1
|
Tants JN, Schlundt A. The role of structure in regulatory RNA elements. Biosci Rep 2024; 44:BSR20240139. [PMID: 39364891 PMCID: PMC11499389 DOI: 10.1042/bsr20240139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/05/2024] Open
Abstract
Regulatory RNA elements fulfill functions such as translational regulation, control of transcript levels, and regulation of viral genome replication. Trans-acting factors (i.e., RNA-binding proteins) bind the so-called cis elements and confer functionality to the complex. The specificity during protein-RNA complex (RNP) formation often exploits the structural plasticity of RNA. Functional integrity of cis-trans pairs depends on the availability of properly folded RNA elements, and RNA conformational transitions can cause diseases. Knowledge of RNA structure and the conformational space is needed for understanding complex formation and deducing functional effects. However, structure determination of RNAs under in vivo conditions remains challenging. This review provides an overview of structured eukaryotic and viral RNA cis elements and discusses the effect of RNA structural equilibria on RNP formation. We showcase implications of RNA structural changes for diseases, outline strategies for RNA structure-based drug targeting, and summarize the methodological toolbox for deciphering RNA structures.
Collapse
Affiliation(s)
- Jan-Niklas Tants
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
- University of Greifswald, Institute of Biochemistry, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| |
Collapse
|
2
|
Ferreira GR, Emond-Rheault JG, Alves L, Leprohon P, Smith MA, Papadopoulou B. Evolutionary divergent clusters of transcribed extinct truncated retroposons drive low mRNA expression and developmental regulation in the protozoan Leishmania. BMC Biol 2024; 22:249. [PMID: 39468514 PMCID: PMC11520807 DOI: 10.1186/s12915-024-02051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND The Leishmania genome harbors formerly active short interspersed degenerated retroposons (SIDERs) representing the largest family of repetitive elements among trypanosomatids. Their substantial expansion in Leishmania is a strong predictor of important biological functions. In this study, we combined multilevel bioinformatic predictions with high-throughput genomic and transcriptomic analyses to gain novel insights into the diversified roles retroposons of the SIDER2 subfamily play in Leishmania genome evolution and expression. RESULTS We show that SIDER2 retroposons form various evolutionary divergent clusters, each harboring homologous SIDER2 sequences usually located nearby in the linear sequence of chromosomes. This intriguing genomic organization underscores the importance of SIDER2 proximity in shaping chromosome dynamics and co-regulation. Accordingly, we show that transcripts belonging to the same SIDER2 cluster can display similar levels of expression. SIDER2 retroposons are mostly transcribed as part of 3'UTRs and account for 13% of the Leishmania transcriptome. Genome-wide expression profiling studies underscore SIDER2 association generally with low mRNA expression. The remarkable link of SIDER2 retroposons with downregulation of gene expression supports their co-option as major regulators of mRNA abundance. SIDER2 sequences also add to the diversification of the Leishmania gene expression repertoire since ~ 35% of SIDER2-containing transcripts can be differentially regulated throughout the parasite development, with a few encoding key virulence factors. In addition, we provide evidence for a functional bias of SIDER2-containing transcripts with protein kinase and transmembrane transporter activities being most represented. CONCLUSIONS Altogether, these findings provide important conceptual advances into evolutionary innovations of transcribed extinct retroposons acting as major RNA cis-regulators.
Collapse
Affiliation(s)
- Gabriel Reis Ferreira
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada
| | - Jean-Guillaume Emond-Rheault
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada
| | - Lysangela Alves
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- , Rua Prof. Algacyr Munhoz Mader 3775, Curitiba/PR, CIC, 81310-020, Brazil
| | - Philippe Leprohon
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada
| | - Martin A Smith
- CHU Sainte-Justine Research Centre, Montreal, QC, H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, QC, Montreal, H3T 1J4, Canada
- School of Biotechnology and Molecular Bioscience, Faculty of Science, UNSW Sydney, NSW, Sydney, 2052, Australia
| | - Barbara Papadopoulou
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada.
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada.
| |
Collapse
|
3
|
Zhu J, Cao X, Deng X. Epigenetic and transcription factors synergistically promote the high temperature response in plants. Trends Biochem Sci 2023; 48:788-800. [PMID: 37393166 DOI: 10.1016/j.tibs.2023.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/03/2023]
Abstract
Temperature is one of the main environmental cues affecting plant growth and development, and plants have evolved multiple mechanisms to sense and acclimate to high temperature. Emerging research has shown that transcription factors, epigenetic factors, and their coordination are essential for plant temperature responses and the resulting phenological adaptation. Here, we summarize recent advances in molecular and cellular mechanisms to understand how plants acclimate to high temperature and describe how plant meristems sense and integrate environmental signals. Furthermore, we lay out future directions for new technologies to reveal heterogeneous responses in different cell types thus improving plant environmental plasticity.
Collapse
Affiliation(s)
- Jiaping Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Thomas SE, Balcerowicz M, Chung BYW. RNA structure mediated thermoregulation: What can we learn from plants? FRONTIERS IN PLANT SCIENCE 2022; 13:938570. [PMID: 36092413 PMCID: PMC9450479 DOI: 10.3389/fpls.2022.938570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
RNA molecules have the capacity to form a multitude of distinct secondary and tertiary structures, but only the most energetically favorable conformations are adopted at any given time. Formation of such structures strongly depends on the environment and consequently, these structures are highly dynamic and may refold as their surroundings change. Temperature is one of the most direct physical parameters that influence RNA structure dynamics, and in turn, thermosensitive RNA structures can be harnessed by a cell to perceive and respond to its temperature environment. Indeed, many thermosensitive RNA structures with biological function have been identified in prokaryotic organisms, but for a long time such structures remained elusive in eukaryotes. Recent discoveries, however, reveal that thermosensitive RNA structures are also found in plants, where they affect RNA stability, pre-mRNA splicing and translation efficiency in a temperature-dependent manner. In this minireview, we provide a short overview of thermosensitive RNA structures in prokaryotes and eukaryotes, highlight recent advances made in identifying such structures in plants and discuss their similarities and differences to established prokaryotic RNA thermosensors.
Collapse
Affiliation(s)
- Sherine E. Thomas
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Martin Balcerowicz
- Division of Plant Sciences, The James Hutton Institute, University of Dundee, Dundee, United Kingdom
| | - Betty Y.-W. Chung
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Mukherjee M, Geeta A, Ghosh S, Prusty A, Dutta S, Sarangi AN, Behera S, Adhikary SP, Tripathy S. Genome Analysis Coupled With Transcriptomics Reveals the Reduced Fitness of a Hot Spring Cyanobacterium Mastigocladus laminosus UU774 Under Exogenous Nitrogen Supplement. Front Microbiol 2022; 13:909289. [PMID: 35847102 PMCID: PMC9284123 DOI: 10.3389/fmicb.2022.909289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The present study focuses on the stress response of a filamentous, AT-rich, heterocystous cyanobacterium Mastigocladus laminosus UU774, isolated from a hot spring, Taptapani, located in the eastern part of India. The genome of UU774 contains an indispensable fragment, scaffold_38, of unknown origin that is implicated during severe nitrogen and nutrition stress. Prolonged exposure to nitrogen compounds during starvation has profound adverse effects on UU774, leading to loss of mobility, loss of ability to fight pathogens, reduced cell division, decreased nitrogen-fixing ability, reduced ability to form biofilms, reduced photosynthetic and light-sensing ability, and reduced production of secreted effectors and chromosomal toxin genes, among others. Among genes showing extreme downregulation when grown in a medium supplemented with nitrogen with the fold change > 5 are transcriptional regulator gene WalR, carbonic anhydrases, RNA Polymerase Sigma F factor, fimbrial protein, and twitching mobility protein. The reduced expression of key enzymes involved in the uptake of phosphate and enzymes protecting oxygen-sensitive nitrogenases is significant during the presence of nitrogen. UU774 is presumed to withstand heat by overexpressing peptidases that may be degrading abnormally folded proteins produced during heat. The absence of a key gene responsible for heterocyst pattern formation, patS, and an aberrant hetN without a functional motif probably lead to the formation of a chaotic heterocyst pattern in UU774. We suggest that UU774 has diverged from Fischerella sp. PCC 9339, another hot spring species isolated in the United States.
Collapse
Affiliation(s)
- Mayuri Mukherjee
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aribam Geeta
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Samrat Ghosh
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Asharani Prusty
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subhajeet Dutta
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aditya Narayan Sarangi
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
| | - Smrutisanjita Behera
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
| | | | - Sucheta Tripathy
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Sharma A, Alajangi HK, Pisignano G, Sood V, Singh G, Barnwal RP. RNA thermometers and other regulatory elements: Diversity and importance in bacterial pathogenesis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1711. [PMID: 35037405 DOI: 10.1002/wrna.1711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 01/11/2023]
Abstract
Survival of microorganisms depends to a large extent on environmental conditions and the occupied host. By adopting specific strategies, microorganisms can thrive in the surrounding environment and, at the same time, preserve their viability. Evading the host defenses requires several mechanisms compatible with the host survival which include the production of RNA thermometers to regulate the expression of genes responsible for heat or cold shock as well as of those involved in virulence. Microorganisms have developed a variety of molecules in response to the environmental changes in temperature and even more specifically to the host they invade. Among all, RNA-based regulatory mechanisms are the most common ones, highlighting the importance of such molecules in gene expression control and novel drug development by suitable structure-based alterations. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Hema Kumari Alajangi
- Department of Biophysics, Panjab University, Chandigarh, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
7
|
Elmahallawy EK, Alkhaldi AAM. Insights into Leishmania Molecules and Their Potential Contribution to the Virulence of the Parasite. Vet Sci 2021; 8:vetsci8020033. [PMID: 33672776 PMCID: PMC7924612 DOI: 10.3390/vetsci8020033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
Neglected parasitic diseases affect millions of people worldwide, resulting in high morbidity and mortality. Among other parasitic diseases, leishmaniasis remains an important public health problem caused by the protozoa of the genus Leishmania, transmitted by the bite of the female sand fly. The disease has also been linked to tropical and subtropical regions, in addition to being an endemic disease in many areas around the world, including the Mediterranean basin and South America. Although recent years have witnessed marked advances in Leishmania-related research in various directions, many issues have yet to be elucidated. The intention of the present review is to give an overview of the major virulence factors contributing to the pathogenicity of the parasite. We aimed to provide a concise picture of the factors influencing the reaction of the parasite in its host that might help to develop novel chemotherapeutic and vaccine strategies.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
- Correspondence: (E.K.E.); (A.A.M.A.)
| | - Abdulsalam A. M. Alkhaldi
- Biology Department, College of Science, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
- Correspondence: (E.K.E.); (A.A.M.A.)
| |
Collapse
|
8
|
Kröber-Boncardo C, Lorenzen S, Brinker C, Clos J. Casein kinase 1.2 over expression restores stress resistance to Leishmania donovani HSP23 null mutants. Sci Rep 2020; 10:15969. [PMID: 32994468 PMCID: PMC7525241 DOI: 10.1038/s41598-020-72724-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/04/2020] [Indexed: 01/25/2023] Open
Abstract
Leishmania donovani is a trypanosomatidic parasite and causes the lethal kala-azar fever, a neglected tropical disease. The Trypanosomatida are devoid of transcriptional gene regulation and rely on gene copy number variations and translational control for their adaption to changing conditions. To survive at mammalian tissue temperatures, L. donovani relies on the small heat shock protein HSP23, the loss of which renders the parasites stress sensitive and impairs their proliferation. Here, we analysed a spontaneous escape mutant with wild type-like in vitro growth. Further selection of this escape strains resulted in a complete reversion of the phenotype. Whole genome sequencing revealed a correlation between stress tolerance and the massive amplification of a six-gene cluster on chromosome 35, with further analysis showing over expression of the casein kinase 1.2 gene as responsible. In vitro phosphorylation experiments established both HSP23 and the related P23 co-chaperone as substrates and modulators of casein kinase 1.2, providing evidence for another crucial link between chaperones and signal transduction protein kinases in this early branching eukaryote.
Collapse
Affiliation(s)
- Constanze Kröber-Boncardo
- Leishmania Group, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St 74, 20359, Hamburg, Germany
| | - Stephan Lorenzen
- Department of Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christine Brinker
- Leishmania Group, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St 74, 20359, Hamburg, Germany
| | - Joachim Clos
- Leishmania Group, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St 74, 20359, Hamburg, Germany.
| |
Collapse
|
9
|
Chung BYW, Balcerowicz M, Di Antonio M, Jaeger KE, Geng F, Franaszek K, Marriott P, Brierley I, Firth AE, Wigge PA. An RNA thermoswitch regulates daytime growth in Arabidopsis. NATURE PLANTS 2020; 6:522-532. [PMID: 32284544 PMCID: PMC7231574 DOI: 10.1038/s41477-020-0633-3] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/10/2020] [Indexed: 05/18/2023]
Abstract
Temperature is a major environmental cue affecting plant growth and development. Plants often experience higher temperatures in the context of a 24 h day-night cycle, with temperatures peaking in the middle of the day. Here, we find that the transcript encoding the bHLH transcription factor PIF7 undergoes a direct increase in translation in response to warmer temperature. Diurnal expression of PIF7 transcript gates this response, allowing PIF7 protein to quickly accumulate in response to warm daytime temperature. Enhanced PIF7 protein levels directly activate the thermomorphogenesis pathway by inducing the transcription of key genes such as the auxin biosynthetic gene YUCCA8, and are necessary for thermomorphogenesis to occur under warm cycling daytime temperatures. The temperature-dependent translational enhancement of PIF7 messenger RNA is mediated by the formation of an RNA hairpin within its 5' untranslated region, which adopts an alternative conformation at higher temperature, leading to increased protein synthesis. We identified similar hairpin sequences that control translation in additional transcripts including WRKY22 and the key heat shock regulator HSFA2, suggesting that this is a conserved mechanism enabling plants to respond and adapt rapidly to high temperatures.
Collapse
Affiliation(s)
- Betty Y W Chung
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | | | - Marco Di Antonio
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
| | - Katja E Jaeger
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren, Germany
| | - Feng Geng
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | | | - Poppy Marriott
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Ian Brierley
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Philip A Wigge
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren, Germany.
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
10
|
Abstract
Leishmania parasites are the causative agents of a broad spectrum of diseases. The parasites migrate between sand-fly vectors and mammalian hosts, adapting to changing environments by driving a regulated program of gene expression, with translation regulation playing a key role. The leishmanias encode six different paralogs of eIF4E, the cap-binding translation initiation factor. Since these vary in function, expression profile, and assemblage, it is assumed that each is assigned a specific role throughout the life cycle. Using the CRISPR-Cas9 system for Leishmania, we generated a null mutant of LeishIF4E1, eliminating both alleles. Although the mutant cells were viable, their morphology was altered and their ability to synthesize the flagellum was impaired. Elimination of LeishIF4E1 affected their protein expression profile and decreased their ability to infect cultured macrophages. Restoring LeishIF4E1 expression restored the affected features. This study highlights the importance of LeishIF4E1 in diverse cellular events during the life cycle of Leishmania. Leishmania parasites cycle between sand-fly vectors and mammalian hosts, adapting to changing environmental conditions by driving a stage-specific program of gene expression, which is tightly regulated by translation processes. Leishmania encodes six eIF4E orthologs (LeishIF4Es) and five eIF4G candidates, forming different cap-binding complexes with potentially varying functions. Most LeishIF4E paralogs display temperature sensitivity in their cap-binding activity, except for LeishIF4E1, which maintains its cap-binding activity under all conditions. We used the CRISPR-Cas9 system to successfully generate a null mutant of LeishIF4E1 and examine how its elimination affected parasite physiology. Although the LeishIF4E1–/– null mutant was viable, its growth was impaired, in line with a reduction in global translation. As a result of the mutation, the null LeishIF4E1–/– mutant had a defective morphology, as the cells were round and unable to grow a normal flagellum. This was further emphasized when the LeishIF4E1–/– cells failed to develop the promastigote morphology once they shifted from conditions that generate axenic amastigotes (33°C, pH 5.5) back to neutral pH and 25°C, and they maintained their short flagellum and circular structure. Finally, the LeishIF4E1–/– null mutant displayed difficulty in infecting cultured macrophages. The morphological changes and reduced infectivity of the mutant may be related to differences in the proteomic profile of LeishIF4E1–/– cells from that of controls. All defects monitored in the LeishIF4E1–/– null mutant were reversed in the add-back strain, in which expression of LeishIF4E1 was reconstituted, establishing a strong link between the cellular defects and the absence of LeishIF4E1 expression. IMPORTANCELeishmania parasites are the causative agents of a broad spectrum of diseases. The parasites migrate between sand-fly vectors and mammalian hosts, adapting to changing environments by driving a regulated program of gene expression, with translation regulation playing a key role. The leishmanias encode six different paralogs of eIF4E, the cap-binding translation initiation factor. Since these vary in function, expression profile, and assemblage, it is assumed that each is assigned a specific role throughout the life cycle. Using the CRISPR-Cas9 system for Leishmania, we generated a null mutant of LeishIF4E1, eliminating both alleles. Although the mutant cells were viable, their morphology was altered and their ability to synthesize the flagellum was impaired. Elimination of LeishIF4E1 affected their protein expression profile and decreased their ability to infect cultured macrophages. Restoring LeishIF4E1 expression restored the affected features. This study highlights the importance of LeishIF4E1 in diverse cellular events during the life cycle of Leishmania.
Collapse
|
11
|
Deletion of a Single LeishIF4E-3 Allele by the CRISPR-Cas9 System Alters Cell Morphology and Infectivity of Leishmania. mSphere 2019; 4:4/5/e00450-19. [PMID: 31484740 PMCID: PMC6731530 DOI: 10.1128/msphere.00450-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Leishmania species are the causative agents of a spectrum of diseases. Available drug treatment is toxic and expensive, with drug resistance a growing concern. Leishmania parasites migrate between transmitting sand flies and mammalian hosts, experiencing unfavorable extreme conditions. The parasites therefore developed unique mechanisms for promoting a stage-specific program for gene expression, with translation playing a central role. There are six paralogs of the cap-binding protein eIF4E, which vary in their function, expression profiles, and assemblages. Using the CRISPR-Cas9 system for Leishmania, we deleted one of the two LeishIF4E-3 alleles. Expression of LeishIF4E-3 in the deletion mutant was low, leading to reduction in global translation and growth of the mutant cells. Cell morphology also changed, affecting flagellum growth, cell shape, and infectivity. The importance of this study is in highlighting that LeishIF4E-3 is essential for completion of the parasite life cycle. Our study gives new insight into how parasite virulence is determined. The genomes of Leishmania and trypanosomes encode six paralogs of the eIF4E cap-binding protein, known in other eukaryotes to anchor the translation initiation complex. In line with the heteroxenous nature of these parasites, the different LeishIF4E paralogs vary in their biophysical features and their biological behavior. We therefore hypothesize that each has a specialized function, not limited to protein synthesis. Of the six paralogs, LeishIF4E-3 has a weak cap-binding activity. It participates in the assembly of granules that store inactive transcripts and ribosomal proteins during nutritional stress that is experienced in the sand fly. We investigated the role of LeishIF4E-3 in Leishmania mexicana promastigotes using the CRISPR-Cas9 system. We deleted one of the two LeishIF4E-3 alleles, generating a heterologous deletion mutant with reduced LeishIF4E-3 expression. The mutant showed a decline in de novo protein synthesis and growth kinetics, altered morphology, and impaired infectivity. The mutant cells were rounded and failed to transform into the nectomonad-like form, in response to purine starvation. Furthermore, the infectivity of macrophage cells by the LeishIF4E-3(+/−) mutant was severely reduced. These phenotypic features were not observed in the addback cells, in which expression of LeishIF4E-3 was restored. The observed phenotypic changes correlated with the profile of transcripts associated with LeishIF4E-3. These were enriched for cytoskeleton- and flagellum-encoding genes, along with genes for RNA binding proteins. Our data illustrate the importance of LeishIF4E-3 in translation and in the parasite virulence. IMPORTANCELeishmania species are the causative agents of a spectrum of diseases. Available drug treatment is toxic and expensive, with drug resistance a growing concern. Leishmania parasites migrate between transmitting sand flies and mammalian hosts, experiencing unfavorable extreme conditions. The parasites therefore developed unique mechanisms for promoting a stage-specific program for gene expression, with translation playing a central role. There are six paralogs of the cap-binding protein eIF4E, which vary in their function, expression profiles, and assemblages. Using the CRISPR-Cas9 system for Leishmania, we deleted one of the two LeishIF4E-3 alleles. Expression of LeishIF4E-3 in the deletion mutant was low, leading to reduction in global translation and growth of the mutant cells. Cell morphology also changed, affecting flagellum growth, cell shape, and infectivity. The importance of this study is in highlighting that LeishIF4E-3 is essential for completion of the parasite life cycle. Our study gives new insight into how parasite virulence is determined.
Collapse
|
12
|
de Pablos LM, Ferreira TR, Dowle AA, Forrester S, Parry E, Newling K, Walrad PB. The mRNA-bound Proteome of Leishmania mexicana: Novel Genetic Insight into an Ancient Parasite. Mol Cell Proteomics 2019; 18:1271-1284. [PMID: 30948621 PMCID: PMC6601212 DOI: 10.1074/mcp.ra118.001307] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/23/2019] [Indexed: 01/08/2023] Open
Abstract
Leishmania parasite infections, termed the leishmaniases, cause significant global infectious disease burden. The lifecycle of the parasite embodies three main stages that require precise coordination of gene regulation to survive environmental shifts between sandfly and mammalian hosts. Constitutive transcription in kinetoplastid parasites means that gene regulation is overwhelmingly reliant on post-transcriptional mechanisms, yet strikingly few Leishmania trans-regulators are known. Using optimized crosslinking and deep, quantified mass spectrometry, we present a comprehensive analysis of 1400 mRNA binding proteins (mRBPs) and whole cell proteomes from the three main Leishmania lifecycle stages. Supporting the validity, although the crosslinked RBPome is magnitudes more enriched, the protein identities of the crosslinked and non-crosslinked RBPomes were nearly identical. Moreover, multiple candidate RBPs were endogenously tagged and found to associate with discrete mRNA target pools in a stage-specific manner. Results indicate that in L. mexicana parasites, mRNA levels are not a strong predictor of the whole cell expression or RNA binding potential of encoded proteins. Evidence includes a low correlation between transcript and corresponding protein expression and stage-specific variation in protein expression versus RNA binding potential. Unsurprisingly, RNA binding protein enrichment correlates strongly with relative replication efficiency of the specific lifecycle stage. Our study is the first to quantitatively define and compare the mRBPome of multiple stages in kinetoplastid parasites. It provides novel, in-depth insight into the trans-regulatory mRNA:Protein (mRNP) complexes that drive Leishmania parasite lifecycle progression.
Collapse
Affiliation(s)
| | | | - Adam A Dowle
- §Metabolomics and Proteomics Lab, Bioscience Technology Facility, and
| | | | - Ewan Parry
- From the ‡Centre for Immunology and Infection
| | - Katherine Newling
- ¶Genomics and Bioinformatics Lab, Bioscience Technology Facility, Department of Biology, University of York, UK
| | | |
Collapse
|
13
|
Rastrojo A, Corvo L, Lombraña R, Solana JC, Aguado B, Requena JM. Analysis by RNA-seq of transcriptomic changes elicited by heat shock in Leishmania major. Sci Rep 2019; 9:6919. [PMID: 31061406 PMCID: PMC6502937 DOI: 10.1038/s41598-019-43354-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 04/23/2019] [Indexed: 12/03/2022] Open
Abstract
Besides their medical relevance, Leishmania is an adequate model for studying post-transcriptional mechanisms of gene expression. In this microorganism, mRNA degradation/stabilization mechanisms together with translational control and post-translational modifications of proteins are the major drivers of gene expression. Leishmania parasites develop as promastigotes in sandflies and as amastigotes in mammalians, and during host transmission, the parasite experiences a sudden temperature increase. Here, changes in the transcriptome of Leishmania major promastigotes after a moderate heat shock were analysed by RNA-seq. Several of the up-regulated transcripts code for heat shock proteins, other for proteins previously reported to be amastigote-specific and many for hypothetical proteins. Many of the transcripts experiencing a decrease in their steady-state levels code for transporters, proteins involved in RNA metabolism or translational factors. In addition, putative long noncoding RNAs were identified among the differentially expressed transcripts. Finally, temperature-dependent changes in the selection of the spliced leader addition sites were inferred from the RNA-seq data, and particular cases were further validated by RT-PCR and Northern blotting. This study provides new insights into the post-transcriptional mechanisms by which Leishmania modulate gene expression.
Collapse
Affiliation(s)
- Alberto Rastrojo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Corvo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rodrigo Lombraña
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose C Solana
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Begoña Aguado
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Jose M Requena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
14
|
Complete assembly of the Leishmania donovani (HU3 strain) genome and transcriptome annotation. Sci Rep 2019; 9:6127. [PMID: 30992521 PMCID: PMC6467909 DOI: 10.1038/s41598-019-42511-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/02/2019] [Indexed: 01/05/2023] Open
Abstract
Leishmania donovani is a unicellular parasite that causes visceral leishmaniasis, a fatal disease in humans. In this study, a complete assembly of the genome of L. donovani is provided. Apart from being the first published genome of this strain (HU3), this constitutes the best assembly for an L. donovani genome attained to date. The use of a combination of sequencing platforms enabled to assemble, without any sequence gap, the 36 chromosomes for this species. Additionally, based on this assembly and using RNA-seq reads derived from poly-A + RNA, the transcriptome for this species, not yet available, was delineated. Alternative SL addition sites and heterogeneity in the poly-A addition sites were commonly observed for most of the genes. After a complete annotation of the transcriptome, 2,410 novel transcripts were defined. Additionally, the relative expression for all transcripts present in the promastigote stage was determined. Events of cis-splicing have been documented to occur during the maturation of the transcripts derived from genes LDHU3_07.0430 and LDHU3_29.3990. The complete genome assembly and the availability of the gene models (including annotation of untranslated regions) are important pieces to understand how differential gene expression occurs in this pathogen, and to decipher phenotypic peculiarities like tissue tropism, clinical disease, and drug susceptibility.
Collapse
|
15
|
Ribosome Profiling Reveals HSP90 Inhibitor Effects on Stage-Specific Protein Synthesis in Leishmania donovani. mSystems 2018; 3:mSystems00214-18. [PMID: 30505948 PMCID: PMC6247020 DOI: 10.1128/msystems.00214-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/28/2018] [Indexed: 11/20/2022] Open
Abstract
Leishmania parasites cause severe illness in humans and animals. They exist in two developmental stages, insect form and mammalian form, which differ in shape and gene expression. By mapping and quantifying RNA fragments protected by protein synthesis complexes, we determined the rates of protein synthesis for >90% of all Leishmania proteins in response to the inhibition of a key regulatory protein, the 90-kDa heat shock protein. We find that Leishmania depends on a regulation of protein synthesis for controlling its gene expression and that heat shock protein 90 inhibition can trigger the developmental program from insect form to mammalian form of the pathogen. The 90-kDa heat shock protein (HSP90) of eukaryotes is a highly abundant and essential chaperone required for the maturation of regulatory and signal proteins. In the protozoan parasite Leishmania donovani, causative agent of the fatal visceral leishmaniasis, HSP90 activity is essential for cell proliferation and survival. Even more importantly, its inhibition causes life cycle progression from the insect stage to the pathogenic, mammalian stage. To unravel the molecular impact of HSP90 activity on the parasites’ gene expression, we performed a ribosome profiling analysis of L. donovani, comparing genome-wide protein synthesis patterns in the presence and absence of the HSP90-specific inhibitor radicicol and an ectopically expressed radicicol-resistant HSP90 variant. We find that ribosome-protected RNA faithfully maps open reading frames and represents 97% of the annotated protein-coding genes of L. donovani. Protein synthesis was found to correlate poorly with RNA steady-state levels, indicating a regulated translation as primary mechanism for HSP90-dependent gene expression. The results confirm inhibitory effects of HSP90 on the synthesis of Leishmania proteins that are associated with the pathogenic, intracellular stage of the parasite. Those include heat shock proteins, redox enzymes, virulence-enhancing surface proteins, proteolytic pathways, and a complete set of histones. Conversely, HSP90 promotes fatty acid synthesis enzymes. Complementing radicicol treatment with the radicicol-resistant HSP90rr variant revealed important off-target radicicol effects that control a large number of the above-listed proteins. Leishmania lacks gene-specific transcription regulation and relies on regulated translation instead. Our ribosome footprinting analysis demonstrates a controlling function of HSP90 in stage-specific protein synthesis but also significant, HSP90-independent effects of the inhibitor radicicol. IMPORTANCELeishmania parasites cause severe illness in humans and animals. They exist in two developmental stages, insect form and mammalian form, which differ in shape and gene expression. By mapping and quantifying RNA fragments protected by protein synthesis complexes, we determined the rates of protein synthesis for >90% of all Leishmania proteins in response to the inhibition of a key regulatory protein, the 90-kDa heat shock protein. We find that Leishmania depends on a regulation of protein synthesis for controlling its gene expression and that heat shock protein 90 inhibition can trigger the developmental program from insect form to mammalian form of the pathogen.
Collapse
|
16
|
Abstract
To satisfy its fatty acid needs, the extracellular eukaryotic parasite Trypanosoma brucei relies on two mechanisms: uptake of fatty acids from the host and de novo synthesis. We hypothesized that T. brucei modulates fatty acid synthesis in response to environmental lipid availability. The first committed step in fatty acid synthesis is catalyzed by acetyl coenzyme A (acetyl-CoA) carboxylase (ACC) and serves as a key regulatory point in other organisms. To test our hypothesis, T. brucei mammalian bloodstream and insect procyclic forms were grown in low-, normal-, or high-lipid media and the effect on T. brucei ACC (TbACC) mRNA, protein, and enzymatic activity was examined. In bloodstream form T. brucei, media lipids had no effect on TbACC expression or activity. In procyclic form T. brucei, we detected no change in TbACC mRNA levels but observed 2.7-fold-lower TbACC protein levels and 37% lower TbACC activity in high-lipid media than in low-lipid media. Supplementation of low-lipid media with the fatty acid stearate mimicked the effect of high lipid levels on TbACC activity. In procyclic forms, TbACC phosphorylation also increased 3.9-fold in high-lipid media compared to low-lipid media. Phosphatase treatment of TbACC increased activity, confirming that phosphorylation represented an inhibitory modification. Together, these results demonstrate a procyclic-form-specific environmental lipid response pathway that regulates TbACC posttranscriptionally, through changes in protein expression and phosphorylation. We propose that this environmental response pathway enables procyclic-form T. brucei to monitor the host lipid supply and downregulate fatty acid synthesis when host lipids are abundant and upregulate fatty acid synthesis when host lipids become scarce.IMPORTANCETrypanosoma brucei is a eukaryotic parasite that causes African sleeping sickness. T. brucei is transmitted by the blood-sucking tsetse fly. In order to adapt to its two very different hosts, T. brucei must sense the host environment and alter its metabolism to maximize utilization of host resources and minimize expenditure of its own resources. One key nutrient class is represented by fatty acids, which the parasite can either take from the host or make themselves. Our work describes a novel environmental regulatory pathway for fatty acid synthesis where the parasite turns off fatty acid synthesis when environmental lipids are abundant and turns on synthesis when the lipid supply is scarce. This pathway was observed in the tsetse midgut form but not the mammalian bloodstream form. However, pharmacological activation of this pathway in the bloodstream form to turn fatty acid synthesis off may be a promising new avenue for sleeping sickness drug discovery.
Collapse
|
17
|
Untranslated regions of mRNA and their role in regulation of gene expression in protozoan parasites. J Biosci 2017; 42:189-207. [PMID: 28229978 DOI: 10.1007/s12038-016-9660-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protozoan parasites are one of the oldest living entities in this world that throughout their existence have shown excellent resilience to the odds of survival and have adapted beautifully to ever changing rigors of the environment. In view of the dynamic environment encountered by them throughout their life cycle, and in establishing pathogenesis, it is unsurprising that modulation of gene expression plays a fundamental role in their survival. In higher eukaryotes, untranslated regions (UTRs) of transcripts are one of the crucial regulators of gene expression (influencing mRNA stability and translation efficiency). Parasitic protozoan genome studies have led to the characterization (in silico, in vitro and in vivo) of a large number of their genes. Comparison of higher eukaryotic UTRs with parasitic protozoan UTRs reveals the existence of several similar and dissimilar facets of the UTRs. This review focuses on the elements of UTRs of medically important protozoan parasites and their regulatory role in gene expression. Such information may be useful to researchers in designing gene targeting strategies linked with perturbation of host-parasite relationships leading to control of specific parasites.
Collapse
|
18
|
Comparative genomics of Tunisian Leishmania major isolates causing human cutaneous leishmaniasis with contrasting clinical severity. INFECTION GENETICS AND EVOLUTION 2016; 50:110-120. [PMID: 27818279 DOI: 10.1016/j.meegid.2016.10.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/27/2016] [Accepted: 10/29/2016] [Indexed: 12/23/2022]
Abstract
Zoonotic cutaneous leishmaniasis caused by Leishmania (L.) major parasites affects urban and suburban areas in the center and south of Tunisia where the disease is endemo-epidemic. Several cases were reported in human patients for which infection due to L. major induced lesions with a broad range of severity. However, very little is known about the mechanisms underlying this diversity. Our hypothesis is that parasite genomic variability could, in addition to the host immunological background, contribute to the intra-species clinical variability observed in patients and explain the lesion size differences observed in the experimental model. Based on several epidemiological, in vivo and in vitro experiments, we focused on two clinical isolates showing contrasted severity in patients and BALB/c experimental mice model. We used DNA-seq as a high-throughput technology to facilitate the identification of genetic variants with discriminating potential between both isolates. Our results demonstrate that various levels of heterogeneity could be found between both L. major isolates in terms of chromosome or gene copy number variation (CNV), and that the intra-species divergence could surprisingly be related to single nucleotide polymorphisms (SNPs) and Insertion/Deletion (InDels) events. Interestingly, we particularly focused here on genes affected by both types of variants and correlated them with the observed gene CNV. Whether these differences are sufficient to explain the severity in patients is obviously still open to debate, but we do believe that additional layers of -omic information is needed to complement the genomic screen in order to draw a more complete map of severity determinants.
Collapse
|
19
|
Drini S, Criscuolo A, Lechat P, Imamura H, Skalický T, Rachidi N, Lukeš J, Dujardin JC, Späth GF. Species- and Strain-Specific Adaptation of the HSP70 Super Family in Pathogenic Trypanosomatids. Genome Biol Evol 2016; 8:1980-95. [PMID: 27371955 PMCID: PMC4943205 DOI: 10.1093/gbe/evw140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
All eukaryotic genomes encode multiple members of the heat shock protein 70 (HSP70) family, which evolved distinctive structural and functional features in response to specific environmental constraints. Phylogenetic analysis of this protein family thus can inform on genetic and molecular mechanisms that drive species-specific environmental adaptation. Here we use the eukaryotic pathogen Leishmania spp. as a model system to investigate the evolution of the HSP70 protein family in an early-branching eukaryote that is prone to gene amplification and adapts to cytotoxic host environments by stress-induced and chaperone-dependent stage differentiation. Combining phylogenetic and comparative analyses of trypanosomatid genomes, draft genome of Paratrypanosoma and recently published genome sequences of 204 L. donovani field isolates, we gained unique insight into the evolutionary dynamics of the Leishmania HSP70 protein family. We provide evidence for (i) significant evolutionary expansion of this protein family in Leishmania through gene amplification and functional specialization of highly conserved canonical HSP70 members, (ii) evolution of trypanosomatid-specific, non-canonical family members that likely gained ATPase-independent functions, and (iii) loss of one atypical HSP70 member in the Trypanosoma genus. Finally, we reveal considerable copy number variation of canonical cytoplasmic HSP70 in highly related L. donovani field isolates, thus identifying this locus as a potential hot spot of environment–genotype interaction. Our data draw a complex picture of the genetic history of HSP70 in trypanosomatids that is driven by the remarkable plasticity of the Leishmania genome to undergo massive intra-chromosomal gene amplification to compensate for the absence of regulated transcriptional control in these parasites.
Collapse
Affiliation(s)
- Sima Drini
- Unité de Parasitologie moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur - Hub Bioinformatique et Biostatistique - C3BI, Department of Genomes & Genetics, USR 3756 IP CNRS - Paris, France
| | - Pierre Lechat
- Institut Pasteur - Hub Bioinformatique et Biostatistique - C3BI, Department of Genomes & Genetics, USR 3756 IP CNRS - Paris, France
| | - Hideo Imamura
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Tomáš Skalický
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Najma Rachidi
- Unité de Parasitologie moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, Paris, France
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic Canadian Institute for Advanced Research, Toronto, Canada
| | - Jean-Claude Dujardin
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Gerald F Späth
- Unité de Parasitologie moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, Paris, France
| |
Collapse
|
20
|
Parsons M, Myler PJ. Illuminating Parasite Protein Production by Ribosome Profiling. Trends Parasitol 2016; 32:446-457. [PMID: 27061497 DOI: 10.1016/j.pt.2016.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 12/29/2022]
Abstract
While technologies for global enumeration of transcript abundance are well-developed, those that assess protein abundance require tailoring to penetrate to low-abundance proteins. Ribosome profiling circumvents this challenge by measuring global protein production via sequencing small mRNA fragments protected by the assembled ribosome. This powerful approach is now being applied to protozoan parasites including trypanosomes and Plasmodium. It has been used to identify new protein-coding sequences (CDSs) and clarify the boundaries of previously annotated CDSs in Trypanosoma brucei. Ribosome profiling has demonstrated that translation efficiencies vary widely between genes and, for trypanosomes at least, for the same gene across stages. The ribosomal proteins are themselves subjected to translational control, suggesting a means of reinforcing global translational regulation.
Collapse
Affiliation(s)
- Marilyn Parsons
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North STE 500, Seattle, WA 98109 USA; Department of Global Health, Box 357965, University of Washington, Seattle, WA 98195, USA.
| | - Peter J Myler
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North STE 500, Seattle, WA 98109 USA; Department of Global Health, Box 357965, University of Washington, Seattle, WA 98195, USA; Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
21
|
Regulating a Post-Transcriptional Regulator: Protein Phosphorylation, Degradation and Translational Blockage in Control of the Trypanosome Stress-Response RNA-Binding Protein ZC3H11. PLoS Pathog 2016; 12:e1005514. [PMID: 27002830 PMCID: PMC4803223 DOI: 10.1371/journal.ppat.1005514] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/01/2016] [Indexed: 12/31/2022] Open
Abstract
The life cycle of the mammalian pathogen Trypanosoma brucei involves commuting between two markedly different environments: the homeothermic mammalian host and the poikilothermic invertebrate vector. The ability to resist temperature and other stresses is essential for trypanosome survival. Trypanosome gene expression is mainly post-transcriptional, but must nevertheless be adjusted in response to environmental cues, including host-specific physical and chemical stresses. We investigate here the control of ZC3H11, a CCCH zinc finger protein which stabilizes stress response mRNAs. ZC3H11 protein levels increase at least 10-fold when trypanosomes are stressed by heat shock, proteasome inhibitors, ethanol, arsenite, and low doses of puromycin, but not by various other stresses. We found that increases in protein stability and translation efficiency both contribute to ZC3H11 accumulation. ZC3H11 is an in vitro substrate for casein kinase 1 isoform 2 (CK1.2), and results from CK1.2 depletion and other experiments suggest that phosphorylation of ZC3H11 can promote its instability in vivo. Results from sucrose density centrifugation indicate that under normal culture conditions translation initiation on the ZC3H11 mRNA is repressed, but after suitable stresses the ZC3H11 mRNA moves to heavy polysomes. The ZC3H11 3'-UTR is sufficient for translation suppression and a region of 71 nucleotides is required for the regulation. Since the control works in both bloodstream forms, where ZC3H11 translation is repressed at 37°C, and in procyclic forms, where ZC3H11 translation is activated at 37°C, we predict that this regulatory RNA sequence is targeted by repressive trans acting factor that is released upon stress. Like other organisms, the mammalian pathogen Trypanosoma brucei is able to sense environmental changes and to change its gene expression accordingly. In contrast with other organisms, however, trypanosomes and related kinetoplastids effect these changes almost exclusively by controlling the translation of mRNAs into protein, and by adjusting the rate at which the mRNAs are degraded. ZC3H11 is an RNA binding protein, which stabilizes mRNAs that encode chaperones. Chaperones are needed to refold proteins after stress. Under normal growth conditions ZC3H11 protein is very unstable, and in addition, not much of the protein is made. Although ZC3H11 mRNA is present under normal, unstressed conditions, most of it is not translated. However, when the cells were stressed by elevated temperature, arsenite, ethanol, puromycin or proteasome inhibitors the amount of ZC3H11 rose almost 10-fold. This was caused by a combination of increased protein stability and enhanced translation of the mRNA. We found that a 71 nucleotide segment of the 3'-untranslated region of the ZC3H11 mRNA was responsible for the regulated translational blockage. We also obtained evidence that casein kinase 1 isoform 2 might phosphorylate ZC3H11, and that phosphorylation can promote ZC3H11 protein degradation. Overall, our results show that the increase in the ZC3H11 level after stress occurs because of changes in protein synthesis, phosphorylation, and stability.
Collapse
|
22
|
Moura DMN, Reis CRS, Xavier CC, da Costa Lima TD, Lima RP, Carrington M, de Melo Neto OP. Two related trypanosomatid eIF4G homologues have functional differences compatible with distinct roles during translation initiation. RNA Biol 2015; 12:305-19. [PMID: 25826663 DOI: 10.1080/15476286.2015.1017233] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
In higher eukaryotes, eIF4A, eIF4E and eIF4G homologues interact to enable mRNA recruitment to the ribosome. eIF4G acts as a scaffold for these interactions and also interacts with other proteins of the translational machinery. Trypanosomatid protozoa have multiple homologues of eIF4E and eIF4G and the precise function of each remains unclear. Here, 2 previously described eIF4G homologues, EIF4G3 and EIF4G4, were further investigated. In vitro, both homologues bound EIF4AI, but with different interaction properties. Binding to distinct eIF4Es was also confirmed; EIF4G3 bound EIF4E4 while EIF4G4 bound EIF4E3, both these interactions required similar binding motifs. EIF4G3, but not EIF4G4, interacted with PABP1, a poly-A binding protein homolog. Work in vivo with Trypanosoma brucei showed that both EIF4G3 and EIF4G4 are cytoplasmic and essential for viability. Depletion of EIF4G3 caused a rapid reduction in total translation while EIF4G4 depletion led to changes in morphology but no substantial inhibition of translation. Site-directed mutagenesis was used to disrupt interactions of the eIF4Gs with either eIF4E or eIF4A, causing different levels of growth inhibition. Overall the results show that only EIF4G3, with its cap binding partner EIF4E4, plays a major role in translational initiation.
Collapse
Affiliation(s)
- Danielle M N Moura
- a Centro de Pesquisas Aggeu Magalhães; Fundação Oswaldo Cruz ; Campus UFPE; Recife , PE , Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
Fiebig M, Kelly S, Gluenz E. Comparative Life Cycle Transcriptomics Revises Leishmania mexicana Genome Annotation and Links a Chromosome Duplication with Parasitism of Vertebrates. PLoS Pathog 2015; 11:e1005186. [PMID: 26452044 PMCID: PMC4599935 DOI: 10.1371/journal.ppat.1005186] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 09/03/2015] [Indexed: 02/07/2023] Open
Abstract
Leishmania spp. are protozoan parasites that have two principal life cycle stages: the motile promastigote forms that live in the alimentary tract of the sandfly and the amastigote forms, which are adapted to survive and replicate in the harsh conditions of the phagolysosome of mammalian macrophages. Here, we used Illumina sequencing of poly-A selected RNA to characterise and compare the transcriptomes of L. mexicana promastigotes, axenic amastigotes and intracellular amastigotes. These data allowed the production of the first transcriptome evidence-based annotation of gene models for this species, including genome-wide mapping of trans-splice sites and poly-A addition sites. The revised genome annotation encompassed 9,169 protein-coding genes including 936 novel genes as well as modifications to previously existing gene models. Comparative analysis of gene expression across promastigote and amastigote forms revealed that 3,832 genes are differentially expressed between promastigotes and intracellular amastigotes. A large proportion of genes that were downregulated during differentiation to amastigotes were associated with the function of the motile flagellum. In contrast, those genes that were upregulated included cell surface proteins, transporters, peptidases and many uncharacterized genes, including 293 of the 936 novel genes. Genome-wide distribution analysis of the differentially expressed genes revealed that the tetraploid chromosome 30 is highly enriched for genes that were upregulated in amastigotes, providing the first evidence of a link between this whole chromosome duplication event and adaptation to the vertebrate host in this group. Peptide evidence for 42 proteins encoded by novel transcripts supports the idea of an as yet uncharacterised set of small proteins in Leishmania spp. with possible implications for host-pathogen interactions.
Collapse
Affiliation(s)
- Michael Fiebig
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, United Kingdom
- * E-mail: (SK); (EG)
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
- * E-mail: (SK); (EG)
| |
Collapse
|
24
|
Ahamad J, Ojha S, Srivastava A, Bhattacharya A, Bhattacharya S. Post-transcriptional regulation of ribosomal protein genes during serum starvation in Entamoeba histolytica. Mol Biochem Parasitol 2015; 201:146-52. [PMID: 26247142 DOI: 10.1016/j.molbiopara.2015.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 12/19/2022]
Abstract
Ribosome synthesis involves all three RNA polymerases which are co-ordinately regulated to produce equimolar amounts of rRNAs and ribosomal proteins (RPs). Unlike model organisms where transcription of rRNA and RP genes slows down during stress, in E. histolytica rDNA transcription continues but pre-rRNA processing slows down and unprocessed pre-rRNA accumulates during serum starvation. To investigate the regulation of RP genes under stress we measured transcription of six selected RP genes from the small- and large-ribosomal subunits (RPS6, RPS3, RPS19, RPL5, RPL26, RPL30) representing the early-, mid-, and late-stages of ribosomal assembly. Transcripts of these genes persisted in growth-stressed cells. Expression of luciferase reporter under the control of two RP genes (RPS19 and RPL30) was studied during serum starvation and upon serum replenishment. Although luciferase transcript levels remained unchanged during starvation, luciferase activity steadily declined to 7.8% and 15% of control cells, respectively. After serum replenishment the activity increased to normal levels, suggesting post-transcriptional regulation of these genes. Mutations in the sequence -2 to -9 upstream of AUG in the RPL30 gene resulted in the phenotype expected of post-transcriptional regulation. Transcription of luciferase reporter was unaffected in this mutant, and luciferase activity did not decline during serum starvation, showing that this sequence is required to repress translation of RPL30 mRNA, and mutations in this region relieve repression. Our data show that during serum starvation E. histolytica blocks ribosome biogenesis post-transcriptionally by inhibiting pre-rRNA processing on the one hand, and the translation of RP mRNAs on the other.
Collapse
Affiliation(s)
- Jamaluddin Ahamad
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Sandeep Ojha
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Ankita Srivastava
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
25
|
Michaeli S. The response of trypanosomes and other eukaryotes to ER stress and the spliced leader RNA silencing (SLS) pathway in Trypanosoma brucei. Crit Rev Biochem Mol Biol 2015; 50:256-67. [PMID: 25985970 DOI: 10.3109/10409238.2015.1042541] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The unfolded protein response (UPR) is induced when the quality control machinery of the cell is overloaded with unfolded proteins or when one of the functions of the endoplasmic reticulum (ER) is perturbed. Here, I describe UPR in yeast and mammals, and compare it to what we know about pathogenic fungi and the parasitic protozoans from the order kinetoplastida, focusing on the novel pathway the spliced leader silencing (SLS) in Trypanosoma brucei. Trypanosomes lack conventional transcription regulation, and thus, lack most of the UPR machinery present in other eukaryotes. Trypanosome genes are transcribed in polycistronic units that are processed by trans-splicing and polyadenylation. In trans-splicing, which is essential for processing of each mRNA, an exon known as the spliced leader (SL) is added to all mRNAs from a small RNA, the SL RNA. Under severe ER stress, T. brucei elicits the SLS pathway. In SLS, the transcription of the SL RNA gene is extinguished, and the entire transcription complex dissociates from the SL RNA promoter. Induction of SLS is mediated by an ER-associated kinase (PK3) that migrates to the nucleus, where it phosphorylates the TATA-binding protein (TRF4), leading shut-off of SL RNA transcription. As a result, trans-splicing is inhibited and the parasites activate a programmed cell death (PCD) pathway. Despite the ability to sense the ER stress, the different eukaryotes, especially unicellular parasites and pathogenic fungi, developed a variety of unique and different ways to sense and adjust to this stress in a manner different from their host.
Collapse
Affiliation(s)
- Shulamit Michaeli
- a The Mina and Everard Goodman Faculty of Life Sciences, Advanced Materials and Nanotechnology Institute, Bar-Ilan University , Ramat-Gan , Israel
| |
Collapse
|
26
|
Späth GF, Drini S, Rachidi N. A touch of Zen: post-translational regulation of the Leishmania stress response. Cell Microbiol 2015; 17:632-8. [PMID: 25801803 DOI: 10.1111/cmi.12440] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/06/2015] [Accepted: 03/17/2015] [Indexed: 12/20/2022]
Abstract
Across bacterial, archaeal and eukaryotic kingdoms, heat shock proteins (HSPs) are defined as a class of highly conserved chaperone proteins that are rapidly induced in response to temperature increase through dedicated heat shock transcription factors. While this transcriptional response governs cellular adaptation of fungal, plant and animal cells to thermic shock and other forms of stress, early-branching eukaryotes of the kinetoplastid order, including trypanosomatid parasites, lack classical mechanisms of transcriptional regulation and show largely constitutive expression of HSPs, thus raising important questions on the function of HSPs in the absence of stress and the regulation of their chaperone activity in response to environmental adversity. Understanding parasite-specific mechanisms of stress-response regulation is especially relevant for protozoan parasites of the genus Leishmania that are adapted for survival inside highly toxic phagolysosomes of host macrophages causing the various immuno-pathologies of leishmaniasis. Here we review recent advances on the function and regulation of chaperone activities in these kinetoplastid pathogens and propose a new model for stress-response regulation through a reciprocal regulatory relationship between stress kinases and chaperones that may be relevant for parasite-adaptive differentiation and infectivity.
Collapse
Affiliation(s)
- Gerald F Späth
- Institut Pasteur and Institut National de la Santé et de la Recherche Médicale U1210, Unité de Parasitologie Moléculaire et Signalisation, 25 rue du Dr Roux, Paris, 75015, France
| | | | | |
Collapse
|
27
|
Abstract
TbRRM1 of Trypanosoma brucei is a nucleoprotein that was previously identified in a search for splicing factors in T. brucei. We show that TbRRM1 associates with mRNAs and with the auxiliary splicing factor polypyrimidine tract-binding protein 2, but not with components of the core spliceosome. TbRRM1 also interacts with several retrotransposon hot spot (RHS) proteins and histones. RNA immunoprecipitation of a tagged form of TbRRM1 from procyclic (insect) form trypanosomes identified ca. 1,500 transcripts that were enriched and 3,000 transcripts that were underrepresented compared to cellular mRNA. Enriched transcripts encoded RNA-binding proteins, including TbRRM1 itself, several RHS transcripts, mRNAs with long coding regions, and a high proportion of stage-regulated mRNAs that are more highly expressed in bloodstream forms. Transcripts encoding ribosomal proteins, other factors involved in translation, and procyclic-specific transcripts were underrepresented. Knockdown of TbRRM1 by RNA interference caused widespread changes in mRNA abundance, but these changes did not correlate with the binding of the protein to transcripts, and most splice sites were unchanged, negating a general role for TbRRM1 in splice site selection. When changes in mRNA abundance were mapped across the genome, regions with many downregulated mRNAs were identified. Two regions were analyzed by chromatin immunoprecipitation, both of which exhibited increases in nucleosome occupancy upon TbRRM1 depletion. In addition, subjecting cells to heat shock resulted in translocation of TbRRM1 to the cytoplasm and compaction of chromatin, consistent with a second role for TbRRM1 in modulating chromatin structure. Trypanosoma brucei, the parasite that causes human sleeping sickness, is transmitted by tsetse flies. The parasite progresses through different life cycle stages in its two hosts, altering its pattern of gene expression in the process. In trypanosomes, protein-coding genes are organized as polycistronic units that are processed into monocistronic mRNAs. Since genes in the same unit can be regulated independently of each other, it is believed that gene regulation is essentially posttranscriptional. In this study, we investigated the role of a nuclear RNA-binding protein, TbRRM1, in the insect stage of the parasite. We found that TbRRM1 binds nuclear mRNAs and also affects chromatin status. Reduction of nuclear TbRRM1 by RNA interference or heat shock resulted in chromatin compaction. We propose that TbRRM1 regulates RNA polymerase II-driven gene expression both cotranscriptionally, by facilitating transcription and efficient splicing, and posttranscriptionally, via its interaction with nuclear mRNAs.
Collapse
|
28
|
Clayton CE. Networks of gene expression regulation in Trypanosoma brucei. Mol Biochem Parasitol 2014; 195:96-106. [PMID: 24995711 DOI: 10.1016/j.molbiopara.2014.06.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/19/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
Abstract
Regulation of gene expression in Kinetoplastids relies mainly on post-transcriptional mechanisms. Recent high-throughput analyses, combined with mathematical modelling, have demonstrated possibilities for transcript-specific regulation at every stage: trans splicing, polyadenylation, translation, and degradation of both the precursor and the mature mRNA. Different mRNA degradation pathways result in different types of degradation kinetics. The original idea that the fate of an mRNA - or even just its degradation kinetics - can be defined by a single "regulatory element" is an over-simplification. It is now clear that every mRNA can bind many different proteins, some of which may compete with each other. Superimposed upon this complexity are the interactions of those proteins with effectors of gene expression. The amount of protein that is made from a gene is therefore determined by a complex network of interactions.
Collapse
Affiliation(s)
- C E Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| |
Collapse
|
29
|
Caisová L, Melkonian M. Evolution of helix formation in the ribosomal Internal Transcribed Spacer 2 (ITS2) and its significance for RNA secondary structures. J Mol Evol 2014; 78:324-37. [PMID: 24908393 DOI: 10.1007/s00239-014-9625-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/19/2014] [Indexed: 01/25/2023]
Abstract
Helices are the most common elements of RNA secondary structure. Despite intensive investigations of various types of RNAs, the evolutionary history of the formation of new helices (novel helical structures) remains largely elusive. Here, by studying the nuclear ribosomal Internal Transcribed Spacer 2 (ITS2), a fast-evolving part of the eukaryotic nuclear ribosomal operon, we identify two possible types of helix formation: one type is "dichotomous helix formation"--transition from one large helix to two smaller helices by invagination of the apical part of a helix, which significantly changes the shape of the original secondary structure but does not increase its complexity (i.e., the total length of the RNA). An alternative type is "lateral helix formation"--origin of an extra helical region by the extension of a bulge loop or a spacer in a multi-helix loop of the original helix, which does not disrupt the pre-existing structure but increases RNA size. Moreover, we present examples from the RNA sequence literature indicating that both types of helix formation may have implications for RNA evolution beyond ITS2.
Collapse
Affiliation(s)
- Lenka Caisová
- Universität zu Köln, Biozentrum Köln, Botanisches Institut, Zülpicher Str. 47b, 50674, Köln, Germany,
| | | |
Collapse
|
30
|
Gazestani VH, Lu Z, Salavati R. Deciphering RNA regulatory elements in trypanosomatids: one piece at a time or genome-wide? Trends Parasitol 2014; 30:234-40. [PMID: 24642036 DOI: 10.1016/j.pt.2014.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/17/2014] [Accepted: 02/26/2014] [Indexed: 02/02/2023]
Abstract
Morphological and metabolic changes in the life cycle of Trypanosoma brucei are accomplished by precise regulation of hundreds of genes. In the absence of transcriptional control, RNA-binding proteins (RBPs) shape the structure of gene regulatory maps in this organism, but our knowledge about their target RNAs, binding sites, and mechanisms of action is far from complete. Although recent technological advances have revolutionized the RBP-based approaches, the main framework for the RNA regulatory element (RRE)-based approaches has not changed over the last two decades in T. brucei. In this Opinion, after highlighting the current challenges in RRE inference, we explain some genome-wide solutions that can significantly boost our current understanding about gene regulatory networks in T. brucei.
Collapse
Affiliation(s)
- Vahid H Gazestani
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Sainte Anne de Bellevue, Montreal, Quebec H9X3V9, Canada
| | - Zhiquan Lu
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Sainte Anne de Bellevue, Montreal, Quebec H9X3V9, Canada
| | - Reza Salavati
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Sainte Anne de Bellevue, Montreal, Quebec H9X3V9, Canada; McGill Centre for Bioinformatics, McGill University, Duff Medical Building, 3775 University Street, Montreal, Quebec H3A2B4, Canada; Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec H3G1Y6, Canada.
| |
Collapse
|
31
|
Abstract
The storage of translationally inactive mRNAs in cytosolic granules enables cells to react flexibly to environmental changes. In eukaryotes, Scd6 (suppressor of clathrin deficiency 6)/Rap55 (RNA-associated protein 55), a member of the LSm14 (like-Sm14) family, is an important factor in the formation and activity of P-bodies, where mRNA decay factors accumulate, in stress granules that store mRNAs under adverse conditions and in granules that store developmentally regulated mRNAs. SCD6 from Trypanosoma brucei (TbSCD6) shares the same domain architecture as orthologous proteins in other organisms and is also present in cytosolic granules (equivalent to P-bodies). We show that TbSCD6 is a general repressor of translation and that its depletion by RNAi results in a global increase in protein synthesis. With few exceptions, the steady-state levels of proteins are unchanged. TbSCD6 is not required for the formation of starvation-induced granules in trypanosomes, and unlike Scd6 from yeast, Plasmodium and all multicellular organisms analysed to date, it does not form a complex with the helicase Dhh1 (DExD/H-box helicase 1). In common with Xenopus laevis RAP55, TbSCD6 co-purifies with two arginine methyltransferases; moreover, TbSCD6 itself is methylated on three arginine residues. Finally, a detailed analysis identified roles for the Lsm and N-rich domains in both protein localization and translational repression.
Collapse
|
32
|
Metabolic reprogramming during purine stress in the protozoan pathogen Leishmania donovani. PLoS Pathog 2014; 10:e1003938. [PMID: 24586154 PMCID: PMC3937319 DOI: 10.1371/journal.ppat.1003938] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/06/2014] [Indexed: 01/18/2023] Open
Abstract
The ability of Leishmania to survive in their insect or mammalian host is dependent upon an ability to sense and adapt to changes in the microenvironment. However, little is known about the molecular mechanisms underlying the parasite response to environmental changes, such as nutrient availability. To elucidate nutrient stress response pathways in Leishmania donovani, we have used purine starvation as the paradigm. The salvage of purines from the host milieu is obligatory for parasite replication; nevertheless, purine-starved parasites can persist in culture without supplementary purine for over three months, indicating that the response to purine starvation is robust and engenders parasite survival under conditions of extreme scarcity. To understand metabolic reprogramming during purine starvation we have employed global approaches. Whole proteome comparisons between purine-starved and purine-replete parasites over a 6–48 h span have revealed a temporal and coordinated response to purine starvation. Purine transporters and enzymes involved in acquisition at the cell surface are upregulated within a few hours of purine removal from the media, while other key purine salvage components are upregulated later in the time-course and more modestly. After 48 h, the proteome of purine-starved parasites is extensively remodeled and adaptations to purine stress appear tailored to deal with both purine deprivation and general stress. To probe the molecular mechanisms affecting proteome remodeling in response to purine starvation, comparative RNA-seq analyses, qRT-PCR, and luciferase reporter assays were performed on purine-starved versus purine-replete parasites. While the regulation of a minority of proteins tracked with changes at the mRNA level, for many regulated proteins it appears that proteome remodeling during purine stress occurs primarily via translational and/or post-translational mechanisms. Leishmania, the cause of a deadly spectrum of diseases in humans, surmounts a number of environmental challenges, including changes in the availability of salvageable nutrients, to successfully colonize its host. Adaptation to environmental stress is clearly of significance in parasite biology, but the underlying mechanisms are not well understood. To simulate the response to periodic nutrient scarcity in vivo, we have induced purine starvation in vitro. Purines are essential for growth and viability, and serve as the major energy currency of cells. Leishmania cannot synthesize purines and must salvage them from the surroundings. Extracellular purine depletion in culture induces a robust survival response in Leishmania, whereby growth arrests, but parasites persist for months. To profile the events that enable endurance of purine starvation, we used shotgun proteomics. Our data suggest that purine starvation induces extensive proteome remodeling, tailored to enhance purine capture and recycling, reduce energy expenditures, and maintain viability of the metabolically active, non-dividing population. Through global and targeted approaches, we reveal that proteome remodeling is multifaceted, and occurs through an array of responses at the mRNA, translational, and post-translational level. Our data provide one of the most inclusive views of adaptation to microenvironmental stress in Leishmania.
Collapse
|
33
|
Ramírez C, Dea-Ayuela M, Gutiérrez-Blázquez M, Bolas-Fernández F, Requena J, Puerta C. Identification of proteins interacting with HSP70 mRNAs in Leishmania braziliensis. J Proteomics 2013; 94:124-37. [DOI: 10.1016/j.jprot.2013.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/09/2013] [Accepted: 09/11/2013] [Indexed: 01/02/2023]
|
34
|
Droll D, Minia I, Fadda A, Singh A, Stewart M, Queiroz R, Clayton C. Post-transcriptional regulation of the trypanosome heat shock response by a zinc finger protein. PLoS Pathog 2013; 9:e1003286. [PMID: 23592996 PMCID: PMC3616968 DOI: 10.1371/journal.ppat.1003286] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 02/19/2013] [Indexed: 12/30/2022] Open
Abstract
In most organisms, the heat-shock response involves increased heat-shock gene transcription. In Kinetoplastid protists, however, virtually all control of gene expression is post-transcriptional. Correspondingly, Trypanosoma brucei heat-shock protein 70 (HSP70) synthesis after heat shock depends on regulation of HSP70 mRNA turnover. We here show that the T. brucei CCCH zinc finger protein ZC3H11 is a post-transcriptional regulator of trypanosome chaperone mRNAs. ZC3H11 is essential in bloodstream-form trypanosomes and for recovery of insect-form trypanosomes from heat shock. ZC3H11 binds to mRNAs encoding heat-shock protein homologues, with clear specificity for the subset of trypanosome chaperones that is required for protein refolding. In procyclic forms, ZC3H11 was required for stabilisation of target chaperone-encoding mRNAs after heat shock, and the HSP70 mRNA was also decreased upon ZC3H11 depletion in bloodstream forms. Many mRNAs bound to ZC3H11 have a consensus AUU repeat motif in the 3'-untranslated region. ZC3H11 bound preferentially to AUU repeats in vitro, and ZC3H11 regulation of HSP70 mRNA in bloodstream forms depended on its AUU repeat region. Tethering of ZC3H11 to a reporter mRNA increased reporter expression, showing that it is capable of actively stabilizing an mRNA. These results show that expression of trypanosome heat-shock genes is controlled by a specific RNA-protein interaction. They also show that heat-shock-induced chaperone expression in procyclic trypanosome enhances parasite survival at elevated temperatures.
Collapse
Affiliation(s)
- Dorothea Droll
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Igor Minia
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Abeer Fadda
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Aditi Singh
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Mhairi Stewart
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Rafael Queiroz
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
35
|
Moretti NS, Schenkman S. Chromatin modifications in trypanosomes due to stress. Cell Microbiol 2013; 15:709-17. [DOI: 10.1111/cmi.12111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Nilmar Silvio Moretti
- Department of Microbiology, Immunology and Parasitology; Federal University of São Paulo; São Paulo Brazil
| | - Sergio Schenkman
- Department of Microbiology, Immunology and Parasitology; Federal University of São Paulo; São Paulo Brazil
| |
Collapse
|
36
|
Gene duplication in trypanosomatids - two DED1 paralogs are functionally redundant and differentially expressed during the life cycle. Mol Biochem Parasitol 2012; 185:127-36. [PMID: 22910033 DOI: 10.1016/j.molbiopara.2012.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 07/31/2012] [Accepted: 08/01/2012] [Indexed: 01/20/2023]
Abstract
DED1/VAS belong to the DEAD-box family of RNA helicases that are associated with translation initiation in higher eukaryotes. Here we report on two DED1/VAS homologs that were identified in the genome of Leishmania. The two paralogs include all the domains that are typical of DEAD-box proteins and a phylogenetic analysis suggests that their duplication predates the branching of DED1 and VAS, which took place along with the appearance of early metazoans. The two Leishmania DED1 paralogs complement a yeast strain that fails to express the endogenous DED1, suggesting that they are responsible for a similar function. This is also supported by RNAi-mediated silencing experiments performed in Trypanosoma brucei. The two proteins are functionally redundant, since defects in protein synthesis and cell growth arrest were observed only when both paralogs were eliminated. A partial stage-specific specialization is observed, as LeishDED1-2 is more abundant in promastigotes, whereas expression of LeishDED1-1 increases in amastigotes. Duplication of an essential gene usually offers a safety net against mutations but in this case it also generated two proteins with stage specific expression.
Collapse
|
37
|
Evolutionary conservation and diversification of the translation initiation apparatus in trypanosomatids. Comp Funct Genomics 2012; 2012:813718. [PMID: 22829751 PMCID: PMC3399392 DOI: 10.1155/2012/813718] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/12/2012] [Indexed: 01/10/2023] Open
Abstract
Trypanosomatids are ancient eukaryotic parasites that migrate between insect vectors and mammalian hosts, causing a range of diseases in humans and domestic animals. Trypanosomatids feature a multitude of unusual molecular features, including polycistronic transcription and subsequent processing by trans-splicing and polyadenylation. Regulation of protein coding genes is posttranscriptional and thus, translation regulation is fundamental for activating the developmental program of gene expression. The spliced-leader RNA is attached to all mRNAs. It contains an unusual hypermethylated cap-4 structure in its 5′ end. The cap-binding complex, eIF4F, has gone through evolutionary changes in accordance with the requirement to bind cap-4. The eIF4F components in trypanosomatids are highly diverged from their orthologs in higher eukaryotes, and their potential functions are discussed. The cap-binding activity in all eukaryotes is a target for regulation and plays a similar role in trypanosomatids. Recent studies revealed a novel eIF4E-interacting protein, involved in directing stage-specific and stress-induced translation pathways. Translation regulation during stress also follows unusual regulatory cues, as the increased translation of Hsp83 following heat stress is driven by a defined element in the 3′ UTR, unlike higher eukaryotes. Overall, the environmental switches experienced by trypanosomatids during their life cycle seem to affect their translational machinery in unique ways.
Collapse
|
38
|
Schwede A, Kramer S, Carrington M. How do trypanosomes change gene expression in response to the environment? PROTOPLASMA 2012; 249:223-238. [PMID: 21594757 PMCID: PMC3305869 DOI: 10.1007/s00709-011-0282-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 05/30/2023]
Abstract
All organisms are able to modulate gene expression in response to internal and external stimuli. Trypanosomes represent a group that diverged early during the radiation of eukaryotes and do not utilise regulated initiation of transcription by RNA polymerase II. Here, the mechanisms present in trypanosomes to alter gene expression in response to stress and change of host environment are discussed and contrasted with those operating in yeast and cultured mammalian cells.
Collapse
Affiliation(s)
- Angela Schwede
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW UK
| | - Susanne Kramer
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW UK
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW UK
| |
Collapse
|
39
|
Kramer S. Developmental regulation of gene expression in the absence of transcriptional control: The case of kinetoplastids. Mol Biochem Parasitol 2012; 181:61-72. [PMID: 22019385 DOI: 10.1016/j.molbiopara.2011.10.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 11/25/2022]
|
40
|
Ramírez CA, Requena JM, Puerta CJ. Identification of the HSP70-II gene in Leishmania braziliensis HSP70 locus: genomic organization and UTRs characterization. Parasit Vectors 2011; 4:166. [PMID: 21871099 PMCID: PMC3185273 DOI: 10.1186/1756-3305-4-166] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/26/2011] [Indexed: 11/10/2022] Open
Abstract
Background The heat stress suffered by Leishmania sp during its digenetic life-cycle is a key trigger for its stage differentiation. In Leishmania subgenera two classes of HSP70 genes differing in their 3' UTR were described. Although the presence of HSP70-I genes was previously suggested in Leishmania (Viannia) braziliensis, HSP70-II genes had been reluctant to be uncovered. Results Here, we report the existence of two types of HSP70 genes in L. braziliensis and the genomic organization of the HSP70 locus. RT-PCR experiments were used to map the untranslated regions (UTR) of both types of genes. The 3' UTR-II has a low sequence identity (55-57%) when compared with this region in other Leishmania species. In contrast, the 5' UTR, common to both types of genes, and the 3' UTR-I were found to be highly conserved among all Leishmania species (77-81%). Southern blot assays suggested that L. braziliensis HSP70 gene cluster may contain around 6 tandemly-repeated HSP70-I genes followed by one HSP70-II gene, located at chromosome 28. Northern blot analysis indicated that levels of both types of mRNAs are not affected by heat shock. Conclusions This study has led to establishing the composition and structure of the HSP70 locus of L. braziliensis, complementing the information available in the GeneDB genome database for this species. L. braziliensis HSP70 gene regulation does not seem to operate by mRNA stabilization as occurs in other Leishmania species.
Collapse
Affiliation(s)
- César A Ramírez
- Laboratorio de Parasitología Molecular, Departamento de Microbiología, Pontificia Universidad Javeriana, Carrera 7 No, 43-82, Edificio 52, Oficina 608, Bogotá, Colombia
| | | | | |
Collapse
|