center for Cancer Prevention (CPO), Torino, Italy
| | | | - Tammy Y. N. Tong
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | | | - Konstantinos K. Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - John Danesh
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Cambridge Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Adam S. Butterworth
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Nita G. Forouhi
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
30
|
Vos TJ, Kothe U. snR30/U17 Small Nucleolar Ribonucleoprotein: A Critical Player during Ribosome Biogenesis. Cells 2020; 9:cells9102195. [PMID: 33003357 PMCID: PMC7601244 DOI: 10.3390/cells9102195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022] Open
Abstract
The small nucleolar RNA snR30 (U17 in humans) plays a unique role during ribosome synthesis. Unlike most members of the H/ACA class of guide RNAs, the small nucleolar ribonucleoprotein (snoRNP) complex assembled on snR30 does not direct pseudouridylation of ribosomal RNA (rRNA), but instead snR30 is critical for 18S rRNA processing during formation of the small subunit (SSU) of the ribosome. Specifically, snR30 is essential for three pre-rRNA cleavages at the A0/01, A1/1, and A2/2a sites in yeast and humans, respectively. Accordingly, snR30 is the only essential H/ACA guide RNA in yeast. Here, we summarize our current knowledge about the interactions and functions of snR30, discuss what remains to be elucidated, and present two non-exclusive hypotheses on the possible molecular function of snR30 during ribosome biogenesis. First, snR30 might be responsible for recruiting other proteins including endonucleases to the SSU processome. Second, snR30 may contribute to the refolding of pre-rRNA into a required conformation that serves as a checkpoint during ribosome biogenesis facilitating pre-rRNA cleavage. In both scenarios, the snR30 snoRNP may have scaffolding and RNA chaperoning activity. In conclusion, the snR30 snoRNP is a crucial player with an unknown molecular mechanism during ribosome synthesis, posing many interesting future research questions.
Collapse
Affiliation(s)
| | - Ute Kothe
- Correspondence: ; Tel.: +1-403-332-5274
| |
Collapse
|
31
|
Identification and Functional Annotation of Genes Related to Horses' Performance: From GWAS to Post-GWAS. Animals (Basel) 2020; 10:ani10071173. [PMID: 32664293 PMCID: PMC7401650 DOI: 10.3390/ani10071173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary It is assumed that the athletic performance of horses is influenced by a large number of genes; however, to date, not many genomic studies have been performed to identify candidate genes. In this study we performed a systematic review of genome-wide association studies followed by functional analyses aiming to identify the most candidate genes for horse performance. We were successful in identifying 669 candidate genes, from which we built biological process networks. Regulatory elements (transcription factors, TFs) of these genes were identified and used to build a gene–TF network. Genes and TFs presented in this study are suggested to play a role in the studied traits through biological processes related with exercise performance, for example, positive regulation of glucose metabolism, regulation of vascular endothelial growth factor production, skeletal system development, cellular response to fatty acids and cellular response to lipids. In general, this study may provide insights into the genetic architecture underlying horse performance in different breeds around the world. Abstract Integration of genomic data with gene network analysis can be a relevant strategy for unraveling genetic mechanisms. It can be used to explore shared biological processes between genes, as well as highlighting transcription factors (TFs) related to phenotypes of interest. Unlike other species, gene–TF network analyses have not yet been well applied to horse traits. We aimed to (1) identify candidate genes associated with horse performance via systematic review, and (2) build biological processes and gene–TF networks from the identified genes aiming to highlight the most candidate genes for horse performance. Our systematic review considered peer-reviewed articles using 20 combinations of keywords. Nine articles were selected and placed into groups for functional analysis via gene networks. A total of 669 candidate genes were identified. From that, gene networks of biological processes from each group were constructed, highlighting processes associated with horse performance (e.g., regulation of systemic arterial blood pressure by vasopressin and regulation of actin polymerization and depolymerization). Transcription factors associated with candidate genes were also identified. Based on their biological processes and evidence from the literature, we identified the main TFs related to horse performance traits, which allowed us to construct a gene–TF network highlighting TFs and the most candidate genes for horse performance.
Collapse
|
32
|
Roake CM, Artandi SE. Regulation of human telomerase in homeostasis and disease. Nat Rev Mol Cell Biol 2020; 21:384-397. [PMID: 32242127 PMCID: PMC7377944 DOI: 10.1038/s41580-020-0234-z] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
Telomerase is a ribonucleoprotein complex, the catalytic core of which includes the telomerase reverse transcriptase (TERT) and the non-coding human telomerase RNA (hTR), which serves as a template for the addition of telomeric repeats to chromosome ends. Telomerase expression is restricted in humans to certain cell types, and telomerase levels are tightly controlled in normal conditions. Increased levels of telomerase are found in the vast majority of human cancers, and we have recently begun to understand the mechanisms by which cancer cells increase telomerase activity. Conversely, germline mutations in telomerase-relevant genes that decrease telomerase function cause a range of genetic disorders, including dyskeratosis congenita, idiopathic pulmonary fibrosis and bone marrow failure. In this Review, we discuss the transcriptional regulation of human TERT, hTR processing, assembly of the telomerase complex, the cellular localization of telomerase and its recruitment to telomeres, and the regulation of telomerase activity. We also discuss the disease relevance of each of these steps of telomerase biogenesis.
Collapse
Affiliation(s)
- Caitlin M Roake
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
33
|
MacNeil DE, Lambert-Lanteigne P, Autexier C. N-terminal residues of human dyskerin are required for interactions with telomerase RNA that prevent RNA degradation. Nucleic Acids Res 2019; 47:5368-5380. [PMID: 30931479 PMCID: PMC6547437 DOI: 10.1093/nar/gkz233] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022] Open
Abstract
The telomerase holoenzyme responsible for maintaining telomeres in vertebrates requires many components in vivo, including dyskerin. Dyskerin binds and regulates the accumulation of the human telomerase RNA, hTR, as well as other non-coding RNAs that share the conserved H/ACA box motif. The precise mechanism by which dyskerin controls hTR levels is unknown, but is evidenced by defective hTR accumulation caused by substitutions in dyskerin, that are observed in the X-linked telomere biology disorder dyskeratosis congenita (X-DC). To understand the role of dyskerin in hTR accumulation, we analyzed X-DC substitutions K39E and K43E in the poorly characterized dyskerin N-terminus, and A353V within the canonical RNA binding domain (the PUA). These variants exhibited impaired binding to hTR and polyadenylated hTR species, while interactions with other H/ACA RNAs appear largely unperturbed by the N-terminal substitutions. hTR accumulation and telomerase activity defects of dyskerin-deficient cells were rescued by wildtype dyskerin but not the variants. hTR 3′ extended or polyadenylated species did not accumulate, suggesting hTR precursor degradation occurs upstream of mature complex assembly in the absence of dyskerin binding. Our findings demonstrate that the dyskerin-hTR interaction mediated by PUA and N-terminal residues of dyskerin is crucial to prevent unchecked hTR degradation.
Collapse
Affiliation(s)
- Deanna E MacNeil
- Jewish General Hospital of McGill University, Lady Davis Institute, Montreal, Quebec H3T 1E2, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Patrick Lambert-Lanteigne
- Jewish General Hospital of McGill University, Lady Davis Institute, Montreal, Quebec H3T 1E2, Canada
| | - Chantal Autexier
- Jewish General Hospital of McGill University, Lady Davis Institute, Montreal, Quebec H3T 1E2, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| |
Collapse
|
34
|
Barbero Barcenilla B, Shippen DE. Back to the future: The intimate and evolving connection between telomere-related factors and genotoxic stress. J Biol Chem 2019; 294:14803-14813. [PMID: 31434740 DOI: 10.1074/jbc.aw119.008145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The conversion of circular genomes to linear chromosomes during molecular evolution required the invention of telomeres. This entailed the acquisition of factors necessary to fulfill two new requirements: the need to fully replicate terminal DNA sequences and the ability to distinguish chromosome ends from damaged DNA. Here we consider the multifaceted functions of factors recruited to perpetuate and stabilize telomeres. We discuss recent theories for how telomere factors evolved from existing cellular machineries and examine their engagement in nontelomeric functions such as DNA repair, replication, and transcriptional regulation. We highlight the remarkable versatility of protection of telomeres 1 (POT1) proteins that was fueled by gene duplication and divergence events that occurred independently across several eukaryotic lineages. Finally, we consider the relationship between oxidative stress and telomeres and the enigmatic role of telomere-associated proteins in mitochondria. These findings point to an evolving and intimate connection between telomeres and cellular physiology and the strong drive to maintain chromosome integrity.
Collapse
Affiliation(s)
- Borja Barbero Barcenilla
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| |
Collapse
|
35
|
Chen X, Tang WJ, Shi JB, Liu MM, Liu XH. Therapeutic strategies for targeting telomerase in cancer. Med Res Rev 2019; 40:532-585. [PMID: 31361345 DOI: 10.1002/med.21626] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022]
Abstract
Telomere and telomerase play important roles in abnormal cell proliferation, metastasis, stem cell maintenance, and immortalization in various cancers. Therefore, designing of drugs targeting telomerase and telomere is of great significance. Over the past two decades, considerable knowledge regarding telomere and telomerase has been accumulated, which provides theoretical support for the design of therapeutic strategies such as telomere elongation. Therefore, the development of telomere-based therapies such as nucleoside analogs, non-nucleoside small molecules, antisense technology, ribozymes, and dominant negative human telomerase reverse transcriptase are being prioritized for eradicating a majority of tumors. While the benefits of telomere-based therapies are obvious, there is a need to address the limitations of various therapeutic strategies to improve the possibility of clinical applications. In this study, current knowledge of telomere and telomerase is discussed, and therapeutic strategies based on recent research are reviewed.
Collapse
Affiliation(s)
- Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Wen-Jian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Jing Bo Shi
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Ming Ming Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Xin-Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
36
|
Grozdanov PN, Masoumzadeh E, Latham MP, MacDonald CC. The structural basis of CstF-77 modulation of cleavage and polyadenylation through stimulation of CstF-64 activity. Nucleic Acids Res 2018; 46:12022-12039. [PMID: 30257008 PMCID: PMC6294498 DOI: 10.1093/nar/gky862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/31/2018] [Accepted: 09/12/2018] [Indexed: 01/14/2023] Open
Abstract
Cleavage and polyadenylation (C/P) of mRNA is an important cellular process that promotes increased diversity of mRNA isoforms and could change their stability in different cell types. The cleavage stimulation factor (CstF) complex, part of the C/P machinery, binds to U- and GU-rich sequences located downstream from the cleavage site through its RNA-binding subunit, CstF-64. Less is known about the function of the other two subunits of CstF, CstF-77 and CstF-50. Here, we show that the carboxy-terminus of CstF-77 plays a previously unrecognized role in enhancing C/P by altering how the RNA recognition motif (RRM) of CstF-64 binds RNA. In support of this finding, we also show that CstF-64 relies on CstF-77 to be transported to the nucleus; excess CstF-64 localizes to the cytoplasm, possibly via interaction with cytoplasmic RNAs. Reverse genetics and nuclear magnetic resonance studies of recombinant CstF-64 (RRM-Hinge) and CstF-77 (monkeytail-carboxy-terminal domain) indicate that the last 30 amino acids of CstF-77 increases the stability of the RRM, thus altering the affinity of the complex for RNA. These results provide new insights into the mechanism by which CstF regulates the location of the RNA cleavage site during C/P.
Collapse
Affiliation(s)
- Petar N Grozdanov
- Department of Cell Biology & Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA
| | - Elahe Masoumzadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Michael P Latham
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Clinton C MacDonald
- Department of Cell Biology & Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA
| |
Collapse
|
37
|
Lynham J, Houry WA. The Multiple Functions of the PAQosome: An R2TP- and URI1 Prefoldin-Based Chaperone Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:37-72. [DOI: 10.1007/978-3-030-00737-9_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Viviescas MA, Cano MIN, Segatto M. Chaperones and Their Role in Telomerase Ribonucleoprotein Biogenesis and Telomere Maintenance. CURR PROTEOMICS 2018. [DOI: 10.2174/1570164615666180713103133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Telomere length maintenance is important for genome stability and cell division. In most
eukaryotes, telomeres are maintained by the telomerase ribonucleoprotein (RNP) complex, minimally
composed of the Telomerase Reverse Transcriptase (TERT) and the telomerase RNA (TER) components.
In addition to TERT and TER, other protein subunits are part of the complex and are involved in
telomerase regulation, assembly, disassembly, and degradation. Among them are some molecular
chaperones such as Hsp90 and its co-chaperone p23 which are found associated with the telomerase
RNP complex in humans, yeast and probably in protozoa. Hsp90 and p23 are necessary for the telomerase
RNP assembly and enzyme activity. In budding yeast, the Hsp90 homolog (Hsp82) is also responsible
for the association and dissociation of telomerase from the telomeric DNA by its direct interaction
with a telomere end-binding protein (Cdc13), responsible for regulating telomerase access to telomeres.
In addition, AAA+ ATPases, such as Pontin and Reptin, which are also considered chaperone-
like proteins, associate with the human telomerase complex by the direct interaction of Pontin with
TERT and dyskerin. They are probably responsible for telomerase RNP assembly since their depletion
impairs the accumulation of the complex. Moreover, various RNA chaperones, are also pivotal in the
assembly and migration of the mature telomerase complex and complex intermediates. In this review,
we will focus on the importance of molecular chaperones for telomerase RNP biogenesis and how they
impact telomere length maintenance and cellular homeostasis.
Collapse
Affiliation(s)
- Maria Alejandra Viviescas
- Genetics Department, Biosciences Institute, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Marcela Segatto
- Genetics Department, Biosciences Institute, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
39
|
Su H, Hu J, Huang L, Yang Y, Thenoz M, Kuchmiy A, Hu Y, Li P, Feng H, Zhou Y, Taghon T, Van Vlierberghe P, Qing G, Chen Z, Liu H. SHQ1 regulation of RNA splicing is required for T-lymphoblastic leukemia cell survival. Nat Commun 2018; 9:4281. [PMID: 30323192 PMCID: PMC6189109 DOI: 10.1038/s41467-018-06523-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
T-acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy with complicated heterogeneity. Although expression profiling reveals common elevated genes in distinct T-ALL subtypes, little is known about their functional role(s) and regulatory mechanism(s). We here show that SHQ1, an H/ACA snoRNP assembly factor involved in snRNA pseudouridylation, is highly expressed in T-ALL. Mechanistically, oncogenic NOTCH1 directly binds to the SHQ1 promoter and activates its transcription. SHQ1 depletion induces T-ALL cell death in vitro and prolongs animal survival in murine T-ALL models. RNA-Seq reveals that SHQ1 depletion impairs widespread RNA splicing, and MYC is one of the most prominently downregulated genes due to inefficient splicing. MYC overexpression significantly rescues T-ALL cell death resulted from SHQ1 inactivation. We herein report a mechanism of NOTCH1–SHQ1–MYC axis in T-cell leukemogenesis. These findings not only shed light on the role of SHQ1 in RNA splicing and tumorigenesis, but also provide additional insight into MYC regulation. T-acute lymphoblastic leukemia is an aggressive cancer. Here the authors provide insights into the functional role of SHQ1, an H/ACA snoRNP assembly factor involved in snRNA pseudouridylation, in T-lymphoblastic leukemia cell survival through regulating the maturation of MYC mRNA.
Collapse
Affiliation(s)
- Hexiu Su
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Juncheng Hu
- Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Yang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Morgan Thenoz
- Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Anna Kuchmiy
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, 9000, Belgium
| | - Yufeng Hu
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Peng Li
- South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Hui Feng
- Department of Pharmacology and Department of Medicine, Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Yu Zhou
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Tom Taghon
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, 9000, Belgium
| | | | - Guoliang Qing
- Medical Research Institute, Wuhan University, Wuhan, 430071, China.,Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhichao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hudan Liu
- Medical Research Institute, Wuhan University, Wuhan, 430071, China. .,Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
40
|
Collopy LC, Ware TL, Goncalves T, Í Kongsstovu S, Yang Q, Amelina H, Pinder C, Alenazi A, Moiseeva V, Pearson SR, Armstrong CA, Tomita K. LARP7 family proteins have conserved function in telomerase assembly. Nat Commun 2018; 9:557. [PMID: 29422501 PMCID: PMC5805788 DOI: 10.1038/s41467-017-02296-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/20/2017] [Indexed: 11/15/2022] Open
Abstract
Understanding the intricacies of telomerase regulation is crucial due to the potential health benefits of modifying its activity. Telomerase is composed of an RNA component and reverse transcriptase. However, additional factors required during biogenesis vary between species. Here we have identified fission yeast Lar7 as a member of the conserved LARP7 family, which includes the Tetrahymena telomerase-binding protein p65 and human LARP7. We show that Lar7 has conserved RNA-recognition motifs, which bind telomerase RNA to protect it from exosomal degradation. In addition, Lar7 is required to stabilise the association of telomerase RNA with the protective complex LSm2–8, and telomerase reverse transcriptase. Lar7 remains a component of the mature telomerase complex and is required for telomerase localisation to the telomere. Collectively, we demonstrate that Lar7 is a crucial player in fission yeast telomerase biogenesis, similarly to p65 in Tetrahymena, and highlight the LARP7 family as a conserved factor in telomere maintenance. The telomerase holoenzyme is minimally composed of the reverse transcriptase and the RNA template. Here the authors identify Lar7 as a member of the full complex that helps to stabilise it and protect telomerase RNA from degradation.
Collapse
Affiliation(s)
- Laura C Collopy
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Tracy L Ware
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.,Department of Biology, Salem State University, Salem, MA, 01970, USA
| | - Tomas Goncalves
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.,Division of Biosciences, Faculty of Life Sciences, University College London, London, WC1E 6BT, UK
| | - Sunnvør Í Kongsstovu
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.,MSc Human Molecular Genetics, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Qian Yang
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Hanna Amelina
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Corinne Pinder
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.,Division of Biosciences, Faculty of Life Sciences, University College London, London, WC1E 6BT, UK
| | - Ala Alenazi
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.,MSc Human Molecular Genetics, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Vera Moiseeva
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Siân R Pearson
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Christine A Armstrong
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Kazunori Tomita
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.
| |
Collapse
|
41
|
Rothé B, Manival X, Rolland N, Charron C, Senty-Ségault V, Branlant C, Charpentier B. Implication of the box C/D snoRNP assembly factor Rsa1p in U3 snoRNP assembly. Nucleic Acids Res 2017; 45:7455-7473. [PMID: 28505348 PMCID: PMC5499572 DOI: 10.1093/nar/gkx424] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/02/2017] [Indexed: 01/23/2023] Open
Abstract
The U3 box C/D snoRNA is one key element of 90S pre-ribosome. It contains a 5΄ domain pairing with pre-rRNA and the U3B/C and U3C΄/D motifs for U3 packaging into a unique small nucleolar ribonucleoprotein particle (snoRNP). The RNA-binding protein Snu13/SNU13 nucleates on U3B/C the assembly of box C/D proteins Nop1p/FBL and Nop56p/NOP56, and the U3-specific protein Rrp9p/U3-55K. Snu13p/SNU13 has a much lower affinity for U3C΄/D but nevertheless forms on this motif an RNP with box C/D proteins Nop1p/FBL and Nop58p/NOP58. In this study, we characterized the influence of the RNP assembly protein Rsa1 in the early steps of U3 snoRNP biogenesis in yeast and we propose a refined model of U3 snoRNP biogenesis. While recombinant Snu13p enhances the binding of Rrp9p to U3B/C, we observed that Rsa1p has no effect on this activity but forms with Snu13p and Rrp9p a U3B/C pre-RNP. In contrast, we found that Rsa1p enhances Snu13p binding on U3C΄/D. RNA footprinting experiments indicate that this positive effect most likely occurs by direct contacts of Rsa1p with the U3 snoRNA 5΄ domain. In light of the recent U3 snoRNP cryo-EM structures, our data suggest that Rsa1p has a dual role by also preventing formation of a pre-mature functional U3 RNP.
Collapse
Affiliation(s)
- Benjamin Rothé
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandœuvre-lès-Nancy, France
| | - Xavier Manival
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandœuvre-lès-Nancy, France
| | - Nicolas Rolland
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandœuvre-lès-Nancy, France
| | - Christophe Charron
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandœuvre-lès-Nancy, France
| | - Véronique Senty-Ségault
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandœuvre-lès-Nancy, France
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandœuvre-lès-Nancy, France
| | - Bruno Charpentier
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
42
|
Massenet S, Bertrand E, Verheggen C. Assembly and trafficking of box C/D and H/ACA snoRNPs. RNA Biol 2017; 14:680-692. [PMID: 27715451 PMCID: PMC5519232 DOI: 10.1080/15476286.2016.1243646] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/09/2016] [Accepted: 09/27/2016] [Indexed: 12/23/2022] Open
Abstract
Box C/D and box H/ACA snoRNAs are abundant non-coding RNAs that localize in the nucleolus and mostly function as guides for nucleotide modifications. While a large pool of snoRNAs modifies rRNAs, an increasing number of snoRNAs could also potentially target mRNAs. ScaRNAs belong to a family of specific RNAs that localize in Cajal bodies and that are structurally similar to snoRNAs. Most scaRNAs are involved in snRNA modification, while telomerase RNA, which contains H/ACA motifs, functions in telomeric DNA synthesis. In this review, we describe how box C/D and H/ACA snoRNAs are processed and assembled with core proteins to form functional RNP particles. Their biogenesis involve several transport factors that first direct pre-snoRNPs to Cajal bodies, where some processing steps are believed to take place, and then to nucleoli. Assembly of core proteins involves the HSP90/R2TP chaperone-cochaperone system for both box C/D and H/ACA RNAs, but also several factors specific for each family. These assembly factors chaperone unassembled core proteins, regulate the formation and disassembly of pre-snoRNP intermediates, and control the activity of immature particles. The AAA+ ATPase RUVBL1 and RUVBL2 belong to the R2TP co-chaperones and play essential roles in snoRNP biogenesis, as well as in the formation of other macro-molecular complexes. Despite intensive research, their mechanisms of action are still incompletely understood.
Collapse
Affiliation(s)
- Séverine Massenet
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS, 9 Avenue de la forêt de Haye, 54505 Vandoeuvre-les-Nancy Cedex, France, Université de Lorraine, Campus Biologie –Santé, CS 50184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Céline Verheggen
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| |
Collapse
|
43
|
Cloutier P, Poitras C, Durand M, Hekmat O, Fiola-Masson É, Bouchard A, Faubert D, Chabot B, Coulombe B. R2TP/Prefoldin-like component RUVBL1/RUVBL2 directly interacts with ZNHIT2 to regulate assembly of U5 small nuclear ribonucleoprotein. Nat Commun 2017; 8:15615. [PMID: 28561026 PMCID: PMC5460035 DOI: 10.1038/ncomms15615] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 04/12/2017] [Indexed: 01/11/2023] Open
Abstract
The R2TP/Prefoldin-like (R2TP/PFDL) complex has emerged as a cochaperone complex involved in the assembly of a number of critical protein complexes including snoRNPs, nuclear RNA polymerases and PIKK-containing complexes. Here we report on the use of multiple target affinity purification coupled to mass spectrometry to identify two additional complexes that interact with R2TP/PFDL: the TSC1–TSC2 complex and the U5 small nuclear ribonucleoprotein (snRNP). The interaction between R2TP/PFDL and the U5 snRNP is mostly mediated by the previously uncharacterized factor ZNHIT2. A more general function for the zinc-finger HIT domain in binding RUVBL2 is exposed. Disruption of ZNHIT2 and RUVBL2 expression impacts the protein composition of the U5 snRNP suggesting a function for these proteins in promoting the assembly of the ribonucleoprotein. A possible implication of R2TP/PFDL as a major effector of stress-, energy- and nutrient-sensing pathways that regulate anabolic processes through the regulation of its chaperoning activity is discussed. The R2TP/Prefoldin-like cochaperone complex is involved in the assembly of a number of protein complexes. Here the authors provide evidence that RUVBL1/RUVBL2, subunits of that cochaperone complex, directly interact with ZNHIT2 to regulate assembly of U5 small ribonucleoprotein.
Collapse
Affiliation(s)
- Philippe Cloutier
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Christian Poitras
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Mathieu Durand
- Laboratory of Functional Genomics, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| | - Omid Hekmat
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Émilie Fiola-Masson
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Annie Bouchard
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Denis Faubert
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Benoit Chabot
- Laboratory of Functional Genomics, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8.,Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| | - Benoit Coulombe
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7.,Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada H3T 1J4
| |
Collapse
|
44
|
Espinar-Marchena FJ, Babiano R, Cruz J. Placeholder factors in ribosome biogenesis: please, pave my way. MICROBIAL CELL 2017; 4:144-168. [PMID: 28685141 PMCID: PMC5425277 DOI: 10.15698/mic2017.05.572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The synthesis of cytoplasmic eukaryotic ribosomes is an extraordinarily energy-demanding cellular activity that occurs progressively from the nucleolus to the cytoplasm. In the nucleolus, precursor rRNAs associate with a myriad of trans-acting factors and some ribosomal proteins to form pre-ribosomal particles. These factors include snoRNPs, nucleases, ATPases, GTPases, RNA helicases, and a vast list of proteins with no predicted enzymatic activity. Their coordinate activity orchestrates in a spatiotemporal manner the modification and processing of precursor rRNAs, the rearrangement reactions required for the formation of productive RNA folding intermediates, the ordered assembly of the ribosomal proteins, and the export of pre-ribosomal particles to the cytoplasm; thus, providing speed, directionality and accuracy to the overall process of formation of translation-competent ribosomes. Here, we review a particular class of trans-acting factors known as "placeholders". Placeholder factors temporarily bind selected ribosomal sites until these have achieved a structural context that is appropriate for exchanging the placeholder with another site-specific binding factor. By this strategy, placeholders sterically prevent premature recruitment of subsequently binding factors, premature formation of structures, avoid possible folding traps, and act as molecular clocks that supervise the correct progression of pre-ribosomal particles into functional ribosomal subunits. We summarize the current understanding of those factors that delay the assembly of distinct ribosomal proteins or subsequently bind key sites in pre-ribosomal particles. We also discuss recurrent examples of RNA-protein and protein-protein mimicry between rRNAs and/or factors, which have clear functional implications for the ribosome biogenesis pathway.
Collapse
Affiliation(s)
- Francisco J Espinar-Marchena
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| | - Reyes Babiano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| | - Jesús Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| |
Collapse
|
45
|
Abstract
Aside from nucleoli, Cajal bodies (CBs) are the best-characterized organelles of mammalian cell nuclei. Like nucleoli, CBs concentrate ribonucleoproteins (RNPs), in particular, spliceosomal small nuclear RNPs (snRNPs) and small nucleolar RNPs (snoRNPs). In one of the best-defined functions of CBs, most of the snoRNPs are involved in site-specific modification of snRNAs. The two major modifications are pseudouridylation and 2'-O-methylation that are guided by the box H/ACA and C/D snoRNPs, respectively. This review details the modifications, their function, the mechanism of modification, and the machineries involved. We dissect the different classes of noncoding RNAs that meet in CBs, guides and substrates. Open questions and conundrums, often raised and appearing due to experimental limitations, are pointed out and discussed. The emphasis of the review is on mammalian CBs and their function in modification of noncoding RNAs.
Collapse
Affiliation(s)
- U Thomas Meier
- a Albert Einstein College of Medicine , Department of Anatomy and Structural Biology , Bronx , NY , USA
| |
Collapse
|
46
|
MacNeil DE, Bensoussan HJ, Autexier C. Telomerase Regulation from Beginning to the End. Genes (Basel) 2016; 7:genes7090064. [PMID: 27649246 PMCID: PMC5042394 DOI: 10.3390/genes7090064] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022] Open
Abstract
The vast body of literature regarding human telomere maintenance is a true testament to the importance of understanding telomere regulation in both normal and diseased states. In this review, our goal was simple: tell the telomerase story from the biogenesis of its parts to its maturity as a complex and function at its site of action, emphasizing new developments and how they contribute to the foundational knowledge of telomerase and telomere biology.
Collapse
Affiliation(s)
- Deanna Elise MacNeil
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
| | - Hélène Jeanne Bensoussan
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
| | - Chantal Autexier
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
- Department of Experimental Medicine, McGill University, 1110 Pins Avenue West, Room 101, Montréal, QC H3A 1A3, Canada.
| |
Collapse
|
47
|
Abstract
Telomerase activity is responsible for the maintenance of chromosome end structures (telomeres) and cancer cell immortality in most human malignancies, making telomerase an attractive therapeutic target. The rationale for targeting components of the telomerase holoenzyme has been strengthened by accumulating evidence indicating that these molecules have extra-telomeric functions in tumour cell survival and proliferation. This Review discusses current knowledge of the biogenesis, structure and multiple functions of telomerase-associated molecules intertwined with recent advances in drug discovery approaches. We also describe the fertile ground available for the pursuit of next-generation small-molecule inhibitors of telomerase.
Collapse
Affiliation(s)
- Greg M Arndt
- Australian Cancer Research Foundation (ACRF) Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Karen L MacKenzie
- Personalised Medicine Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| |
Collapse
|
48
|
Chen Y, Zhang Y. Functional and mechanistic analysis of telomerase: An antitumor drug target. Pharmacol Ther 2016; 163:24-47. [PMID: 27118336 DOI: 10.1016/j.pharmthera.2016.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/29/2016] [Indexed: 01/26/2023]
|
49
|
Wadt KAW, Aoude LG, Golmard L, Hansen TVO, Sastre-Garau X, Hayward NK, Gerdes AM. Germline RAD51B truncating mutation in a family with cutaneous melanoma. Fam Cancer 2016; 14:337-40. [PMID: 25600502 DOI: 10.1007/s10689-015-9781-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Known melanoma predisposition genes only account for around 40% of high-density melanoma families. Other rare mutations are likely to play a role in melanoma predisposition. RAD51B plays an important role in DNA repair through homologous recombination, and inactivation of RAD51B has been implicated in tumorigenesis. Thus RAD51B is a good candidate melanoma susceptibility gene, and previously, a germline splicing mutation in RAD51B has been identified in a family with early-onset breast cancer. In order to find genetic variants associated with melanoma predisposition, whole-exome sequencing was carried out on blood samples from a three-case cutaneous melanoma family. We identified a novel germline RAD51B nonsense mutation, and we demonstrate reduced expression of RAD51B in melanoma cells indicating inactivation of RAD51B. This is only the second report of a germline truncating RAD51B mutation. While this case report is consistent with melanoma being part of the RAD51B cancer spectrum further population-based screening of large case-control sample series will be needed to definitively establish if this is the case.
Collapse
Affiliation(s)
- Karin A W Wadt
- Department of Clinical Genetics, Rigshospitalet, 4062, Blegdamsvej 9, 2100, Copenhagen, Denmark,
| | | | | | | | | | | | | |
Collapse
|
50
|
Tseng CK, Wang HF, Burns A, Schroeder M, Gaspari M, Baumann P. Human Telomerase RNA Processing and Quality Control. Cell Rep 2015; 13:2232-43. [DOI: 10.1016/j.celrep.2015.10.075] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/02/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022] Open
|