1
|
Koonin E, Lee B. Diversity and evolution of viroids and viroid-like agents with circular RNA genomes revealed by metatranscriptome mining. Nucleic Acids Res 2025; 53:gkae1278. [PMID: 39727156 PMCID: PMC11797063 DOI: 10.1093/nar/gkae1278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Viroids, the agents of several plant diseases, are the smallest and simplest known replicators that consist of covalently closed circular (ccc) RNA molecules between 200 and 400 nucleotides in size. Viroids encode no proteins and rely on host RNA polymerases for replication, but some contain ribozymes involved in replication intermediate processing. Although other viroid-like agents with cccRNAs genomes, such as satellite RNAs, ribozyviruses and retrozymes, have been discovered, until recently, the spread of these agents in the biosphere appeared narrow, and their actual diversity and evolution remained poorly understood. Extensive, targeted metatranscriptome mining dramatically expanded the known diversity of cccRNAs genomes. These searches identified numerous, diverse viroid-like cccRNAs, many found in environments devoid of plant and animal material, suggesting replication in unicellular eukaryotic and/or prokaryotic hosts. Several cccRNAs are targeted by CRISPR systems, supporting their association with bacteria. In addition to small cccRNAs in the viroid size range, a broad variety of ribozyviruses and novel viruses with cccRNAs genomes, with genomes reaching nearly 5 kilobases, were discovered. Thus, metatranscriptome mining shows that the diversity of viroid-like cccRNAs genomes is far greater than previously suspected, prompting reassessment of the relevance of these replicators for understanding the primordial RNA world.
Collapse
Affiliation(s)
- Eugene V Koonin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Benjamin D Lee
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
2
|
Abdul Majeed N, Zehnder B, Koh C, Heller T, Urban S. Hepatitis delta: Epidemiology to recent advances in therapeutic agents. Hepatology 2023; 78:1306-1321. [PMID: 36738087 DOI: 10.1097/hep.0000000000000331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023]
Abstract
Hepatitis D virus (HDV) was first described in 1977 and is dependent on the presence of hepatitis B surface antigen (HBsAg) for its entry into cells and on the human host for replication. Due to the envelopment with the hepatitis B virus (HBV) envelope, early phases of HDV entry resemble HBV infection. Unlike HBV, HDV activates innate immune responses. The global prevalence of HDV is estimated to be about 5% of HBsAg positive individuals. However, recent studies have described a wide range of prevalence between 12 to 72 million individuals. Infection can occur as super-infection or co-infection. The diagnosis of active HDV infection involves screening with anti HDV antibodies followed by quantitative PCR testing for HDV RNA in those who are HBsAg positive. The diagnostic studies have evolved over the years improving the validity and reliability of the tests performed. HDV infection is considered the most severe form of viral hepatitis and the HDV genotype may influence the disease course. There are eight major HDV genotypes with prevalence varying by geographic region. HDV treatment has been challenging as HDV strongly depends on the host cell for replication and provides few, if any viral targets. Better understanding of HDV virology has led to the development of several therapeutic agents currently being studied in different phase II and III clinical trials. There is increasing promise of effective therapies that will ameliorate the course of this devastating disease.
Collapse
Affiliation(s)
- Nehna Abdul Majeed
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Benno Zehnder
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF) - Heidelberg Partner Site, Heidelberg, Germany
| |
Collapse
|
3
|
Cao L, Hui X, Xu T, Mao H, Lin X, Huang K, Zhao L, Jin M. The RNA-Splicing Ligase RTCB Promotes Influenza A Virus Replication by Suppressing Innate Immunity via Interaction with RNA Helicase DDX1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1020-1031. [PMID: 37556111 PMCID: PMC10476163 DOI: 10.4049/jimmunol.2200799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/11/2023] [Indexed: 08/10/2023]
Abstract
The RNA-splicing ligase RNA 2',3'-cyclic phosphate and 5'-OH ligase (RTCB) is a catalytic subunit of the tRNA-splicing ligase complex, which plays an essential role in catalyzing tRNA splicing and modulating the unfolded protein response. However, the function of RTCB in influenza A virus (IAV) replication has not yet been described. In this study, RTCB was revealed to be an IAV-suppressed host factor that was significantly downregulated during influenza virus infection in several transformed cell lines, as well as in primary human type II alveolar epithelial cells, and its knockout impaired the propagation of the IAV. Mechanistically, RTCB depletion led to a robust elevation in the levels of type I and type III IFNs and proinflammatory cytokines in response to IAV infection, which was confirmed by RTCB overexpression studies. Lastly, RTCB was found to compete with DDX21 for RNA helicase DDX1 binding, attenuating the DDX21-DDX1 association and thus suppressing the expression of IFN and downstream IFN-stimulated genes. Our study indicates that RTCB plays a critical role in facilitating IAV replication and reveals that the RTCB-DDX1 binding interaction is an important innate immunomodulator for the host to counteract viral infection.
Collapse
Affiliation(s)
- Lei Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xianfeng Hui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ting Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haiying Mao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xian Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lianzhong Zhao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- China Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
4
|
Stephenson-Tsoris S, Liang TJ. Hepatitis Delta Virus-Host Protein Interactions: From Entry to Egress. Viruses 2023; 15:1530. [PMID: 37515216 PMCID: PMC10383234 DOI: 10.3390/v15071530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatitis delta virus (HDV) is the smallest known human virus and causes the most severe form of human viral hepatitis, yet it is still not fully understood how the virus replicates and how it interacts with many host proteins during replication. This review aims to provide a systematic review of all the host factors currently known to interact with HDV and their mechanistic involvement in all steps of the HDV replication cycle. Finally, we discuss implications for therapeutic development based on our current knowledge of HDV-host protein interactions.
Collapse
Affiliation(s)
- Susannah Stephenson-Tsoris
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Kim GW, Moon JS, Gudima SO, Siddiqui A. N 6-Methyladenine Modification of Hepatitis Delta Virus Regulates Its Virion Assembly by Recruiting YTHDF1. J Virol 2022; 96:e0112422. [PMID: 36102650 PMCID: PMC9555152 DOI: 10.1128/jvi.01124-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Hepatitis delta virus (HDV) is a defective satellite virus that uses hepatitis B virus (HBV) envelope proteins to form its virions and infect hepatocytes via the HBV receptors. Concomitant HDV/HBV infection continues to be a major health problem, with at least 25 million people chronically infected worldwide. N6-methyladenine (m6A) modification of cellular and viral RNAs is the most prevalent internal modification that occurs cotranscriptionally, and this modification regulates various biological processes. We have previously described a wider range of functional roles of m6A methylation of HBV RNAs, including its imminent regulatory role in the encapsidation of pregenomic RNA. In this study, we present evidence that m6A methylation also plays an important role in the HDV life cycle. Using the methylated RNA immunoprecipitation (MeRIP) assay, we identified that the intracellular HDV genome and antigenome are m6A methylated in HDV- and HBV-coinfected primary human hepatocytes and HepG2 cell expressing sodium taurocholate cotransporting polypeptide (NTCP), while the extracellular HDV genome is not m6A methylated. We observed that HDV genome and delta antigen levels are significantly decreased in the absence of METTL3/14, while the extracellular HDV genome levels are increased by depletion of METTL3/14. Importantly, YTHDF1, an m6A reader protein, interacts with the m6A-methylated HDV genome and inhibits the interaction between the HDV genome and antigens. Thus, m6A of the HDV genome negatively regulates virion production by inhibiting the interaction of the HDV genome with delta antigens through the recruitment of YTHDF1. This is the first study that provides insight into the functional roles of m6A in the HDV life cycle. IMPORTANCE The functional roles of N6-methyladenine (m6A) modifications in the HBV life cycle have been recently highlighted. Here, we investigated the functional role of m6A modification in the HDV life cycle. HDV is a subviral agent of HBV, as it uses HBV envelope proteins to form its virions. We found that m6A methylation also occurs in the intracellular HDV genome and antigenome but not in the extracellular HDV genome. The m6A modification of the HDV genome recruits m6A reader protein (YTHDF1) onto the viral genome. The association of YTHDF1 with the HDV genome abrogates the interaction of delta antigens with the HDV genome and inhibits virion assembly. This study describes the unique effects of m6A on regulation of the HDV life cycle.
Collapse
Affiliation(s)
- Geon-Woo Kim
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Microbiology and Molecular Biology, Chungnam National University, Yuseong-gu, Daejeon, Republic of Korea
| | - Jae-Su Moon
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Severin O. Gudima
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aleem Siddiqui
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Moghimi S, Viktorova EG, Gabaglio S, Zimina A, Budnik B, Wynn BG, Sztul E, Belov GA. A Proximity biotinylation assay with a host protein bait reveals multiple factors modulating enterovirus replication. PLoS Pathog 2022; 18:e1010906. [PMID: 36306280 PMCID: PMC9645661 DOI: 10.1371/journal.ppat.1010906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/09/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
As ultimate parasites, viruses depend on host factors for every step of their life cycle. On the other hand, cells evolved multiple mechanisms of detecting and interfering with viral replication. Yet, our understanding of the complex ensembles of pro- and anti-viral factors is very limited in virtually every virus-cell system. Here we investigated the proteins recruited to the replication organelles of poliovirus, a representative of the genus Enterovirus of the Picornaviridae family. We took advantage of a strict dependence of enterovirus replication on a host protein GBF1, and established a stable cell line expressing a truncated GBF1 fused to APEX2 peroxidase that effectively supported viral replication upon inhibition of the endogenous GBF1. This construct biotinylated multiple host and viral proteins on the replication organelles. Among the viral proteins, the polyprotein cleavage intermediates were overrepresented, suggesting that the GBF1 environment is linked to viral polyprotein processing. The proteomics characterization of biotinylated host proteins identified multiple proteins previously associated with enterovirus replication, as well as more than 200 new factors recruited to the replication organelles. RNA metabolism proteins, many of which normally localize in the nucleus, constituted the largest group, underscoring the massive release of nuclear factors into the cytoplasm of infected cells and their involvement in viral replication. Functional analysis of several newly identified proteins revealed both pro- and anti-viral factors, including a novel component of infection-induced stress granules. Depletion of these proteins similarly affected the replication of diverse enteroviruses indicating broad conservation of the replication mechanisms. Thus, our data significantly expand the knowledge of the composition of enterovirus replication organelles, provide new insights into viral replication, and offer a novel resource for identifying targets for anti-viral interventions.
Collapse
Affiliation(s)
- Seyedehmahsa Moghimi
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Ekaterina G. Viktorova
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Samuel Gabaglio
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Anna Zimina
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory (MSPRL), FAS Division of Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Bridge G. Wynn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham; Birmingham, Alabama, United States of America
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham; Birmingham, Alabama, United States of America
| | - George A. Belov
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
7
|
Zi J, Gao X, Du J, Xu H, Niu J, Chi X. Multiple Regions Drive Hepatitis Delta Virus Proliferation and Are Therapeutic Targets. Front Microbiol 2022; 13:838382. [PMID: 35464929 PMCID: PMC9022428 DOI: 10.3389/fmicb.2022.838382] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatitis Delta Virus (HDV) is the smallest mammalian single-stranded RNA virus. It requires host cells and hepatitis B virus (HBV) to complete its unique life cycle. The present review summarizes the specific regions on hepatitis D antigen (HDAg) and hepatitis B surface antigen (HBsAg) that drive HDV to utilize host cell machinery system to produce three types of RNA and two forms of HDAg, and hijack HBsAg for its secretion and de novo entry. Previously, interferon-α was the only recommended therapy for HDV infection. In recent years, some new therapies targeting these regions, such as Bulevirtide, Lonafarnib, Nucleic acid polymers have appeared, with better curative effects and fewer adverse reactions.
Collapse
Affiliation(s)
- Jun Zi
- Gene Therapy Laboratory, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Xiuzhu Gao
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Juan Du
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Hongqin Xu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Junqi Niu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Xiumei Chi
- Gene Therapy Laboratory, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
HDV Pathogenesis: Unravelling Ariadne's Thread. Viruses 2021; 13:v13050778. [PMID: 33924806 PMCID: PMC8145675 DOI: 10.3390/v13050778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatitis Delta virus (HDV) lies in between satellite viruses and viroids, as its unique molecular characteristics and life cycle cannot categorize it according to the standard taxonomy norms for viruses. Being a satellite virus of hepatitis B virus (HBV), HDV requires HBV envelope glycoproteins for its infection cycle and its transmission. HDV pathogenesis varies and depends on the mode of HDV and HBV infection; a simultaneous HDV and HBV infection will lead to an acute hepatitis that will resolve spontaneously in the majority of patients, whereas an HDV super-infection of a chronic HBV carrier will mainly result in the establishment of a chronic HDV infection that may progress towards cirrhosis, liver decompensation, and hepatocellular carcinoma (HCC). With this review, we aim to unravel Ariadne’s thread into the labyrinth of acute and chronic HDV infection pathogenesis and will provide insights into the complexity of this exciting topic by detailing the different players and mechanisms that shape the clinical outcome.
Collapse
|
9
|
Bove G, Mehnert AK, Dao Thi VL. iPSCs for modeling hepatotropic pathogen infections. IPSCS FOR STUDYING INFECTIOUS DISEASES 2021:149-213. [DOI: 10.1016/b978-0-12-823808-0.00013-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
10
|
Zhang Z, Urban S. Interplay between Hepatitis D Virus and the Interferon Response. Viruses 2020; 12:v12111334. [PMID: 33233762 PMCID: PMC7699955 DOI: 10.3390/v12111334] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis D (CHD) is the most severe form of viral hepatitis, with rapid progression of liver-related diseases and high rates of development of hepatocellular carcinoma. The causative agent, hepatitis D virus (HDV), contains a small (approximately 1.7 kb) highly self-pairing single-strand circular RNA genome that assembles with the HDV antigen to form a ribonucleoprotein (RNP) complex. HDV depends on hepatitis B virus (HBV) envelope proteins for envelopment and de novo hepatocyte entry; however, its intracellular RNA replication is autonomous. In addition, HDV can amplify HBV independently through cell division. Cellular innate immune responses, mainly interferon (IFN) response, are crucial for controlling invading viruses, while viruses counteract these responses to favor their propagation. In contrast to HBV, HDV activates profound IFN response through the melanoma differentiation antigen 5 (MDA5) pathway. This cellular response efficiently suppresses cell-division-mediated HDV spread and, to some extent, early stages of HDV de novo infection, but only marginally impairs RNA replication in resting hepatocytes. In this review, we summarize the current knowledge on HDV structure, replication, and persistence and subsequently focus on the interplay between HDV and IFN response, including IFN activation, sensing, antiviral effects, and viral countermeasures. Finally, we discuss crosstalk with HBV.
Collapse
Affiliation(s)
- Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-564-902
| |
Collapse
|
11
|
Abstract
Antiviral drugs have traditionally been developed by directly targeting essential viral components. However, this strategy often fails due to the rapid generation of drug-resistant viruses. Recent genome-wide approaches, such as those employing small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeats (CRISPR) or those using small molecule chemical inhibitors targeting the cellular "kinome," have been used successfully to identify cellular factors that can support virus replication. Since some of these cellular factors are critical for virus replication, but are dispensable for the host, they can serve as novel targets for antiviral drug development. In addition, potentiation of immune responses, regulation of cytokine storms, and modulation of epigenetic changes upon virus infections are also feasible approaches to control infections. Because it is less likely that viruses will mutate to replace missing cellular functions, the chance of generating drug-resistant mutants with host-targeted inhibitor approaches is minimized. However, drug resistance against some host-directed agents can, in fact, occur under certain circumstances, such as long-term selection pressure of a host-directed antiviral agent that can allow the virus the opportunity to adapt to use an alternate host factor or to alter its affinity toward the target that confers resistance. This review describes novel approaches for antiviral drug development with a focus on host-directed therapies and the potential mechanisms that may account for the acquisition of antiviral drug resistance against host-directed agents.
Collapse
|
12
|
Lucifora J, Delphin M. Current knowledge on Hepatitis Delta Virus replication. Antiviral Res 2020; 179:104812. [PMID: 32360949 DOI: 10.1016/j.antiviral.2020.104812] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022]
Abstract
Hepatitis B Virus (HBV) that infects liver parenchymal cells is responsible for severe liver diseases and co-infection with Hepatitis Delta Virus (HDV) leads to the most aggressive form of viral hepatitis. Even tough being different for their viral genome (relaxed circular partially double stranded DNA for HBV and circular RNA for HDV), HBV and HDV are both maintained as episomes in the nucleus of infected cells and use the cellular machinery for the transcription of their viral RNAs. We propose here an update on the current knowledge on HDV replication cycle that may eventually help to identify new antiviral targets.
Collapse
Affiliation(s)
- Julie Lucifora
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France.
| | - Marion Delphin
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France
| |
Collapse
|
13
|
Abeywickrama-Samarakoon N, Cortay JC, Sureau C, Müller S, Alfaiate D, Guerrieri F, Chaikuad A, Schröder M, Merle P, Levrero M, Dény P. Hepatitis Delta Virus histone mimicry drives the recruitment of chromatin remodelers for viral RNA replication. Nat Commun 2020; 11:419. [PMID: 31964889 PMCID: PMC6972770 DOI: 10.1038/s41467-020-14299-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/21/2019] [Indexed: 12/26/2022] Open
Abstract
Hepatitis Delta virus (HDV) is a satellite of Hepatitis B virus with a single-stranded circular RNA genome. HDV RNA genome synthesis is carried out in infected cells by cellular RNA polymerases with the assistance of the small hepatitis delta antigen (S-HDAg). Here we show that S-HDAg binds the bromodomain (BRD) adjacent to zinc finger domain 2B (BAZ2B) protein, a regulatory subunit of BAZ2B-associated remodeling factor (BRF) ISWI chromatin remodeling complexes. shRNA-mediated silencing of BAZ2B or its inactivation with the BAZ2B BRD inhibitor GSK2801 impairs HDV replication in HDV-infected human hepatocytes. S-HDAg contains a short linear interacting motif (SLiM) KacXXR, similar to the one recognized by BAZ2B BRD in histone H3. We found that the integrity of the S-HDAg SLiM sequence is required for S-HDAg interaction with BAZ2B BRD and for HDV RNA replication. Our results suggest that S-HDAg uses a histone mimicry strategy to co-activate the RNA polymerase II-dependent synthesis of HDV RNA and sustain HDV replication. Histone mimicry of viral components is a strategy to subvert host factors for virus replication. Here, the authors show that an acetylated histone-like motif of the small Hepatitis Delta Antigen (S-HDAg) interacts with the chromatin remodeler BAZ2B to recruit the DNA-dependent RNA polymerase II for HDV RNA replication.
Collapse
Affiliation(s)
| | - Jean-Claude Cortay
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France
| | - Camille Sureau
- Laboratoire de Virologie Moléculaire, INSERM U1134, Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, 75739, Paris, France
| | - Susanne Müller
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany
| | - Dulce Alfaiate
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France.,Département de Pathologie et Immunologie, Université de Genève, avenue de Champel 41, 1206, Genève, Switzerland.,Department of Infectious and Tropical Diseases, Hôpital de la Croix Rousse, Hospices Civils de Lyon and Université Lyon I, 103 Grande Rue de la Croix-Rousse, 69004, Lyon, France
| | - Francesca Guerrieri
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France.,Italian Institute of Technology (IIT) - Center for Life Nanoscience (CLNS), Sapienza University, Viale Regina Elena, 291, 00161, Rome, Italy
| | - Apirat Chaikuad
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany
| | - Martin Schröder
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany
| | - Philippe Merle
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France.,Department of Hepatology, Hôpital de la Croix Rousse, Hospices Civils de Lyon and Université Lyon I, 103 Grande Rue de la Croix-Rousse, 69004, Lyon, France
| | - Massimo Levrero
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France. .,Italian Institute of Technology (IIT) - Center for Life Nanoscience (CLNS), Sapienza University, Viale Regina Elena, 291, 00161, Rome, Italy. .,Department of Hepatology, Hôpital de la Croix Rousse, Hospices Civils de Lyon and Université Lyon I, 103 Grande Rue de la Croix-Rousse, 69004, Lyon, France.
| | - Paul Dény
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France. .,Laboratoire de Microbiologie Clinique, Groupe des Hôpitaux Universitaires de Paris - Seine Saint Denis, UFR Santé Médecine, Biologie Humaine, Université Paris 13, 125 Rue de Stalingrad, 93009, Bobigny, France.
| |
Collapse
|
14
|
Mentha N, Clément S, Negro F, Alfaiate D. A review on hepatitis D: From virology to new therapies. J Adv Res 2019; 17:3-15. [PMID: 31193285 PMCID: PMC6526199 DOI: 10.1016/j.jare.2019.03.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis delta virus (HDV) is a defective virus that requires the hepatitis B virus (HBV) to complete its life cycle in human hepatocytes. HDV virions contain an envelope incorporating HBV surface antigen protein and a ribonucleoprotein containing the viral circular single-stranded RNA genome associated with both forms of hepatitis delta antigen, the only viral encoded protein. Replication is mediated by the host cell DNA-dependent RNA polymerases. HDV infects up to72 million people worldwide and is associated with an increased risk of severe and rapidly progressive liver disease. Pegylated interferon-alpha is still the only available treatment for chronic hepatitis D, with poor tolerance and dismal success rate. Although the development of antivirals inhibiting the viral replication is challenging, as HDV does not possess its own polymerase, several antiviral molecules targeting other steps of the viral life cycle are currently under clinical development: Myrcludex B, which blocks HDV entry into hepatocytes, lonafarnib, a prenylation inhibitor that prevents virion assembly, and finally REP 2139, which is thought to inhibit HBsAg release from hepatocytes and interact with hepatitis delta antigen. This review updates the epidemiology, virology and management of HDV infection.
Collapse
Affiliation(s)
- Nathalie Mentha
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Sophie Clément
- Division of Clinical Pathology, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Francesco Negro
- Division of Clinical Pathology, Geneva University Hospitals, 1211 Geneva, Switzerland
- Division of Gastroenterology and Hepatology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Dulce Alfaiate
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
15
|
Goodrum G, Pelchat M. Insight into the Contribution and Disruption of Host Processes during HDV Replication. Viruses 2018; 11:v11010021. [PMID: 30602655 PMCID: PMC6356607 DOI: 10.3390/v11010021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/18/2018] [Accepted: 12/30/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis delta virus (HDV) is unique among animal viruses. HDV is a satellite virus of the hepatitis B virus (HBV), however it shares no sequence similarity with its helper virus and replicates independently in infected cells. HDV is the smallest human pathogenic RNA virus and shares numerous characteristics with viroids. Like viroids, HDV has a circular RNA genome which adopts a rod-like secondary structure, possesses ribozyme domains, replicates in the nucleus of infected cells by redirecting host DNA-dependent RNA polymerases (RNAP), and relies heavily on host proteins for its replication due to its small size and limited protein coding capacity. These similarities suggest an evolutionary relationship between HDV and viroids, and information on HDV could allow a better understanding of viroids and might globally help understanding the pathogenesis and molecular biology of these subviral RNAs. In this review, we discuss the host involvement in HDV replication and its implication for HDV pathogenesis.
Collapse
Affiliation(s)
- Gabrielle Goodrum
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
16
|
Abeywickrama-Samarakoon N, Cortay JC, Sureau C, Alfaiate D, Levrero M, Dény P. [Hepatitis delta virus replication and the role of the small hepatitis delta protein S-HDAg]. Med Sci (Paris) 2018; 34:833-841. [PMID: 30451678 DOI: 10.1051/medsci/2018209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) is a mammalian defective virus. Its genome is a small single-stranded circular RNA of approximately 1,680 nucleotides. To spread, HDV relies on hepatitis B virus envelope proteins that are needed for viral particle assembly and egress. Severe clinical features of HBV-HDV infection include acute fulminant hepatitis and chronic liver fibrosis leading to cirrhosis and hepatocellular carcinoma. One uniqueness of HDV relies on its genome similarity to viroids, small plant infectious uncoated RNAs. Devoid of viral replicase activity, HDV has to use host DNA-dependant RNA Pol II to replicate its genomic RNA. Thus, one can ask how does this replication occur? We describe first here the major steps of the viral RNA transcription and replication and then we detail the role of the Small HD protein in these processes, especially with regard to the Pol II recruitment.
Collapse
Affiliation(s)
| | - Jean-Claude Cortay
- Inserm, U1052 - UMR CNRS 5286, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Camille Sureau
- Laboratoire de virologie moléculaire, Inserm UMR S_1134, Institut National de Transfusion Sanguine, Paris, France
| | - Dulce Alfaiate
- Département de pathologie et immunologie, université de Genève, Suisse
| | - Massimo Levrero
- Inserm, U1052 - UMR CNRS 5286, Centre de recherche en cancérologie de Lyon, Lyon, France - Service d'hépato-gastroentérologie, Hôpital de la Croix Rousse, université Lyon-I, France
| | - Paul Dény
- Inserm, U1052 - UMR CNRS 5286, Centre de recherche en cancérologie de Lyon, Lyon, France - Laboratoire de microbiologie clinique, groupe des Hôpitaux universitaires de Paris-Seine Saint Denis, UFR santé médecine, biologie humaine, université Paris 13, Bobigny, France
| |
Collapse
|
17
|
MicroRNA Expression Profiling of the Armed Forces Health Surveillance Branch Cohort for Identification of "Enviro-miRs" Associated With Deployment-Based Environmental Exposure. J Occup Environ Med 2018; 58:S97-S103. [PMID: 27501110 DOI: 10.1097/jom.0000000000000764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of this study was to identify serum microRNA (miRNA) biomarkers that indicate deployment-associated exposures in service members at military installations with open burn pits. Another objective was to determine detection rates of miRNAs in Department of Defense Serum Repository (DoDSR) samples with a high-throughput methodology. METHODS Low-volume serum samples (n = 800) were profiled by miRNA-capture isolation, pre-amplification, and measurement by a quantitative PCR-based OpenArray platform. Normalized quantitative cycle values were used for differential expression analysis between groups. RESULTS Assay specificity, dynamic range, reproducibility, and detection rates by OpenArray passed target desired specifications. Serum abundant miRNAs were consistently measured in study specimens. Four miRNAs were differentially expressed in the case deployment group subjects. CONCLUSIONS miRNAs are suitable RNA species for biomarker discovery in the DoDSR serum specimens. Serum miRNAs are candidate biomarkers for deployment and environmental exposure in military service members.
Collapse
|
18
|
Alves C, Cheng H, Tavanez JP, Casaca A, Gudima S, Roder H, Cunha C. Structural and nucleic acid binding properties of hepatitis delta virus small antigen. World J Virol 2017; 6:26-35. [PMID: 28573087 PMCID: PMC5437381 DOI: 10.5501/wjv.v6.i2.26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/30/2017] [Accepted: 03/02/2017] [Indexed: 02/05/2023] Open
Abstract
AIM To further characterize the structure and nucleic acid binding properties of the 195 amino acid small delta antigen, S-HDAg, a study was made of a truncated form of S-HDAg, comprising amino acids 61-195 (∆60HDAg), thus lacking the domain considered necessary for dimerization and higher order multimerization.
METHODS Circular dichroism, and nuclear magnetic resonance experiments were used to assess the structure of ∆60HDAg. Nucleic acid binding properties were investigated by gel retardation assays.
RESULTS Results showed that the truncated ∆60HDAg protein is intrinsically disordered but compact, whereas the RNA binding domain, comprising residues 94-146, adopts a dynamic helical conformation. We also found that ∆60HDAg fails to multimerize but still contains nucleic acid binding activity, indicating that multimerization is not essential for nucleic acid binding. Moreover, in agreement with what has been previously reported for full-length protein, no apparent specificity was found for the truncated protein regarding nucleic acid binding.
CONCLUSION Taken together these results allowed concluding that ∆60HDAg is intrinsically disordered but compact; ∆60HDAg is not a multimer but is still capable of nucleic acid binding albeit without apparent specificity.
Collapse
|
19
|
Lempp FA, Ni Y, Urban S. Hepatitis delta virus: insights into a peculiar pathogen and novel treatment options. Nat Rev Gastroenterol Hepatol 2016; 13:580-9. [PMID: 27534692 DOI: 10.1038/nrgastro.2016.126] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic hepatitis D is the most severe form of viral hepatitis, affecting ∼20 million HBV-infected people worldwide. The causative agent, hepatitis delta virus (HDV), is a unique human pathogen: it is the smallest known virus; it depends on HBV to disseminate its viroid-like RNA; it encodes only one protein (HDAg), which has both structural and regulatory functions; and it replicates using predominantly host proteins. The failure of HBV-specific nucleoside analogues to suppress the HBV helper function, and the limitations of experimental systems to study the HDV life cycle, have impeded the development of HDV-specific drugs. Thus, the only clinical regimen for HDV is IFNα, which shows some efficacy but long-term virological responses are rare. Insights into the receptor-mediated entry of HDV, and the observation that HDV assembly requires farnesyltransferase, have enabled novel therapeutic strategies to be developed. Interference with entry, for example through blockade of the HBV-HDV-specific receptor sodium/taurocholate cotransporting polypeptide NTCP by Myrcludex B, and inhibition of assembly by blockade of farnesyltransferase using lonafarnib or nucleic acid polymers such as REP 2139-Ca, have shown promising results in phase II studies. In this Review, we summarize our knowledge of HDV epidemiology, pathogenesis and molecular biology, with a particular emphasis on possible future developments.
Collapse
Affiliation(s)
- Florian A Lempp
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg Partner Site, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg Partner Site, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Sureau C, Negro F. The hepatitis delta virus: Replication and pathogenesis. J Hepatol 2016; 64:S102-S116. [PMID: 27084031 DOI: 10.1016/j.jhep.2016.02.013] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/01/2016] [Accepted: 02/10/2016] [Indexed: 02/06/2023]
Abstract
Hepatitis delta virus (HDV) is a defective virus and a satellite of the hepatitis B virus (HBV). Its RNA genome is unique among animal viruses, but it shares common features with some plant viroids, including a replication mechanism that uses a host RNA polymerase. In infected cells, HDV genome replication and formation of a nucleocapsid-like ribonucleoprotein (RNP) are independent of HBV. But the RNP cannot exit, and therefore propagate, in the absence of HBV, as the latter supplies the propagation mechanism, from coating the HDV RNP with the HBV envelope proteins for cell egress to delivery of the HDV virions to the human hepatocyte target. HDV is therefore an obligate satellite of HBV; it infects humans either concomitantly with HBV or after HBV infection. HDV affects an estimated 15 to 20 million individuals worldwide, and the clinical significance of HDV infection is more severe forms of viral hepatitis--acute or chronic--, and a higher risk of developing cirrhosis and hepatocellular carcinoma in comparison to HBV monoinfection. This review covers molecular aspects of HDV replication cycle, including its interaction with the helper HBV and the pathogenesis of infection in humans.
Collapse
Affiliation(s)
- Camille Sureau
- Molecular Virology laboratory, Institut National de la Transfusion Sanguine (INTS), CNRS INSERM U1134, Paris, France.
| | - Francesco Negro
- Division of Gastroenterology and Hepatology, University Hospitals, Geneva, Switzerland; Division of Clinical Pathology, University Hospitals, Geneva, Switzerland.
| |
Collapse
|
21
|
Flores R, Owens RA, Taylor J. Pathogenesis by subviral agents: viroids and hepatitis delta virus. Curr Opin Virol 2016; 17:87-94. [PMID: 26897654 DOI: 10.1016/j.coviro.2016.01.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/21/2016] [Accepted: 01/29/2016] [Indexed: 12/18/2022]
Abstract
The viroids of plants are the simplest known infectious genetic elements. They have RNA genomes of up to 400 nucleotides in length and no protein encoding capacity. Hepatitis delta virus (HDV), an infectious agent found only in humans co-infected with hepatitis B virus (HBV), is just slightly more complex, with an RNA genome of about 1700 nucleotides, and the ability to express just one small protein. Viroid and HDV RNAs share several features that include circular structure, compact folding, and replication via a rolling-circle mechanism. Both agents were detected because of their obvious pathogenic effects. Their simplicity demands a greater need than conventional RNA or DNA viruses to redirect host components for facilitating their infectious cycle, a need that directly and indirectly incites pathogenic effects. The mechanisms by which these pathogenic effects are produced are the topic of this review. In this context, RNA silencing mediates certain aspects of viroid pathogenesis.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Valencia 46022, Spain.
| | - Robert A Owens
- Molecular Plant Pathology Laboratory, USDA-ARS, Beltsville, MD 20705, USA.
| | - John Taylor
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
22
|
Cunha C, Tavanez JP, Gudima S. Hepatitis delta virus: A fascinating and neglected pathogen. World J Virol 2015; 4:313-322. [PMID: 26568914 PMCID: PMC4641224 DOI: 10.5501/wjv.v4.i4.313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/21/2015] [Accepted: 10/27/2015] [Indexed: 02/05/2023] Open
Abstract
Hepatitis delta virus (HDV) is the etiologic agent of the most severe form of virus hepatitis in humans. Sharing some structural and functional properties with plant viroids, the HDV RNA contains a single open reading frame coding for the only virus protein, the Delta antigen. A number of unique features, including ribozyme activity, RNA editing, rolling-circle RNA replication, and redirection for a RNA template of host DNA-dependent RNA polymerase II, make this small pathogen an excellent model to study virus-cell interactions and RNA biology. Treatment options for chronic hepatitis Delta are scarce and ineffective. The disease burden is perhaps largely underestimated making the search for new, specific drugs, targets, and treatment strategies an important public health challenge. In this review we address the main features of virus structure, replication, and interaction with the host. Virus pathogenicity and current treatment options are discussed in the light of recent developments.
Collapse
|
23
|
Abstract
This work reviews specific related aspects of hepatitis delta virus (HDV) reproduction, including virion structure, the RNA genome, the mode of genome replication, the delta antigens, and the assembly of HDV using the envelope proteins of its helper virus, hepatitis B virus (HBV). These topics are considered with perspectives ranging from a history of discovery through to still-unsolved problems. HDV evolution, virus entry, and associated pathogenic potential and treatment of infections are considered in other articles in this collection.
Collapse
Affiliation(s)
- John M Taylor
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| |
Collapse
|
24
|
Alfaiate D, Dény P, Durantel D. Hepatitis delta virus: From biological and medical aspects to current and investigational therapeutic options. Antiviral Res 2015; 122:112-29. [PMID: 26275800 DOI: 10.1016/j.antiviral.2015.08.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022]
|
25
|
Aldabe R, Suárez-Amarán L, Usai C, González-Aseguinolaza G. Animal models of chronic hepatitis delta virus infection host-virus immunologic interactions. Pathogens 2015; 4:46-65. [PMID: 25686091 PMCID: PMC4384072 DOI: 10.3390/pathogens4010046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/05/2015] [Indexed: 02/08/2023] Open
Abstract
Hepatitis delta virus (HDV) is a defective RNA virus that has an absolute requirement for a virus belonging to the hepadnaviridae family like hepatitis B virus (HBV) for its replication and formation of new virions. HDV infection is usually associated with a worsening of HBV-induced liver pathogenesis, which leads to more frequent cirrhosis, increased risk of hepatocellular carcinoma (HCC), and fulminant hepatitis. Importantly, no selective therapies are available for HDV infection. The mainstay of treatment for HDV infection is pegylated interferon alpha; however, response rates to this therapy are poor. A better knowledge of HDV–host cell interaction will help with the identification of novel therapeutic targets, which are urgently needed. Animal models like hepadnavirus-infected chimpanzees or the eastern woodchuck have been of great value for the characterization of HDV chronic infection. Recently, more practical animal models in which to perform a deeper study of host virus interactions and to evaluate new therapeutic strategies have been developed. Therefore, the main focus of this review is to discuss the current knowledge about HDV host interactions obtained from cell culture and animal models.
Collapse
Affiliation(s)
- Rafael Aldabe
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra (UNAV), Pamplona 31008, Spain.
| | - Lester Suárez-Amarán
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra (UNAV), Pamplona 31008, Spain
| | - Carla Usai
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra (UNAV), Pamplona 31008, Spain.
| | - Gloria González-Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra (UNAV), Pamplona 31008, Spain.
| |
Collapse
|
26
|
Popow J, Jurkin J, Schleiffer A, Martinez J. Analysis of orthologous groups reveals archease and DDX1 as tRNA splicing factors. Nature 2014; 511:104-7. [PMID: 24870230 DOI: 10.1038/nature13284] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/27/2014] [Indexed: 12/29/2022]
Abstract
RNA ligases have essential roles in many cellular processes in eukaryotes, archaea and bacteria, including in RNA repair and stress-induced splicing of messenger RNA. In archaea and eukaryotes, RNA ligases also have a role in transfer RNA splicing to generate functional tRNAs required for protein synthesis. We recently identified the human tRNA splicing ligase, a multimeric protein complex with RTCB (also known as HSPC117, C22orf28, FAAP and D10Wsu52e) as the essential subunit. The functions of the additional complex components ASW (also known as C2orf49), CGI-99 (also known as C14orf166), FAM98B and the DEAD-box helicase DDX1 in the context of RNA ligation have remained unclear. Taking advantage of clusters of eukaryotic orthologous groups, here we find that archease (ARCH; also known as ZBTB8OS), a protein of unknown function, is required for full activity of the human tRNA ligase complex and, in cooperation with DDX1, facilitates the formation of an RTCB-guanylate intermediate central to mammalian RNA ligation. Our findings define a role for DDX1 in the context of the human tRNA ligase complex and suggest that the widespread co-occurrence of archease and RtcB proteins implies evolutionary conservation of their functional interplay.
Collapse
Affiliation(s)
- Johannes Popow
- 1] Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030 Vienna, Austria [2] European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Jennifer Jurkin
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030 Vienna, Austria
| | - Alexander Schleiffer
- IMP/IMBA Bioinformatics Core Facility, Research Institute of Molecular Pathology (IMP), A-1030 Vienna, Austria
| | - Javier Martinez
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030 Vienna, Austria
| |
Collapse
|
27
|
Taylor JM. Host RNA circles and the origin of hepatitis delta virus. World J Gastroenterol 2014; 20:2971-2978. [PMID: 24659888 PMCID: PMC3961984 DOI: 10.3748/wjg.v20.i11.2971] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/20/2013] [Accepted: 02/20/2014] [Indexed: 02/06/2023] Open
Abstract
Recent reports show that many cellular RNAs are processed to form circular species that are relatively abundant and resistant to host nucleases. In some cases, such circles actually bind host microRNAs. Such depletion of available microRNAs appears to have biological roles; for instance, in homeostasis and disease. These findings regarding host RNA circles support a speculative reappraisal of the origin and mode of replication of hepatitis delta virus, hepatitis delta virus (HDV), an agent with a small circular RNA genome; specifically, it is proposed that in hepatocytes infected with hepatitis B virus (HBV), some viral RNA species are processed to circular forms, which by a series of chance events lead to an RNA that can be both replicated by host enzymes and assembled, using HBV envelope proteins, to form particles some of which are infectious. Such a model also may provide some new insights into the potential pathogenic potential of HDV infections. In return, new insights into HDV might provide information leading to a better understanding of the roles of the host RNA circles.
Collapse
|
28
|
Hepatitis delta virus: a peculiar virus. Adv Virol 2013; 2013:560105. [PMID: 24198831 PMCID: PMC3807834 DOI: 10.1155/2013/560105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/29/2013] [Accepted: 08/29/2013] [Indexed: 02/07/2023] Open
Abstract
The hepatitis delta virus (HDV) is distributed worldwide and related to the most severe form of viral hepatitis. HDV is a satellite RNA virus dependent on hepatitis B surface antigens to assemble its envelope and thus form new virions and propagate infection. HDV has a small 1.7 Kb genome making it the smallest known human virus. This deceivingly simple virus has unique biological features and many aspects of its life cycle remain elusive. The present review endeavors to gather the available information on HDV epidemiology and clinical features as well as HDV biology.
Collapse
|
29
|
Arginine-rich motifs are not required for hepatitis delta virus RNA binding activity of the hepatitis delta antigen. J Virol 2013; 87:8665-74. [PMID: 23740973 DOI: 10.1128/jvi.00929-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) replication and packaging require interactions between the unbranched rodlike structure of HDV RNA and hepatitis delta antigen (HDAg), a basic, disordered, oligomeric protein. The tendency of the protein to bind nonspecifically to nucleic acids has impeded analysis of HDV RNA protein complexes and conclusive determination of the regions of HDAg involved in RNA binding. The most widely cited model suggests that RNA binding involves two proposed arginine-rich motifs (ARMs I and II) in the middle of HDAg. However, other studies have questioned the roles of the ARMs. Here, binding activity was analyzed in vitro using HDAg-160, a C-terminal truncation that binds with high affinity and specificity to HDV RNA segments in vitro. Mutation of the core arginines of ARM I or ARM II in HDAg-160 did not diminish binding to HDV unbranched rodlike RNA. These same mutations did not abolish the ability of full-length HDAg to inhibit HDV RNA editing in cells, an activity that involves RNA binding. Moreover, only the N-terminal region of the protein, which does not contain the ARMs, was cross-linked to a bound HDV RNA segment in vitro. These results indicate that the amino-terminal region of HDAg is in close contact with the RNA and that the proposed ARMs are not required for binding HDV RNA. Binding was not reduced by mutation of additional clusters of basic amino acids. This result is consistent with an RNA-protein complex that is formed via numerous contacts between the RNA and each HDAg monomer.
Collapse
|
30
|
Sasvari Z, Kovalev N, Nagy PD. The GEF1 proton-chloride exchanger affects tombusvirus replication via regulation of copper metabolism in yeast. J Virol 2013; 87:1800-10. [PMID: 23192874 PMCID: PMC3554144 DOI: 10.1128/jvi.02003-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/19/2012] [Indexed: 11/20/2022] Open
Abstract
Replication of plus-strand RNA viruses [(+)RNA viruses] is performed by viral replicases, whose function is affected by many cellular factors in infected cells. In this paper, we demonstrate a surprising role for Gef1p proton-chloride exchanger in replication of Tomato bushy stunt virus (TBSV) model (+)RNA virus. A genetic approach revealed that Gef1p, which is the only proton-chloride exchanger in Saccharomyces cerevisiae, is required for TBSV replication in the yeast model host. We also show that the in vitro activity of the purified tombusvirus replicase from gef1Δ yeast was low and that the in vitro assembly of the viral replicase in a cell extract was inhibited by the cytosolic fraction obtained from gef1Δ yeast. Altogether, our data reveal that Gef1p modulates TBSV replication via regulating Cu(2+) metabolism in the cell. This conclusion is supported by several lines of evidence, including the direct inhibitory effect of Cu(2+) ions on the in vitro assembly of the viral replicase, on the activity of the viral RNA-dependent RNA polymerase, and an inhibitory effect of deletion of CCC2 copper pump on TBSV replication in yeast, while altered iron metabolism did not reduce TBSV replication. In addition, applying a chloride channel blocker impeded TBSV replication in Nicotiana benthamiana protoplasts or in whole plants. Overall, blocking Gef1p function seems to inhibit TBSV replication through altering Cu(2+) ion metabolism in the cytosol, which then inhibits the normal functions of the viral replicase.
Collapse
Affiliation(s)
- Zsuzsanna Sasvari
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | | | | |
Collapse
|
31
|
Popow J, Schleiffer A, Martinez J. Diversity and roles of (t)RNA ligases. Cell Mol Life Sci 2012; 69:2657-70. [PMID: 22426497 PMCID: PMC3400036 DOI: 10.1007/s00018-012-0944-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/01/2012] [Accepted: 02/13/2012] [Indexed: 12/29/2022]
Abstract
The discovery of discontiguous tRNA genes triggered studies dissecting the process of tRNA splicing. As a result, we have gained detailed mechanistic knowledge on enzymatic removal of tRNA introns catalyzed by endonuclease and ligase proteins. In addition to the elucidation of tRNA processing, these studies facilitated the discovery of additional functions of RNA ligases such as RNA repair and non-conventional mRNA splicing events. Recently, the identification of a new type of RNA ligases in bacteria, archaea, and humans closed a long-standing gap in the field of tRNA processing. This review summarizes past and recent findings in the field of tRNA splicing with a focus on RNA ligation as it preferentially occurs in archaea and humans. In addition to providing an integrated view of the types and phyletic distribution of RNA ligase proteins known to date, this survey also aims at highlighting known and potential accessory biological functions of RNA ligases.
Collapse
Affiliation(s)
- Johannes Popow
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohrgasse 3, 1030 Vienna, Austria
| | | | | |
Collapse
|
32
|
Affiliation(s)
- Mark O. J. Olson
- Dept. Biochemistry, University of Mississippi Medical Center, North State St. 2500, Jackson, 39216 Mississippi USA
| |
Collapse
|
33
|
Casaca A, Fardilha M, da Cruz e Silva E, Cunha C. The heterogeneous ribonuclear protein C interacts with the hepatitis delta virus small antigen. Virol J 2011; 8:358. [PMID: 21774814 PMCID: PMC3160407 DOI: 10.1186/1743-422x-8-358] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/20/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hepatitis delta virus (HDV) is considered to be a satellite virus of the Hepatitis B virus. The genome consists of a 1679 nt ssRNA molecule in which a single ORF was identified. This ORF codes for a unique protein, the Delta antigen (HDAg). During transcription, two forms, small (S-HDAg; p24) and large (L-HDAg; p27) of this antigen are derived as a result of an editing mechanism catalyzed by cellular adenosine deaminase 1. Despite its simplicity, little is still known about the host factors that interact with the virus RNA and antigens being to modulate virus replication. METHODS A yeast two-hybrid screening of a human liver cDNA library, using the hepatitis delta virus (HDV) small antigen (S-HDAg) as bait, was performed. Blot overlay and co-immunoprecipitation assays were used in an attempt to confirm the interaction of hnRNPC and S-HDAg. siRNA knockdown assays of hnRNPC were performed to assess the effect on HDV antigen expression. RESULTS Thirty known proteins were identified as S-HDAg interactors in the yeast two-hybrid screening. One of the identified proteins, hnRNPC, was found to interact with S-HDAg in vitro and in vivo in human liver cells. The interaction of the two proteins is mediated by the C-terminal half of the S-HDAg which contains a RNA-binding domain (aa 98-195). HDV RNA, S-HDAg, and hnRNPC, were also found to co-localize in the nucleus of human liver cells. Knockdown of hnRNPC mRNA using siRNAs resulted in a marked decreased expression of HDV antigens. CONCLUSIONS S-HDAg was found to interact with human liver proteins previously assigned to different functional categories. Among those involved in nucleic acid metabolism, hnRNPC was found to interact in vitro and in vivo in human liver cells. Similar to other RNA viruses, it seems plausible that hnRNPC may also be involved in HDV replication. However, further investigation is mandatory to clarify this question.
Collapse
Affiliation(s)
- Ana Casaca
- Unidade de Microbiologia Médica, Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | | | | | | |
Collapse
|
34
|
Casaca A, Fardilha M, da Cruz E Silva E, Cunha C. In Vivo Interaction of the Hepatitis Delta Virus Small Antigen with the ELAV-Like Protein HuR. Open Virol J 2011; 5:12-21. [PMID: 21660185 PMCID: PMC3109592 DOI: 10.2174/1874357901105010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/27/2010] [Accepted: 11/04/2010] [Indexed: 01/05/2023] Open
Abstract
The small and large delta antigens (S-HDAg and L-HDAg, respectively) represent two forms of the only protein encoded by the hepatitis delta virus (HDV) RNA genome. Consequently, HDV relies, at a large extent, on the host cell machinery for replication and transcription. Until now, only a limited number of cellular proteins were identified as S-HDAg or L-HDAg partners being involved in the modulation of the virus life cycle. In an attempt to identify cellular S-HDAg-binding proteins we made use of a yeast two-hybrid approach to screen a human liver cDNA library. We were able to identify HuR, a ubiquitously expressed protein involved in RNA stabilization, as an S-HDAg partner both in vitro and in vivo. HuR was found to be overexpressed and colocalize with HDAg in human hepatoma cells. siRNA knockdown of HuR mRNA resulted in inhibition of S-HDAg and L-HDAg expression.
Collapse
Affiliation(s)
- Ana Casaca
- Unidade de Biologia Molecular, Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa. Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | | | | | | |
Collapse
|
35
|
Popow J, Englert M, Weitzer S, Schleiffer A, Mierzwa B, Mechtler K, Trowitzsch S, Will CL, Lührmann R, Söll D, Martinez J. HSPC117 is the essential subunit of a human tRNA splicing ligase complex. Science 2011; 331:760-4. [PMID: 21311021 DOI: 10.1126/science.1197847] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Splicing of mammalian precursor transfer RNA (tRNA) molecules involves two enzymatic steps. First, intron removal by the tRNA splicing endonuclease generates separate 5' and 3' exons. In animals, the second step predominantly entails direct exon ligation by an elusive RNA ligase. Using activity-guided purification of tRNA ligase from HeLa cell extracts, we identified HSPC117, a member of the UPF0027 (RtcB) family, as the essential subunit of a tRNA ligase complex. RNA interference-mediated depletion of HSPC117 inhibited maturation of intron-containing pre-tRNA both in vitro and in living cells. The high sequence conservation of HSPC117/RtcB proteins is suggestive of RNA ligase roles of this protein family in various organisms.
Collapse
Affiliation(s)
- Johannes Popow
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Hepatitis D virus (HDV) infection involves a distinct subgroup of individuals simultaneously infected with the hepatitis B virus (HBV) and characterized by an often severe chronic liver disease. HDV is a defective RNA agent needing the presence of HBV for its life cycle. HDV is present worldwide, but the distribution pattern is not uniform. Different strains are classified into eight genotypes represented in specific regions and associated with peculiar disease outcome. Two major specific patterns of infection can occur, i.e. co-infection with HDV and HBV or HDV superinfection of a chronic HBV carrier. Co-infection often leads to eradication of both agents, whereas superinfection mostly evolves to HDV chronicity. HDV-associated chronic liver disease (chronic hepatitis D) is characterized by necro-inflammation and relentless deposition of fibrosis, which may, over decades, result in the development of cirrhosis. HDV has a single-stranded, circular RNA genome. The virion is composed of an envelope, provided by the helper HBV and surrounding the RNA genome and the HDV antigen (HDAg). Replication occurs in the hepatocyte nucleus using cellular polymerases and via a rolling circle process, during which the RNA genome is copied into a full-length, complementary RNA. HDV infection can be diagnosed by the presence of antibodies directed against HDAg (anti-HD) and HDV RNA in serum. Treatment involves the administration of pegylated interferon-α and is effective in only about 20% of patients. Liver transplantation is indicated in case of liver failure.
Collapse
Affiliation(s)
- Stéphanie Pascarella
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
37
|
Alves C, Cheng H, Roder H, Taylor J. Intrinsic disorder and oligomerization of the hepatitis delta virus antigen. Virology 2010; 407:333-40. [PMID: 20855099 PMCID: PMC2952689 DOI: 10.1016/j.virol.2010.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 08/19/2010] [Accepted: 08/19/2010] [Indexed: 12/11/2022]
Abstract
The 195 amino acid basic protein (δAg) of hepatitis delta virus (HDV) is essential for replication of the HDV RNA genome. Numerous properties have been mapped to full-length δAg and attempts made to link these to secondary, tertiary and quaternary structures. Here, for the full-size δAg, extensive intrinsic disorder was predicted using PONDR-FIT, a meta-predictor of intrinsic disorder, and evidenced by circular dichroism measurements. Most δAg amino acids are in disordered configurations with no more than 30% adopting an α-helical structure. In addition, dynamic light scattering studies indicated that purified δAg assembled into structures of as large as dodecamers. Cross-linking followed by denaturing polyacrylamide gel electrophoresis revealed hexamers to octamers for this purified δAg and at least this size for δAg found in virus-like particles. Oligomers of purified δAg were resistant to elevated NaCl and urea concentrations, and bound without specificity to RNA and single- and double-stranded DNAs.
Collapse
|
38
|
Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ, Kay MA. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA (NEW YORK, N.Y.) 2010; 16:673-95. [PMID: 20181738 PMCID: PMC2844617 DOI: 10.1261/rna.2000810] [Citation(s) in RCA: 553] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 12/22/2009] [Indexed: 05/19/2023]
Abstract
Competition between mammalian RNAi-related gene silencing pathways is well documented. It is therefore important to identify all classes of small RNAs to determine their relationship with RNAi and how they affect each other functionally. Here, we identify two types of 5'-phosphate, 3'-hydroxylated human tRNA-derived small RNAs (tsRNAs). tsRNAs differ from microRNAs in being essentially restricted to the cytoplasm and in associating with Argonaute proteins, but not MOV10. The first type belongs to a previously predicted Dicer-dependent class of small RNAs that we find can modestly down-regulate target genes in trans. The 5' end of type II tsRNA was generated by RNaseZ cleavage downstream from a tRNA gene, while the 3' end resulted from transcription termination by RNA polymerase III. Consistent with their preferential association with the nonslicing Argonautes 3 and 4, canonical gene silencing activity was not observed for type II tsRNAs. The addition, however, of an oligonucleotide that was sense to the reporter gene, but antisense to an overexpressed version of the type II tsRNA, triggered robust, >80% gene silencing. This correlated with the redirection of the thus reconstituted fully duplexed double-stranded RNA into Argonaute 2, whereas Argonautes 3 and 4 were skewed toward less structured small RNAs, particularly single-strand RNAs. We observed that the modulation of tsRNA levels had minor effects on the abundance of microRNAs, but more pronounced changes in the silencing activities of both microRNAs and siRNAs. These findings support that tsRNAs are involved in the global control of small RNA silencing through differential Argonaute association, suggesting that small RNA-mediated gene regulation may be even more finely regulated than previously realized.
Collapse
Affiliation(s)
- Dirk Haussecker
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
39
|
Interaction of host cellular proteins with components of the hepatitis delta virus. Viruses 2010; 2:189-212. [PMID: 21994607 PMCID: PMC3185554 DOI: 10.3390/v2010189] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 01/13/2010] [Accepted: 01/14/2010] [Indexed: 12/18/2022] Open
Abstract
The hepatitis delta virus (HDV) is the smallest known RNA pathogen capable of propagation in the human host and causes substantial global morbidity and mortality. Due to its small size and limited protein coding capacity, HDV is exquisitely reliant upon host cellular proteins to facilitate its transcription and replication. Remarkably, HDV does not encode an RNA-dependent RNA polymerase which is traditionally required to catalyze RNA-templated RNA synthesis. Furthermore, HDV lacks enzymes responsible for post-transcriptional and -translational modification, processes which are integral to the HDV life cycle. This review summarizes the known HDV-interacting proteins and discusses their significance in HDV biology.
Collapse
|