1
|
Abstract
Recent events have pushed RNA research into the spotlight. Continued discoveries of RNA with unexpected diverse functions in healthy and diseased cells, such as the role of RNA as both the source and countermeasure to a severe acute respiratory syndrome coronavirus 2 infection, are igniting a new passion for understanding this functionally and structurally versatile molecule. Although RNA structure is key to function, many foundational characteristics of RNA structure are misunderstood, and the default state of RNA is often thought of and depicted as a single floppy strand. The purpose of this perspective is to help adjust mental models, equipping the community to better use the fundamental aspects of RNA structural information in new mechanistic models, enhance experimental design to test these models, and refine data interpretation. We discuss six core observations focused on the inherent nature of RNA structure and how to incorporate these characteristics to better understand RNA structure. We also offer some ideas for future efforts to make validated RNA structural information available and readily used by all researchers.
Collapse
Affiliation(s)
- Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO 80045
| | - Jeffrey S. Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO 80045
| |
Collapse
|
2
|
Marušič M, Schlagnitweit J, Petzold K. RNA Dynamics by NMR Spectroscopy. Chembiochem 2019; 20:2685-2710. [PMID: 30997719 PMCID: PMC6899578 DOI: 10.1002/cbic.201900072] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/12/2019] [Indexed: 12/22/2022]
Abstract
An ever-increasing number of functional RNAs require a mechanistic understanding. RNA function relies on changes in its structure, so-called dynamics. To reveal dynamic processes and higher energy structures, new NMR methods have been developed to elucidate these dynamics in RNA with atomic resolution. In this Review, we provide an introduction to dynamics novices and an overview of methods that access most dynamic timescales, from picoseconds to hours. Examples are provided as well as insight into theory, data acquisition and analysis for these different methods. Using this broad spectrum of methodology, unprecedented detail and invisible structures have been obtained and are reviewed here. RNA, though often more complicated and therefore neglected, also provides a great system to study structural changes, as these RNA structural changes are more easily defined-Lego like-than in proteins, hence the numerous revelations of RNA excited states.
Collapse
Affiliation(s)
- Maja Marušič
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetSolnavägen 917177StockholmSweden
| | - Judith Schlagnitweit
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetSolnavägen 917177StockholmSweden
| | - Katja Petzold
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetSolnavägen 917177StockholmSweden
| |
Collapse
|
3
|
Egan AJF, Maya-Martinez R, Ayala I, Bougault CM, Banzhaf M, Breukink E, Vollmer W, Simorre JP. Induced conformational changes activate the peptidoglycan synthase PBP1B. Mol Microbiol 2018; 110:335-356. [PMID: 30044025 PMCID: PMC6220978 DOI: 10.1111/mmi.14082] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 12/25/2022]
Abstract
Bacteria surround their cytoplasmic membrane with an essential, stress‐bearing peptidoglycan (PG) layer consisting of glycan chains linked by short peptides into a mesh‐like structure. Growing and dividing cells expand their PG layer using inner‐membrane anchored PG synthases, including Penicillin‐binding proteins (PBPs), which participate in dynamic protein complexes to facilitate cell wall growth. In Escherichia coli, and presumably other Gram‐negative bacteria, growth of the mainly single layered PG is regulated by outer membrane‐anchored lipoproteins. The lipoprotein LpoB is required to activate PBP1B, which is a major, bi‐functional PG synthase with glycan chain polymerising (glycosyltransferase) and peptide cross‐linking (transpeptidase) activities. In this work we show how the binding of LpoB to the regulatory UB2H domain of PBP1B activates both activities. Binding induces structural changes in the UB2H domain, which transduce to the two catalytic domains by distinct allosteric pathways. We also show how an additional regulator protein, CpoB, is able to selectively modulate the TPase activation by LpoB without interfering with GTase activation.
Collapse
Affiliation(s)
- Alexander J F Egan
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Roberto Maya-Martinez
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71 avenue des Martyrs, 38000, Grenoble, France
| | - Isabel Ayala
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71 avenue des Martyrs, 38000, Grenoble, France
| | - Catherine M Bougault
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71 avenue des Martyrs, 38000, Grenoble, France
| | - Manuel Banzhaf
- European Molecular Biology Laboratory Heidelberg, Genome Biology Unit, Meyerhofstraße 1, 69117, Heidelberg, Germany.,Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham , B15 2TT, UK
| | - Eefjan Breukink
- Bijvoet Center for Biomolecular Research, Department of Biochemistry of Membranes, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Jean-Pierre Simorre
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71 avenue des Martyrs, 38000, Grenoble, France
| |
Collapse
|
4
|
Mouzakis KD, Dethoff EA, Tonelli M, Al-Hashimi H, Butcher SE. Dynamic motions of the HIV-1 frameshift site RNA. Biophys J 2015; 108:644-54. [PMID: 25650931 PMCID: PMC4317556 DOI: 10.1016/j.bpj.2014.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/11/2014] [Accepted: 12/05/2014] [Indexed: 12/13/2022] Open
Abstract
The HIV-1 frameshift site (FS) plays a critical role in viral replication. During translation, the HIV-1 FS transitions from a 3-helix to a 2-helix junction RNA secondary structure. The 2-helix junction structure contains a GGA bulge, and purine-rich bulges are common motifs in RNA secondary structure. Here, we investigate the dynamics of the HIV-1 FS 2-helix junction RNA. Interhelical motions were studied under different ionic conditions using NMR order tensor analysis of residual dipolar couplings. In 150 mM potassium, the RNA adopts a 43°(±4°) interhelical bend angle (β) and displays large amplitude, anisotropic interhelical motions characterized by a 0.52(±0.04) internal generalized degree of order (GDOint) and distinct order tensor asymmetries for its two helices (η = 0.26(±0.04) and 0.5(±0.1)). These motions are effectively quenched by addition of 2 mM magnesium (GDOint = 0.87(±0.06)), which promotes a near-coaxial conformation (β = 15°(±6°)) of the two helices. Base stacking in the bulge was investigated using the fluorescent purine analog 2-aminopurine. These results indicate that magnesium stabilizes extrahelical conformations of the bulge nucleotides, thereby promoting coaxial stacking of helices. These results are highly similar to previous studies of the HIV transactivation response RNA, despite a complete lack of sequence similarity between the two RNAs. Thus, the conformational space of these RNAs is largely determined by the topology of their interhelical junctions.
Collapse
Affiliation(s)
- Kathryn D Mouzakis
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Elizabeth A Dethoff
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Marco Tonelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
5
|
Torchia DA. NMR studies of dynamic biomolecular conformational ensembles. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 84-85:14-32. [PMID: 25669739 PMCID: PMC4325279 DOI: 10.1016/j.pnmrs.2014.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 05/06/2023]
Abstract
Multidimensional heteronuclear NMR approaches can provide nearly complete sequential signal assignments of isotopically enriched biomolecules. The availability of assignments together with measurements of spin relaxation rates, residual spin interactions, J-couplings and chemical shifts provides information at atomic resolution about internal dynamics on timescales ranging from ps to ms, both in solution and in the solid state. However, due to the complexity of biomolecules, it is not possible to extract a unique atomic-resolution description of biomolecular motions even from extensive NMR data when many conformations are sampled on multiple timescales. For this reason, powerful computational approaches are increasingly applied to large NMR data sets to elucidate conformational ensembles sampled by biomolecules. In the past decade, considerable attention has been directed at an important class of biomolecules that function by binding to a wide variety of target molecules. Questions of current interest are: "Does the free biomolecule sample a conformational ensemble that encompasses the conformations found when it binds to various targets; and if so, on what time scale is the ensemble sampled?" This article reviews recent efforts to answer these questions, with a focus on comparing ensembles obtained for the same biomolecules by different investigators. A detailed comparison of results obtained is provided for three biomolecules: ubiquitin, calmodulin and the HIV-1 trans-activation response RNA.
Collapse
Affiliation(s)
- Dennis A Torchia
- National Institutes of Health (NIH), 5 Memorial Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Eichhorn CD, Al-Hashimi HM. Structural dynamics of a single-stranded RNA-helix junction using NMR. RNA (NEW YORK, N.Y.) 2014; 20:782-91. [PMID: 24742933 PMCID: PMC4024633 DOI: 10.1261/rna.043711.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Many regulatory RNAs contain long single strands (ssRNA) that adjoin secondary structural elements. Here, we use NMR spectroscopy to study the dynamic properties of a 12-nucleotide (nt) ssRNA tail derived from the prequeuosine riboswitch linked to the 3' end of a 48-nt hairpin. Analysis of chemical shifts, NOE connectivity, (13)C spin relaxation, and residual dipolar coupling data suggests that the first two residues (A25 and U26) in the ssRNA tail stack onto the adjacent helix and assume an ordered conformation. The following U26-A27 step marks the beginning of an A6-tract and forms an acute pivot point for substantial motions within the tail, which increase toward the terminal end. Despite substantial internal motions, the ssRNA tail adopts, on average, an A-form helical conformation that is coaxial with the helix. Our results reveal a surprising degree of structural and dynamic complexity at the ssRNA-helix junction, which involves a fine balance between order and disorder that may facilitate efficient pseudoknot formation on ligand recognition.
Collapse
Affiliation(s)
- Catherine D. Eichhorn
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
- Corresponding authorE-mail
| |
Collapse
|
7
|
Konrat R. NMR contributions to structural dynamics studies of intrinsically disordered proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 241:74-85. [PMID: 24656082 PMCID: PMC3985426 DOI: 10.1016/j.jmr.2013.11.011] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/13/2013] [Accepted: 11/18/2013] [Indexed: 05/04/2023]
Abstract
Intrinsically disordered proteins (IDPs) are characterized by substantial conformational plasticity. Given their inherent structural flexibility X-ray crystallography is not applicable to study these proteins. In contrast, NMR spectroscopy offers unique opportunities for structural and dynamic studies of IDPs. The past two decades have witnessed significant development of NMR spectroscopy that couples advances in spin physics and chemistry with a broad range of applications. This article will summarize key advances in basic physical-chemistry and NMR methodology, outline their limitations and envision future R&D directions.
Collapse
Affiliation(s)
- Robert Konrat
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria.
| |
Collapse
|
8
|
Emani PS, Bardaro MF, Huang W, Aragon S, Varani G, Drobny GP. Elucidating molecular motion through structural and dynamic filters of energy-minimized conformer ensembles. J Phys Chem B 2014; 118:1726-42. [PMID: 24479561 PMCID: PMC3983377 DOI: 10.1021/jp409386t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Complex RNA structures are constructed
from helical segments connected
by flexible loops that move spontaneously and in response to binding
of small molecule ligands and proteins. Understanding the conformational
variability of RNA requires the characterization of the coupled time
evolution of interconnected flexible domains. To elucidate the collective
molecular motions and explore the conformational landscape of the
HIV-1 TAR RNA, we describe a new methodology that utilizes energy-minimized
structures generated by the program “Fragment Assembly of RNA
with Full-Atom Refinement (FARFAR)”. We apply structural filters
in the form of experimental residual dipolar couplings (RDCs) to select
a subset of discrete energy-minimized conformers and carry out principal
component analyses (PCA) to corroborate the choice of the filtered
subset. We use this subset of structures to calculate solution T1 and T1ρ relaxation times for 13C spins in multiple residues in different domains of the molecule
using two simulation protocols that we previously published. We match
the experimental T1 times to within 2% and the T1ρ times to within less than 10% for helical residues. These results
introduce a protocol to construct viable dynamic trajectories for
RNA molecules that accord well with experimental NMR data and support
the notion that the motions of the helical portions of this small
RNA can be described by a relatively small number of discrete conformations
exchanging over time scales longer than 1 μs.
Collapse
Affiliation(s)
- Prashant S Emani
- Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | | | | | | | | | | |
Collapse
|
9
|
Wunderlich C, Huber RG, Spitzer R, Liedl KR, Kloiber K, Kreutz C. A novel paramagnetic relaxation enhancement tag for nucleic acids: a tool to study structure and dynamics of RNA. ACS Chem Biol 2013; 8:2697-706. [PMID: 24053726 PMCID: PMC3870906 DOI: 10.1021/cb400589q] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/20/2013] [Indexed: 01/10/2023]
Abstract
In this work, we present a novel 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) radical phosphoramidite building block, which can be attached to the 5'-terminus of nucleic acids. To investigate the paramagnetic relaxation enhancement (PRE) emanating from this radical center, we incorporated the TEMPO label into various types of RNAs. We measured proton PREs for selectively (13)C-isotope labeled nucleotides to derive long-range distance restraints in a short 15 nucleotide stem-loop model system, underscoring the potential of the 5'-TEMPO tag to determine long-range distance restraints for solution structure determination. We subsequently applied the distance-dependent relaxation enhancement induced by the nitroxide radical to discern two folding states in a bistable RNA. Finally, we investigated the fast conformational sampling of the HIV-1 TAR RNA, a paradigm for structural flexibility in nucleic acids. With PRE NMR in combination with molecular dynamics simulations, the structural plasticity of this RNA was analyzed in the absence and presence of the ligand L-argininamide.
Collapse
Affiliation(s)
- Christoph
H. Wunderlich
- Institute
of Organic Chemistry and Center for Molecular Biosciences Innsbruck
(CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Roland G. Huber
- Institute
of General, Inorganic and Theoretical Chemistry and Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, Innrain
80/82, 6020 Innsbruck, Austria
| | - Romana Spitzer
- Institute
of Organic Chemistry and Center for Molecular Biosciences Innsbruck
(CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Institute
of General, Inorganic and Theoretical Chemistry and Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, Innrain
80/82, 6020 Innsbruck, Austria
| | - Karin Kloiber
- Institute
of Organic Chemistry and Center for Molecular Biosciences Innsbruck
(CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute
of Organic Chemistry and Center for Molecular Biosciences Innsbruck
(CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
10
|
NMR spectroscopy on domain dynamics in biomacromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 112:58-117. [DOI: 10.1016/j.pbiomolbio.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
|
11
|
Dürr UN, Gildenberg M, Ramamoorthy A. The magic of bicelles lights up membrane protein structure. Chem Rev 2012; 112:6054-74. [PMID: 22920148 PMCID: PMC3497859 DOI: 10.1021/cr300061w] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Indexed: 12/12/2022]
Affiliation(s)
| | - Melissa Gildenberg
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055,
United States
| | - Ayyalusamy Ramamoorthy
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055,
United States
| |
Collapse
|
12
|
Sun Y, Zhang Z, Grigoryants VM, Myers WK, Liu F, Earle KA, Freed JH, Scholes CP. The internal dynamics of mini c TAR DNA probed by electron paramagnetic resonance of nitroxide spin-labels at the lower stem, the loop, and the bulge. Biochemistry 2012; 51:8530-41. [PMID: 23009298 DOI: 10.1021/bi301058q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Electron paramagnetic resonance (EPR) at 236.6 and 9.5 GHz probed the tumbling of nitroxide spin probes in the lower stem, in the upper loop, and near the bulge of mini c TAR DNA. High-frequency 236.6 GHz EPR, not previously applied to spin-labeled oligonucleotides, was notably sensitive to fast, anisotropic, hindered local rotational motion of the spin probe, occurring approximately about the NO nitroxide axis. Labels attached to the 2'-aminocytidine sugar in the mini c TAR DNA showed such anisotropic motion, which was faster in the lower stem, a region previously thought to be partially melted. More flexible labels attached to phosphorothioates at the end of the lower stem tumbled isotropically in mini c TAR DNA, mini TAR RNA, and ψ(3) RNA, but at 5 °C, the motion became more anisotropic for the labeled RNAs, implying more order within the RNA lower stems. As observed by 9.5 GHz EPR, the slowing of nanosecond motions of large segments of the oligonucleotide was enhanced by increasing the ratio of the nucleocapsid protein NCp7 to mini c TAR DNA from 0 to 2. The slowing was most significant at labels in the loop and near the bulge. At a 4:1 ratio of NCp7 to mini c TAR DNA, all labels reported tumbling times of >5 ns, indicating a condensation of NCp7 and TAR DNA. At the 4:1 ratio, pulse dipolar EPR spectroscopy of bilabels attached near the 3' and 5' termini showed evidence of an NCp7-induced increase in the 3'-5' end-to-end distance distribution and a partially melted stem.
Collapse
Affiliation(s)
- Yan Sun
- Department of Chemistry, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Mapping the Transition State for DNA Bending by IHF. J Mol Biol 2012; 418:300-15. [DOI: 10.1016/j.jmb.2012.02.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 02/14/2012] [Accepted: 02/17/2012] [Indexed: 01/01/2023]
|
14
|
Chen B, Zuo X, Wang YX, Dayie TK. Multiple conformations of SAM-II riboswitch detected with SAXS and NMR spectroscopy. Nucleic Acids Res 2012; 40:3117-30. [PMID: 22139931 PMCID: PMC3326309 DOI: 10.1093/nar/gkr1154] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 11/30/2022] Open
Abstract
Riboswitches are a newly discovered large family of structured functional RNA elements that specifically bind small molecule targets out of a myriad of cellular metabolites to modulate gene expression. Structural studies of ligand-bound riboswitches by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy have provided insights into detailed RNA-ligand recognition and interactions. However, the structures of ligand-free riboswitches remain poorly characterized. In this study, we have used a variety of biochemical, biophysical and computational techniques including small-angle X-ray scattering and NMR spectroscopy to characterize the ligand-free and ligand-bound forms of SAM-II riboswitch. Our data demonstrate that the RNA adopts multiple conformations along its folding pathway and suggest that the RNA undergoes marked conformational changes upon Mg(2+) compaction and S-adenosylmethionine (SAM) metabolite binding. Further studies indicated that Mg(2+) ion is not essential for the ligand binding but can stabilize the complex by facilitating loop/stem interactions. In the presence of millimolar concentration of Mg(2+) ion, the RNA samples a more compact conformation. This conformation is near to, but distinct from, the native fold and competent to bind the metabolite. We conclude that the formation of various secondary and tertiary structural elements, including a pseudoknot, occur to sequester the putative Shine-Dalgarno sequence of the RNA only after metabolite binding.
Collapse
Affiliation(s)
- Bin Chen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 and Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Xiaobing Zuo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 and Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 and Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - T. Kwaku Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 and Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
15
|
Boehr DD. Promiscuity in protein-RNA interactions: conformational ensembles facilitate molecular recognition in the spliceosome: conformational diversity in U2AF⁶⁵ facilitates binding to diverse RNA sequences. Bioessays 2011; 34:174-80. [PMID: 22144099 DOI: 10.1002/bies.201100152] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Here I discuss findings that suggest a universal mechanism for proteins (and RNA) to recognize and interact with various binding partners by selectively binding to different conformations that pre-exist in the free protein's conformational ensemble. The tandem RNA recognition motif domains of splicing factor U2AF⁶⁵ fluctuate in solution between a predominately closed conformation in which the RNA binding site of one of the domains is blocked, and a lowly populated open conformation in which both RNA binding pockets are accessible. RNA binding to U2AF⁶⁵ may thus occur through the weakly populated open conformation, and the binding interaction stabilizes the open conformation. The conformational diversity observed in U2AF⁶⁵ might also facilitate binding to diverse RNA sequences as found in the polypyrimidine tracts that help define 3' splice sites. Similar binding pathways in other systems have important consequences in biological regulation, molecular evolution, and information storage.
Collapse
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, 240 Chemistry Building, University Park, PA, USA.
| |
Collapse
|
16
|
Emani PS, Olsen GL, Varani G, Drobny GP. Theory of nonrigid rotational motion applied to NMR relaxation in RNA. J Phys Chem A 2011; 115:12055-69. [PMID: 21870804 PMCID: PMC3626457 DOI: 10.1021/jp204499x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Solution NMR spectroscopy can elucidate many features of the structure and dynamics of macromolecules, yet relaxation measurements, the most common source of experimental information on dynamics, can sample only certain ranges of dynamic rates. A complete characterization of motion of a macromolecule thus requires the introduction of complementary experimental approaches. Solid-state NMR spectroscopy successfully probes the time scale of nanoseconds to microseconds, a dynamic window where solution NMR results have been deficient, and probes conditions where the averaging effects of rotational diffusion of the molecule are absent. Combining the results of the two distinct techniques within a single framework provides greater insight into dynamics, but this task requires the common interpretation of results recorded under very different experimental conditions. Herein, we provide a unified description of dynamics that is robust to the presence of large-scale conformational exchange, where the diffusion tensor of the molecule varies on a time scale comparable to rotational diffusion in solution. We apply this methodology to the HIV-1 TAR RNA molecule, where conformational rearrangements are both substantial and functionally important. The formalism described herein is of greater generality than earlier combined solid-state/solution NMR interpretations, if detailed molecular structures are available, and can offer a more complete description of RNA dynamics than either solution or solid-state NMR spectroscopy alone.
Collapse
Affiliation(s)
- Prashant S. Emani
- Department of Physics, University of Washington, Box 351560, Seattle, USA 98195
| | - Gregory L. Olsen
- Department of Chemistry, University of Washington, Box 351700, Seattle, USA 98195
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Box 351700, Seattle, USA 98195
- Department of Biochemistry, University of Washington, Box 357350, Seattle, USA 98195
| | - Gary P. Drobny
- Department of Chemistry, University of Washington, Box 351700, Seattle, USA 98195
- Department of Physics, University of Washington, Box 351560, Seattle, USA 98195
| |
Collapse
|
17
|
Eichhorn CD, Feng J, Suddala KC, Walter NG, Brooks CL, Al-Hashimi HM. Unraveling the structural complexity in a single-stranded RNA tail: implications for efficient ligand binding in the prequeuosine riboswitch. Nucleic Acids Res 2011; 40:1345-55. [PMID: 22009676 PMCID: PMC3273816 DOI: 10.1093/nar/gkr833] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Single-stranded RNAs (ssRNAs) are ubiquitous RNA elements that serve diverse functional roles. Much of our understanding of ssRNA conformational behavior is limited to structures in which ssRNA directly engages in tertiary interactions or is recognized by proteins. Little is known about the structural and dynamic behavior of free ssRNAs at atomic resolution. Here, we report the collaborative application of nuclear magnetic resonance (NMR) and replica exchange molecular dynamics (REMD) simulations to characterize the 12 nt ssRNA tail derived from the prequeuosine riboswitch. NMR carbon spin relaxation data and residual dipolar coupling measurements reveal a flexible yet stacked core adopting an A-form-like conformation, with the level of order decreasing toward the terminal ends. An A-to-C mutation within the polyadenine tract alters the observed dynamics consistent with the introduction of a dynamic kink. Pre-ordering of the tail may increase the efficacy of ligand binding above that achieved by a random-coil ssRNA. The REMD simulations recapitulate important trends in the NMR data, but suggest more internal motions than inferred from the NMR analysis. Our study unmasks a previously unappreciated level of complexity in ssRNA, which we believe will also serve as an excellent model system for testing and developing computational force fields.
Collapse
Affiliation(s)
- Catherine D Eichhorn
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
More than 50% of RNA secondary structure is estimated to be A-form helices, which are linked together by various junctions. Here we describe a protocol for computing three interhelical Euler angles describing the relative orientation of helices across RNA junctions. 5' and 3' helices, H1 and H2, respectively, are assigned based on the junction topology. A reference canonical helix is constructed using an appropriate molecular builder software consisting of two continuous idealized A-form helices (iH1 and iH2) with helix axis oriented along the molecular Z-direction running toward the positive direction from iH1 to iH2. The phosphate groups and the carbon and oxygen atoms of the sugars are used to superimpose helix H1 of a target interhelical junction onto the corresponding iH1 of the reference helix. A copy of iH2 is then superimposed onto the resulting H2 helix to generate iH2'. A rotation matrix R is computed, which rotates iH2' into iH2 and expresses the rotation parameters in terms of three Euler angles α(h), β(h) and γ(h). The angles are processed to resolve a twofold degeneracy and to select an overall rotation around the axis of the reference helix. The three interhelical Euler angles define clockwise rotations around the 5' (-γ(h)) and 3' (α(h)) helices and an interhelical bend angle (β(h)). The angles can be depicted graphically to provide a 'Ramachandran'-type view of RNA global structure that can be used to identify unusual conformations as well as to understand variations due to changes in sequence, junction topology and other parameters.
Collapse
|
19
|
Lu K, Heng X, Summers MF. Structural determinants and mechanism of HIV-1 genome packaging. J Mol Biol 2011; 410:609-33. [PMID: 21762803 DOI: 10.1016/j.jmb.2011.04.029] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 11/30/2022]
Abstract
Like all retroviruses, the human immunodeficiency virus selectively packages two copies of its unspliced RNA genome, both of which are utilized for strand-transfer-mediated recombination during reverse transcription-a process that enables rapid evolution under environmental and chemotherapeutic pressures. The viral RNA appears to be selected for packaging as a dimer, and there is evidence that dimerization and packaging are mechanistically coupled. Both processes are mediated by interactions between the nucleocapsid domains of a small number of assembling viral Gag polyproteins and RNA elements within the 5'-untranslated region of the genome. A number of secondary structures have been predicted for regions of the genome that are responsible for packaging, and high-resolution structures have been determined for a few small RNA fragments and protein-RNA complexes. However, major questions regarding the RNA structures (and potentially the structural changes) that are responsible for dimeric genome selection remain unanswered. Here, we review efforts that have been made to identify the molecular determinants and mechanism of human immunodeficiency virus type 1 genome packaging.
Collapse
Affiliation(s)
- Kun Lu
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
20
|
A small-molecule probe induces a conformation in HIV TAR RNA capable of binding drug-like fragments. J Mol Biol 2011; 410:984-96. [PMID: 21763501 DOI: 10.1016/j.jmb.2011.03.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/15/2011] [Accepted: 03/17/2011] [Indexed: 12/29/2022]
Abstract
The HIV-1 transactivation response (TAR) element-Tat interaction is a potentially valuable target for treating HIV infection, but efforts to develop TAR-binding antiviral drugs have not yet yielded a successful candidate for clinical development. In this work, we describe a novel approach toward screening fragments against RNA that uses a chemical probe to target the Tat-binding region of TAR. This probe fulfills two critical roles in the screen: by locking the RNA into a conformation capable of binding other fragments, it simultaneously allows the identification of proximal binding fragments by ligand-based NMR. Using this approach, we have discovered six novel TAR-binding fragments, three of which were docked relative to the probe-RNA structure using experimental NMR restraints. The consistent orientations of functional groups in our data-driven docked structures and common electrostatic properties across all fragment leads reveal a surprising level of selectivity by our fragment-sized screening hits. These models further suggest linking strategies for the development of higher-affinity lead compounds for the inhibition of the TAR-Tat interaction.
Collapse
|
21
|
Torchia DA. Dynamics of biomolecules from picoseconds to seconds at atomic resolution. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 212:1-10. [PMID: 21840740 DOI: 10.1016/j.jmr.2011.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/14/2011] [Indexed: 05/31/2023]
Abstract
Although biomolecular dynamics has been investigated using NMR for at least 40 years, only in the past 20 years have internal motions been characterized at atomic resolution throughout proteins and nucleic acids. This development was made possible by multidimensional heteronuclear NMR approaches that provide near complete sequential signal assignments of uniformly labeled biomolecules. Recent methodological advances have enabled characterization of internal dynamics on timescales ranging from picoseconds to seconds, both in solution and in the solid state. The size, complexity and functional significance of biomolecules investigated by NMR continue to grow, as do the insights that have been obtained about function. In this article I review a number of recent advances that have made such studies possible, and provide a few examples of where NMR either by itself or in combination with other approaches has paved the way to a better understanding of the complex relationship between dynamics and biomolecular function. Finally, I discuss prospects for further advances in this field.
Collapse
|
22
|
Lu J, Kadakkuzha BM, Zhao L, Fan M, Qi X, Xia T. Dynamic ensemble view of the conformational landscape of HIV-1 TAR RNA and allosteric recognition. Biochemistry 2011; 50:5042-57. [PMID: 21553929 DOI: 10.1021/bi200495d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNA conformational dynamics and the resulting structural heterogeneity play an important role in RNA functions, e.g., recognition. Recognition of HIV-1 TAR RNA has been proposed to occur via a conformational capture mechanism. Here, using ultrafast time-resolved fluorescence spectroscopy, we have probed the complexity of the conformational landscape of HIV-1 TAR RNA and monitored the position-dependent changes in the landscape upon binding of a Tat protein-derived peptide and neomycin B. In the ligand-free state, the TAR RNA samples multiple families of conformations with various degrees of base stacking around the three-nucleotide bulge region. Some subpopulations partially resemble those ligand-bound states, but the coaxially stacked state is below the detection limit. When Tat or neomycin B binds, the bulge region as an ensemble undergoes a conformational transition in a position-dependent manner. Tat and neomycin B induce mutually exclusive changes in the TAR RNA underlying the mechanism of allosteric inhibition at an ensemble level with residue-specific details. Time-resolved anisotropy decay measurements revealed picosecond motions of bases in both ligand-free and ligand-bound states. Mutation of a base pair at the bulge--stem junction has differential effects on the conformational distributions of the bulge bases. A dynamic model of the ensemble view of the conformational landscape for HIV-1 TAR RNA is proposed, and the implication of the general mechanism of RNA recognition and its impact on RNA-based therapeutics are discussed.
Collapse
Affiliation(s)
- Jia Lu
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | | | | | | | | | | |
Collapse
|
23
|
Multi-Timescale Dynamics Study of FKBP12 Along the Rapamycin–mTOR Binding Coordinate. J Mol Biol 2011; 405:378-94. [DOI: 10.1016/j.jmb.2010.10.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/12/2010] [Accepted: 10/20/2010] [Indexed: 01/11/2023]
|
24
|
Emani PS, Olsen GL, Echodu DC, Varani G, Drobny GP. Slow exchange model of nonrigid rotational motion in RNA for combined solid-state and solution NMR studies. J Phys Chem B 2010; 114:15991-6002. [PMID: 21067190 PMCID: PMC3246393 DOI: 10.1021/jp107193z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Functional RNA molecules are conformationally dynamic and sample a multitude of dynamic modes over a wide range of frequencies. Thus, a comprehensive description of RNA dynamics requires the inclusion of a broad range of motions across multiple dynamic rates which must be derived from multiple spectroscopies. Here we describe a slow conformational exchange theoretical approach to combining the description of local motions in RNA that occur in the nanosecond to microsecond window and are detected by solid-state NMR with nonrigid rotational motion of the HIV-1 transactivation response element (TAR) RNA in solution as observed by solution NMR. This theoretical model unifies the experimental results generated by solution and solid-state NMR and provides a comprehensive view of the dynamics of HIV-1 TAR RNA, a well-known paradigm of an RNA where function requires extensive conformational rearrangements. This methodology provides a quantitative atomic level view of the amplitudes and rates of the local and collective displacements of the TAR RNA molecule and provides directly motional parameters for the conformational capture hypothesis of this classical RNA-ligand interaction.
Collapse
Affiliation(s)
- Prashant S. Emani
- Department of Physics, University of Washington, Box 351560, Seattle, USA 98195
| | - Gregory L. Olsen
- Department of Chemistry, University of Washington, Box 351700, Seattle, USA 98195
| | - Dorothy C. Echodu
- Department of Chemistry, University of Washington, Box 351700, Seattle, USA 98195
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Box 351700, Seattle, USA 98195
- Department of Biochemistry, University of Washington, Box 357350, Seattle, USA 98195
| | - Gary P. Drobny
- Department of Chemistry, University of Washington, Box 351700, Seattle, USA 98195
| |
Collapse
|